
A Computational Basis for

Higher-Dimensional Computational Geometry

and Applications 1

Kurt Mehlhom2 Michael Mulle# Stefan Naher4 Stefan Schirra2 Michael See12

Christian Uhrig2 Joachim Ziegler*

Abstract

In this paper we describe and discuss a kernel for
higher-dimensional computational geometry and we
present its application in the calculation of convex
hulls and delaunay triangulations. We introduce the
basic data types like points, vectors, directions, hyper-
planes, segments, rays, lines, spheres, affine transfor-
mations, and operations connecting these types. The
description consists of a motivation for the basic class
layout as well as topics like layered software design,
runtime correctness via checking routines and docu-
mentation issues. Finally we shortly describe the us-
age of the kernel in the application domain.

1 Introduction

A growing community within computer science,
academia, and industry tries to transfer the theoretical
algorithmic knowledge to practical usable programs.
What already happened in other parts of computer
science, namely the development of software libraries
to speed up program implementation is now also an
issue within geometric computing. We are now in
a situation where the available computing power,
the recent developments concerning exact arithmetic
packages, and the identification of reasonable geo-
metric primitives allow us to design a programming
toolbox for this purpose.

We describe and discuss a kernel for higher-
dimensional computational geometry. We have

tThis work was supported by ESPRIT LTR Project 20244
(ALCOM IT) and ESPRIT Project 21957 (CGAL)

2Max-Planck-Institute fiir Informatik, Im Stadtwrdd, 66123
Saarbritcken, Germany

3RIB Bausoftwme GmbH, Vaihinger Str. 151, 70507
Stuttgart

4FWh~reich Mathematik und Informatik, Martin-Luther
Universitiit Hatle-Wittenberg, 06120 Halle, Germany

implemented all basic data types like points, vec-
tors, directions, hyperplanes, segments, rays, lines,
spheres, affine transformations, and operations con-
necting these types. The kernel is structured into three
layers.

●

●

●

arbitrary precision integer and rational arithmetic
(classes integer and rational),

exact linear algebra (classes integer-vector and
integermatrix), and

basic geometric objects (classes

dd_rat_point, dd_raLvector, dd_rat~irection,
do!.rathyperplane, dd.rat~egment,
dbat-ray, dd-ratline, dd_ratiphere, and
afflransfownation)

On top of the kernel we implemented some classi-
cal computation tasks in higher-dimensional CC like
convex hulls and Delaunay triangulations. To make
the kernel a toolbox for a wide user community and
to give the whole project some paedagocical value we
aimed for the following:

Ease of use — we aimed for a natural and intuitive in-
terface as far as construction of objects, the con-
version between objects, and the interaction of
the classes and the operations are concerned. The
naming scheme tries to achieve a compromise
between mnemonics and word length. We fol-
lowed a clean, complete and adaptable documen-
tation scheme which provides all necessary infor-
mation for the user of the kernel and at the same
time is integrated into the implementation to en-
force consistency between implementation and
documentation. The information provided by
this manual production tool set consists of proto-
type information, semantic preconditions, help-
ful implementation details and runtime informa-
tion.

Functionality— we tried to provide a comprehen-
sive functionality of the objects while avoiding
interface bloating. The identification of the set

254

http://crossmark.crossref.org/dialog/?doi=10.1145%2F262839.262982&domain=pdf&date_stamp=1997-08-01

of primitives for higher level geometric applica-
tions was partly a dynamic process influenced by
application design (see part 7).

Layered Design — we designed the kernel in a lay-
ered fashion for several reasons. First, the func-
tionality of the lower levels is interesting in its
own right. In particular, it can be used to realize
additional geometric primitives. Second, the fact
that the linear algebra layer provides extensive
testing and checking routines considerably sim-
plified the development of the geometry layer.

Efficiency— the code is designed to be as fast as
possible respecting our primary goal: to develop
modular, reusable and maintainable components
which are not prone to arithmetic shortcomings

like rounding errors. To optimize the runtime
behaviour we use the LEDA memory manage-
ment and a handle-rep scheme to improve mem-
ory consumption and to allow identity tests on
objects.

The design of our kernel was mainly influenced
by three sources: the experiences with the two-
dimensionrd LEDA geometry kernel [MNU95], our
experiences with an experimental higher-dimensional
kernel [MZ94], and discussions with the group devel-
oping the CGAL-kemel [FGK+96].

In this short paper we can only give an
overview of the kernel and the applications
on top of it. We refer the reader to our web-
site http: //WrJW.mpi-sb .mpg/-seel for
the complete set of manual pages and for the
complete documentation of the kernel and to

http: //www.mpi-sb. mpg. de/-mehlhorn/Pro-
grams. html for the application packet.

In the following parts we describe the three soft-
ware layers of the kernel and the application layer, give
implementation details, and report about experience
with the two software packets.

