
ar
X

iv
:1

20
1.

42
19

v2
 [

cs
.S

E
]

 2
5

Se
p

20
12

Exact Safety Verification of Hybrid Systems Based on

Bilinear SOS Representation*

Zhengfeng Yanga, Min Wua and Wang Lina, b

a Shanghai Key Laboratory of Trustworthy Computing

East China Normal University, Shanghai 200062, China
b College of Mathematics and Information Science

Wenzhou University, Zhejiang 325035, China

{zfyang,mwu}@sei.ecnu.edu.cn; linwang@wzu.edu.cn

Abstract

In this paper, we address the problem of safety verification of nonlinear hybrid systems.

A hybrid symbolic-numeric method is presented to compute exact inequality invariants of

hybrid systems efficiently. Some numerical invariants of a hybrid system can be obtained

by solving a bilinear SOS programming via PENBMI solver or iterative method, then the

modified Newton refinement and rational vector recovery techniques are applied to obtain

exact polynomial invariants with rational coefficients, which exactly satisfy the conditions

of invariants. Experiments on some benchmarks are given to illustrate the efficiency of our

algorithm.

1. Introduction

Complex physical systems are systems in which the techniques of sensing, control, communication
and coordination are involved and interacted with each other. Since many of such systems are
safety critical systems, such as the controllers widely used in airplanes, railway, and automo-
biles, ensuring correct functioning of these systems is among the most important and challenging
problems in computer science, mathematics and engineering. As a common mathematical model
for complex physical systems, hybrid systems [6] are dynamical systems that are governed by
interacting discrete and continuous dynamics. Continuous dynamics is specified by differential
equations, and for discrete transitions, the hybrid system changes state instantaneously and pos-
sibly discontinuously. Among the most important research issues on hybrid systems are those
of safety, i.e., deciding whether a given property holds in all the reachable states, and its dual
problem reachability, i.e., deciding if there exists a trajectory starting from the initial set that
reaches a state satisfying the given property.

Due to the infinite number of possible states in continuous state spaces, safety verification
or reachability analysis of hybrid systems presents a challenge. Some well-established techniques
have been proposed. In [2], level set methods and flow-pipe approximations were presented for
computing approximate reachable sets of hybrid systems. By contrast, quantifier elimination was
used in [11] to compute exact reachable sets for linear systems with certain eigenstructures and
semi-algebraic initial sets, and this method was generalized in [28] to handle linear systems with
almost arbitrary eigenstructures. Recently, invariant generation has been proposed for safety
verification of hybrid systems. An invariant [25] of a hybrid system is a property that holds
in all the reachable states of the system, in other words, it is an over-approximation of all the

∗This material is supported in part by the Chinese National Natural Science Foundation under Grants
91018012,61021004(Yang, Wu) and 10801052(Wu) and 10901055(Yang), and the Scientific Research Project of
The Graduate School of East China Normal University under Grant CX2011009.

1

http://arxiv.org/abs/1201.4219v2

reachable states. Invariants are useful facts about the dynamics of a given system. However,
generating invariants of arbitrary form is known to be computationally hard, intractable even for
the simplest classes. The usual technique for generating invariants is to compute an inductive
invariant, an assertion that holds initially and is preserved by all discrete and continuous state
changes. There has been lots of work towards invariant generation for hybrid systems using convex
optimization and semi-algebraic system solving [24, 5, 16, 19, 25, 20, 28, 27]. However, some of
these techniques are subject to numerical errors and some suffer from high complexity. Taking
advantage of the efficiency of numerical computation and the error-free property of symbolic
computation, we proposed in [29] a hybrid symbolic-numeric method via sum of squares (SOS)
relaxation and exact certificate to construct differential invariants for continuous dynamic systems,
and generalized in [15] the idea for safety verification of hybrid systems.

In this paper, we present a hybrid symbolic-numeric algorithm to compute exact invariants
of hybrid systems. The algorithm is based on SOS relaxation [17] of a parametric polynomial
optimization problem with bilinear matrix inequality (BMI) constraints, which can be solved
directly using a recently developed PENBMI solver [9, 10] in Matlab or an iterative method, and
exact SOS representation recovery techniques presented in [7, 8]. The algorithm in this work
improves our former result in [15] in two aspects. First, we replace the strengthened linear matrix
inequality (LMI) constraints with the original BMI constraints in the parametric optimization
problem. Second, we modify both Newton iteration refinement and rational vector recovery,
which can handle some cases where the method in [15] fails and usually yield invariants with
lower degree. Unlike the numerical approaches, our method can yield exact invariants, which
can overcome the unsoundness in verification of hybrid systems caused by numerical errors [18],
as illustrated in Example 2. In comparison with some symbolic approaches based on qualifier
elimination technique, our approach is more efficient and practical, because parametric polynomial
optimization problem based on SOS relaxation can be solved in polynomial time theoretically.

The rest of the paper is organized as follows. In Sections 2, we introduce some notions about
hybrid systems and safety verification. And in Section 3, we transform the problem of safety ver-
ification of hybrid systems into a parametric program with BMI constraints. Section 4 is devoted
to computing numerical solutions of a BMI problem via PENBMI solver or iterative method.
In Section 5, an algorithm based on the modified Newton iteration and rational vector recovery
techniques is proposed to obtain exact solutions of BMI problem with rational coefficients. In
Section 6, we discuss issues related to the implementation of the proposed mehtod. In Section 7,
experiments on some benchmarks are shown to illustrate our algorithm on safety verification.
Section 8 concludes the paper.

2. Hybrid Systems and Safety Verification

To model hybrid systems, we use the notion of hybrid automata [6, 25].

Definition 1 (Hybrid system). A hybrid system H : 〈V, L, T ,Θ,D,Ψ, ℓ0〉 consists of the fol-
lowing components:

• V = {x1, ..., xn}, a set of real-valued system variables. A state is an interpretation of V ,
assigning to each xi ∈ V a real value. An assertion is a first-order formula over V . A
state s satisfies an assertion ϕ, written as s |= ϕ, if ϕ holds on the state s. We will also
write ϕ1 |= ϕ2 for two assertions ϕ1, ϕ2 to denote that ϕ2 is true at least in all the states
in which ϕ1 is true;

• L, a finite set of locations;

• T , a set of (discrete) transitions. Each transition τ : 〈ℓ, ℓ′, gτ , ρτ 〉 ∈ T consists of a pre-
location ℓ ∈ L, a postlocation ℓ′ ∈ L, the guard condition gτ over V , and an assertion ρτ
over V ∪ V ′ representing the next-state relation, where V ′ = {x′1, ..., x

′
n} denotes the next-

state variables. Note that the transition τ can take place only if gτ holds;

2

• Θ, an assertion specifying the initial condition;

• D, a map that associates each location ℓ ∈ L to a differential rule (also known as a vector
field) D(ℓ), an autonomous system ẋi = fℓ,i(V) for each xi ∈ V , written briefly as ẋ = fℓ(x).
The differential rule at a location specifies how the system variables evolve in that location;

• Ψ, a map that maps each location ℓ ∈ L to a location condition (location invariant) Ψ(ℓ),
an assertion over V ;

• ℓ0 ∈ L, the initial location. We assume that the initial condition satisfies the location
invariant at the initial location, that is, Θ |= Ψ(ℓ0).

