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A fundamental problem in computer vision is identifying
which of a given set of geometric models is present in anim-
age. Reconsider anapproach to model recognition basedon
computing efficient strategies (decision trees) for ‘probing”
a scanned image of a typeset document, in order to perform
fast and effective optical character recognition (OCR). We
consider a “proben to be a simply computed local opera-
tor that can be applied to discriminate between two sets of
possible models. By carefully constructing effective probes,
and assembling them into a geometric decision tree, we have
devised, implemented, and compared a variety of methods
to perform OCR. In this paper, we present algorithms for
probing strategies and decision tree construction, and we
report experiment al results on the effectiveness of theae al-
gorithms in identifying English characters and numerals in
scanned images of printed pages of text. These algorithms
are implemented as part of a system used by a document
processing company (Syngen Corp.).

1 Introduction

The field of opticaI character recognition (OCR) strives to
build systems enabling a machine to “read” pages of printed
text that have been scanned into a digital file format. Ex-
tensive research haa been invested in OCR since the 1960’s,
but the problem is still largely unsolved. Many commercial
OCR packages exist, but most of them encounter problems
in multi-font or low-quality documents. Moreover, most ap
prosches are based on statistical decision theory that r~
quires a set of training data to ‘tune” the classifier. How-
ever, such an extensive training set is not always available,
as when one is scanning a book, or working on a document
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with an unknown font.
We report on our experience doing OCR using geomet-

ric probes, arranged in a decision treeciassijier. Each probe
consists of a simple local operator (e.g., summing the inten-
sity values of the set of pixels that lie within a selected small
box), and a comparison of the resulting value with threshold
values that determine which branch of the decision tree is
to be taken next.

This work can be considered a follow-upto Arkin et d. [1,
2], who studied the geometric dtilon tree problem. Here,
we investigate the practical aspects of applying geometric
decision trees to a real problem (OCR) and provide the ex-
perimental analysis that permits them to be further devel-
oped for other applications.

The ‘probing paradigm” has been applied to model-baaed
object recognition; see [6], and references cited therein. In
effect, the probing schemes serve to “factor out” the effect of
translation and rotation, reducing the final decision problem
to that of this paper. For previous work on the decision tree
classifier paradigm, see [3, 4, 11]. For general background on
the extensive field of OCR, we refer the reader to the survey
by Mori, Suen and Yamamoto [7]. The method we are em-
ploying most closely resembles the “peephole” method that
was among the first approaches to the OCR problem [5].

Main Rastdts

(l). We formrdize the detilon tree methodology, as applied
to OCR, and describe and analyze heuristic algorithms de-
signed to produce decision trees having low height. In par-
ticular, we conduct an experimental investigation into the
methods baaed on greedy set cover heuristics, which were in-
troduced in previous theoretical work of Arkin et al. [1, 2].

(2). Our decision-tree construction algorithm is based
on an error model, which provides us with the probabilistic
information required to assess the reliabilityy of local probes.
A detailed description of our error model is provided in the
full paper.

(3). We develop a method of verifiinga hypothesis given
by a recognize, in order to make more stringent demands
on the level of cert sinty. Our verifier is based on set cover
heuristics, and uses a select set of probes in order to raise
the recognition confidence.

(4). We report on experimental results and on the practi-
cal effectiveness of geometric decision trees for use in scanned
document processing. Our implementation is part of a sYs-
tem being tested now for use within a Ml-scale production
environment to scan and read consumer surveys, financial
account documents, and other forms.
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2 Methodology

We assume that each model in the library S is given in a
fixed position, orientation, and scale, s.s a greyscale array
of Dixels. From the set of models. we construct a decision.
tree (a probe tree), which can be used to perform recognition
of scanned images. We assume that the scanned image has
been segmented into subimages that each contain exactly
one instance of one model. While segmentation can itself be
a challenging task, for this work we chose to concentrate on
classification and keep the segmentation issue separate.

As in [1, 2], we consider a probe to be a function that
maps an i&age to a real number, its outcome, typically by
computing a simple local function of the image values in
one or more selected locations or neighborhoods within the
image. The probe out come must be simple to compute. By
normalization, we can assume that all outcome values are in
[0, 1]. The outcome of a probe when applied on a model is
a random variable. The support interval of its distribution
is determined by the error model and is called the outcome
interval.