2 Arithmetic

The bottom layer of our kernel is exact integral com-
puting. We use the LEDA datatypes integer and
rational. Any other bignum package providing the re-
quired functionality could be used instead.

The LEDA type integer realizes the mathematical
type integer. The arithmetic operations +, –,*,/, +=,
–=, – (unary), ++, ––, the modulus operation (%,
% =), bitwise AND (&, &=), bitwise OR (1,1=), the
complement operator (-), the shift operators (<<, >>),

the comparison operators -=, <, z, ?, ==, !=, and
the stream operators are all available. These operations
never overflow and always yield the exact result. Of
course, they may run out of memory.

Integers are essentially implemented by a vector of
unsigned longs. The sign and the size are stored in ex-
tra variables. Some time critical functions are imple-

mented in Spare assembler code. The running time of
addition is linear and the running time of multiplica-
tion is O (LIO~3), where L is the length of the operands.
(Karazuba-Offman for multiplication)

A LEDA ra?ional is essentially a pair of integers.
The arithmetic operations +, –, *, /, +=, –=, *=,

/=, – (unary), ++, –– are available on rationals.
In addition, there are functions to extract the numer-
ator and denominator, to cancel out the greatest com-
mon divisor of numerator and denominator, to com-
pute squares and powers, to round rationals to integers,
and many others. LEDA’s rational numbers are not
necessarily normalized, ie., numerator and denomina-
tor of a rational number may have a common factor. A
call p.normalize() normalizes p. This involves a gcd-
computation to find the common factor m in numera-
tor and denominator and two divisions to remove the
m. Since normalization is a fairly costly process we do
not do it automatically.

We have run some runtime tests to compare the
LEDA integers with the GNU Integers included in
GNU’s C++ library. The tests have been executed on

an Ultrasparc 140. We tested the four basic operations
+, –, *, / iteratively on a table of k-bit random num-
bers.

#Bits #ops LEDA I GNU in seconds

+ .

32 106 1.1 5.1 1.3 5.5

64 106 1.2 5.0 1.3 5.4
500 106 1.8 7.3 1.86 7.8

1000 106 2.7 10.4 2.8 13.4
* /

32 106 1.6 7.5 4.7 26.6
64 106 4.2 10.9 24.8 36.6

500 106 158.8 272.7 225.7 375.3
1000 106 591.6 1063.4 736.5 1281.3

3 Linear Algebra

The second layer of our kernel provides the standard
operations of linear algebra encapsulated in the two
classes integer-vector and integermatrix. These are
vectors and matrices with integer entries (= entries of
type integer). The possible operations on matrices and
vectors include

constructionmechanisms— we can construct m-
vectors, m x n-matrices from a tuple of equidi-
mensional vectors, identity matrices etc.

data accessoperations— we canaccess the integral
and rational components, the dimensions of ma-
trices and vectors, and the rows and columns of
matrices.

arithmeticoperations— we provide the inner prod-
uct, scalar multiplication to vectors and ma-
trices, and vector- and matrix-addition and -
multiplication.

255

Figure 1: The Manual Page of class !rrteger.matr!x, m excerpt

1. Definition
An Instance of data type infeger~mrrrix is a matrix of integer variables. The types integer_matrix and integer.vector together realize many
functions of basic linear algebra. All functions on integer matrices compute the exact result, I.e., there is no rounding error. Most functions
of linear algebra are checkde, ie., the programs can be asked for a proof that the!r output is correct.

2. Creation
irrlegerma~rix M(itrf n = O, inf m = O);

creates an instance M of type integer-matrix.M is initialized to the n x m - zero matrix.

irrfegermrafrix M(arrav<irrteger.vecfor+ A);

creates an instance M of type integermatrix. Let A be an array of m column-vectors of common di-
mension n. M is initialized to an n x m matrix with the columns as specifiedby A.

3. Operations
inf M.diml() returns n, the number of rows of M.

integer.veclor & M.row(irrr i) returns the i-th row of M (an m-vector).
Precondition: O ~ i ~ n – 1.

integer-matrix h’f+h’fl Addition of two matrices.
Precondition: M.dimlo = M 1.dimlo and M,dim20 = M 1.dim20.

bool linear~olver(inregermsarrix M, irrreger-vectorb, inreger-uecror& x, irrreger&D,
integerMatrix& .sparrning_vector.T,infeger.vector& c)

determines the complete solution space of the linear system M - x = b. If the system
is unsolvable then CT M = Oand CT b # 0, If the system is solvable then (l/D)x
is a solution, and the columns of spanrring_vectors are a maximal set of linearly inde-
pendent solutions to the corresponding homogeneous system.
Precmtdirion: M.dimlo = b.dimo.