Given a hybrid system H with a prespecified unsafe region Xu ⊂ Rn, we say that the system
H is safe if all trajectories of H starting from any state in the initial set, can not evolve to Xu,
or, equivalently, any state in Xu is not reachable. We can also specify an unsafe region, denoted
as Xu(ℓ), for each location ℓ ∈ L.

For safety verification of hybrid systems, the notion of invariants of hybrid systems plays an
important role. We define

Definition 2 (Invariant). [25] An invariant of a hybrid system at location ℓ is an assertion I
such that for any reachable state 〈ℓ,x〉 of the hybrid system, x |= I.

An invariant of a hybrid system is an assertion that holds in all the reachable states of the
system.

Clearly, an invariant of a hybrid system is an over-approximation of all the reachable states of
the system. If an invariant lies inside the safe regions, or its intersection with the unsafe regions
is empty, then safety of hybrid systems is verified. However, generating invariants with arbitrary
form is known to be computationally hard, intractable even for the simplest classes. The usual
technique for generating invariants is to compute inductive invariants, as defined below.

Definition 3 (Inductive invariant). An inductive assertion map I of a hybrid system H :
〈V, L, T ,Θ,D,Ψ, ℓ0〉 is a map that associates with each location ℓ ∈ L an assertion I(ℓ) that holds
initially and is preserved by all discrete transitions and continuous flows of H. More formally,
an inductive assertion map satisfies the following requirements:

[Initial] Θ |= I(ℓ0).

[Discrete Consecution] For each discrete transition τ : 〈ℓ, ℓ′, gτ , ρτ 〉 starting from a state sat-
isfying I(ℓ), taking τ leads to a state satisfying I(ℓ′), i.e., I(ℓ)∧gτ ∧ρτ |= I(ℓ′) where I(ℓ′)
represents the assertion I(ℓ) with the current state variables x1, . . . , xn replaced by the next
state variables x′1, . . . , x

′
n, respectively.

[Continuous Consecution] For every location ℓ ∈ L and states 〈ℓ,x1〉, 〈ℓ,x2〉 such that x2

evolves from x1 according to the differential rule D(ℓ) at ℓ, if x1 |= I(ℓ) then x2 |= I(ℓ).

By a polynomial hybrid system, we mean a hybrid system H : 〈V, L, T ,Θ,D,Ψ, ℓ0〉, where
the initial condition Θ, location invariants Ψ(ℓ), and the guard condition and reset relation in
each transition τ ∈ T are conjunctions of polynomial inequalities over the program variables, and
moreover, each differential rule D(ℓ) is of the form ẋi = fℓ,i(x) with fℓ,i(x) ∈ R[x].

In a preceding paper [15], we propose a symbolic-numeric approach to generate polynomial
invariants of the form ϕ(x) ≥ 0 for polynomial hybrid systems via the combination of Sum-of-
Squares (SOS) relaxation with Gauss-Newton refinement and rational vector recovery techniques.
We will describe how to improve our result in [15] by solving the BMI problem directly. As stated
in the following theorem, safety verification of hybrid systems can be reduced to finding invariants
of hybrid systems.

Theorem 1. [Theorem 2.7, [20]] Let H : 〈V, L, T , Θ,D,Ψ, ℓ0〉 be a hybrid system. Suppose for
each location ℓ ∈ L, there exists a function ϕℓ(x) such that the following conditions hold:

3

(i) Θ |= ϕℓ0(x) ≥ 0,

(ii) ϕℓ(x) ≥ 0 ∧ g(ℓ, ℓ′) ∧ ρ(ℓ, ℓ′) |= ϕℓ′(x
′) ≥ 0, for any transition 〈ℓ, ℓ′, g, ρ〉 going out of ℓ,

(iii) ϕℓ(x) = 0 ∧ Ψ(ℓ) |= ϕ̇ℓ(x) > 0, here ϕ̇ℓ(x) denotes the Lie-derivative of ϕℓ(x) along the
vector field D(ℓ), i.e., ϕ̇ℓ(x) =

∑n
i=1

∂ϕℓ

∂xi
· fℓ,i(x),

then ϕℓ(x) ≥ 0 is an invariant of the hybrid system H at location ℓ. If, moreover,

(iv) Xu(ℓ) |= ϕℓ(x) < 0, ∀ℓ ∈ L,

then the safety of the system H is guaranteed.

Proof. The proof is obvious. �

Clearly, to guarantee safety of the hybrid system H, the intersection of the initial set Θ and
the unsafe region Xu(ℓ0) must be empty. When the hybrid system H in Theorem 1 specializes
to a continuous system at one location, denoted as D : 〈V, Θ,D,Ψ〉, then the condition (iv) in
Theorem 1 can be relaxed through replacing the whole unsafe region Xu by its boundary ∂Xu,
as illustrated by the following.

Corollary 1. Let D : 〈V, Θ,D,Ψ〉 be a continuous system. Suppose there exists a function ϕ(x)
satisfying the following conditions:

(i) Θ |= ϕ(x) ≥ 0,

(ii) ϕ(x) = 0 ∧Ψ |= ϕ̇(x) > 0,

(iii) ∂Xu |= ϕ(x) < 0, here ∂Xu denotes the boundary of the set Xu,

then the safety of the system D is guaranteed.

Proof. By conditions (i) and (ii), the values of ϕ(x) can not be negative during the entire evolution
of the system D. Then condition (iii) implies that all reachable sets lie outside the unsafe region
Xu, yielding the safety of the system. �

In addition, we can consider more complicated forms of invariants for safety verification, i.e.,
invariants that are conjunctions of several polynomial inequalities:

∧
i ϕℓ,i(x) ≥ 0. For simplicity,

we consider the invariants of H of the form:

ϕℓ,1(x) ≥ 0 ∧ ϕℓ,2(x) ≥ 0.

The following theorem provides a method to determine the invariants of the above form.

Theorem 2. Let H : 〈V, L, T , Θ,D,Ψ, ℓ0〉 be a hybrid system. Suppose for each location ℓ ∈ L,
there exist two functions ϕℓ,1(x), ϕℓ,2(x) satisfying the following conditions:

(i) Θ |= ϕℓ0,1(x) ≥ 0 ∧ ϕℓ0,2(x) ≥ 0,

(ii) ϕℓ,1(x) ≥ 0∧ϕℓ,2(x) ≥ 0∧g(ℓ, ℓ′)∧ρ(ℓ, ℓ′) |= ϕℓ′,1(x
′) ≥ 0∧ϕℓ′,2(x

′) ≥ 0, for any transition
〈ℓ, ℓ′, g, ρ〉 going out of ℓ,

(iii) ϕℓ,1(x) = 0 ∧ ϕℓ,2(x) ≥ 0 ∧Ψ(ℓ) |= ϕ̇ℓ,1(x) > 0,

(iv) ϕℓ,1(x) ≥ 0 ∧ ϕℓ,2(x) = 0 ∧Ψ(ℓ) |= ϕ̇ℓ,2(x) > 0,

then ϕℓ,1(x) ≥ 0 ∧ ϕℓ,2(x) ≥ 0 is an invariant of the hybrid system H at location ℓ.

