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Abstract

We initiate a probabilistic study of configuration func-
tions of moving points. In our probabilistic model, a
particle is given an initiaf position and a velocity drawn
independently at random from the same distribution
D. We show that if n particles are drawn indepen-
dently at random from the uniform distribution on the
square, their convex hull undergoes El(logz n) combina-
torial changes in expectation, their Voronoi diagram un-
dergoes e(n312 ) combinatorial changes, and their clos-
est pair undergoes El(n) combinatorial changes.

1 Introduction

Given a set of n points, what is the description com-
plexity of their convex hull? In our world, this question
is understood with an implicit “in the worst case”, and
the answer is nl~lz~ where d is the dimension of the un-
derlying space. This is not entirely satisfactory, as this
description complexity can vary tremendously depend-
ing on the positions of the points. Another approach is
to look at the expected description complexity when the
points are drawn from a given dktribution. This type
of analysis, initiated by R6nyi and Sulanke [RS63] and
pursued by others [Efr65, Ray70, Dwy90], gets its value
from the fact that this expectation is in general much
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smaller than in the worst case, and, more importantly,
in that it often allows one to design algorithms that have
expected running times against which worst case aware
algorithms cannot compete [Sei86, BCL90, Dwy91]. For
instance, the convex hull of n points drawn indepen-
dently uniformly at random from a d-dimensional hy-
percube haa expected complexity O(logd-l n), and can
be computed in expected linear time.

In parallel, in the past decade, a number of papers
have considered a setting where points are allowed to
move along low degree algebraic trajectories [OW84,
Ata85, GMR91, KT195, BGH97]. Different questions
have been asked in this context. In particular, Atal-
lah [Ata85], studied the number of times the combi-
natorial description of the convex hull or closest pair
can change, in the worst case (“dynamic computational
geometry” ). More recently, Baach, Guibas, and Hersh-
berger [BGH97] have designed kinetic data structures to
maintain these attributes in an online setting, meaaur-
ing the quality of a kinetic data structure by the ratio of
the worst case number of changes to the configuration
of interest, to the worst csse number of changes to the
data structure itself, for low degree algebraic motions.
This measure is not ideal and would gain to be replaced
by one similar to the competitive ratio, but there is no
result in this direction yet. In the meanwhile, an exper-
imental study haa been undertaken to assess the quality
of these data structures in practice [BGSZ], showing
that the worst case analysis can hide vastly different re-
sults in terms of expectation when the point positions
and speeds are drawn at random from some distribu-
tions. It is this study that motivated the present paper.

Indeed, in the light of previous works on static prob-
lems, it is natural to study theoretical bounds for the
expected number of changes of combinatorial functions
of moving points, when these points are drawn from pre-
scribed distributions, aa well aa expected time bounds
for kinetic data structures that maintain these combi-
natorial functions.

We report here tight bounds on the expected number
of changes to the convex hull, the Delaunay triangula-
tion, and the closest pair of points in the plane for a
distribution uniform on a unit square. We also give re-
lated (not tight) results, and analyze the expected run-
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ning time of one of the algorithms proposed in [BGH97]
for the maintenance of the convex hull.

2 Probabilistic Setting

As a point in the plane cannot move without losing its
identity, we call the objects of our study particles. A
particle X is given an initial position XO at time i! = O
and a constant velocity VX, so that it haa a position
X(t) = X. + tVx at any time t ~ O. Given a distribu-
tion D in I?d, we say that a particle is drawn from D
if its initial position and velocity are each drawn inde-
pendently at random from D. In ~GSZ], a number of
particles were independently drawn at random this way,
and the number of events of several kinetic data struc-
tures, for several underlying distributions, were studied
experimentally.

Using an appropriate space-time transformation, it
is easy to see that the above model is combinatorially
equivalent to a model where a particle is given an ini-
tial position X. and a final position Xl independently
drawn at random from D. In thk setting, the position of
X at time t E [0,1] is given by X(t) = (1 – t)XO + tXl
(X moves at a constant speed from XO to Xl). The
prmfs are easier to carry out in this second model.

3 Results

In this communication, we report some results in the
plane, when points are drawn from the uniform dktri-
bution on the unit square.

Theorem 1 If n part~cles are drown independently at
mndom from the unijorm distribution on the unit square,
then the ezpected number of changes to the following
combinatorial functions is:

Closest pair e(n)
Delaunay triangulation

[

e ~3/2J

Convex hull e 10g2n)

Some comparisons will help put these results in per-
spective. In the case of the convex hull, its expected
size in the static setting e (log n), while the worst case
number of changes in the dynamic setting is El (n2). On
the other hand, the closest pair has a static description
complexity of 0(1), and a worst case number of changes
of e {nz ), but the expected number of changes seems
surprisingly high. Finally, the static Delaunay triangu-
lation always has linear size, while no tight bounds are
known for the number of changes in the worst case when
points move (there is a trivial lower bound of fl(n2) and
an upper bound of 0(n3 )). It is pleasant to see that the
expected value was rather easy to obtain.