4. Implementation
The datatype integer_matrix is implemented by two-dimensional arrays of integers. Operations dererminam, inverse, Iirreardver, and
rank use 0(n3) arithmetic operations, COItakes time O(n), row, diml, dim2, take constant time, and all other operations take time O(nm).
The space requirement is O(nm).

operations based on solving a linear system — we
can determine the solution of a linear system
Ax = b, calculate the determinant, rank, inverse,
and independent columns of a matrix

The core operation of the last category is a Gaus-
sian elimination scheme for anon-homogeneous linear
system Ax = b as described by J. Edmonds [Edm67].
For a recent reference see the books of A. Schrijver
[Sch86, part I] or C. Yap [Yap93, lecture X]. Basically
we transform the original matrix into a diagonalized
matrix of integral entries which encodes the numera-
tors of the solution vector and accumulate in parallel a
common denominator of the numerator entries.

Figure 1 shows an excerpt of the manual page of
class irttegeunarri.r. The same style is used for all
other types of the kernel. Each implemented class is
documented by four major sections Definition, Cre-

ation, Operations. and Implementation. The first

part gives an overview of the class specification like in-
tended usage of the class and implementation features
which influence this usage like exact arithmetic and
proof features. The second and third part describe the
user accessible operations of the class like construc-
tors, member operations, and functions which work on
the class. The description of each operation gives the
semantics of it, describes the result transfer by return
values and reference parameters, and states precondi-
tions for the usage of the operation. The fourth part of
our manual page completes the description by helpful
implementation details and runtime and space bounds.

The cited description of the friend function
linear~olver shows nicely the proof feature of our
core operation. Either a solution x is calculated which
can be easily checked by substitution into the linear
system M-x = b or a vector c is provided which
proves the unsolvability of the system. Of course
there’s also a selftest incorporated in the code which
can be switched on by a compilation flag and thus the
testing can be done permanently.

In a second runtime test we compared the LEDA
linear algebra module with commercial math pack-
ages like Maple V and Mathenratica 2.0. We solved
randomly generated non-homogeneous linear systems
with dim rows and columns and 32 bit entries. The
tests were executed on a Sun Spare 4 with 40 MHz.

dim I LEDA I Maple V R3 I Mathematical 2.0
20 I 1.3s 15.8 S 31.6s

30 I 7.6 S 92.4 S 211.3s
40 I 28.4 S 363.7 S 840.3 S1 1 1

100 \ 32min I >Ih >lh

4 Geometric Classes

As mentioned above we provide the geometric
classes dabat-point, dd.rat.vector, dd-ratdirection,
dd-ratJtyperplane, dd-rat~egment, dd-rat~ay,
dd-ratline, da!rat~phere, and afflransformation.

We first give a motivation for our interface design
and review briefly the basics of analytical geometry.

256

We use c1to denote the dimension of the ambient space

and assume that our space is equipped with a stan-
dard Cartesian coordinate system. The basic object
within this space is a point p, which we identify with
its cartesian coordinate vector p = (p.,

K d, are rational” n~~b~~~~where the Pi, O < i
We store a dd_rat_point by homogeneous coordinates
(ho,..., h~) where pi = hl/hd for all i, O s i s d,

and the hi’s are integer (LEDA type integer). The ho-
mogenizing coordinate h~ is always positive.

Points, vectors, and directions are closely related
but nevertheless clearly distinct types. In order to work
out the relationship, it is useful to identify a point with
an arrow extending from the origin (= an arbitrary but
fixed point) to the point. In this view a point is an ar-
row attached to the origin. A vector is an arrow that is
allowed to float freely in space, more precisely, a vec-
tor is an equivalence class of arrows where two arrows
are equivalent if one can be moved into the other by
a translation of space. Points and vectors can be com-
bined by some arithmetical operations. For two points
p and q the difference f? – q is a vector (= the equiv-
alence class of arrows containing the arrow extending
from q to p) and for a point p and a vector u, p + u is
a point.

All operations of linear algebra apply to vectors,
i.e., vectors can be stretched and shrunk (by multi-
plication with a scalar) and inner and cross product
applies to them. On the other hand, geometric tests
Iike collinearity or orientation only apply to points.
Note that we distinguish the vector type dd-rat.vector
in this scenario of geometric objects from the data type
integer-vector, which we use to formulate calculations
in our arithmetic linear algebra layer. We cannot iden-
tify both because their role and thereby their function-
ality within their respective code module is quite dif-
ferent and we don’t want to have this mixed up.

A direction is also an equivalence class of arrows,
where two arrows are equivalent if one can be moved
into the other by a translation of space followed by
stretching or shrinking. Altemativel y, we may view
a direction as a point on the unit sphere. In two-
dimensional space directions correspond to angles. As
in the case of dd_rat_point we store old-rat-vector, and
dd-ratdirection, respectively, as a homogeneous tuple
of integers with positive homogenizing component.

The common one-dimensional straight-line objects
in d-space like lines, rays and segments (which we
allow to be trivial) are implemented in the classes
ddrat.line, old-rat-ray and dd-rat~egment and deter-
mined by a pair of points.