Proof. It is easy to prove that Conditions (i), (ii) and (iii) imply that ϕℓ,1(x) ≥ 0 ∧ ϕℓ,2(x) ≥ 0
satisfies three requirements in Definition 3. �

4

Similarly, the following corollary shows that the invariant in Theorem 2 can guarantee the
safety of hybrid systems.

Corollary 2. Let H : 〈V, L, T , Θ,D,Ψ, ℓ0〉 be a hybrid system, and Xu(ℓ) = {x ∈ Rn : ζℓ(x) ≥
0} denotes the unsafe region at location ℓ. Suppose for each location ℓ ∈ L, there exist two
functions ϕℓ,1(x), ϕℓ,2(x) that satisfy the conditions (i-iii) in Theorem 2, and moreover,

(v) ϕℓ,1(x) ≥ 0 ∧ ϕℓ,2(x) ≥ 0 |= ζℓ(x) < 0,

then the safety of the system H is guaranteed.

Remark 1. ϕℓ,1(x) ≥ 0 ∧ ϕℓ,2(x) ≥ 0 in Theorem 2 is an invariant of the hybrid system H at
location ℓ, but it is not ensured that either ϕℓ,1(x) ≥ 0 or ϕℓ,2(x) ≥ 0 is an invariant of H at the
location ℓ. This kind of invariants is helpful to look for invariants of the form c1 ≤ f(x) ≤ c2
where f(x) is a polynomial over R.

3. Problem Reformulation

For brevity, we will abuse the notation ϕℓ(x) to represent both the function ϕℓ(x) and the
invariant ϕℓ(x) ≥ 0. Clearly, when the functions ϕℓ(x) at all locations are identical to ϕ(x),
then ϕ(x) becomes an inductive invariant of the hybrid system. Therefore, in the sequel we only
discuss how to find invariants ϕℓ(x) for each location ℓ ∈ L, and the problem of computing an
inductive invariant ϕ(x) can be handled similarly. Remark that the invariants ϕℓ(x) or ϕ(x) are
also known as barrier certificates in [20].

Let us predetermine a template of polynomial invariants with the given degree d. We assume
that ϕℓ(x) =

∑
α cαx

α, where xα = xα1
1 · · ·xαn

n , α = (α1, . . . , αn) ∈ Zn
≥0 with

∑n
i=1 αi ≤ d, and

cα ∈ R are parameters. We can rewrite ϕℓ(x) = cTℓ · Tℓ(x), where Tℓ(x) is the (column) vector

of all terms in x1, . . . , xn with total degree ≤ d, and cℓ ∈ Rν , with ν =
(
n+d
n

)
, is the coefficient

vector of ϕℓ(x). In the sequel, we write ϕℓ(x) as ϕℓ(x, cℓ) for clarity.
From Theorem 1, to verify the safety of hybrid system H it suffices to find the invariants ϕℓ(x)

at each location ℓ ∈ L. The latter problem can be translated into the following problem

find cℓ ∈ Rν , ∀ℓ ∈ L

s.t. Θ |= ϕℓ0(x, cℓ0) ≥ 0
ϕℓ(x, cℓ) ≥ 0 ∧ g(ℓ, ℓ′) ∧ ρ(ℓ, ℓ′) |= ϕℓ′(x

′, cℓ′) ≥ 0
ϕℓ(x, cℓ) = 0 ∧Ψ(ℓ) |= ϕ̇ℓ(x, cℓ) > 0
Xu(ℓ) |= ϕℓ(x, cℓ) < 0





(1)

Suppose that





Θ = {x ∈ Rn :
∧q

l=1 θl(x) ≥ 0}, Xu(ℓ) = {x ∈ Rn :
∧p

j=1 ζℓ,j(x) ≥ 0},

Ψ(ℓ) = {x ∈ Rn :
∧r

k=1 ψℓ,k(x) ≥ 0}, g(ℓ, ℓ′) = {x ∈ Rn :
∧s

i=1 gℓℓ′, i(x) ≥ 0},

ρ(ℓ, ℓ′)(x,x′) = {x′ ∈ Rn :
∧t

u=1 ρℓℓ′,u(x,x
′) ≥ 0},

where ℓ, ℓ′ ∈ L, and θl(x), ζℓ,j(x), ψℓ,k(x), gℓℓ′, i(x) and ρℓℓ′,u(x,x
′) are polynomials over R.

Let fi(x) ∈ R[x] for 1 ≤ i ≤ m and g(x) ∈ R[x]. Suppose that the set {x ∈ Rn :
∧m

i=1 fi(x) ≥
0} is compact. According to Stengle’s Positivstellensatz, Schmüdgen’s Positivstellensatz or Puti-
nar’s Positivstellensatz, if there exist SOS polynomials σi ∈ R[x] for i = 0, ...,m, such that g(x)
can be written as g(x) = σ0(x) +

∑m
i=1 σi(x)fi(x), then the assertion

m∧

i=1

(fi(x) ≥ 0) |= g(x) > 0

holds. Therefore, the existence of SOS representations provides a sufficient and necessary con-
dition of the strict positiveness of g(x) on the set {x ∈ Rn :

∧m
i=1 fi(x) ≥ 0}. Moreover, the

5

degree bound of those unknown SOS polynomials σi is exponential in n, deg(g) and deg(fi). For
more details the reader can refer to [13]. Based on the above observation, the problem (1) can be
transformed into an equivalent SOS programming of the form

find cℓ ∈ Rν , ∀ℓ ∈ L

s.t. ϕℓ0(x, cℓ0) = σ0(x) +
∑q

l=1 σl(x)θl(x),
ϕℓ′(x

′, cℓ′) = λℓℓ′,0(x) +
∑s

i=1 λℓℓ′,i(x)gℓℓ′,i(x)

+
∑t

u=1 γℓℓ′,u(x)ρℓℓ′,u(x,x
′) + ηℓℓ′(x)ϕℓ(x, cℓ),

ϕ̇ℓ(x, cℓ) = φℓ,0(x) +
∑r

k=1 φℓ,k(x)ψℓ,k(x) + νℓ(x)ϕℓ(x, cℓ) + ǫℓ,1
−ϕℓ(x, cℓ) = µℓ,0(x) +

∑p
j=1 µℓ,j(x)ζℓ,j(x) + ǫℓ,2,





(2)

where σl(x), λℓℓ′,i(x), γℓℓ′,u(x), ηℓℓ′ (x), φℓ,k(x), µℓ,j(x) are SOSes in R[x], νℓ(x) ∈ R[x], and ǫℓ,1,
ǫℓ,2 ∈ R+. In practice, to avoid the high computational complexity, we simply set up a truncated
SOS programming by fixing a priori (much smaller) degree bound 2e, with e ∈ Z+, of all the
unknown polynomials. Consequently, the existence of a solution cℓ of (2) can guarantee the safety
property of the given system.

