
LoCo - A Logic for Configuration

Problems

Markus Aschinger

St Anne’s College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Hilary Term 2014

”There is something to be learned from a rainstorm. When meeting with a

sudden shower, you try not to get wet and run quickly along the road.

By doing such things as passing under the eaves of houses, you still get

wet. When you are resolved from the beginning, you will not be

perplexed, though you will still get the same soaking. This

understanding extends to all things.”

– Hagakure, the Way of the Samurai

LoCo - A Logic for Configuration Problems

Markus Aschinger

St Anne’s College, University of Oxford

Doctor of Philosophy, Hilary Term 2014

Abstract

This thesis deals with the problem of technical product configuration: Connect in-

dividual components conforming to a component catalogue in order to meet a given

objective while respecting certain constraints. Solving such configuration problems is

one of the major success stories of applied AI research: In industrial environments they

support the configuration of complex products and, compared to manual processes, help

to reduce error rates and increase throughput. Practical applications are nowadays ubiq-

uitous and range from configurable cars to the configuration of telephone communication

switching units.

In the classical definition of a configuration problem the number of components to be

used is fixed while in practice, however, the number of components needed is often not

easily stated beforehand. Existing knowledge representation (KR) formalisms expressive

enough to deal with this dynamic aspect of configuration require that explicit bounds on

all generated components are given as well as extensive knowledge about the underlying

solving algorithms. To date there is still a lack of high-level KR tools being able to cope

with these demands.

In this work we present LoCo, a fragment of classical first order logic that has been

carefully tailored for expressing technical product configuration problems. The core fea-

ture of LoCo is that the number of components used in configurations does not have

to be finitely bounded explicitly, but instead is bounded implicitly through the axioms.

We identify configurations with models of the logic; hence, configuration finding becomes

model finding. LoCo serves as a high-level representation language which allows the mod-

elling of general configuration problems in an intuitive and declarative way without the

need of having knowledge about underlying solving algorithms; in fact, the specification

gets automatically translated into low-level executable code. LoCo allows translations

into different target languages. We present the language, related algorithms and com-

plexity results as well as a prototypical implementation via answer-set programming.

Acknowledgements

First and foremost, I would like to thank my primary supervisor Georg Gott-

lob for giving me the opportunity to work on this project and for continuously

pushing me to get things done. Second, I would like to thank Conrad Drescher

who has worked as a PostDoc in the same project and with whom I have been

sharing an office throughout my studies. His continuous support and the col-

laboration with him was crucial for completing my doctorate and would have

been a lot harder without.

I would also like to thank my second supervisor Peter Jeavons for his help and

support especially at the start of my DPhil and my colleages from the Oxford

Constraints group Stanislav Zivný, András Salamon, Evgenij Thorstensen

and Justyna Petke for interesting discussions and useful feedback. Many

thanks goes also to my former supervisor Georg Friedrich for providing me

with the needed support in making the move to Oxford.

Finally, I would like to thank my family and friends. Especially my mum has

been a constant source of support throughout my whole life and this thesis

would certainly not have existed without her. I am also very grateful to my

good friends both in Oxford and beyond who have provided a welcome relief

from work and have helped in a lot of ways to keep me going. You know who

you are.

Statement of Originality

I hereby certify that I have written this thesis entirely by myself. Parts of this

thesis have appeared in the following publications which have been subject

to peer review:

• Aschinger, M., Drescher, C., Gottlob, G., and Vollmer, H. (2014). LoCo

– A Logic for Configuration Problems. In ACM Transactions on Com-

putational Logic. Accepted for publication.

• Aschinger, M., Drescher, C., and Vollmer, H. (2012). LoCo – A Logic for

Configuration Problems. In Proceedings of the 20th European Conference

on Artificial Intelligence (ECAI 2012), pages 7378. IOS Press.

I would like to express here my thanks to my coauthors: Conrad Drescher,

Georg Gottlob and Heribert Vollmer. Some of the theoretical results on the

complexity of the presented formalism were obtained in collaboration.

Contents

1 Introduction 1

1.1 Technical Product Configuration . 1

1.2 The case for LoCo . 3

1.3 The House Problem — Running Example 5

1.4 Thesis Outline . 7

2 Configuration Systems 8

2.1 Definition . 8

2.2 Constraint-based approaches . 11

2.2.1 Standard Csp . 12

2.2.2 Csp extensions . 13

2.3 Logic-based approaches . 16

2.3.1 ∃FO→,∧,+ . 16

2.3.2 Description Logics . 18

2.4 Unified Modeling Language (UML) approaches 20

3 LoCo– A Logic for Configuration Problems 21

3.1 Introducing LoCo . 22

3.2 Connection Axioms . 24

3.2.1 Binary connections . 24

3.2.2 One-to-many connections . 26

3.3 Consistency Axioms . 30

3.3.1 Candidate key axioms . 30

i

3.3.2 Connection-generating axioms . 32

3.3.3 General First Order axioms . 33

3.4 Specifying Configuration Problems . 35

3.4.1 Domain Knowledge . 36

3.4.2 Instance Knowledge . 39

3.5 Enforcing Finite Configurations . 41

3.5.1 Locally Bounding Component Numbers 41

3.5.2 Globally Bounding Component Numbers 44

3.5.3 Computing Bounds on Component Numbers 47

3.6 The Complexity of Deciding LoCo Satisfiability 51

4 LoCo Input Language 55

4.1 Basic elements . 56

4.1.1 Constants . 56

4.1.2 Component and Attribute definitions 56

4.2 Connection Rules . 60

4.2.1 Binary connections . 60

4.2.2 One-to-many connections . 65

4.3 Consistency Rules . 68

4.3.1 Candidate Key rules . 68

4.3.2 Connection-generating rules . 69

4.3.3 General First-Order rules . 69

4.4 Domain Knowledge . 71

4.5 Instance Knowledge . 73

5 Prototypical Implementation 80

5.1 Workflow . 81

5.2 Transformation to ASP . 82

5.2.1 Constant and Component definitions 83

5.2.2 Connection rules . 88

5.2.3 Consistency rules . 96

5.2.4 Domain and Instance Knowledge 98

ii

5.2.5 Remarks . 102

5.3 Transformation to MiniZinc . 104

5.3.1 Representing Components . 105

5.3.2 Representing Connections . 106

5.3.3 Adding the Constraints on Connections 111

5.3.4 Adding Partial Configurations . 112

6 Evaluation 113

6.1 Industrial benchmark problems . 113

6.2 Benchmarks . 117

7 Conclusion 119

7.1 Summary and main results . 119

7.2 Future Work . 120

Bibliography 121

A Publications 131

iii

List of Figures

1.1 House problem scenario . 6

3.1 A full binary tree rooted at an input component of type C1 51

5.1 LoCo Workflow . 82

5.2 Predicate tree for listing 5.6 . 90

6.1 Room layout for a PUP scenario . 114

6.2 Bipartite graph representation of the room layout from figure 6.1 115

6.3 Partitioning of a K6,6 Partner Units Instance 116

iv

List of Tables

4.1 Mapping of language elements . 61

6.1 Benchmarks for the House Problem . 117

6.2 Benchmarks for the Partner Units Problem 118

v

vi

Chapter 1

Introduction

1.1 Technical Product Configuration

This work deals with the problem of technical product configuration. Flexibility and

efficiency in the customization of products and services - rather than series production -

has become a key factor of competitiveness in the post-industrial economy. To support

customization activities by lowering product development and production costs, auto-

mated software configuration systems are increasingly used in enterprises. Solving such

configuration problems is one of the major success stories of applied AI research: In

industrial environments they support the configuration of complex products and, com-

pared to manual processes, help to reduce error rates and increase throughput [Sabin

and Weigel, 1998]. According to industry analysts a configurator that is able to support

the whole configuration process of a product life cycle potentially reduces the costs by as

much as 60% [Fleischanderl et al., 1998].

Configuration is used both in the B2C and in the B2B business models. A success-

ful example of B2C product configuration is the case of Dell Inc., where desktop and

laptop computers are produced for end customers who have specified their individual

wishes through an interactive configuration process. Other examples are flight search

and booking engines, where quite complex constraints obtained from the users must be

solved. Yet even more complex configurator tasks arise in the B2B domain. For example,

railway interlocking systems for large train stations must be configured on an individual

1

2 CHAPTER 1. INTRODUCTION

basis containing a large number of elements with highly complex relationships [Falkner

and Schreiner, 2014]. Generally saying practical applications are nowadays ubiquitous

and range from the configuring of product bundles such as tourism packages [Aschinger

et al., 2010] over configurable cars [Sinz et al., 2003] to the configuration of telephone

communication switching units [Fleischanderl et al., 1998] — for surveys see e.g. [Sabin

and Weigel, 1998] or the more recent [Junker, 2006]. By now it has become apparent

that there are also manifold connections to the domain of software configuration, see

e.g. [Hubaux et al., 2012].

The early work on using rule based configurators for customizing computers [McDer-

mott, 1982] is generally seen as the field’s starting point. Since then manifold general

purpose AI techniques such as constraint satisfaction problem (Csp) and Boolean sat-

isfiability (Sat) solving, heuristic search, and description logics (DLs) have successfully

been applied to configuration.

Configuration research has also seen a vast number of different formalizations and

reasoning methods being put forward. Naturally, these differ considerably with regard

to expressive power and the reasoning tasks supported. Of course, the fundamental

problem of configuration finding is supported by virtually all approaches, although some

are tailored more towards autonomous reasoning whereas others focus on interactive

reasoning [Schneeweiss and Hofstedt, 2011]. But there are other noteworthy reasoning

tasks that have been studied and implemented in industrial solutions: Explanation deals

with the problem of explaining to the user why a certain option is no longer available

— see e.g. [Junker, 2004]. Optimization addresses the task of finding not just any but

the best configuration according to some criterion (or even several thereof). Finally,

reconfiguration deals with the problem of how to modify an existing configuration so as

to meet some additional constraints or a new objective [Friedrich et al., 2011]. In this

work we mainly deal with the problem of configuration finding and only occasionally hint

at the other reasoning tasks.