With respect to the user interface we can group
together points, vectors, directions, and on the other
hand segments, rays, and lines. For the first group
there are common operations to access Cartesian and
homogeneous coordinates. Conversions within the
first group can be made by explicit operations. For the
second group there are similar operations to access the
coordinates of the determining pair of points.

Oriented hyperplanes in the class
dd-rat~yperplane can be used to model halfs-
paces and affine hulls of (d – 1)-dimensional point
sets. They are internally stored as a (d + 1)-tuple of
integer coefficients. Finally oriented spheres of type
dd-rat~phere are helpfull in proximity calculations
like Voronoi diagrams or Delaunay triangulations.
They are stored as a tuple of d + 1 dd_rat_points.

For all of our basic geometric types we have
affine transformations, which can be used by a
call of a common member operation which gets
an aff~ransformation-i nstance as an argument and
delivers a transformed object.

All object classes mentioned use a common handle-
rep scheme which is already used in many modules
of LEDA. We distinguish between a front-end object
which is created by the constructor and a storage ob-
ject of concrete geometric information which is ref-
erenced from the front-end object. The advantages
of this scheme emerge in case of frequent copy con-
struction and assignment where only references have
to be redirected and no geometric information has to
be copied. For large objects this lessens memory con-
sumption and allows us to improve equality checks by
testing the reference addresses before a comparison of
geometric coordinate information. As in the case of
our linear algebra module we use LEDA’s improved
memory management module which gives us a cer-
tain speed-up compared to the standard C++ allocation
scheme.

We now take a closer look at two example manual
pages, by which we elaborate further on the features
of our data types. Figure 2 shows an excerpt from the
point class manual page.

The default dimension of all objects is 2.
This means that a call to the standard constructor
ddrat+oint() delivers an instance of type dd-rat_point
for planar geometry. A point in d-dimensional space
is constructed by p(infeger.vector c, integer D) or
p(integer-vector c). In addition, there are standard
initialization operations which allow comfortable
creation of objects for the dimensions 2 and 3, which
are not shown here. The data access operations allow
access to the dimension and to Cartesian and homo-
geneous coordinates. Operator overloading allows
the intuitive calculation of old-rat-point difference,
which results in a dd_rat-vector and the translation of
do!.rat~oints by adding a dcLrat_vector. The orienta-
tion predicate and other affine operations use LEDA
arrays as a container type for a tuple of points.

To represent the second group of straight line ob-
jects we show a piece of the dd-ratline documentation
in figure 3. The basic operations provided on these ob-
jects are mainly position checks of points with respect
to the objects, like confains() and intersection calcu-
lation between all higher dimensional objects like seg-
ments, rays, lines, and hyperplanes.

257

Figure2: The Manual Page of class dd~at.point, an excerpt

1. Definition
An instance of data type do!.rar+oinr is a point with rational coordinates in an arbitrary dimensional space

2. Creation
d~ra~oint p(int d = 2); introduces a variable p of type da!_rat..poin1in d-dimensional space.

dd_rat_point p(integer-vector c, integer D);

introduces a variable p of type doLra&point initialized to the point with homogeneous coordinates
(+co. ,.., +c~-1, +D), where d is the dimension of c and the sign chosen is the sign of D.
Precondition: D is non-zero,

3. Operations
im

rarimtfd

integer

dd_ra~vector

daLrat_point

in!

p.dim() returns the dimension of p,

p.coord(inr i) returns the i-th cartesian coordinate of p.

p.hcoord(inr i) returns the i-th homogeneous coordinate of p.

P–Y returns p – q.
Prwwndirion: p.dim()== q.dim().

p + d6LraLvector v returns p + u,
Precondition: p.dim()== v.dim().

orientation(array <ddmt-poinr> A)

determines the orientation of the points in A. This is the sign of the determinant

A~O] All] .’. A/d] I

where A[i] denotes the cartesian coordinate vector of the i-th point in A,
Precondirirrn: A consists of d + 1 points of dimension d.

bool containe&inaffine-htrll(array<dab-aWoint> A, aUrat_point x)

determines whether x is contained in the affine hull of the points in A.

4. Implementation
Points are implemented by arrays of integers as an item type. All operations like

Figure3: The Manual Page of class dd-rat.line, an excerpt

L Definition
An instance of data type dalratline is an oriented line in d-dimensional Euclidian space

2. Creation
ddrarJine /(int d = 2); introduces a variable 1of type dabatline and initializes it to some line in d-dimensional space

dtiratdine I(ddragoinr p, ddrat+oinr q);

introduces a line through p and q and oriented from p to q.
Precondition: p and q are distinct and have the same dimension.

3. Operations
ddratyoint

ddradirecrirm

booi

im

l.pointl() returns a point on 1.