In the SOS programming (2), the decision variables are the coefficients of all the unknown poly-
nomials in (2), such as ϕℓ(x, cℓ), σl(x), λℓℓ′,i(x). Note that since the coefficients of ϕℓ(x, cℓ), ηℓℓ′(x)
and νℓ(x) are unknown, some nonlinear terms that are products of these coefficients, will occur
in the second and third constraints of (2), which yields a non-convex bilinear matrix inequali-
ties (BMI) problem. In [15], to avoid this BMI problem we strengthened the second and third
constraints in (1) to

g(ℓ, ℓ′) ∧ ρ(ℓ, ℓ′) |= ϕℓ′(x
′, cℓ′) ≥ 0 and Ψ(ℓ) |= ϕ̇ℓ(x, cℓ) > 0,

respectively, which then results a linear matrix inequality (LMI) problem. For more details, please
refer to Theorems 5 and 6 in [15]. In this paper, we will discuss in Section 4 how to handle the
SOS programming (2) directly using the BMI solver or iterative method.

4. Approximate Solution from BMI Solver

In Section 3, we have reduced the problem of safety verification of a hybrid system to the SOS
programming (2) involving BMI constraints.

Let us first show by an example on how to transform nonlinear parametric polynomial con-
straints into a BMI problem.

Example 1. Consider the system ẋ = 2x with location invariant Ψ = {x ∈ R : x2 − 1 ≤ 0}.
From the discussion in Section 2, to find a polynomial ϕ(x) satisfying ϕ(x) ≥ 0 ∧Ψ |= ϕ̇(x) ≥ 0,
it suffices to find ϕ(x) such that

ϕ̇(x) = φ0(x) + φ1(x)(1 − x2) + φ2(x)ϕ(x), (3)

where φ0(x), φ1(x), φ2(x) are SOSes. Suppose that deg(ϕ) = 1, deg(φ0) = 2 and deg(φ1) =
deg(φ2) = 0, and that ϕ(x) = u0 + u1x, φ1 = u2 and φ2 = v1, with u0, u1, u2, v1 ∈ R parameters.
From (3) we have

φ0(x) = u2 x
2 + (2 u1 − u1 v1)x− u2 − u0 v1,

whose square matrix representation (SMR) [1] is φ0(x) = ZTQZ, where

Q =

[
−u2 − u0 v1 u1 −

1
2u1 v1

u1 −
1
2u1 v1 u2

]
and Z =

[
1
x

]
.

Since all the φi(x) are SOSes, we have u2 ≥ 0, v1 ≥ 0 and Q � 0, which can be expressed as one
parametric positive semidefinite matrix

B(u0, u1, u2, v1) =




u2 0 0 0
0 v1 0 0
0 0 −u2 − u0 v1 u1 −

1
2u1 v1

0 0 u1 −
1
2u1 v1 u2


 � 0.

6

Therefore, the constraint (3) is translated into a BMI constraint

B = A0 + v1A1 +

2∑

i=0

uiA2+i +

2∑

j=0

ujv1Bj,1 � 0,

where Ai, Bj,1 are constant symmetric matrices. �

Similar to Example 1, the SOS programming (2) can be transformed into a BMI problem of
the form

inf
(u,v)∈Rm+k

F (u,v)

s.t. B(u,v) = A0 +
∑m

i=1 uiAi +
∑k

j=1 vjAm+j +
∑

1≤i≤m

∑
1≤j≤k uivjBij � 0.

(4)

where Ai, Bij are constant symmetric matrices, u = (u1, . . . , um), v = (v1, . . . , vk) are parame-
ter coefficients of the SOSes occurring in the original SOS problem, and the objective function
F (u,v) is a dummy objective function, which is commonly used for optimization problem with
no objective functions.

Many methods can be used to solve the BMI problem (4) directly, such as interior-point
constrained trust region method [14], an augmented Lagrangian strategy [9] and so on. A Matlab
package PENBMI solver [10], which combines the (exterior) penalty and (interior) barrier method
with the augmented Lagrangian method, can be applied directly on the BMI program (4). This
can yield efficiently numerical solutions to the SOS programming (2).

Alternatively, observing in (4), B(u,v) involves no crossing products like uiuj and vivj . Taking
this special form into account, an iterative method can be applied by fixing u and v alternatively,
which leads to a convex LMI problem [20, 26]. Below is an algorithm.

Algorithm 1. BMI Solver based on Iteration

1. [Initialization] Set u = u0. Then (4) becomes to an LMI problem

inf
v∈Rk F (u0,v)

s.t. A(u0,v) = A0 +
∑m

i=1 ui,0Ai +
∑k

j=1 vjAm+j � 0.

Suppose we obtain a feasible solution v̄ by solving the above LMI problem.

2. [Fixing v̄] Find an updated solution ū by solving the following LMI problem

infu∈Rm F (u, v̄)

s.t. A(u, v̄) = A0 +
∑m

i=1 uiAi +
∑k

j=1 v̄jAm+j � 0.

3. [Fixing ū] Find an updated solution v̄ by solving the following LMI problem

inf
v∈Rk F (ū,v)

s.t. A(ū,v) = A0 +
∑m

i=1 ūiAi +
∑k

j=1 vjAm+j � 0.

Repeat steps 2 and 3 until a feasible solution (ū, v̄) is found such that B(ū, v̄) � 0.

Remark that, although the convergence of Algorithm 1 can not be guaranteed, the iterative
method is easier to implement than PENBMI solver. Moreover, from the experiments shown in
Section 7, Algorithm 1 can yield a feasible solution (ū, v̄) efficiently in practice.

7

5. Exact SOS Recovery

Since the SDP solvers in Matlab are running in fixed precision, the techniques in Section 4 only
yield numerical solutions of (1). Due to round-off errors, ϕℓ(x, cℓ) may not be an invariant of
the given hybrid system at location ℓ, because the constraints in (1) may not hold exactly, as
illustrated by the following example.

Example 2. [20, page 31] Consider the following nonlinear system
[
ẋ1
ẋ2

]
=

[
x2

−x1 +
1
3x

3
1 − x2

]
,

we want to verify that all trajectories of the system starting from the initial set Θ will never enter
the unsafe region Xu, where

Θ = {(x1, x2) ∈ R2 : (x1 − 1.5)2 + x22 ≤ 0.25}

and
Xu = {(x1, x2) ∈ R2 : (x1 + 1)2 + (x2 + 1)2 ≤ 0.16}.

It suffices to find an invariant ϕ(x1, x2) with rational coefficients, which satisfies all the conditions
in (1). As stated in [15], we first set up an SDP system using LMI constraints. Apply the SDP
solver to find a numerical polynomial invariant

ϕ(x1, x2) = −1.3686 + 0.62499 x21 + 1.0669 x1 x2 + 1.5086 x22 − 0.56749 x1 x
2
2

− 0.15231 x32 − 0.10417 x41 − 0.35564 x31x2 − 0.23739 x21x
2
2 − 0.24152 x1 x

3
2,

and some associated numerical positive semidefinite matrices W [i].