The probabilistic analysis can be applied to all con-
figuration functions that are typically looked at in the
setting of moving points, and to the kinetic data struc-
tures that are used to maintain them.

For instance, aa the minimum spanning tree is a sub-
graph of the Delaunay triangulation, the result on the
Delaunay triangulation coupled with a standard batch-
ing argument imply that, in our model, the MST in
the plane changes 0(n5i2 ) times on average. Although
this is probably not a tight bound, it is to be com-
pared with the best known worst cme upper bound of
O (n32a(n)) [KT195].

The furthest pair, on the other hand, is always con-
stituted of two points that are on the convex hull. l%om
this and Devroye’s moment inequalities ~ev83], we de-
duce that the number of changes to the furthest pair is
polylogarithmic in expectation, for the square distribu-
tion.

In [BGH97], a kinetic data structure is described to
maintain the convex hull of a set of moving points. This
data structure divides the point set arbitrarily into a
blue and a red half, recursively computes the value and
red convex hulls, and maintains a set of certificates be-
tween edge-vertex pairs and edge-edge pairs to certify
the convex hull of the whole set. Our convex hull result
directly imply:

Theorem 2 If n particles are drown independently at
mndom from the uniform distribution on the unit square,
then the kinetic data structure of [BGH97] processes a
linear number of events in expectation to maintain the
convex hull.

Hence, whatever the worst case number of changes
to the Delaunay triangulation turns out to be, this type
of result suggest strongly that it is not a good idea to
use it to maintain the convex hull. Our probabiliiic
framework providea a way that is different from and
complementary to [BGH97] for analysing and compar-
ing kinetic data structures.

We now review several kinetic data structures for
the maintenance of the closest pair. The Delaunay tri-
angulation can be used to maintain the closeet PW,
and will do it in roughly n3f2 time in our probab~i
tic model. How do other methods compare? A method
is to maintain the L1 Delaunay triangulation [CD85], as
one of its edgea is the closest pair, but our method shows
that it undergoes roughly the same number of changes
as the Lz Delaunay. Another method wrs proposed
in [BGH97] and modified in [BGSZ], whose average run-
ning time is experimentally also roughly e (n312). At
last, one may consider a more straightforward algorithm,
which cuts the square (say) into n cells and tracks ev-
ery particle as it goes from cell to cell [KSG]: although
extremely bad in the worst case, it is e=y to see that
the average case of this algorithm in our probabilistic
model is also precisely e (n312). There is probably a
good re-n for that.

4 Some proof ideas

The basic idea behind the proofs of the three results
of theorem 1 is as follows. Firstly, we recall the ap

443



preach of R6nyi and Sulanke [RS63] for computing the
expected size of the static convex hull. The idea is to
consider a given pair of random points (P, Q), and to
compute the probability that this pair forms an edge of
the convex hull, i.e. that all other points RI,. . . . R,
whose pmit ions are chosen independently, are on the
same side (say to the right) of the line passing through
(P, Q). The positions of the other points with respect
to the line (PQ), although not independent (ss they all
depend on P, Q), are independent conditionally on P, Q.
The recipe, then, for obtaining the required probability,
is to compute the probability density of the line defined
by two random points, and integrate (1 – G(t))n with
respect to this density, where G(t’) is the probability
that a point lies to the left of line L

When points start to move, we can use bsaically the
same approach, but we now need three points to char-
acterize the combinatorial event that the convex hull
changes. Hence, the question becomes: Given three par-
ticles P, Q, R, what is the probability that, when they
become collinear, they are on the convex hull ? Con-
ditioning on the position of these three points at that
time, we are left with the following two problems:

1. what is the probability that, at a given time t, a
particle is to the left of a line t ?

2. what is the probability density of the time and line
on which three particles are collinear ?

For the closest pair and the Delaunay triangulation,
these questions are replaced by similar questions that
involve four points instead of three. The proof of The-
orem 1 requires a detailed case analysis for different re-
gions of the unit square. To our knowledge, this case
analysis is unavoidable.

5 Conclusion

Further work ia called for to investigate the probabilistic
behavior of the number of changes of geometric struc-
tures on moving points. In particular, the reaulte in
this paper could be generahzed to arbitrary dimensions,
to more general distributions, and to algebraic motion
within an appropriate probabilistic model. We also hope
that some problems that are extremely difficult to anal-
yse in the worst caw will be amenable to our analysis
to obtain tight answers. The minimum spanning tree is
the mcst interesting of these problems (in part due to
its connection with the k-level)
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