Ldirection() returns the direction of 1.

l.contains(ddra~oint p)

returns true if p lies on 1and false otherwise.
I.intersection(ddrat_regments, ddrat_point& il, a2frat..point& i2)

returnsthe intersection set 1(ls by the following means. The returnvatue is one of the
constants {IS-EMPTY, LVOINT, ISSEGMENT, ISRAY, [WINE}. The correspond-
ing set is determined by the two points ii and i2:

-

4. Implementation
Lines are implemented by a pairof points as an item type

258

5 Applications: Convex Hulls and Delatmay ~rian-

gulations

The convex hull and the Delaunay triangulation prob-
lem are traditionally specified as functions, i.e., given
a set ofpoints compute their convex hull ortheir De-
Iaunay triangulation in some representation. We spec-
ify both problems as data types that support insertions
and a large variety of query operations. In the case of
convex hulls we support navigation through the inte-
rior and the boundary of the hull and we support mem-
bership and visibility queries. In the case of Delau-
nay triangulations we support navigation through the
triangulation, we support locate’ and nearest neigh-
bor queries, and we support range queries with spheres
and simplices. For two-dimensional convex hulls and
Delaunay triangulations we also support an interface
to the LEDA graph and window classes [MNU95,
MN95]. In this way one can, for example, construct
two-dimensional nearest and furthest site Voronoi dia-
grams and minimum spanning trees, display hulls and
Delaunay triangulations.

The next two sections present parts of the specifica-
tions of convex hulls and Delaunay triangulations, re-
spectively.

Convex Hulls

An instance C of type chtdf is the convex hull of a
mtdti-set .S of points in d-dimensional space. We call
.S the underlying point set and d or dim the dimension
of the underlying space. We use dcuror dcurrent to de-
note the affine dimension of S. The data type supports
incremental construction of hulls.

The closure of the hull is maintained as a sim-
plicial complex, i.e., as a collection of simplices the
intersection of any two is a face of both2. In the
sequel we reserve the word simpIex for the simplices
of dimension dcur. For each simplex there is an item
of type Asimplex and for each vertex there is an
item of type chvertex. Each simplex has 1 + dcur
vertices indexed from O to dcuC for a simplex s and
an index i, C.vertex(s, i) returns the i-th vertex of
s. For any simplex s and any index i ofs there may
or may not be a simplex t opposite to the i-th vertex
of s. The function C.opposi&eJimpIex(s, i) ret urns
t if it exists and returns nil otherwise. If t exists
then s and t share dcur vertices, namely all but the
vertex with index i of s and the vertex with index
C.irrde~of-verte~irwpposi~~implex(s, i) of t. As-
sume that t exists and let j = C.inde~f-verte~im-
oppositaimplex(s, i). Then s = C.oppositaim-
plex(t, j) and i = C.inde~of_verte~ irwpposit~-
simplex(~, j). Again, the specification and semantics
of all operations connected to chrdl is documented in
a manual page shown partly in figure 4.

]a Ieeate query finds the simplex of the triangulation contain-
ing the query point

‘The empty set is a facet of every simplex.

Delaunay Triangulations

A instance DT of type dd.delaunay is the nearest and
furthest site Delaunay triangulation of a set .Sof points
in some d-dimensional space, We call S the underlying
point set and d or dim the dimension of the underlying
space. We use dcur or dcurrenl to denote the affine di-
mension of S. The data type supports incremental con-
struction of Delaunay triangulations and various kinds
of query operations (in particular, nearest and furthest
neighbor queries and range queries with spheres and
simplices).

A Delaunay triangulation is a simplicial complex.
All simplices in the Delaunay triangulation have di-
mension dcur. In the nearest site Delaunay triangula-
tion the circumsphere of any simplex in the triangula-
tion contains no point of S in its interior. In the fur-
thest site Delaunay triangulation the circumsphere of
any simplex contains no point of S in its exterior. If the
points in S are co-circular then any triangulation of S is
a nearest as well as a furthest site Delaunay triangula-
tion of S. If the points in S are not co-circular then no
simplex can be a simplex of both triangulations. Ac-
cordingly, we view DT as either one or two collection
of simplices. If the points in S are co-circular there is
just one collection: the set of simplices of some tri-
angulation. If the points in S are not co-circular there
are two collections. One collection consists of the sim-
plices of a nearest site Delaunay triangulation and the
other collection consists of the simplices of a furthest
site Delaunay triangulation.

For each simplex of maximal dimension there is
an item of type dt~implex and for each vertex of the
triangulation there is an item of type dt-vertex. Each
simplex has 1 + dcur vertices indexed from Oto dcur.

For any simplex s and any index i, DT.verte~of(s, i)
returns the i-th vertex of s. There may or may not
be a simplex t opposite to the vertex of s with in-
dex i. The function DT.opposiraimplex(s, i) returns
t if it exists and returns nil otherwise. If t exists
then s and t share dcur vertices, namely all but the
vertex with index i of s and the vertex with index
DT.indexof_verte~irwpposite~implex(s, i) oft. As-
sume that t = DT.oppositaimplex(s, i) exists and
let j = DT.inde~of.verte~irwpposituimplex(s, i).
Then s = DT.oppositaimplex(t, j) and i = DT.in-
dex-of.verte~irwppositasimplex(t, j). In general, a
vertex belongs to many simplices.