Case 1: If we convert the coefficients of ϕ(x1, x2) to the corresponding rational coefficients sep-
arately, we obtain

ϕ̄(x1, x2) = −
6843

5000
+

62499

100000
x1

2 +
10669

10000
x1x2 +

7543

5000
x2

2 −
56749

100000
x1x2

2

−
15231

100000
x2

3 −
10417

100000
x1

4 −
8891

25000
x1

3x2 −
23739

100000
x1

2x2
2 −

3019

12500
x1x2

3.

However, ϕ̄(x1, x2) can not satisfy the conditions in (1) exactly, because there exists a sample
point p = (− 127

64 ,−
7
8) such that the third constraint of (1) can not be satisfied. Therefore,

ϕ̄(x1, x2) is not an exact invariant of this system.

Case 2: In our former papers [29, 15], we applied Gauss-Newton iteration and rational vector
recovery to obtain solutions that satisfy the constraints in (1). This technique may fail
in some cases. Let τ = 10−2 and the bound of the common denominator of the rational
polynomial be 100. Then we obtain a rational polynomial

ϕ̃(x1, x2) = −
15

11
+

5

8
x1

2 +
47

44
x1x2 +

133

88
x2

2 −
25

44
x1x2

2

−
13

88
x2

3 −
9

88
x1

4 −
31

88
x1

3x2 −
21

88
x1

2x2
2 −

21

88
x1x2

3.

However, the subsequent Gauss-Newton iteration and rational vector recovery techniques
in [29, 15] failed in finding the associated positive semidefinite matrices that satisfy the
constraints of the polynomial invariant exactly. The reason may lies in that we recover the
coefficient vector of ϕ(x1, x2) and the associated positive semidefinite matrices separately.

In the sequel, we will propose an improved algorithm to compute exact solutions of polyno-
mial optimization problems with BMI constraints, through a modified Newton refinement and
rational vector recovery technique applied on the coefficient vector c and the associated positive
semidefinite matrices simultaneously.

8

5.1. Modified Newton Iteration

Suppose that applying PENBMI solver or Algorithm 1 in Section 4 yields numerical solutions
that satisfy (1) approximately. Similar to [7], we now present the modified Newton refinement
method to refine these solutions. Without loss of generality, we can reduce the problem (1) to
the following problem 




find c ∈ Rν

s.t. ϕ1(x, c) ≥ 0,
ϕ3(x, c) ≥ 0 |= ϕ2(x, c) ≥ 0,

(5)

where the coefficients of the polynomials ϕi(x, c), 1 ≤ i ≤ 3 are affine in c. Then, based on SOS
relaxation, the problem (5) can be further transformed into the following polynomial parametric
optimization problem





find c ∈ Rν

s.t. ϕ1(x, c) = m1(x)
T ·W [1] ·m1(x),

ϕ2(x, c) = m2(x)
T ·W [2] ·m2(x) + (m3(x)

T ·W [3] ·m3(x)) · ϕ3(x, c),
W [i] � 0, 1 ≤ i ≤ 3,

(6)

involving both LMI and BMI constraints.
By solving the SDP system (6), we can obtain the numerical vector c and the approximate

positive semidefinite matrices W [i], 1 ≤ i ≤ 3. We first convert W [3] to a nearby rational positive
semidefinite matrix W̃ [3] by non-negative truncated PLDLTPT-decomposition, in which all the
diagonal entries of the corresponding diagonal matrix are preserved to be non-negative. Hereafter,
denote by φ(x) the rational polynomial m3(x)

T · W̃ [3] ·m3(x), and set θ = ‖r1(x)‖
2
2 + ‖r2(x)‖

2
2,

the backward error of the numerical solutions of (6), where

r1(x) = ϕ1(x, c) −m1(x)
T ·W [1] ·m1(x),

r2(x) = ϕ2(x, c) −m2(x)
T ·W [2] ·m2(x) − φ(x)ϕ3(x, c).

With the numerical c,W [1],W [2] and the rational polynomial φ(x), we expand the two square
matrix representations in (6) into their SOS forms respectively:

ϕ1(x, c) ≈
t∑

i=1

(∑

α

pi,αx
α

)2

and ϕ2(x, c) ≈
k∑

j=1

(∑

β

qj,βx
β

)2

+ φ(x)ϕ3(x, c), (7)

where t and k are the ranks of W [1] and W [2] respectively. Apply Gauss-Newton iteration on two
equations in (7) simultaneously to compute ∆c, ∆pi,α and ∆qj,β such that

ϕ1(x, c+∆c)≈
∑t

i=1(
∑

α(pi,α +∆pi,α)x
α)2,

ϕ2(x, c+∆c)≈
∑k

j=1(
∑

β(qj,β +∆qj,β)x
β)2 + φ(x)ϕ3(x, c +∆c).

We update the vector c and matrices W [i] by c+∆c and W [i] +∆W [i], 1 ≤ i ≤ 2, respectively,
and terminate the Newton iteration when θ is less than the given tolerance τ . In doing so, we
will obtain the refined solution, the vector c and matrices W [1],W [2], of (6) such that

ϕ1(x, c) −m1(x)
T ·W [1] ·m1(x) ≈ 0,

ϕ2(x, c) −m2(x)
T ·W [2] ·m2(x) − ϕ3(x, c)φ(x) ≈ 0,

W =

[
W [1] 0

0 W [2]

]
v 0, WT =W,





(8)

and the backward error of the numerical solution satisfies θ < τ .

9

5.2. Exact Recovery

In this section, we will present two error-free algorithms to obtain a rational vector c̄, which
satisfies the constraints in (5) exactly.

Discussed in Section 5.1, we can obtain a refined solution c ∈ Rk by applying the modified
Gauss-Newton iteration. Instead of recovering the entries of c separately, we can deploy simul-
taneous recovery technique [12] to achieve a rational vector c̄ near to c for a given bound D of
the common denominator of c. Then we need verify whether c̄ is an exact solution of (5), that
is, whether c̄ satisfies

ϕ1(x, c̄) ≥ 0 and ϕ3(x, c̄) ≥ 0 |= ϕ2(x, c̄) ≥ 0,

or equivalently, both
ϕ1(x, c̄) < 0 and ϕ3(x, c̄) ≥ 0 ∧ ϕ2(x, c̄) < 0

has no real solutions. Clearly, verifying the solution c̄ is equivalent to determining two con-
stant semi-algebraic systems have no real solutions, which can be verified by Maple packages
RegularChains, DISCOVERER [30] and RAGLib [3].