1.2. THE CASE FOR LOCO 3

1.2 The case for LoCo

In the classical definition of a configuration problem the number of components to be

used is fixed [Mittal and Frayman, 1989]. In many practical configuration problems,

however, the number of components needed for a solution is often unknown beforehand;

for example, for some components this number depends on the choices made for other

components or on changing customer requirements. One can think of this as creating new

components on-the-fly throughout the solving process. Existing knowledge representation

(KR) formalisms expressive enough to deal with this dynamic aspect of configuration

require that explicit bounds on all generated components are given. In addition to that

the usage of these formalisms usually requires the availability of a skilled person with

extensive knowledge about the underlying solving algorithms. To date there is still a lack

of configuration tools being able to cope with these demands and which allow a high-

level modelling of a configuration problem without the usually needed deep technical

background.

In this work we present LoCo, a logic that has been carefully tailored to deal with the

aforementioned challenges and to meet the demands of technical product configuration.

LoCo serves as a high-level representation language which allows the modelling of general

configuration problems in an intuitive and declarative way without the need of having

knowledge about underlying solving algorithms. We identify configurations with models

of the logic; hence, configuration finding becomes model finding. LoCo supports the no-

tions of component ports and connections and allows us to describe arbitrary component

topologies; it comes with a rich language for describing binary and one-to-many connec-

tions as well as constraints that must hold for connected components. Most importantly,

it relaxes the requirement of placing explicit bounds on the number of components. In-

stead it implicitly bounds the number of components needed through the axioms and

a given set of explicitly bounded components whenever possible. We employ existential

counting quantifiers to indicate the number of possible connections from one component

type to another; from these we derive the finite bounds. If finite bounds could not be

inferred, we can derive a smallest fix for the problem: a set of components that — if

bounded by hand — suffices to make the problem finite. As configurations are then

4 CHAPTER 1. INTRODUCTION

guaranteed to be finite there are no fundamental obstacles to either fully automated or

interactive reasoning support.

The standard use case of LoCo looks as follows:

• The user specifies the problem in LoCo; cf. Section 3.

• It is then decided whether the specified problem is finite (admits only finite models),

and, if not, possible fixes are suggested.

• After that bounds on the number of components are computed; cf. Section 3.5.

• Finally, the specification is translated to executable code. LoCo allows translations

into different target languages. In Section 5.2 we touch upon a translation into

answer set programming.

The reasoning problems that we study are hence the following: (1) Decide whether

the problem is finite. (2) Compute a smallest set of components sufficient to make the

problem finite (if necessary). (3) Find a model/configuration.

In principle the LoCo formalism supports interactive configuration scenarios by being

able to check the finiteness of a (partial) configuration. As LoCo allows the user to specify

partial configurations to be used as starting point the task of interactive configuration

can be reduced to a series of configuration finding problems. The system guides the

user step by step through the configuration process and gives assistance in the search

for valid variable assignments. The user then is able to specifically select component

instances, attribute values and component connections with the system giving feedback

if the resulting model remains to be finite. In case of a resulting infinite model the system

recommends a smallest fix, i.e. the smallest set of components to make the model finite.

These features will be discussed in section 3.5.

The feature of specifying partial configurations as part of the input can also be used

to support a limited form of reconfiguration; this works as long as there is no conflict/

inconsistency between the (partial) legacy instance and the new constraint/objective.

LoCo currently doesn’t support full reconfiguration scenarios in the sense of [Friedrich

et al., 2011] where parts of existing legacy configurations are reused or modified in order

1.3. THE HOUSE PROBLEM — RUNNING EXAMPLE 5

to adapt to changes of requirements specifications. Dealing with the case of an actual

inconsistency requires further research and is a promising subject of future work as is the

reasoning task of explaining configuration results to end-users.

LoCo has originally been introduced in [Aschinger et al., 2011b] and in [Aschinger

et al., 2012] we have elaborated upon the above mentioned reasoning tasks. The journal

article [Aschinger et al., 2014] summarizes the previous publications, extends the language

by additional axiom types and provides complexity results on the LoCo satisfiability and

the tightness of component bounds. This article also contains the bulk of chapter 3 which

represents the core of this thesis.

1.3 The House Problem — Running Example

As a running example we use a simplified version of the House Problem that we received

from our industrial partner Siemens [Bettex et al., 2009]. The House Problem reflects

constraints and properties that can be found in a wide range of problems involving the

design and assembly of complex systems and software processes. It is basically a toy

problem derived from a real-world configuration problem in close analogy to the rack

configuration problem; a layered version of bin packing with side constraints [Kiziltan

and Hnich, 2001].

The original rack configuration problem consists of plugging a set of electronic cards

into racks with electronic connectors, outlined in [Hentenryck, 1999]. The modified and

extended scenario of our industrial partner deals with assembling entire digital switching

systems from racks and modules in the telecommunications sector. Typical problems

consist of approximately 200 racks, 1000 frames, 30000 modules and 10000 cables with

top-end configuration solutions comprising around 43000 components with 215000 at-

tributes and 112000 ports [Fleischanderl et al., 1998].

The task of the House Problem is to put things of various types and sizes into cabinets

which have to be stored in rooms of the house. For brevity and the sake of illustration,

we cover only certain parts of the problem that we think are particularly helpful in

understanding the underlying formalism. A cabinet has two shelves, each providing a

certain storage space for either things of type A or B. Constraints on component attributes

6 CHAPTER 1. INTRODUCTION

determine where a thing or a cabinet can be stored: Big things can only be stored in

big cabinets whereas some cabinet need to be located at a certain position in a room;

in the case of two small cabinets one can possibly be placed on top of the other in the

same position. Every thing is owned by a person and things of different persons cannot

be placed together in the same room. The goal is to find a minimal number of cabinets,

counting twice all big cabinets.

Figure 1.1 depicts an example scenario for the House Problem, including the basic (bi-

nary) connections between components together with cardinalities restricting the number

of potential connections. Connections marked as (Input) are pre-defined, i.e. they are

already specified from the start in a given problem instance and are therefore part of the

input.

person

thingA
size
big
dirty
forUpper
minFloor
maxFloor

thingB
size
big
dirty
forUpper
minFloor
maxFloor

room
size
floor
pos

house
height
width

cabinet
size
big
dirty
top
color

position
nr

(Input)

0..cMaxNrTB

1..1

1..1

1..1

1..1 1..1

(Input)

(Input)

1..4

1..2

1..15

0..cMaxNrTA

Figure 1.1: House problem scenario

1.4. THESIS OUTLINE 7

1.4 Thesis Outline

The outline of the thesis is as follows: In chapter 2 we provide a more detailed definition of

configuration systems together with a summary of the main approaches related to our own

formalism in terms of existing problem formalizations and reasoning methods. Chapter

3 deals with the core of this thesis: We first introduce the LoCo formalism and show

its use for specifying configuration problems. We furthermore discuss how to enforce

that configurations contain only finitely many components and show some complexity

results. In order to put the LoCo axiomatization into practice we created the LoCo input

language. The basic structure of this text-based language will be presented in chapter

4. Chapter 5 gives an overview of a prototypical implementation and insights on the

transformation to both ASP and MiniZinc as target languages. We then evaluate LoCo

encodings on a set of benchmark problem instances that we received from our industrial

partners in chapter 6. Chapter 7 finally summarises the results obtained in this thesis

and discusses directions for future research.

Chapter 2

Configuration Systems

2.1 Definition

Configuration systems are one of the most successful applications of AI-techniques. In

industrial environments they support the configuration of complex products and, com-

pared to manual processes, help to reduce error rates and increase throughput [Sabin

and Weigel, 1998]. Over the years there have been many diverse approaches for defining

a configuration problem but none of them seems to be commonly accepted. [Stumptner,

1997, Junker, 2006] provide some overviews on this. Configuration is often viewed as

related to a design problem or even as special type of it. Chandrasekaran gives a basic

definition of what is typically meant by a design problem [Chandrasekaran, 1990]:

Definition 1. A design problem is specified by

• a set of functions on the behavior or properties of the artefact (either stated by the

design consumer or implicitly defined by the domain),

• a set of constraints on the properties of the artefact, the process of making the

artefact or the design process itself;

• a repertoire of components and a vocabulary of relations between them.

Functions are high-level constraints that describe the primary reason why the artefact

is desired. An effective process of a design is to generate a candidate design based

8

2.1. DEFINITION 9

on functions and then modify it to meet the constraints. The solution to the design

problem consists of a complete specification of a set of components and their relations

that together describe an artefact that delivers the functions and satisfies the constraints

[Chandrasekaran, 1990].

Sabin and Weigel emphasize the connection between design and configuration, shown

in definition 2 [Sabin and Weigel, 1998]. Configuration hence is a special type of design

activity, with the key feature that the artifact being configured is assembled from a set

of pre-defined components. This is also the main difference to a design problem, where

new components can be generated during the composition of the desired artifact. This

rather abstract definition is not commonly accepted though. D.C. Brown for example

understands a design process mainly as a refinement of abstract components through the

specification of values of their defined attributes. From this viewpoint configuration is

not a special form of design but an essential part of the design process itself [Brown,

1998].

Definition 2. Configuration can be defined as a special case of design activity where the

artifact being configured is assembled from a set of well-defined component types which

can be composed conforming to a set of constraints.

Brown and Chandrasekaran divide design problems based on their complexity in 3

classes [Brown and Chandrasekaran, 1989]: The design of a new artefact completely

from scratch is represented by class 1. Class 2 covers artefacts that can be decomposed

in subcomponents where the structure of at least some of these components remains

unknown at the beginning of the process. In case all the subcomponents are predefined

then the problem belongs to class 3. A design problem of class 3 is what the authors

then define as a configuration problem.

The following definition by Mittal and Frayman [Mittal and Frayman, 1989] is the

most cited and describes what is typically meant by a configuration problem:

Definition 3 (Configuration Problem). Given: A fixed, predefined set of components,

where a component is described by a set of properties, ports for connecting it to other

components, constraints at each port that describe the components that can be connected

at that port, and other structural constraints, some description of the desired configuration

10 CHAPTER 2. CONFIGURATION SYSTEMS

and some criteria for making optimal selections.

Build: One or more configurations that satisfy all the requirements, where a configuration

is a set of components and a description of the connections between the components in

the set, or, detect inconsistencies in the requirements.

Please note that this classical definition of a configuration problem still leaves consid-

erable wiggle room as for how exactly the problem is to be formalized. It is also worth

pointing out that in this definition components are not only pre-defined in terms of their

structure but that also their number available to build the final configuration is fixed;

that is, it cannot be changed during runtime. In practice, however, the number of com-

ponents needed is often not easily stated beforehand. Mittal and Frayman emphasize in

particular 3 important aspects of a configuration:

• New component types cannot be designed throughout the configuration process.