Any simplex of DT belongs either to the nearest or
to the furthest site Delaunay triangulation or both. The
test DT.simplex.ofnearest(dt~implexs) returns true if
s belongs to the nearest site triangulation and the test
DT.sirnple~of@thest(dt~imp/exs) returns true if s
belongs to the furthest site triangulation.

Further Implementation Issues

The implementation of type chull follows [CMS93]
and Delaunay triangulations are reduced to convex

259

Figure 4: The Manual Page of class chull, an excerpt

1. Definition
An instance C of type chull is

2. Creation
chull C(int d = 2); creates an instance C of type chull. The dimension of the underlying space is d and S is initialized to

the empty point set.

The data type chull offers neither copy constructor nor assignment operator.

3. Operations
irrf

ddrarqmiru

chvertex

aMraLhyperplarre

lisr<ckfacet>

C.dim() returns the dimension of ambient space

C.a.ssociatedpoint(ch_verrexu) returns the point associated with vertex u.
C.verte~ofiimplex(ckrinrp/exs, inf i)

returns the vertex corresponding to the i-th vertex ofs. Precondition:O s i s
dcur.

C.hyperplanasupporting(c~acer $)

returns a hyperplane supporting facet ~. l%e hyperplane is oriented such that the
interior of C is on the negative side of it. Precondition:f is a facet of C and
dcur > 1,

C.alLfacets() returnsa listof all facetsof C.

4. Implementation
The time and space requirement is input dependent. Let Cl, C2, C3, be the sequence of hulls constructed and for a point x let ki be
(he number of facets of Ci that are visible from x and that are not atready facets of C;–t. Then the time for inserting x is O(dim ~, ki)
and the number of new simplices constructed during the insertion of .x is the number of facets of the hull which were not atready facets
of the hull before the insertion.
The data type chull is derived from regf_complex. The space requirement of regular complexes is essentially 12(dim + 2) Bytes times
the number of simplices plus the space for the points. chull needs an additional 8 + (4 + x)dirn Bytes per simplex where x is the space
requirement of the underlying number type and an additional 12 Bytes per point. The total is therefore (16+ x)dim +32 Bytes times the
number of simplices plus 28+ x . dim Bytes times the number of points.

hulls through the well-known lifting map, see for
example [Ede87]. Based on our kernel a class
regkmydex was implemented that can represent so-
called regular simplicialcomplexes. A simplicial com-
plex is called regular if all maximal simplices, i.e.,
simplices that are not a subsimplex of another sim-
plex of the complex, have the same dimension. The
class regLconrplex provides operations for navigation
through the complex and update operations. The
class chuff is derived from regLcomplex and the class
dddelaunay is derived from chull.

The work horse for the query operations on convex
hulls and Delaunay triangulations is a method

C. visibility _search(dd_rat_point x,
list<ch_f acet>& visible-f acets,
int& location, ch_facet& f) ;

that constructs the list of aIl x-visible hull facets in
visibl~acets, returns the position of x with respect to
the current hull in location (– 1 for inside, Ofor on the
the boundary, and +1 for outside) and, if x is contained
in the boundary of C, returns a facet incident to x in ~.

The membership query and the visible facets query
for hulls are easily realized by this method and the
nearest neighbor and the range query for Delaunay tri-
angulations use it in an essential way. The nearest
neighbor query for Delaunay triangulations lifts the
query point (using the lifting map), then determines all
visible facets of the hull, and then selects the best ver-
tex by linear search through their vertices 3. The range

sThls meth~ is on]vefficient in low-dimensional sPace

query with spheres lifts the sphere (using the lifting
map) and then finds all vertices of the hull that lie be-
low the resulting hyperplane4.

We use program checking [BLR90, MNS+96] in
our implementation. In particular,

●

●

●

the class regLcomplex provides a method
RC.checLfopology() that partially checks
whether RC is an abstract simplicial complexs,
and a method RC.i@elaunay(kind) that checks
whether RC is a nearest (kind = rteamst)
or furthest (kind = furthest) site Delaunay
triangulation of its vertex set.

the class chtdl provides a method C.check() that
verifies convex hulls as described in [MNS+96].

we have algorithms that check whether a graph is--
a nearest or furthest site Delaunay diagram of its
vertex set, whether a graph is a triangulation of
its vertex set, and whether a graph is a nearest or
furthest site Voronoi diagram

The representation of convex hulls and Delaunay
triangulations in data types chull and dd.delaunay is

simplex-based, i.e., simplices are the main objects and

dne IlfingmW turns a sphereintoa hype~lme.

5Themethodchecks whethertheneighborhoodrelationship
on simplicesis symmetric,whetherafl verticesof a simplexare
distinct,andwhethertwo neighboringsimplicesshareallbutone
of theirvertices. Itdoes not check whether simplices that share
all but one of their vertices are actually neighbors in the complex.