At each node w of the probe tree there is an associated
subset S. ~ S of the models. In the tree construction al-
gorithm, our goal is to partition S“ into roughly equal-size
subsets by means of selecting an effective probe, irti,to apply
at node v. We determine one or more clas@ication thresh-
olds for each probe that we use. The classification thresholds
partition [0, I] into intervals, each of which corresponds to
a child of the current node. While the thresholds partition
the reaI numbers, we may not end up with a partition of the
models S“: Some models may be assigned to two or more
children of v. In particular, since the outcome interval Im
for a model m contains the set of values that ~“ might pro-
duce, m is included in any child whose interval overlaps with
I The optimal classification intervals for each candidate
p~obe, together with the model subsets for each child are
computed using dynamic programming. The “best” split
is a set of k points (with k < 5, typically) in the interval
arrangement that generate k + 1 children, while minimiz-
ing the model overlap between different children. We have
found that minimizing the objective function ~~=1 lSi 1’ is
an effective means of minimizing model overlap, where Si
denote the model sets of the children. (While here we use a
sum of cubes, any sum of convex functions will suffice). A
dynamic programming algorithm (O(n2 )) is used to select
the or&nid classification interwds.

W~ then apply a greedy strategy, selecting the probe
whose corresponding split of the models is the most bal-
anced. The greedy heuristic for constructing decision trees
was discussed and analyzed in [2], where it was shown that
the greedy strategy to split a set of models produces a tree
within a Pg kl factor of optimal, when we have IMI = k
models. Whale greedy probes produce short trees, there is
a tradeoff between partitioning and accuracy. Currently, we
choose the most reliable probe among those that are greedy
enough (have balanced children).

The resulting detilon tree can then be used for character
classification. As we see our tree growing strategy is top-
down, because we want to use only local information to make
a decision on a tree node.

During classification, we descend to the child (or chil-
dren) of v whose interval contains the outcome of probe rr”.

Currently we use four distinct types of probes: Bounding
BOX probes measure the width or the height of the bound-
ing box of the character. Single-pixel probea consist of
a lone pixel, while Rectangle Probes are a generalization of

single-pixel probes. with the probe calculating the average
intensity over a rectangular area. Finally, Pizel Set probes
are even more general. They may consist of any collection
of pixels, equipped with signs (to specify whether the pixel
intensity has to be inverted before taking the average). The
Pixel Set type can be used to “home in” on where the es-
sential geometrical differences are between two shapes.

3 Verifier

Because of distortions in the input image, a local operator
may make mistakes during recognition. We can overcome
this danger, however, if we use the redundancy present in
the character image, to ueri~ythe classifier’s suggestion.

The concept of uerijication is to use additional probes in
order to obtain further evidence supporting the suggestion
made by the decision tree.

To verify a suggestion m, made by the probe tree, we ap
ply a sequence of probes to the sample, that can distinguish
between model m and any other model in our alphabet. We
say a probe p cowers model c against c’, if and only if it can
distinguish between c and c’. For probe p to be used as a
verification probe between c and c’, it hss to cover c against
c’ and be independent (disjoint) of any probes used so far in
the decision tree for c, so that it does not repeat any errors
made by the tree probes.

To build our verifier, we construct the so called ambi-
guity graph. The nodes are the models, while there is an
edge between two models, if they are not discriminated by
the current set of verifying probes. The edge is labeled by
those probes that can do the discrimination, and break the
ambiguity. This way, the verifier construction problem is
transformed into a set covering problem. To construct the
verifier with the minimum number of probes, we apply the
greedy heuristic, selecting the probe that breaks the highest
number of unresolved ambiguities.

As a different verifier variety, we can have a separate
set of probes for each model, producing many set covers,
independent from one another. The second flavor is called
the “multiple cover” verifier.

Finally, we can ask for multiple coverage (“C-coverage”)
to increase the confidence of the final decisiou, where C is a
parameter that determines the minimum number of probes
needed to break the ambiguity between two models.

4 Experimental Results

Our experiments were done on two fonts, OCR-font and
Times-Roman 10pt. The OCR-font data was real data pr~
tided to us by Syngen Corp. As the OCR-font was designed
to be machine-readable, it draws the numbers using only
thick, constant width, horizontal and vertical lines, except
‘7”, which haa a tilted stroke. The experiment was con-
ducted on 5183 number sequences, each segmented into 7
numerals, for a total of 36281 characters. The results for
each tree individually witbout the verifier and for the sys-
tem aa a whole (with verification) appeu in Table 1.