• Each component is pre-defined in terms of its compatibility to other components

and dynamic modifications of these relations are not possible.

• A solution not only specifies the components contained in a configuration, but also

how they are connected to each other.

Brown argues that not every configuration necessarily needs to consist of components

that are connected physically to each other. Furthermore, it remains unclear on which

abstraction level the components have to be pre-defined and if all or only a subset of

the components have to be used in the configuration process [Brown, 1998]. Summing

up it becomes clear at this point that there are many facets of configuration and there

exist different opinions of what a configuration exactly is. The definition of Mittal and

Frayman though stood the test of time and can still be seen as the most appropriate so

far.

Regardless of the chosen representation approach, every configurator requires access

to specific knowledge that states which combinations of components are allowed and

which restrictions need to be observed. For instance, a car configurator must compute

a valid vehicle variant satisfying the user requirements and all applicable commercial

and technical restrictions derived from the marketing and engineering policies of the

2.2. CONSTRAINT-BASED APPROACHES 11

manufacturer. The basic idea for representing configuration knowledge is to have some

sort of component catalogue representing the space of all possible combinations of product

components [Soininen and Niemelä, 1998]. It contains a description of the components

along with their related attributes. The component catalogue (aka configuration space)

is then restricted to the solution space by constraints which represent restrictions on how

components can be combined. These rules can be either fixed domain constraints or

specific user requirements.

Given a component catalogue and a set of user requirements the task of a configu-

ration process is to find a configuration that satisfies the requirements. The process of

configuration finding is about choosing a set of components from a component catalogue

and connecting them in a way such that some predefined constraints are satisfied. A

configuration then is a set of selected component instances of the component catalogue.

Wielinga and Schreiber [Wielinga and Schreiber, 1997] divide configurations into three

classes:

• A configuration satisfying all constraints of the configuration model is called valid ;

• A valid configuration which also satisfies all user requirements is called suitable;

• Finally an optimal configuration satisfies some optimality criteria in addition to

being suitable.

2.2 Constraint-based approaches

Over the years several different approaches for configuration have been investigated, e.g.

expert systems, rule-based systems, non-monotonic reasoning, case-based reasoning, de-

scription logics and constraint processing. A recent survey is given by Junker in [Junker,

2006].

Configurators that utilize the constraint satisfaction problem (Csp) paradigm are

within the family of model-based approaches that strictly separate domain knowledge

from problem solving knowledge [Mailharro, 1998]. This increases the quality of knowl-

edge representation since changes in the knowledge base don’t have side-effects on the

underlying solving engine and vice versa. Constraint satisfaction problems are currently

12 CHAPTER 2. CONFIGURATION SYSTEMS

the most widely used approach for the formalisation of configuration problems.

2.2.1 Standard Csp

In its simplest form the problem is formalized as a standard Csp and existing mature

solver technology is exploited. Contemporary research in this direction includes e.g. the

compilation of the CSP for fast interactive reasoning [Amilhastre et al., 2002, Andersen

et al., 2010] or the use of global constraints for greater deductive power [Karatas et al.,

2010]. Note that these approaches do not come with explicit support for ports or connec-

tions between components; also, the number of individual components available to build

the final configuration has to be fixed prior to solving.

A common definition for classical Csps is shown in the following definition [Tsang, 1993]:

Definition 4. A Csp P is defined as a triplet P =< V,D,C >, where:

• V = {V1, ..., Vn} is the set of variables involved in P,

• D = {D1, ..., Dn} is the set of domains associated to variables, Vi has domain Di

and

• C = {C1, ..., Cm} is the set of constraints which must be satisfied for any solution of

P. A constraint Ci involving a set of variables Wi = {Vi1 , ..., Vij} ⊆ V is defined by

a tuple (scope, def). The scope of a constraint, scope(Ci), is the set of variables Wi

involved in the constraint. def (Ci) is a set of value tuples for the set of variables

Wi = {Vi1 , ..., Vij}, def (Ci) ⊆ Di1 × ...×Dij . def (Ci) is called the definition of the

constraint and denotes the value tuples that satisfy Ci.

Given that the aim of configuration is to define proper sets of variables (e.g., the

different components of a product or service) and constrain them to assume certain

values (e.g., restricting the way they can be combined with each other), it comes as

no surprise that Constraint Satisfaction techniques play a crucial role in this context.

However, the standard Csp formulation does not feature variables or sub-Csps that are

conditionally activated depending upon the values assigned to other variables. This is

because CSP instances are intrinsically static, since (i) they are defined over a fixed set

2.2. CONSTRAINT-BASED APPROACHES 13

of variables and a fixed set of constraints on these variables, and (ii) they assume that

all the values in the domains are known beforehand. Therefore, some kind of conditional

variable activation is required.

2.2.2 Csp extensions

Hence, in the area of constraint-based configuration, a number of extensions of the tradi-

tional Csp paradigm have been developed to cope with the dynamic aspects of configura-

tion problems: the problem is solved by incrementally adding components and selecting

values for their attributes until the overall requirements are met. In such an approach

it is easier to express that the exact number of components to be included in the final

configuration is not fixed but depends on the choices made for the previous components.

Dynamic CSP

In Dynamic CSPs (DCSP) [Mittal and Falkenhainer, 1990], also known as Conditional

Csps in the literature, activation constraints ensure that only a relevant subset of the

variables and constraints is used for generating a solution.

Definition 5. A DSCP has the form < V,D, VI , CC , CA >, where V = {v1, . . . , vn}
represents the set of variables, D = {D1, . . . , Dn} the set of variable domains and VI ⊆ V

the set of initially active variables. The set of constraints is divided in compatibility

constraints CC and activity constraints CA [Mittal and Falkenhainer, 1990].

In contrast to a standard Csp only the active variables VI need to have assigned

values. VI contains a certain initial set of variables at the beginning of the solving

process which then dynamically changes throughout the process due to state changes.

Activity constraints are changing the state of variables and define the conditions for

when a variable gets activated or deactivated. When a variable gets activated it needs to

receive a valid assignment and is from this point on a part of the solution set. Inactive

variables are of no relevance [Soininen and Gelle, 1999]. Compatibility constraints have

the same function and structure as constraints of a standard Csp and are active if all

involved variables are also active. Inactive compatibility constraints won’t be considered

in the solution finding process.

14 CHAPTER 2. CONFIGURATION SYSTEMS

There are different approaches for solving a DCSP [Mouhoub and Sukpan, 2007]:

A DCSP can be converted to a Csp by reformulating activity constraints in compat-

ibility constraints. Another way is to generate all possible Csps and solve them with

standard algorithms. The direct way of solving a DCSP is done in form of an activation-

propagation cycle [Gelle and Weigel, 1996]: Based on the active variables all activity

constraints will be checked which changes the problem space. The following propagation

step checks the fulfillment of all compatibility constraints. In case of an inconsistency

the process backtracks to the last valid problem space. The algorithm terminates if the

current variable assignments are consistent and there are no new variables that have to

be activated.

In summary the main benefits of the DCSP approach are on the knowledge repre-

sentation level. While it allows to map a problem structure in a more natural way, the

dynamic aspects though are limited in that all possible occurring variables still need to

be stated a priori [Stumptner, 1997]. This means that it remains very difficult to model

a problem scenario where a potentially very large and a priori not exactly definable set of

components is necessary for finding a solution. The initial consideration of the maximally

needed number of components for a given problem is often either impossible or would

result in a very large search space [Mailharro, 1998].

Composite Csp

Composite CSP (CCSP) is another formalism which was informally introduced by Sabin

and Freuder [Sabin and Freuder, 1996]. It allows to model Csps where variables can

have subproblems (sub-Csps) as values. If a subproblem T is assigned to a variable v

then any constraint containing v is removed and the constraints and variables in T are

added to the Csp. This approach provides an elegant way of decomposing a problem

into a set of subproblems. According to [Mailharro, 1998] the biggest issue of a CCSP is

consistency maintenance: The central question is how the knowledge about subproblems

can be used to decide which of them are inconsistent in regards to the remaining variable

assignments and have to be removed by a propagation algorithm.

However, the major issue remains that in both the DCSP and CCSP formalisms the

numbers of possibly activated variables and constraints have to be defined in advance.

2.2. CONSTRAINT-BASED APPROACHES 15

For this reason it comes as no surprise that these formalisms in fact have the same

expressive power as classic Csps. There exist polynomial-time many-one reductions

between composite Csps and dynamic Csps as well as between dynamic Csps and classic

Csps. Further details on the interreducibility of these formalisms including proofs and a

discussion can be found in [Thorstensen, 2010].

Generative Csp

Generative Csps (GCSP) [Stumptner et al., 1998,Stumptner and Haselböck, 1993] over-

come the main limitation of Composite and Dynamic Csps and allow the dynamic gen-

eration of components on demand during the search process. It is the only one of the

dynamic Csp extensions that comes with explicit support for ports and component con-

nections. GCSPs are based on the standard component-port model (see definition 3) and

contain object-oriented concepts such as generic constraints on component types that

have to hold for all derived component instances. Special resource constraints can be

defined on an a priori unknown number of variables which are able to create new ones on

demand. As an example consider a PC configuration where a certain amount of memory

is needed but the number and type of needed memory chips is unknown at the beginning.

The reasoning starts from certain key components and then required auxiliary compo-

nents and associated connections are incrementally added. New attributes are generated

by activity constraints and new components are created by resource constraints. GCSPs

don’t require explicit bounds on the number of components and because of this the for-

malism allows infinite configurations to be constructed. This is the main drawback of

the GCSP approach and also became one of our starting motivations for developing the

LoCo formalism.

An example of a configuration system implementing the GCSP approach is COCOS

[Stumptner et al., 1994]. This system focuses on solving large configurations with a high

number of components and was successfully used in problem scenarios with around 4000

components in the solution set. The industrial rack configuration problem mentioned in

section 1.3 for example was modelled with the LAVA configurator which is an enhanced

and further developed version of COCOS.

16 CHAPTER 2. CONFIGURATION SYSTEMS

2.3 Logic-based approaches

Complementary to the Csp formalism and its variations there has also been substantial

research to capture configuration with logic-based formalisms. Here, the conditional in-

clusion of components into configurations is commonly modelled using implication and/or

a form of existential quantification, a combination that easily leads to infinite models /

configurations. We recall these in some detail, as some of them serve as kind of starting

points for our own configuration logic.