260

lower dimensional faces are only implicitly repre- map to the solution of a corresponding linear system
sented. In two-dimensional space there is an alterna- calculated by our linear algebra layer. Notice that

tive representation which makes the vertices and edges precondition checks are formulated as preproces-

the primary objects and represents simplices (= trian- sor macros which can be switched off by the flag

gles) implicitly as faces of a planar graph. This is the -DLEDA-CHECKINGJIFF.

representation used for twe-dimensional Del aunay tri -
angulations (type delaurtay) in LEDA. If DT has type
dd-delaunay, DTG has type GRAPH< POINT, int>6,

7 Experimental Experiences

and kind is one of nearest or furthest, then Both programs rely heavily on the fact that the ker-

DT. graphrep(DTG ,kind) ;
nel is exact. For example, the insertion routine for
convex hulls distinguishes cases according to whether

constructs the graph representation of DT in DTG. All
LEDA graph algorithms can now be applied to DTG.
For example,

corrtpute.voronoi (DTG,VD ,kind);

will construct the graph representation of the Voronoi
diagram in VD, and

edge. srray<rat ional> dist (DTG) ;
f orall_edges (e ,DTG)

dist [e] = DTG[source(e)] .
sqr_dist (DTG [target (e)]);

list< edge> L =
HIM_SPAIWING.TREE (DTG,dist);

willconstruc tinLtheset ofedges composing amin-
imum spannning tree of DTG.

6 Documentation

The full documentation of the kernel consists of about
240 pages7 and the documentation of the application
layer comprises about 100 pagesg.

Figure 5 shows the implementation of the
on”entation-predicateof the class da’-rat-point and one
member operation of class chull. For each class the
documentation and the implementation are collected
in a noweb-file9 and different tools are used to give
different views of the noweb-file: the noweb tool
notangle extracts the code, i.e., the view needed
by the C++ compiler, and the LEDA tools hmzt and
Ldoc give the manual view and the documentation
view, respective y 10.

Figure 5 also illustrates the vertical interac-
tion between the software layers. In case of the
orientation-predicate the determinant calculation
is done by deterrninant() provided as a friend of
integermtn”x. Most affine operations on point tuples

4In LEDA GRAPH< POIM, int> is the type of ~aphs where

each node has’an associated information of type POLVT and each
edge has an associated information of type irr~ theedge informa-
tion is notusedin thiscode.

the newly inserted point lies in the affine hull of the
points already present or not, and the checking pro-
grams would hardly make sense without exact prim-
itives.

In the early stages of program development the
checking feature of the kernel was particular-y useful.
For example, the convex hull program needs to com-
pute the hyperpkure defined by a set of points. This can
be done by solving a linear system. In the first version
of the program we set up the wrong linear system. It
was very useful that the linear system solver gives a
proof of unsolvability and does not just claim unsolv-
ability. This located the error fairly quickly.

We have used classes chull and da!delaunay on
problems up to dimension 10. We have also com-
pared it to the qhull-program of Barber, Dobkin, and
Hudhanpaa[BDH96] and the hull-program of Clark-
son. The first method computes approximate convex
hulls and the latter method computes exact hulls but
works only for a limited (albeit large) range of coordi-
nate values. Both methods are significant y faster than
ours. This is mostly due to their use of floating point
arithmetic. Neither of the algorithms provides the rich
functionality that we provide.

8 Availability and Extensions

The whole kernel has been used internally since
June 96 and will become part of the next major
LEDA release in form of a so called LEDA ex-
tension package. The complete specification of
the listed data types and the code projects can be
obtained via WWW from the LEDA home page
http: //usrv. mpi-sb mpg. de/LEDA.

In cooperation with the CGAL-project the code
base was extended with number type templatization.
This allows runtime comparisons depending on the
plugged in arithmetic components. We want to eval-
uate the use of modular integer data types within the
linear algebra packet as well as in different geometric
application scenarios. An adapted version of the tem-
platized code will become part of the CGAL-kemel.

7seehttp:llvvu .qi-sb. npg. del-seellgeo. t~. gz
8see http: Ilvwu. mpi-sb. mpg. del-nehlhornlProgrsms .html 9 Conclusions
‘see http: II wuu. cs. pnrdne. ednlhomeslnrlnoueb for an

introductionto noweb We described the layered design of a kernel for higher
‘“Seehttp: /lvsu .mpl-sb. mpg.de/-rnobl.horn/LX)Abook.html

for anintroductionto thistools dimensional computational geometry and gave two ex-

261

Figure 5: The implementation style

Orientation

(dd.rar-point.h) E

int orient ation(const array <rat. point> k A) ;

Semantics: determines the orientation of the points in A, where A consists of d + 1 points in d-space. This is
the sign of the determinant

1111
AIO] A[l] . . . A[d]

where A[i] denotes the cartesian coordinate vector of the i-th point in A.