Rec. Rate Error Rate Rejections
Treel Only 99.94 % 0.0570 0.0170
Tree2 Only 99.96 % 0.0370 0.00 %

Wh ole system 99.87 % 0.0070 0.13 %

Table 1: Rates for OCR-font
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Decision Tree Verifier Originals Photocopy 2nd Generation Fax
Rec. Error Rec. Error Rec. Emor Rec. Error

Single Pixel Y 99.87 % 0.00 ‘% 96.20 % 0.00 % 72.57 % 0.00 % 42.95 % 0.07 %
N 99.9070 0.1070 98.87 % 1.1270 92.63 % 6.83 % 82.73 % 16.48 %

Pixel Set Y 99.15 % 0.00 % 94.03 % 0.00 % 80.99 % 0.00 % 55.32 % 0.20 %
N 99.84 ~o 0.13 % 98.13 % 1.85 % 94.04 % 5.74 % 76.17 % 19.76 %

Table 2: Experimental results for the Times-Roman font, both with ( “Y”) and without (“N”) the verifier.

Trees l-cover 2-cOver l-cover 2-cover
Ambiguity Graph Ambiguity Graph Mult. Verifiers Mult. Verifiers

ill ICR WA CR WA CR WA CR WA
—

;nml P rmt
IePixel 0.03 % I 0.00 % I 0.12 % I 0.00 % I 0.02 % 10.00%1 0.30 % I 0.00 % n

Chig.
Singk
Pixel Set 0.43 % I 0.00 % 0.68 % 0.00 % 1.89 % 10.00%1 0.77 % [ 0.00 %

Photocopy (Ist)
Single Pixel 2.48 % ] 0.00 % 5.42 % 0.00 % I 4.92 % Io,oo%l 5.82 % I 0.00 %

Pixel Set 4.16 % I 0.00 % I 6.20 % 0.00 % I 7.3970 I 0.00 % 8.55 % I 0.00 %
Ph otocopy (2nd)
Single Pixel 9.0970 I 0.96 % I 34.79 % 0.03 % 21.56 yOI 0.00 % I 24.00 % I 0.00 %
Pixel Set 10.67 yO I 0.07 % I 13.81 % I 0.00%’0 40.3770 I 0.00 % 24.92 % I 0.00 %

Table 3: Verification rates for different strategies on originals, copies, and second-generation copies.

Figure 1: Left to right: Original, first-generation copy,
second-generation copy, faxed.

Trees-Roman, on the other hand, presents a greater
challenge. As a font, it is considered non-trivial to be pro-
cessed by OCR systems, as it has stroke width variability
and serifs. We chose a size of 10pt, as it is more challenging
than the more commonly used size of 12pt.

Printed pages with uppercase, lowercase letters as well
as numbers were scanned on a flatbed Ricoh IS-6O scanner
at 300 dpi, as 8-bit greyscale images. We SJSOscanned first
and second-generation photocopies, as well as faxed images
to test our system on badly distorted documents. In Fig-
ure 1 we present typicsJ examples of characters for our 4
document quality categories. We see that the probe tree
has to deal with quite disparate distortions on the 4 docu-
ments: On photocopied images, individual pixela are tipped,
smudges make recognition diflicult, while defects accumulate
in higher generations. Faxed data is the most challenging,
since many characters are elongated vertically, due to the
mechanical inaccuracies of the sending device, which scans
the page; the image also suffers from ink dispersion that
occurs at the receiving end.

Character models and probe trees were constructed as
was outlined previously. Table 2 displays the recognition
and error rates for different choices of probe trees and sources
of scanned images. The remaining percentage in each case
is due to rejections either from the tree or the verifier. The
sample size for these experiments was 15692 characters, dis-
tributed equally among the 26 uppercase, the 26 lowercrme
and the 10 numerals.

Table 3 reports our verification rates for different veri-

fier choices, different probes and sources of scanned data.
In each table cell, two error measures are shown: The per-
centage of Correct but Rejected (CR) samples as well as the
percentage of Wrong but Accepted (WA) samples. Our ver-
ifiers tend to be aggressive with rejections, since the cost of
accepting a wrong classification is much higher than reject-
ing a correct one.
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