In this paper, we focus on retrieving exact SOS representations for (6). We will discuss how to

recover from c,W [1],W [2], the rational vector c̃ and rational positive semidefinite matrices W̃ [1]

and W̃ [2] that satisfy exactly

ϕ1(x, c̃)−m1(x)
T · W̃ [1] ·m1(x) = 0 and ϕ2(x, c̃)−m2(x)

T · W̃ [2] ·m2(x)−ϕ3(x, c̃)φ(x) = 0. (9)

Since the equations in (9) are affine in entries of c̃ and W̃1, W̃2, one can define an affine linear
hyperplane

L =
{
c, W [1], W [2] | ϕ1(x, c) −m1(x)

T ·W [1] ·m1(x) = 0,

ϕ2(x, c)−m2(x)
T ·W [2] ·m2(x)− ϕ3(x, c)φ(x) = 0

}
. (10)

Note that the hyperplane (10) can be constructed from a linear system Ay = b, where y consists
of the entries of c,W [1],W [2]. If A has full row rank, such a hyperplane is guaranteed to exist.
Then the rationalized SOS solutions of (6) can be computed by orthogonal projection if the matrix
W in (8) has full rank, or by the rational vector recovery otherwise.
Case 1: W is of full rank

Suppose the refined matrixW in (8) is of full rank numerically, namely, the minimal eigenvalue
of W is greater than the given tolerance τ . In this case, for a given bound D of the common
denominator, we apply orthogonal projection technique to obtain the rational vector c̃ and rational
matrix W̃ , which lie on the affine linear hyperplane defined by (10). This projection can be
achieved by exactly solving the least squares problem:

min
c̃, W̃

‖c− c̃‖22 + ‖W − W̃‖2F

s. t. ϕ1(x, c̃) = m1(x)
T · W̃ [1] ·m1(x),

ϕ2(x, c̃) = m2(x)
T · W̃ [2] ·m2(x) + φ(x)ϕ3(x, c̃).





(11)

For the rational solution c̃ and W̃ of (11), we compute the exact PLDLTPT-decomposition to

check whether W̃ is positive semidefinite. If so, then c̃ is verified solution of (6).

Theorem 3. Let c,W be the refined numerical solution of (6) with the backward error θ < τ ,

and Ay = b be the linear system associated to the hyperplane (10). Suppose that c̃ and W̃ are the
optimal rational solutions of the least square problem (11). Let λ ∈ R>0 be the minimal eigenvalue

of W . If A has full row rank and λ > 2ηκ22(A)τ
2 with η = ‖c‖22 + ‖W‖2F , then W̃ is positive

semidefinite, and c̃ is a certified solution of (6).

10

Proof. Clearly, c̃ and W̃ satisfy the equations in (9). Let z and z̃ be the vectors consisting

of the entries in c,W and those in c̃, W̃ , respectively. Since A has full row rank, we have
‖Az − b‖22 = θ < τ, and then Az̃ = b. According to the perturbation result in [4, Th.5.7.1] for
full rank underdetermined systems, we have

‖z− z̃‖ < (κ2(A)τ)‖z‖2 +O(τ2). (12)

From (12) and the assumption λ > 2 η κ22(A) τ
2, we have ‖W − W̃‖2F ≤ 2 ‖z− z̃‖22 < λ, where the

last inequality follows from that O(τ2) is negligible in comparison with η when τ is very small.

Let λ̃ be the minimal eigenvalue of W̃ . By Wielandt-Hoffman theorem [4, page 395], we have

|λ̃− λ| ≤ ‖W − W̃‖2F ≤ λ, which concludes that W̃ � 0. �

Remark 2. For a numerical solution of (6), 2ηκ22(A)τ
2 in Theorem 3 is a constant. Therefore, if A

has full row rank and the given tolerance τ is small enough, then the orthogonal projection method
by solving exactly least squares problem (11) will always find a rational positive semidefinite

matrix W̃ , therefore yielding a certified rational solution c̃ of (6).

Case 2: W is singular
It is pointed out in [8] that, the orthogonal projection by solving (11) may fail if the resulted

rational matrix W̃ satisfying (9) is positive semidefinite but not strictly positive definite. In this

case, we need to explore rational vector recovering technique to obtain the rational c̃ and W̃ .
Unlike in [15], the technique to be presented will recover the rational vector c̃ and matrix W̃

simultaneously. More specifically, given a common denominator bound of the entries in c̃ and
W̃ , we employ the simultaneous Diophantine approximation algorithm [12] for c and the singular
matrices in {W [1],W [2]}. There are two cases to be addressed.

Case 2.1: Both W [1] and W [2] are singular. We apply rational vector recovery directly on c and
W simultaneously to obtain c̃ and W̃ .

Case 2.2: Only one matrix, say, W [1] is singular. We apply vector recovery technique on c and
W [1] simultaneously, and then check whether W̃ [1] � 0 by PLDLTPT-decomposition. If so,
the rational matrix W̃ [2] can be obtained by orthogonal projection by solving the following
exactly least squares problem:

min
W̃ [2]

‖W [2] − W̃ [2]‖2F

s.t. ϕ2(x, c̃) = m2(x)
T · W̃ [2] ·m2(x) + ϕ3(x, c̃)φ(x).





Remark 3. Similar to (6), we first apply the modified Newton iteration to compute the refined
numerical solutions c and W [i] of (2) respectively. For the given tolerance and common denom-
inator, we employ rational vector recovery technique simultaneously for c and all the singular
matrices among the W [i], to find rational c̃ and the associated rational positive semidefinite ma-
trices. Finally, orthogonal projection is applied on the remaining nonsingular matrices to obtain
the rational non-singular positive definite matrices.

5.3. Algorithm

The results in Sections 5.1 and 5.2 yield an algorithm to find exact solutions to (6).

Algorithm 2. Verified Parametric Optimization Solver

Input: ◮ a polynomial optimization problem of the form (6).
◮ D ∈ Z>0: the bound of the common denominator.
◮ e ∈ Z≥0: the degree bound 2e of the SOSes used to construct the SOS program-

ming.
◮ τ ∈ R>0: the given tolerance.

Output: ◮ the verified solution c̃ of (6) with the W̃ [i], 1 ≤ i ≤ 3 positive semidefinite.

11

1. [Compute the numerical solutions] Set up the SOS programming (6) with the degree
bound 2e and apply PENBMI solver or Algorithm 1 to compute its numerical solutions. If
the system has no feasible solutions, return “we can’t find solutions of (6) with the given
degree bound 2e”. Otherwise, obtain c and W [i] v 0, 1 ≤ i ≤ 3.

2. [Compute the verified solution c̃]

(2.1) Convert W [3] to a nearby rational positive semidefinite matrix W̃ [3] by non-negative
truncated PLDLTPT-decomposition.

(2.2) For the tolerance τ , apply the modified Newton iteration to refine c and W [1],W [2].

(2.3) Determine the singularity of W [1] and W [2] with respect to τ .

Case 1: Both W [1] and W [2] are of full rank. The rational vector c̃, and rational matrices
W̃ [1] and W̃ [2] can be obtained by orthogonal projection for a given bound D of
the common denominator Check if W̃ [i] � 0 for i = 1, 2. If so, return c̃, and
W̃ [i], 1 ≤ i ≤ 3. Otherwise, return “we can’t find the solution of (6) with the given
degree bound”.

Case 2: Both W [1] and W [2] are singular. Obtain c̃ and W̃ [i] as described in Case 2.1 of
Section 5.2.

Case 3: Only one of W [1] and W [2] is singular. Obtain c̃ and W̃ [i] as described in Case 2.2
of Section 5.2.