2.3.1 ∃FO→,∧,+

Standard Csps can be equivalently formulated in logic and correspond to the fragment

∃FO∧,+ of FO∧,+ of FO consisting of formulae built using only existential quantification

and conjunction, i.e. the fragment of first-order logic of formulae with arbitrary quan-

tifications and conjunctions, but without negation or disjunction [Kolaitis and Vardi,

1998]:

Definition 6. The logic-based characterization of a CSP instance is defined as a pair

(φ,D), where D is the constraint database, i.e., the set of all the constraint relations ri,

for each constraint Ci = (Si, ri), and φ is a ∃FO∧,+ sentence, i.e., an existentially quan-

tified first-order formula with no negations or disjunctions, over the relational vocabulary

consisting of the atoms ri(Si). Solving the CSP corresponds to deciding whether D � φ.

The standard CSP formulation ∃FO∧,+ of FO∧,+, as already mentioned, is not ap-

propriate for configuration problems in a knowledge representation (KR) sense: it does

not feature variables that are conditionally activated depending upon the values of the

other components in the solution.

In the work by Gottlob et al. [Gottlob et al., 2007] logical implication has been

added to this formalism in order to express the conditional inclusion of components

into configurations. The resulting language is the fragment ∃FO→,∧,+ of FO, containing

formulae of the form ∃
→
X φ(

→
X). It proposes to model the conditional inclusion of

components by evaluating a strictly positive, existentially quantified first order sentence

2.3. LOGIC-BASED APPROACHES 17

formed by using conjunction and a restricted form of implication over an extensional

finite constraint database.

Unlike for ∃FO∧,+, formulas of the more expressive ∃FO→,∧,+ logic may be satisfied

by partial assignments. For instance the formula ∃X((r(X) ∧ p(X)) =⇒ ∃Y q(X, Y))

is satisfied by any partial assignment mapping X to a value contained in the relation

associated with r but not contained in the relation associated with p. The variable Y

then is said to be non-active in this assignment.

This formalism allows to model constraints for example in the following way:

Example 1. In a potential rack configuration scenario, the constraint stating that a

compatible auxiliary power supplier module needs to be put in the same frame where the

module of type t1 is plugged may be expressed by the following ∃FO→,∧,+ formula:

∃F,M frame(F) ∧module(M)∧

type(M, t1) ∧ pluggedInto(M,F) =⇒

∃P module(P) ∧ type(P, power supplier)∧

compatible(P,M) ∧ pluggedInto(P, F)

A drawback of ∃FO→,∧,+ is that explicit bounds on the number of components needed

have to be given (variables have a fixed finite domain) and that all constraints must be

coded in extension in the constraint database. Moreover, the number of all potentially

activated variables (components) must be known beforehand, too. From this it follows

that it would have to be analyzed which further extensions are required in order to ob-

tain a more expressive and versatile logical language. The ∃FO→,∧,+ logical fragment

turns out to be a notational variant of dynamic and composite (and hence also standard)

Csp [Thorstensen, 2010]: like these it does not feature support for ports or connections

either. However, this work has pioneered the identification of families of such conditional

configuration (optimization) problems that admit tractable reasoning / efficient process-

ing. The language is – even without further extensions – sufficiently strong for modelling

a wide range of configuration constraints and serves as one of the main starting points

for our own formalism.

Finally, in [Friedrich and Stumptner, 1999] a logic-based formulation of GCSPs has

18 CHAPTER 2. CONFIGURATION SYSTEMS

been given; like in the original GCSP this formulation does not require stating explicit

bounds on the component numbers but admits infinite configuration models.

2.3.2 Description Logics

There are also two prominent formalisms based on Description Logics (DLs): the works

by McGuinness et al. [McGuinness and Wright, 1998] and Klein et al. [Buchheit et al.,

1995]. These are also the other two starting points of our formalism. In both works valid

configurations are described using DL axioms. DLs are fragments of FO based on unary

and binary predicates, so-called concepts and roles. Concepts are used for describing

components and attributes; roles are used to describe the relations between components

and also between components and attributes.

Description Logics have their origin in semantic nets and frames. In contrast to

their predecessors they support in addition to the taxonomic structure also expressive

logic-based semantics [Nardi and Brachman, 2003]. Based on the clear semantics and its

simple logical operations DLs became a very popular research area both in a theoretical

and practical way. For example AT&T became a pioneer for developing several DL-

based configuration applications in the early 90s by using the knowledge-representation

tool CLASSIC [Borgida et al., 1989,Wright et al., 1993].

Description Logics support a configuration process in both the knowledge acquisition

and in the problem solving phase [Sabin and Weigel, 1998]. In the knowledge acquisition

phase concepts can be organised automatically in an explicit taxonomy via classification.

With regard to the solving phase there are two variants of support [Wright et al., 1995]:

The first option is a run-time support for other configuration systems by simply pro-

viding an efficient concept taxonomy. The second option covers the whole configuration

process. The two mentioned formalisms related to our own work are examples of the

latter. [Buchheit et al., 1995] reduce the task of finding a valid configuration to the prob-

lem of constructing a finite model of a set of logical axioms. [McGuinness and Wright,

1998] propose an interactive approach where (1) the knowledge engineer adds atomic

propositions to the axioms and (2) the inference engine computes the consequences until

(3) eventually a finite model is obtained.

2.3. LOGIC-BASED APPROACHES 19

The main advantages of using a DL-based approach are the clear and simple logi-

cal operations, the automatic organisation of concepts in an explicit taxonomy and the

consistency maintenance [McGuinness and Wright, 1998]. DLs automatically deduce all

logical conclusions from a newly added information and subsequently detect all elements

leading to inconsistencies. The potential consequences of a partial configuration selection

on the remaining elements of the model are then easy to determine. Because of this DLs

are well-suited for interactive applications with an iterative refinement process through

user interactions.

Next to these advantages there are also some significant shortcomings of using DLs.

While on the one hand these approaches support the representation of component con-

nections, on the other hand the so-called tree model property [Baader et al., 2003] of

Description Logics is at odds with modelling configurations where the connections form

non-tree structures. Also, the absence of predicates of arity greater than two can make

domain encodings unnecessarily complex. In general, the models of a DL axiomatization

need not be finite; hence no explicit bound on the number of components has to be given.

Moreover, a potential problem is the trade-off between the efficiency of reasoning and

the expressivity of the knowledge representation [McGuinness and Wright, 1998]: the

integration of additional inference mechanisms and operators increases the complexity of

reasoning and hence the runtime. On the reverse side a reduction of expressivity leads to

a better runtime but then the representation of the problem specification becomes often

very cumbersome or even inadequate. This led to the development of hybrid approaches

with an integration of rule- or constraint-based approaches for dealing with complex

compatiblity or numerical constraints [McGuinness, 2003]. Hybrid approaches were for

example successfully applied in the PLAKON [Cunis et al., 1989] and in the previously

mentioned CLASSICS project.

20 CHAPTER 2. CONFIGURATION SYSTEMS

2.4 Unified Modeling Language (UML) approaches

Finally there are works that are using the Unified Modeling Language (UML) for spec-

ifying configuration problems [Falkner et al., 2010, Feinerer, 2013]. These two works in

particular are similar in spirit to LoCo in that UML’s “multiplicities” allow us to specify

how many components of some type can be connected to components of some other type.

From these multiplicities they also derive linear inequalities from the problem specifica-

tion in order to constrain the number of components used in a configuration, an idea

which has been pioneered in the context of entity relationship diagrams [Lenzerini and

Nobili, 1990]. LoCo follows the same idea. In contrast to LoCo, however, these UML

approaches only derive lower bounds on the number of available components and hence

do not rule out arbitrarily large configurations. Such an upper bound is vital, however,

if we want to defer reasoning e.g. to Sat or constraint solvers instead of the integer

linear solvers used in [Falkner et al., 2010, Feinerer, 2013].1 Another weakness of these

approaches is their very limited support for component attributes and consequently for

expressing constraints on these.

1Considering configurations/databases of arbitrary size has further theoretical consequences: For ex-
ample, Lenzerini and Nobili can reduce their notion of strong satisfiability (a legal database instance
with at least some non-empty relations exists) to the existence of a fully populated database (no empty
relations allowed). In LoCo’s approach this would not work as we cannot add arbitrarily many compo-
nents.

Chapter 3

LoCo– A Logic for Configuration

Problems

Remark: Major parts of this chapter were previously published in [Aschinger et al.,

2014, Aschinger et al., 2012, Aschinger et al., 2011b] and have been reproduced with

permission.

We now introduce the core of LoCo, a new logic-based framework for modelling prac-

tical configuration problems. The basic idea is to describe a configuration problem (the

problem domain) by a set of logical sentences. The task of finding a configuration is

then reduced to the problem of finding a model for the logical sentences – this is the

same approach as the one taken by Klein et al. [Buchheit et al., 1995]. From Gottlob et

al. [Gottlob et al., 2007] we take the idea to express the conditional existence of com-

ponents in configurations via implication and existential quantifiers. However, we use

counting quantifiers for this, and these are already present in the work by McGuinness

et al. (albeit used for a different purpose) [McGuinness and Wright, 1998]. The main

idea of LoCo is that via these counting quantifiers we can enforce that each model of the

configuration problem contains finitely many components only.

21

22 CHAPTER 3. LOCO– A LOGIC FOR CONFIGURATION PROBLEMS

3.1 Introducing LoCo

Formally, LoCo is a fragment of classical first order logic with equality interpreted as

identity. We also use existential counting quantifiers and a variant of sorts for terms, but

both these extensions reduce to basic first order logic.

Components: Each of the different component types is modelled as an n-ary predicate

Component(id, ~x). Here id is the component’s identifier, and ~x a vector of further com-

ponent attributes.

Sorted Attributes: The component attributes belong to different sorts — e.g. numbers,

strings, etc. Using sorted variables and terms simplifies notation. In particular, for each

component type we introduce one sort Id for the identifiers. We stipulate that the finitely

many different attribute sorts are all mutually disjoint.