We are given an amay A of d + 1 points in d-space and compute their orientation. Multiplying the i-th column of
the above matrix by the homogenizing coordinate of A [i] leaves the sign of the determinant unchanged. We set up
this matrix and return its determinant. Actually, it is more convenient to transpose it and to make the first row the
last. This changes the sign if the number of rows is even, i.e., if d is odd.

(implementing dd-raqminr) +=
int
oriantation(const Srrayc dd-rat.point > k A)
{

TUPLE-DI?I-CEECK(A, orient at ion)

int al = A.louo; // the lower index atsrt of IAI
int d = A.higho - sl; // A contains d + i points

LEDA.OPT-PRECOID((A[sl] .dim() == d), “orientation: \
needs A[] .dimo + 1 msny input points.”)

integer-matrix H(d+l); // quadratic

for (imt i = O; i <= d; i++)
{

for (Ant j = O; j <= d; j++)
SS(i, j) = A[sl + i]. hcoord(j);

}

int row_corr6ction = ((d % 2 == O) ? +1 : -1) ;
// we invert the sign if the row number is ● ven i. ● . d is odd
return row-correction * sign-of-determinant (H);

3

Facetavisible from a point

(public members of classchull)-i-~

list<ch-facet> facets-visible-from(coast dd-rat-poimtt x);

Semantics: returns the list of all facets that are visible from x.
Precondition: x is contained in the affine hull of S.

(Member ImpIs)+=

list< ch-facet> chmll: :facets-visible- from(comst rat.poimt& x)
/* ret~ns the list of all facj~ts that ~a Visibl. f r~ Ix I . */

{ lkt<ch-simplex> visible-simplices;
imt location = -1; // i.ntialization is importsnt
tit nmmbor.of-visit. d-simplices = O; // irrelevant
ch-facet f; // irrelevant

visibility -soarch(origin-simplex, x, visiblo-simplices,
nnmbar.of-visited-s implicos, location, f) ;

ratnrn ~isible-simplicos;
}

262

amples for applications. The primary goal was to de- [Sch86] A. Schrijver. Theon of Linear and lnte-
velop a useful base for geometric application design in- ger Prograntming. John Wiley and Sons,
eluding checkable correctness, efficiency based on ex- Chichester, New York, Brisbane, Toronto,
isting software library concepts and a clear and com- Singapore, 1986.
prehensive documentation scheme. [Yap93] C. K. Yap. Fundamental Problems in Al-

gorithmic Algebra. Princeton University

References
Press, 1993.

[BDH96] C. Barber, D. Dobkin, and H. Hudhanpaa.
The quickhull program for convex hulls.
ACM Transactions on Mathematical Soft-
ware, 22:469483, 1996.

[BLR90] M. Bhtm, M. Luby, and R. Rubinfeld.
Self-testing/correcting with applications
to numerical problems. In Proc. 22nd An-
nual ACM Symp. on Theory of Computing,
pages 73-83, 1990.

[CMS93] Kenneth L. Clarkson, Kurt Mehlhorn, and
Raimund Seidel. Four results on random-
ized incremental constructions. In Com-
putationalgeometry: theory and applica-
tions, volume 3, pages 185–2 12, Amster-
dam, 1993. Elsevier.

[Ede87] H. Edeisbrunner. Algorithms in Combina-
torial Geomet~. Springer, 1987.

[Edm67] J. Edmonds. Systems of distinct repre-
sentatives and linear algebra. .Journal of
Research of the National Bureau of Stan-
dards, 71(B) :241-245, 1967.

[FGK+96] Andreas Fabri, Geert-Jan Giezeman,
Lutz Kettner, Stefan Schirra, and Sven
Schonherr. The CGAL kernel : a basis for
geometric computation. In Ming C. Lin
and Dinesh Manocha, editors, Applied
Computational Geometty : Towards
Geometric Engineering : Workshop
(FCRC-96; WACG-96), Philadelphia,
PA, USA, May 27-28, 1996; selected
paper, volume LNCS 1148, pages
191–202S., Berlin, 1996. Springer.

[MN95] K. Mehlhorn and S. Naher. LEDA, a
platform for combinatorial and geometric
computing. Communications of the ACM,
38:96-102, 1995.

[MNS~96] K. Mehlhorn, S. Niiher, T. Schilz,
S. Schirra, M. Seel, R. Seidel, and Ch.
Uhrig. Checking Geometric Programs
or Verification of Geometric Structures.
In Pmt. of the 12th Annual Symposium
on Computational Geometry, pages
159-165, 1996.

[MNU95] K. Mehlhom, S. Niiher, and C. Uhrig. The
LEDA User Manual, 1995.

[MZ94] M. Muller and J. Ziegler. An implementa-
tion of a convex hull algorithm. Technical
Report MPI-I-94- 105, Max-Planck-
Institut fi.ir Informatik, Saarbriicken,
1994.

263