6. Computational Issue

In practice, it may happen that the unsafe region is too big to find an appropriate invariant
for verifying the safety of the given system. To deal with this issue, we can divide the original
unsafe region into two parts, which can be achieved by bisection method through computing the
minimum and maximum values of some variable xi. Then we compute the invariants that verify
safety for two unsafe sub-regions Xu,1, Xu,2, respectively. This procedure can be easily repeated
until the safety property have been verified for all of those unsafe sub-regions. The process for
splitting the initial set Θ can be handled similarly.

The following example is presented to illustrate the above technique.

Example 3. [22, Example 2] Consider the following nonlinear system

[
ẋ1
ẋ2

]
=

[
x1 − x2
x1 + x2

]
,

within the region Ψ = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 4 ∧ 0 ≤ x2 ≤ 4}. We want to verify that all
trajectories of the system starting from the initial set Θ will never enter the unsafe region Xu,
where Θ = {(x1, x2) ∈ R2 : 2.5 ≤ x1 ≤ 3 ∧ x2 = 0} and Xu = {(x1, x2) ∈ R2 : x1 ≤ 2}.

For Xu, PENBMI solver or Algorithm 1 can not yield a feasible solution of the associated SOS
program. Therefore, it is impossible to obtain the invariant to verify the safety property for this
system. Here we split the original unsafe region into Xu,1 = {(x1, x2) ∈ R2 : x1 ≤ 2 ∧ x2 ≤ 0}
and Xu,2 = {(x1, x2) ∈ R2 : x1 ≤ 2 ∧ −x2 ≤ 0}. Then, our certified method, combining modified
Gauss-Newton refinement with exact recovery technique, can yield the verified invariants with
degree 2 for Xu,1 and Xu,2, respectively. Thus the safety of this system is guaranteed.

7. Experiments

Let us present some examples of safety verification for hybrid systems.

Example 4 (Example 2 Revisited). Consider the safety verification problem of Example 2.
We now apply Algorithm 2 to compute two invariants ϕ̃1 and ϕ̃2, that are subject to the strength-
ened LMI constraints in [15] and the BMI constraints in (2), respectively.

12

According to Theorem 6 in [15], we construct an SOS system involving only LMI constraints.
Applying the improved Gauss-Newton iteration and rational vector recovery techniques, we find
an exact invariant ϕ̃1(x1, x2) ≥ 0 until deg(ϕ̃1) = 4, and the corresponding SOSes. Here we only
list the invariant

ϕ̃1(x1, x2) = −
53

39
+

8

13
x21 +

59

39
x22 −

2

13
x32 −

4

39
x41

+
14

13
x1 x2 −

22

39
x1 x

2
2 −

14

39
x31 x2 −

3

13
x21 x

2
2 −

3

13
x1 x

3
2.

The invariant ϕ̃1(x1, x2) ≥ 0 guarantees the safety of the given system.
Alternatively, from Theorem 1 we construct another SOS system with BMI constraints and

then apply Algorithm 2 to obtain an exact invariant with degree 2:

ϕ̃2(x1, x2) = −
151

99
−

62

33
x2 −

152

99
x1 −

106

99
x1 x2 −

4

9
x21.

This proves the safety of the given system.
Consider again the system in Example 2 with the same initial set Θ but a larger unsafe region

Xu = {(x1, x2) ∈ R2 : (x1 + 1)2 + (x2 + 1)2 ≤ 1}. Similarly, we construct the SOS systems with
LMI constraint and BMI constraint respectively, and apply Algorithm 2 to compute the invariants
ϕ̃1(x1, x2) ≥ 0 with deg(ϕ̃1) = 6, and ϕ̃2(x1, x2) ≥ 0 with deg(ϕ̃2) = 4, where

ϕ̃1(x1, x2) =
1714

3209
+

1856

3209
x32 +

6160

3209
x31 −

3927

3209
x22 −

1507

3209
x1 x

3
2 + · · · −

75

3209
x52 +

426

3209
x61,

ϕ̃2(x1, x2) = −
16

25
−

73

50
x1 +

71

50
x2 −

147

100
x21 + · · · −

299

100
x21 x

2
2 −

347

100
x1 x

3
2 −

211

100
x41. �

From Example 4, we see that the invariants obtained from the BMI constraints are of lower
degree than those obtained from the LMI constraints.

Example 5. Consider a hybrid system [20] depicted in Figure 1, where

f1(x, d) =




x2
−x1 + x3

x1 + (2x2 + 3x3)(1 + x23) + d


 , f2(x, d) =




x2
−x1 + x3

−x1 − 2x2 − 3x3 + d


 ,

with parameter d satisfies −1 ≤ d ≤ 1. The system starts in location ℓ1, with an initial state in

Θ = {(x1, x2, x3) ∈ R3 : x21 + x22 + x23 ≤ 0.01}.

Our task is to verify the system never reach the states of

Xu(ℓ2) = {(x1, x2, x3) ∈ R3 : 5 ≤ x1 ≤ 5.1 ∨ −5.1 ≤ x1 ≤ −5}.

To prove the safety of the hybrid system, it suffices to find the corresponding invariant polyno-
mials ϕ1(x) and ϕ2(x) at locations ℓ1 and ℓ2, which satisfy all the conditions in Theorem 1.

Applying Algorithm 2, we obtain the invariant polynomials with rational coefficients

ϕ̃1(x) = −
53

44
−

39

88
x1x2 +

5

88
x1x3 −

1

88
x2x3 −

1

44
x1

2 −
3

88
x2

2 −
3

88
x3

2,

ϕ̃2(x) = −
129

22
−

1

88
x1x2 +

1

88
x1x3 +

1

88
x2x3 +

1

88
x1

2 +
1

88
x2

2 +
1

88
x3

2.

Moreover, ϕ̃1(x) and ϕ̃1(x) satisfy the conditions in Theorem 1 exactly. Therefore, the invariants
can guarantee the safety of the hybrid system.

13

 NO CONTROL CONTROL

ℓ1

x2

1
+ 0.01x2

2
+ 0.01x2

3
≤ 1.01

ℓ2

ẋ = f1(x, d) ẋ = f2(x, d)

x2

1
≤ 5.12

x2

1
+ x2

2
+ x2

3
≥ 0.03

0.99 ≤ x2

1
+ 0.01x2

2
+ 0.01x2

3
≤ 1.01

0.03 ≤ x2

1
+ x2

2
+ x2

3
≤ 0.05

Figure 1: Hybrid system of Example 3

Table 1 shows the performance of Algorithm 2, for safety verification of some interesting
benchmark examples. All the computations have been performed on an Intel Core 2 Duo 2.0
GHz processor with 2GB of memory. Examples 1–3 correspond to Examples CLOCK, FOCUS,
ECO in [23], and Examples 4–7 correspond to [21, Example 3], [32, Example 3], [22, Example
11] and [31, Example 2]. All these examples except Example 2 are nonlinear systems. In all the
associated SOS programmings, the degree bound of SOSes is e = 6 and we set D = 1000 and
τ = 10−10 in Algorithm 2. Here |ℓ| and n denote the number of locations and the number of system
variables respectively; BMI Solver refers to the method used to obtain the numerical solutions of
the given BMI problems; Num. Para. is the number of decision variables appearing in the BMI
problem; deg(ϕ̃) and deg(ϕ̃LMI) denote the degrees of invariants computed by Algorithm 2 and
by the algorithm used in [15] with LMI constraints, respectively. Fail means that the algorithm
in [15] fails to find invariants with degree ≤ 6. Time is that for the entire computation run
Algorithm 2 in seconds.