We now show how our sorts can be accommodated in classical first order logic — this

is very similar to the reduction of classical many-sorted logic to pure first order logic (cf.

e.g. [Enderton, 1972]). We first introduce unary predicates for each sort (e.g. ID for sort

Id) and add domain partitioning axioms:

(∀x)
∨

S∈SORT S

S(x),

(∀x)
∧

Si,Sj∈SORT S,i 6=j

¬(Si(x) ∧ Sj(x)).

Then, in a sorted formula, we replace each subformula (∀ id)φ(id), where the univer-

sal quantifier ranges over component identifiers only, by (∀x) ID(x)⇒ φ(x) and likewise

(∃ id)φ(id) by (∃x) ID(x) ∧ φ(x) — this is the standard reduction from many-sorted to

classical FO. We postpone the discussion of how to treat sorted terms until Section 3.4.

Counting Quantifiers: For restricting the number of potential connections between

components we use existential counting quantifiers ∃ul with lower and upper bounds l

3.1. INTRODUCING LOCO 23

and u such that l ≤ u, l ≥ 0 and u > 0. For example, a formula (∃ul x)φ(x) enforces that

the number of different x (here x denotes a vector of variables), such that φ(x) holds, is

restricted to be within the range [l, u]. In classical logic without counting quantifiers this

can be expressed as

∨
l≤n≤u

[
(∃x1, x2, . . . , xn) [φ(x1) ∧ φ(x2) ∧ . . . ∧ φ(xn)] ∧

[
∧

i,j∈{1..n},i 6=j

xi 6= xj] ∧ [(∀x) [φ(x)⇒
∨

i∈{1..n}

x = xi]]
]
.

As usual sorted quantifiers range over a single sort only. But occasionally, by an abuse

of notation, we will write e.g. (∃ul x)φ(x) ∨ ψ(x), where φ and ψ expect different sorts.

This abbreviates a formula enforcing that the total number of objects such that φ or ψ

is between l and u, where the disjunction is inclusive.

∨
l≤n≤u

[
(∃x1, x2, . . . , xn) [(φ(x1) ∨ ψ(x1)) ∧ (φ(x2) ∨ ψ(x2)) ∧ . . . ∧ (φ(xn) ∨ ψ(xn))] ∧

[
∧

i,j∈{1..n},i 6=j

xi 6= xj] ∧

[(∀x) [φ(x)⇒ (
∨

i∈{1..n}

x = xi)]] ∧

[(∀x) [ψ(x)⇒ (
∨

i∈{1..n}

x = xi)]]
]
.

24 CHAPTER 3. LOCO– A LOGIC FOR CONFIGURATION PROBLEMS

3.2 Connection Axioms

Configuration is about connecting components: For every set {C1, C2} of potentially con-

nected components we introduce one of the binary predicate symbols C1 C2 and C2 C1,

where predicate Ci Cj is of sort Idi× Idj.
1 We allow connections from a component type

to itself, i.e. via a binary predicate Ci Ci of sort Idi × Idi.

3.2.1 Binary connections

Standard binary connections Connections between two component types are ax-

iomatized as follows:2

(∀ id1, ~x) C1(id1, ~x)⇒ (3.1)

(∃u1
l1
id2) [C1 C2(id1, id2) ∧ C2(id2, ~y) ∧ φ(id1, id2, ~x, ~y)]

This axiom specifies how many components of type C2 can be connected to any

given component of type C1. The purpose of the subformula φ (with variables among

id1, id2, ~x, ~y) is to express additional constraints, like e.g. an aggregate function
∑
n ≤

Capacity. For these constraints we allow φ to be a Boolean combination of arithmetic

expressions and attribute comparisons (<,=, ...) over a subset of all quantified variables

of the axiom. Generally the type of supported subformulas is restricted to the expres-

siveness of the chosen target output language. For special constructs like e.g. aggregate

functions SUM and COUNT we perform language-specific transformations. Section 5.2

contains a description of Answer Set Programming as the target output language for

constraint elements.

Whenever possible an axiom for the reverse direction should be included, too. This

is especially important for the proper computation of component bounds as we shall see

later on:

1Note that this precludes having multiple different connection relationships between two different
component types.

2Throughout this manuscript free variables in formulas are to be read as existentially quantified.

3.2. CONNECTION AXIOMS 25

(∀ id2, ~x) C2(id2, ~x)⇒ (3.2)

(∃u2
l2
id1) [C1 C2(id1, id2) ∧ C1(id1, ~y) ∧ ψ(id1, id2, ~x, ~y)]

We stipulate that the upper bound of the counting quantifier is greater than zero in

all connection axioms; an omitted upper bound means arbitrarily many components may

be connected whereas an omitted lower bound is read as zero. The following example

shows a basic binary connection from our running example. For ease of presentation the

component attributes are quantified via a combined attribute vector ~attr.

Example 2. In the House Problem each thing of type A needs to be placed into exactly one

cabinet. Moreover, things that are big can only be put in big cabinets — in configuration

terms big things and small cabinets are not compatible:

(∀ idTA, ~attrTA) thingA(idTA, ~attrTA)⇒

(∃11 idC)
[

thingA Cab(idTA, idC) ∧ cab(idC , ~attrC) ∧

[(bigC = 1 ∧ bigTA = 1) ∨ (bigTA = 0)]
]

Unfolded binary connections For some configuration problems it is necessary to

distinguish different cases in the binary connection axioms:

(∀ id1, ~x) C1(id1, ~x)⇒ (3.3)∨
i

[
(∃ui

li
id2) [C1 C2(id1, id2) ∧ C2(id2, ~y) ∧ φi(id1, id2, ~x, ~y)]

]
,

where the intervals [li, ui] are non-overlapping in order to be mutually exclusive and

φi(id1, id2, ~x, ~y) may be a different formula for each case.3 An even higher level of gran-

ularity can be reached by completely unfolding the existential counting quantifiers, i.e.

defining a separate case for each possible number of occurring id2 objects.

3Note that there are unique smallest, and biggest, li, and ui, respectively.

26 CHAPTER 3. LOCO– A LOGIC FOR CONFIGURATION PROBLEMS

Example 3. When connecting positions and cabinets we wish to differentiate between

the cases where exactly one or two cabinets are connected to a position:

(∀ idP) pos(idP)⇒[
(∃11 idC) [cab pos(idC , idP) ∧ cab(idC , ~attrC)∧

[topC = 0]]
]
∨[

(∃22 idC) [cab pos(idC , idP) ∧ cab(idC , ~attrC) ∧

[bigC = 0 ∧ ((top[1]C = 1 ∧ top[2]C = 0) ∨ (top[1]C = 0 ∧ top[2]C = 1))]]
]

Each case has a separate constraint part φ. When lower bound equals upper bound

in the counting quantifier (like in both cases of this example so that the exact number

of components is known) we can address each component instance and the respective

attributes individually, abbreviated here as e.g. top[1] and top[2]. While the order of the

instances is not defined there needs to exist a permutation such that the constraint is

satisfied. This means that each index used in the constraint part needs to match with one

component instance, e.g. top[1] with the second cabinet and vice versa for top[2]. If we

address an attribute without an index then this expression has to hold for all component

instances containing the attribute; in the same way as in standard binary connections

discussed above.

3.2.2 One-to-many connections

Next there are also rules for supporting one-to-many connections, i.e. connecting one

component with a set of components. We start this section with a description of the

most common form depicted in formula 3.4.

Standard one-to-many connections

(∀ id1, ~x) C(id1, ~x)⇒ (3.4)

(∃ul id2)
[∨

i

[C Ci(id1, id2) ∧ Ci(id2, ~y)] ∧ φ(id1, id2, ~x, ~y)
]

3.2. CONNECTION AXIOMS 27

In this rule the quantifier ∃ul ranges over the i > 1 different Id sorts. Note that the

single component on the left hand side is not allowed to be part of the set.

Example 4. In the House Problem a cabinet has a separate binary connection to each

type of thing determining that the number of instances that can be stored lies between zero

and a certain upper bound. To make sure that there are no empty cabinets in our model,

the following one-to-many axiom states that each generated cabinet needs to have at least

one thing placed in it:

(∀ idC , ~attrC) cab(idC , ~attrC)⇒

(∃1 idT)
[

[thingA cab(idT , idC) ∧ thingA(idT , ~attrTA)] ∨

[thingB cab(idT , idC) ∧ thingB(idT , ~attrTB)]
]
∧

[#bigTA + #bigTB ≤ 4]

Next to ensuring finiteness of the model the φ subformula of example 4 states that a

cabinet can store at most 4 big things regardless of type. In order to do this we separately

count the number of big things for type A and B. The ’#’ symbol here in this context

represents a counting aggregate. The next example highlights how to combine binary

and one-to-many connection axioms in order to model the common configuration task of

resource balancing.

Example 5. Assume that things of type A contribute a certain amount of some resource

whereas things of type B consume this resource. The exact quantities will be described

in the component catalogue (to be introduced below). We want to ensure that for each

cabinet the amount of the resource contributed is greater or equal to that consumed. To

this end, for both cabinets and things of type A and B we introduce an additional numerical

attribute — for better readability we are going to ignore the other component attributes.

As before, the binary connection axioms describe how many things of type A and B can

be stored per cabinet, say between one and two each. The following one-to-many axiom

ensures the resource-balancing for a cabinet:

28 CHAPTER 3. LOCO– A LOGIC FOR CONFIGURATION PROBLEMS

(∀ idC, ~attrC) cab(idC , ~attrC)⇒[
(∃42 idT)

[
[thingA Cab(idT , idC) ∧ thingA(idT , ~attrTA)] ∨

[thingB Cab(idT, idC) ∧ thingB(idT , ~attrTB)]
]
∧

[
∑

tResA ≥
∑

tResB]
]

Exclusive-OR one-to-many connections There is also an exclusive-or variant of

the one-to-many connection axiom. It looks as follows, with l, u the same in all disjuncts:

(∀ id, ~x) C(id, ~x)⇒
⊕
i

[
(∃ul idi) [C Ci(id, idi) ∧ Ci(idi, ~y)]

]
(3.5)

This allows the natural formulation of certain compatibility relations that otherwise

would have to be formulated in LoCo’s standard way for expressing compatibility rela-

tions: By using constraints attached to connection axioms. With the help of exclusive-or

axioms we can easily prevent incompatible components of being linked together.

Example 6. Either 1 to 5 things of type A or 1 to 3 things of type B can be put in a

cabinet, but A and B things cannot be stored together.

(∀ idC , ~attrC) cab(idC , ~attrC)⇒[
(∃51 idTA) [thingA cab(idTA, idC) ∧ thingA(idTA, ~attrTA)]

]
⊕[

(∃31 idTB) [thingB cab(idTB, idC) ∧ thingB(idTB, ~attrTB)]
]

We stipulate for every one-to-many connection that the component on the left-hand

side needs to have binary connections coming in from all components appearing on the

right-hand side. This condition is needed for the proper computation of component

bounds.

3.2. CONNECTION AXIOMS 29

General one-to-many connections For some configuration problems it may be nec-

essary to address the individual connected components in a one-to-many connection

instead of the whole set. To this end we introduce the following most general form of a

one-to-many connection axiom:

(∀ id, ~x) C(id, ~x)⇒ (3.6)∨
i

[[∧
j

(∃
nij
nij

idj) [C Cj(id, idj) ∧ Cj(idj, ~yj)]
]
∧ φi(id, idj, ~x, ~yj)

]
The component C can be connected to a number of components Cj — but C cannot

be among the Cj. The rule has i cases: Each case i states for each of the components Cj

the exact number nij of connections between C and Cj. Note that we allow nij = 0, but

there must not be two disjuncts with identical bounds nij for all partaking components

Cj; hence all the i cases are mutually exclusive. For each case there is a separate optional

φ subformula. In case of nij > 1 component instances can be addressed in the same way

as previously described for unfolded binary connections. This axiom type can express

the other one-to-many connection axioms as long as no upper bounds in the counting

quantifier are omitted: All the different possible cases can be enumerated.

Example 7. This example shows a potential unfolding of the one-to-many connection

between cabinet and things of type A and B into different cases. Notice that the stated

φ subformulas have no practial meaning in terms of the House Problem since it is an

artifical example and their purpose is solely to demonstrate the full range of supported

language elements. For example the first case requires one instance of each type of thing

with the subconstraint enforcing a connection between them. In the second case we have

2 instances of A and 3 instances of B where there has to be at least one arbitrary A

instance having greater size than all B instances. The subconstraint of the third case

restricts the total size of type A components via an aggregate function and doesn’t take

the type B components into account at all; the only restriction is that there have to be

30 CHAPTER 3. LOCO– A LOGIC FOR CONFIGURATION PROBLEMS

exactly 4 arbitrary type B instances.

(∀ idC , ~attrC) cab(idC , ~attrC)⇒[
(∃11 idTA) [thingA cab(idTA, idC) ∧ thingA(idTA, ~attrTA)]∧

(∃11 idTB) [thingB cab(idTB, idC) ∧ thingB(idTB, ~attrTB)]∧

[thingA thingB(idTA, idTB)]
]
∨

...[
(∃22 idTA) [thingA cab(idTA, idC) ∧ thingA(idTA, ~attrTA)]∧

(∃33 idTB) [thingB cab(idTB, idC) ∧ thingB(idTB, ~attrTB)]∧

[size[1]TA > sizeTB]
]
∨

...[
(∃33 idTA) [thingA cab(idTA, idC) ∧ thingA(idTA, ~attrTA)]∧

(∃44 idTB) [thingB cab(idTB, idC) ∧ thingB(idTB, ~attrTB)]∧

[
∑

sizeTA < 5]
]

3.3 Consistency Axioms

Next to connection axioms we also support various forms of consistency axioms in order

to express so-called non-local constraints. The φ subformulas of connection axioms we’ve

introduced so far are local constraints, i.e. they allow to state expressions involving

the components and attributes of the particular connection axiom they belong to. The

non-local constraints of consistency rules on the other hand make it possible to create

expressions involving attributes of components which are not necessarily connected via

connection axioms.

3.3.1 Candidate key axioms

These axioms reflect the meaning of candidate keys in relational models of databases in

order to express the fact that a certain combination of attributes uniquely identifies a

3.3. CONSISTENCY AXIOMS 31

component, i.e. a LoCo model cannot contain two instances of a component type with

the same values for these attributes. Rules of this type are axiomatized as follows:

(∀ id1, ~x1, id2, ~x2) C(id1, ~x1) ∧ C(id2, ~x2)∧ (3.7)

φ(id1, ~x1, id2, ~x2)⇒ id1 = id2

Example 8. There must not be two rooms on the same floor and the same position in a

house, i.e. rooms located on the same floor and position must be identical.

(∀ idR1, ~attrR1, idR2, ~attrR2) room(idR1, ~attrR1) ∧ room(idR2, ~attrR2)∧

[(floorR1 = floorR2) ∧ (posR1 = posR2)]⇒ idR1 = idR2

Example 8 shows an application for the standard case of a candidate key constraint

axiom. In case two rooms, identified by idR1 and idR2 respectively, have identical floor

and position attributes then the id’s must also be identical. The φ constraint subformula

is bound by brackets in the same way as with connection axioms. Next to the standard

case outlined above we also support a slight extension of the candidate key constraint

idea in that we can also take connections to other components as conditions into account.

Example 9. In the House Problem two positions which have the same number value and

are connected to the same room must be identical.

(∀ idP1, nrP1, idP2, nrP2, idR)

pos(idP1, nrP1) ∧ pos(idP2, nrP2)∧

[(nrP1 = nrP2) ∧ pos room(idP1, idR) ∧ pos room(idP2, idR)]⇒

idP1 = idP2

32 CHAPTER 3. LOCO– A LOGIC FOR CONFIGURATION PROBLEMS

This form of extension is shown in Example 9. Two positions must be identical in

case they are connected to the same room and also have an identical number. Checking

for existing or non-existing connections in the constraint part works in the same way as

checking for attribute values.

3.3.2 Connection-generating axioms

Another variant of consistency axioms are “connection-generating” axioms for expressing

the fact that some connections depend on the presence of others:

(∀) φ(~x)⇒ C1 C2(id1, id2) (3.8)

Here φ(~x) is a Boolean combination of components, connections and arithmetic and

attribute comparisons. Contrary to connection axioms this axiom is not “local”: It can

talk about chains of connected components of different types.

Example 10. In the House Problem we wish to express that if a thing belonging to a

person is stored in a room then the room belongs to the person. Note that things are

stored in cabinets which are stored in positions belonging to rooms.

(∀) [pers(idPE) ∧ thingA(idTA, ~attrTA) ∧ pers thingA(idPE, idTA) ∧

cab(idC , ~attrC) ∧ thingA cab(idTA, idC) ∧ pos(idPO) ∧

cab pos(idC , idPO) ∧ room(idR) ∧ pos room(idPO, idR)] ⇒

room pers(idR, idPE)

Example 10 shows the rule for things of type A. Analogously there’s a similar rule for

type B. Basically axioms of this type enforce the existence of a connection provided a given

set of components is connected in a certain way plus furthermore taking into account some

optional side constraints. A φ subformula involving some attribute comparisons could

for instance be added right before the main implication of example 10 in order to express

3.3. CONSISTENCY AXIOMS 33

additional restrictions.

3.3.3 General First Order axioms

As a last type of consistency axiom we introduce a “general first-order” axiom (GFO)

for an even higher level of expressiveness than the previous two axioms. Its general form

is very simple and consists basically of two subformulas connected by an implication.

(∀) φ(~x)⇒ ψ(~x) (3.9)

The first subformula φ(~x) represents the antecedent while the second subformula ψ(~x)

represents the consequent of the axiom. Same as for connection-generating axioms the

subformulas consist of a Boolean combination of components, connections and arithmetic

and attribute comparisons. Axioms of this type are also used for an implicit representa-

tion of component catalogue knowledge. Note that both the two other forms of consis-

tency axioms can be expressed by this most general version. The main difference is on the

level of translation into a given target language as the translation of the specific axioms

results in more efficient code. This will be further discussed in detail later on in chapter 5.

Example 11. In the House Problem cabinets which are placed on positions 1 or 2 of a

room need to be colored blue.

(∀ idC, ~attrC, idP, ~attrP) cab(idC, ~attrC) ∧ pos(idP, ~attrP)∧

cab pos(idC, idP) ∧ [(nrP == 1 ∨ nrP == 2)] ⇒

[colorC = blue]

Example 11 shows a simple GFO axiom. The restriction to positions with number

1 or 2 represents the φ(~x) pre-condition while the consequent stating that the cabinet

needs to be colored blue represents the ψ(~x) post-condition. Notice that in this case we

34 CHAPTER 3. LOCO– A LOGIC FOR CONFIGURATION PROBLEMS

could alternatively express the same knowledge in a φ constraint of the binary connection

between a cabinet and a position. This is generally the case for most of the examples as

LoCo allows to model a problem in several ways by using different combinations of ax-

ioms. Example 11 in particular though is a typical example for an intensional component

catalogue axiom and so the actual fact is best defined in the presented form.

The next example shows a scenario where using a GFO axiom is the only suitable

way of formalizing the needed knowledge in LoCo.

Example 12. In the House Problem a room can only contain things which are allowed

of being stored on the room’s floor level.

(∀ idTB, ~attrTB, idC, ~attrC, idP, ~attrP, idR, ~attrR)

thingB(idTB, ~attrTB) ∧ cab(idC, ~attrC) ∧ pos(idP, ~attrP) ∧ room(idR, ~attrR)∧

thingB cab(idTB, idC) ∧ cab pos(idC, idP) ∧ pos room(idP, idR) ⇒

[minFloorTB ≤ floorR ∧maxFloorTB ≥ floorR]

Example 12 represents the constraint that a thing (in this case of type B) can only

be stored on an admissible level. The attributes minFloorTB and maxFloorTB delimit

the valid interval of allowed levels of a thing whereas the actual level is represented by

attribute floorR of a room. A thing can only be stored in a given room if the room’s level

is in the interval between minFloorTB and maxFloorTB . The GFO axiom combines the

binary connections starting from a thing to a cabinet, a cabinet to a position and finally

a position to a room in the antecedent and states the required attribute comparisons in

the consequent. The chain of binary connections represents φ(~x) while the conjunction

of inequalities represents ψ(~x).

GFO axioms also allow the introduction of existentially quantified variables in the

consequent. In contrast to all other axioms using existential counting quantifiers axioms

of this type use standard existential quantifiers ∃≥1 expressing the fact that there needs

to exist at least 1 instance of a certain component type.

3.4. SPECIFYING CONFIGURATION PROBLEMS 35

Example 13. For every thingA component connected with a cabinet there exists a person

who is the owner of this thing.