Ex. |ℓ| n BMI solver Num. Para. deg(ϕ̃) deg(ϕ̃LMI) Time (s)
1 1 2 PENBMI 30 2 3 6.17
2 1 2 Alg. 1 16 2 Fail 4.56
3 2 2 Alg. 1 70 2 2 14.21
4 1 2 PENBMI 18 2 Fail 4.31
5 1 2 PENBMI 41 3 Fail 7.99
6 1 3 Alg. 1 21 2 2 5.45
7 1 2 Alg. 1 24 2 2 5.62

Table 1: Algorithm Performance on Benchmarks

8. Conclusion

In this paper, we present a symbolic-numeric method on safety verification of hybrid systems. A
numerical invariant of a hybrid system can be obtained by solving a bilinear SOS programming
via PENBMI solver or iterative method. Then a method based on modified Newton iteration and
rational vector recovery techniques is deployed to obtain exact polynomial invariantswith rational
number coefficients. Some experimental results are given to show the efficiency of our method.

14

Acknowledgments

We would like to acknowledge helpful discussions with Professor Lu Yang and Professor Wensheng
Yu.

References

[1] G. Chesi. LMI techniques for optimization over polynomials in control: a survey. IEEE
Transactions on Automatic Control, 55(11):2500–2510, 2010.

[2] A. Chutinan and B. H. Krogh. Computational techniques for hybrid system verification.
IEEE Transactions on Automatic Control, 48(1):64–75, 2003.

[3] M. S. E. Din. Raglib (real algebraic library maple package). Available at
http://www-calfor.lip6.fr/~safey/RAGLib, 2003.

[4] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press,
third edition, 1996.

[5] S. Gulwani and A. Tiwari. Constraint-based approach for analysis of hybrid systems. In
CAV, volume 5123 of LNCS, pages 190–203. Springer, 2008.

[6] T. Henzinger. The theory of hybrid automata. In Proceedings of the 11th Annual IEEE
Symposium on Logic in Computer Science, pages 278–292. IEEE Computer Society, 1996.

[7] E. Kaltofen, B. Li, Z. Yang, and L. Zhi. Exact certification of global optimality of ap-
proximate factorizations via rationalizing sums-of-squares with floating point scalars. In
Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC
’08, pages 155–164, New York, NY, USA, 2008. ACM.

[8] E. Kaltofen, B. Li, Z. Yang, and L. Zhi. Exact certification in global polynomial optimization
via sums-of-squares of rational functions with rational coefficients. Journal of Symbolic
Computation, 47:1–15, 2012.

[9] M. Kočvara and M. Stingl. PENNON: A code for convex nonlinear and semidefinite pro-
gramming. Optimization Methods and Software, 18(3):317–333, 2003.

[10] M. Kočvara and M. Stingl. PENBMI user’s guide (version 2.0). Available at
http://www.penopt.com, 2005.

[11] G. Lafferriere, G. Pappas, and S. Yovine. Symbolic reachability computations for families of
linear vector fields. J. Symbolic Computation, 32(3):231–253, 2001.

[12] J. C. Lagarias. The computational complexity of simultaneous diophantine approximation
problems. SIAM Journal on Computing, 14:196–209, 1985.

[13] J. B. Lasserre. Moments, Positive Polynomials and Their Applications. Imperial College
Press, 2010.

[14] F. Leibfritz and E. Mostafa. An interior point constrained trust region method for a spe-
cial class of nonlinear semidefinite programming problems. SIAM Journal on Optimization,
12(4):1048–1074, 2002.

[15] W. Lin, M. Wu, Z. Yang, and Z. Zeng. Exact safety verification of hybrid systems using
sums-of-squares representation. Submitted, 26 pages, 2011.

[16] J. Liu, N. Zhan, and H. Zhao. Computing semi-algebraic invariants for polynomial dynamical
systems. In Proceedings of the International Conference on Embedded Software (EMSOFT),
pages 97–106. ACM, 2011.

15

[17] P. Parrilo. Semidefinite programming relaxation for semialgebraic problems. Mathemetical
Programming Series B, 96(2):293–320, 2003.

[18] A. Platzer and E. M. Clarke. The image computation problem in hybrid systems model
checking. In Hybrid Systems: Computation and Control, HSCC, pages 473–486. Springer,
2007.

[19] A. Platzer and E. M. Clarke. Computing differential invariants of hybrid systems as fixed-
points. Form. Methods Syst. Des., 35(1):98–120, 2009.

[20] S. Prajna. Optimization-Based Methods for Nonlinear and Hybrid Systems Verification. PhD
thesis, California Institute of Technology, 2005.

[21] S. Prajna. Barrier certificates for nonlinear model validation. Automatica, 42(1):117–126,
2006.

[22] S. Ratschan and Z. She. Constraints for continuous reachability in the verification of hybrid
systems. In Artificial Intelligence and Symbolic Computation, pages 196–210. Springer, 2006.

[23] S. Ratschan and Z. She. Safety verification of hybrid systems by constraint propagation-based
abstraction refinement. ACM Transactions in Embedded Computing Systems, 6(1):573–589,
2007.

[24] E. Rodŕıguez-Carbonell and A. Tiwari. Generating polynomial invariants for hybrid systems.
In Hybrid Systems: Computation and Control, HSCC, volume 3414 of LNCS, pages 590–605,
2005.

[25] S. Sankaranarayanan, H. Sipma, and Z. Manna. Constructing invariants for hybrid systems.
Formal Methods in System Design, 32:25–55, 2008.

[26] G. A. Shah, M. Völker, C. Sonntag, and S. Engell. A barrier certificate approach to the
safety verification of a chemical reactor. In Proc. 17th IFAC World Congress, pages 6932–
6937, 2008.

[27] T. Sturm and A. Tiwari. Verification and synthesis using real quantifier elimination. In Proc.
ISSAC, pages 329–336. ACM Press, 2011.

[28] A. Tiwari. Approximate reachability for linear systems. In Hybrid Systems: Computation
and Control, HSCC, volume 2623 of LNCS, pages 514–525, 2003.

[29] M. Wu and Z. Yang. Generating invariants of hybrid systems via sums-of-squares of poly-
nomials with rational coefficients. In Proc. 2011 Internat. Workshop on Symbolic-Numeric
Comput., pages 104–111, New York, N. Y., 2011. ACM Press.

[30] B. Xia. DISCOVERER: A tool for solving semi-algebraic systems. ACM Commun. Compute.
Algebra, 41(3):102–103, 2007.

[31] M. Zaki, S. Tahar, and G. Bois. Combining constraint solving and formal methods for the
verification of analog designs. Technical report, Concordia University, 2007.

[32] M. Zaki, S. Tahar, and G. Bois. A symbolic approach for the safety verification of continuous
systems. In Proc. International Conference on Computational Sciences, pages 93–100, 2007.

16