(∀ idTA, ~attrTA, idC, ~attrC) thingA(idTA, ~attrTA) ∧ cab(idC, ~attrC)∧

[thingA cab(idTA, idC) ∧ dirtyTA = dirtyC] ⇒

(∃ idP) person(idP) ∧ [person thing(idP, idTA)]

Discussion

Finally let us point out the following: As long as LoCo configurations are guaranteed

to be finite (see below for how this is achieved) configuration finding reduces to model

construction over a finite universe. Hence in principle the inclusion of arbitrary first order

axioms into the axiomatization in order to express requirements that can otherwise not

be stated does not lead to undecidability or infinite configurations. In fact, including

infinity axioms only results in an unsatisfiable problem.

3.4 Specifying Configuration Problems

The specification of a configuration problem in our logic consists of two parts:

• domain knowledge in the form of the connection axioms, naming schemes, a com-

ponent catalogue and an axiomatisation of arithmetic; and

• instance knowledge in the form of component domain axioms.

Below we will speak of input and generated components. The intuition is that only for

the former we know exactly how many are used in a configuration from the beginning.

We stipulate that a configuration problem always includes at least one component of the

input variant.

36 CHAPTER 3. LOCO– A LOGIC FOR CONFIGURATION PROBLEMS

3.4.1 Domain Knowledge

The LoCo domain knowledge consists of connection axioms, a specification of the at-

tribute ranges and the component catalogue.

Connection Axioms Connection axioms take the form introduced above. Let us next

briefly elaborate on how to model the concept of a port in LoCo.

Ports Component ports are modelled as individual components in LoCo. A normal

component may have many ports (i.e. be connected to many port components); however,

each port belongs to exactly one component. The connection of a component port has

the same structure as a binary connection axiom:

Example 14. Position is used as a component port of a room to place cabinets in it at

a certain location.

(∀ idR) room(idR)⇒

(∃44 idP) [room pos(idR, idP) ∧ pos(idP)]

Attribute Ranges For all attribute sorts a naming-scheme is included. For ordinary

component attributes these take the form (3.10) for sort predicate S and some first order

formula φ(x):

(∀x) S(x) ≡ φ(x). (3.10)

For component attributes of sort Id the naming-scheme has the form (3.11); i.e.

components are numbered:

(∀x)S(x)⇒ (∃n)x = SName(n). (3.11)

The form (3.11) allows terms not to be component identifiers even if they are a

component number: We introduce a sort Excess without naming-scheme axiom and the

names of components not used in a configuration can be discarded by assigning them to

3.4. SPECIFYING CONFIGURATION PROBLEMS 37

this type. Finally, for every component type we introduce an axiom

(∀ idi, idj, ~x, ~y) [C(idi, ~x) ∧ C(idj, ~y) ∧ idi = idj]⇒ ~x = ~y (3.12)

expressing the fact that, in database terminology, the respective Id is a key. Unique

name axioms for all distinct ground terms are included, too. Finally, the domain knowl-

edge might include domain dependent axiomatizations of attribute value orderings or e.g.

finite-domain arithmetic.

Component Catalogue (v1) For each component type the catalogue contains infor-

mation on the instances that can actually be manufactured. In LoCo this is done with

an axiom:

(∀ id, ~x) C(id, ~x) ≡
∨
i

~x = ~Vi, (3.13)

where the ~Vi are vectors of ground terms. If the component has no attributes the

axiom is omitted. Example 15 depicts a listing of attribute tuples for thingA:

Example 15. A potential extensional component catalogue definition for thingA looks as

follows:

(∀ idTA, ~attrTA) thingA(idTA, ~attrTA)⇒
~attrTA = (5,TRUE,FALSE,FALSE, 0, 2)∨
~attrTA = (3,FALSE,FALSE,TRUE, 1, 1)∨
~attrTA = (4,FALSE,TRUE,FALSE, 1, 3)∨

. . .

Component Catalogue (v2) The component catalogue as outlined above and intro-

duced in [Aschinger et al., 2012] does not conform to industrial practice in that it is

38 CHAPTER 3. LOCO– A LOGIC FOR CONFIGURATION PROBLEMS

extensional: Every legal combination of attribute values per component type has to be

explicitly listed. In practice, however, the component catalogue is usually specified via

attribute ranges and constraints that determine the legal combinations [Junker, 2006].

This kind of component catalogue can be expressed in LoCo as an axiom

(∀ id, ~x) C(id, ~x) ≡ φ(~x), (3.14)

where φ(~x) is a quantifier-free formula on attribute comparisons. A catalogue for a

component type can potentially be composed of several formulas as well as of a combina-

tion of extensionally and intensionally defined knowledge. Example 16 shows a snapshot

from our running example where the explicit listing of values for attribute forUpper is

replaced by using 2 internal component catalogue axioms. This course of action reduces

the size of the component catalogue significantly which holds true especially for cases

with a high number of thing instances.

Example 16. Only things with an internal ID smaller or equal to 3 are eligible to be

stored in a cabinet which is placed on a top position.

(∀ idTA, ~attrTA) thingA(idTA, ~attrTA) ⇐⇒

[idTA ≤ 3⇒ forUpperTA = TRUE]

(∀ idTA, ~attrTA) thingA(idTA, ~attrTA) ⇐⇒

[idTA > 3⇒ forUpperTA = FALSE]

Next to defining attribute values we could also set attributes in relation to each other

or in relation to constants such as in example 17. The two formulas of example 16 plus

the formula of example 17 could alternatively also be linked together to form one big

conjunction formula containing the intensional knowledge for thingA. As mentioned we

can optionally mix extensional and intensional knowledge and the values for the remaining

attributes could then for example be expressed via an extensional component catalogue.

3.4. SPECIFYING CONFIGURATION PROBLEMS 39

Example 17. The minFloor value has to be always smaller or equal to the maxFloor

value and the size needs to be smaller than constant maxSizeTA.

(∀ idTA, ~attrTA) thingA(idTA, ~attrTA) ⇐⇒

[minFloorTA ≤ maxFloorTA ∧ sizeTA < maxSizeTA]

Such an intensional component catalogue, however, requires a different treatment of

the attribute ranges. In particular, we need to ensure that per component type there are

still only finitely many different possible instances (combinations of attributes). Hence

we stipulate that for an intensional component catalogue the attribute ranges are to be

specified by domain closure axioms of the form

(∀x) S(x) ≡
∨
i

x = Vi,

where the different possible values Vi are ground terms. It is not hard to see, how-

ever, that with this approach it is NP-complete to determine whether some attribute

combination conforms to the catalogue. It was this observation that led to the original

definition of an extensional component catalogue in LoCo.

3.4.2 Instance Knowledge

The subdivision of the component types into components of type input and of type

generated takes place on the instance level. Note that a component being input does not

mean we have to specify all the component’s attribute values, it only means we know

exactly how many instances of this component we want to use.

For components C of the input variant we make a closure assumption on the domain

of the components identifiers:

(∀x) ID(x) ≡
∨

IDi∈ID

x = IDi. (3.15)

where ID is a finite set of identifiers IDi and ID is the respective sort predicate. This

40 CHAPTER 3. LOCO– A LOGIC FOR CONFIGURATION PROBLEMS

axiom is stronger than the naming-scheme for the component; hence, if a configuration

exists, identifiers mentioned in the naming-scheme axiom but not in the domain closure

axiom can only belong to the sort Excess.

On the instance level components to be used in the configuration can be listed, too.

This can be done via simple ground literals or via formulas of the form

(∃)C(id, ~x) or (∀)¬C(id, ~x)

where id, ~x may be variables or terms. Known (non-)connections can be specified

via ground literals like e.g. ¬C1 C2(ID1, ID2). Similar to input components we support

closure axioms on connections:

(∀) Ci Cj(idi, idj) ≡
∨

(idi = ID1 ∧ idj = ID2).

We now summarize the above discussion of all the different LoCo features in a more

generic characterisation of our logical fragment. The following definition references all

the axiom schemes that make up the logical language of LoCo:

Definition 7 (Configuration Domain Axiomatization in LoCo). A configuration domain

axiomatization in LoCo consists of domain knowledge and instance knowledge. The do-

main knowledge comprises

• connection and consistency axioms in the forms (3.1, 3.3, 3.4 — 3.9);

• a specification of the attribute ranges (3.10);

• a specification of the component identifier naming scheme (3.11);

• candidate key axioms for all component Id’s (3.12);

• a component catalogue in either of the forms (3.13) or (3.14); and

• an axiomatization of finite domain arithmetic,

whereas the instance knowledge is made up of

• a designation of the input components together with their respective count;

• domain closure axioms on the component identifiers (3.15);

3.5. ENFORCING FINITE CONFIGURATIONS 41

• partial configurations, consisting of components and connections with possibly exis-

tentially quantified attributes; and

• forbidden partial configurations, consisting of components and connections with pos-

sibly universally quantified attributes.

3.5 Enforcing Finite Configurations

Next we discuss how to enforce that configurations contain only finitely many compo-

nents. In order to transform a problem model into a target language we need to know

the lower and upper bounds on the number of instances for each component of the “gen-

erated” variety. For computing the possible domain sizes of generated components, we

extract Diophantine inequalities from the connection formulas. This builds up on the

work by Falkner et al. and Feinerer about semantics of UML class diagrams and cardi-

nalities applied to the configuration domain [Falkner et al., 2010, Feinerer, 2013]. They

propose (1) to model configuration problems via UML and (2) to solve them via integer

programming. We note that LoCo is considerably more general, though.

3.5.1 Locally Bounding Component Numbers

We start by discussing in which way the connection axioms can be used to locally bound

the number of components used. We disregard the “constraint formulas” φ and ψ for this

calculation; the bounds are based only on the lower and upper bounds on the number of

connections expressed in the existential counting quantifiers.

Let us first introduce some notation: Let C denote the set of components of type C

that can be used in a configuration and let |C| denote this set’s cardinality.

Bounds for binary connections Assume a binary connection defined by formulas

(3.1) and (3.2).

l1 ∗ |C1| ≤ n ≤ u1 ∗ |C1| (3.16)

l2 ∗ |C2| ≤ n ≤ u2 ∗ |C2|

42 CHAPTER 3. LOCO– A LOGIC FOR CONFIGURATION PROBLEMS

The number of possible links n between the components is bounded as shown in 3.16.

From this we can derive inequalities representing the relation between C1 and C2. For

component C2 we then have:

l1 ∗ |C1| ≤ u2 ∗ |C2| and l2 ∗ |C2| ≤ u1 ∗ |C1| (3.17)

The first inequality of 3.17 holds because we cannot connect the elements of C2 to

more than u2 elements of C1 each, while each element of C1 has to be connected to at

least l1 elements of C2. Hence, if we have a lower bound on the cardinality of C1 this

implies a lower bound on the cardinality of |C2|. The intuition behind the upper bound

is analogous. Here in particular, if we have a finite upper bound on the cardinality of C1
and l2 6= 0 then we can derive a finite upper bound on the cardinality of C2. For C1 as

an input and C2 as a generated component we get

lower bound LB =

⌈
l1 ∗ |C1|
u2

⌉
and upper bound UB =

⌊
u1 ∗ |C1|

l2

⌋
,

resulting in formula 3.18 for the bounds of C2. We round the lower bound up to the next

integer value and analogously round down the upper bound. The outlined computation

also applies to connections between two generated components, provided that component

C1 has correctly defined bounds. In this scenario we insert the lower bound of C1 for

computing LB and the upper bound of C1 for computing UB of C2.

⌈
l1 ∗ b|C1|c

u2

⌉
≤ |C2| ≤

⌊
u1 ∗ d|C1|e

l2

⌋
(3.18)

Bounds for one-to-many connections Next assume we have a basic one-to-many

connection axiom (3.4) from C to several Ci with bounds l, u and a binary connection

axiom from each Ci to C with bounds li, ui. In this case new bounds are calculated for

component C on the left-hand side. For this computation we combine a one-to-many

connection with all existing binary connections between the current component and the

3.5. ENFORCING FINITE CONFIGURATIONS 43

components on the many-side. In more detail, we take the cardinalities from the one-to-

many axiom in direction to the set and the cardinalities of the binary connection axioms

in direction to the current component and compute bounds analogously to a simple binary

connection as outlined above. Here we get the following inequalities:

∑
i

li ∗ |Ci| ≤ u ∗ |C| and l ∗ |C| ≤
∑
i

ui ∗ |Ci|, (3.19)

as each element of Ci has to be connected to at least li elements of C, whereas each of

the latter can be connected to at most u elements of
⋃
Ci. This results in the following

bounds for C:

∑
i

li ∗ b|Ci|c

u

 ≤ |C| ≤

∑
i

ui ∗ d|Ci|e

l

 (3.20)

Bounds for exclusive OR one-to-many connections In the case of an exclusive

disjunction in the one-to-many axiom (3.5) each element of C can be connected to ele-

ments of one of the Ci only. Let xi denote the number of times some element of C uses

Ci for its connections. Then we get for all i:

∑
i

xi = |C| with li ∗ b |Ci| c ≤ xi ∗ u and xi ∗ l ≤ ui ∗ d|Ci|e (3.21)

We observe that for both formulas (3.19) and (3.21) we need both l > 0 and all the

Ci to be finitely bounded in order to derive a finite bound on C.

Bounds for general one-to-many connections Next consider a general one-to-many

axiom (3.6) and let lj, uj denote the lower and upper bounds in the binary connection

axiom in the direction from Cj to C. Again, denote by xi the number of times case i

44 CHAPTER 3. LOCO– A LOGIC FOR CONFIGURATION PROBLEMS

applies. Then we have for all i:

∑
i

xi = |C| with lj ∗ |Cj| ≤
∑
i

xi ∗ nij ≤ uj ∗ |Cj|, all j (3.22)

The formulas above refine the bounds on the domain of components for single local

connections. However, if the domain size of one component is updated, then the domain

size of other components may have to be updated again because of this changes.

3.5.2 Globally Bounding Component Numbers

We formalize these local interactions between different component types in two ways, via

a so-called configuration graph and via a set of Horn formulas. A configuration graph is

a directed and-or-graph where the different component types are the vertices. An edge

from C1 to C2 means C1 can be finitely bounded if C2 is; an and-edge from C to several

Ci means C can be finitely bounded if all of the Ci are. The notion of a path in such a

graph is the natural tree-like generalization of a path in a directed graph.

If we have a binary connection axiom (3.1) with l2 > 0 we include an edge from C2

to C1. For one-to-many axioms (3.4) and (3.5) we include an and-edge from C to all Ci

if l > 0. If we have a general one-to-many axiom (3.6) we include an and-edge from C

to all Cj if there is no disjunct such that all nij = 0 in the one-to-many axiom.

A configuration graph maps in a very natural way to a set of Horn clauses: Each

component type becomes a propositional letter. For an edge from C1 to C2 include the

clause C2 ⇒ C1; for an and-edge from C1 to some Ci include (
∧

iCi)⇒ C1.

Satisfiability for Horn formulas can be checked efficiently with the well-known marking

algorithm [Dowling and Gallier, 1984], mimicking unit resolution for Horn clauses: It

repeatedly marks those heads of clauses whose literals in the clause body are all marked.

From this it follows that in linear time it is possible to decide whether user-defined

input components suffice to make the configuration problem finite: Initially mark all input

components and run the standard Horn algorithm. Now all components are marked iff

the problem is finite, meaning that in all models of the specification all component sets

3.5. ENFORCING FINITE CONFIGURATIONS 45

have finite cardinality. Thus, we have proven the following:

Proposition 1 (Finiteness of configurations). It can be decided in linear time

whether a given configuration problem is finite.

Observe that this is a stronger result than the one presented in [Aschinger et al.,

2011b]: Whenever the algorithm returns “no” the model can be made infinite by adding

components that are not connected to other components.

Finding smallest sets of “input” components

If the user-defined input components do not make the problem finite we might want to

recommend a smallest fix. This amounts to the following problem: Given a directed

graph, find some smallest set S of vertices such that for every vertex there is a path

ending in some vertex in S or the vertex is in S already. If the graph is acyclic taking all

sinks suffices. If there are only binary connections we can contract all cycles and then take

all sinks in the resulting graph in O(NumberOfComponentTypes + NumberOfAxioms);

this set is a unique representation of all cardinality-minimal sets of components that if

input make the problem finite.

If there are cycles and one-to-many connections there no longer is such a unique set.

We can still find all inclusion-minimal such sets, again using the Horn algorithm, as

follows. Let Φ be a set of definite Horn clauses, obtained as above from a configuration

graph. We first mark all variables corresponding to sinks in the graph and put them

on a list ilist, since these will have to be input components in all finite models. Then

we run the marking algorithm. If now all components are marked we output ilist and

are done. Otherwise we call a recursive procedure enum. It uses on the one hand the

marking algorithm from Horn logic to mark variables with 1, but additionally marks

certain variables with 0 (meaning they are not chosen as input components). More

precisely the procedure works as follows:

1. Let x1 be the smallest non-marked variable in Φ. Mark x1 with 1 and put it on

ilist, i.e., pick x1 to be an input component.

2. Run the marking algorithm.

46 CHAPTER 3. LOCO– A LOGIC FOR CONFIGURATION PROBLEMS

3. If now all variables are marked 1 then output ilist, otherwise recursively call enum.

(Note that since x1 is marked the number of unmarked variables has decreased, but

is still nonempty.)

4. Mark x1 with 0, i.e., try x1 not to be an input component.

5. Determine if the configuration problem can actually be made finite without picking

x1 as input component. (This test can be performed by setting all the still unmarked

variables to 1, hypothetically running the marking algorithm and checking if in this

way all variables will receive mark “1”.) If yes, then recursively call enum. (Note

that since x1 is marked the number of unmarked variables has decreased, but is

still nonempty.)

Note that every time enum is called, the following two invariants hold: First, the

problem can be made finite by making a subset of the unmarked variables input com-

ponents. Second, by making all variables on ilist input components, all components

corresponding to variables marked by 1 will be finite.

Also note that every time enum is called, we will output one successful configuration

after a number of steps that is polynomial in the number of variables, since in the worst

case we will choose all remaining (unmarked) variables as input components. Such algo-

rithms are called enumeration algorithms with polynomial delay [Johnson et al., 1988].

We remark that the run-time of such an enumeration algorithm is bounded by the num-

ber of output words times some polynomial, which is the best notion of efficiency we can

hope for in this context. Hence we conclude:

Proposition 2 (Enumerating inclusion-minimal sets of inputs). There is a

polynomial-delay algorithm that enumerates all inclusion-minimal sets of components that

suffice to make the configuration problem finite.

Note that there may be exponentially many such inclusion-minimal sets. Finding sets

of input components that are of minimal cardinality turns out to be harder:

Proposition 3 (Cardinality-minimal sets of inputs). The problem to decide whether

there is a set of components of size at most k that suffice to make the configuration prob-

lem finite is NP-complete.

3.5. ENFORCING FINITE CONFIGURATIONS 47

Proof sketch. The problem to decide if there is a key of size at most a given integer for

a database under functional dependencies is NP-complete [Lucchesi and Osborn, 1978].

A subset K of the database attributes A is a key if K and the functional dependencies

determine all of A. Logically this problem can be expressed as follows: The attributes A

become atomic propositions A. A functional dependency C → B becomes an implication

(
∧
C) ⇒ (

∧
B); i.e. it can be expressed as Horn clauses. This proves hardness of our

problem. Membership in NP follows by the straightforward approach to guess and verify

a set of k input components that make the problem finite.

We may assume that in practice the user incrementally adds input components to

the problem until it becomes finite. Hence inclusion-minimal sets of inputs are of greater

practical relevance.

Results similar to ours have independently been obtained in a different context, formal

concept analysis, by Hermann and Sertkaya in [Hermann and Sertkaya, 2008].

3.5.3 Computing Bounds on Component Numbers

Given that the problem is finite we wish to compute bounds on the number of compo-

nents needed. We observe that the local conditions (3.17), (3.19), (3.21) and (3.22) can

naturally be expressed in integer programming. Hence lower and upper bounds can be

computed by solving two integer programs per generated component. On the other hand,

we can reduce e.g. the subset sum problem to a LoCo problem giving rise to condition

(3.22) and we have:

Proposition 4 (Bounds computation is NP-hard). Computing lower and upper

bounds on the number of components needed to solve a configuration problem in LoCo is

NP-hard.

Proof. In the subset sum problem we are given a finite set A = {1, . . . ,m}, a positive

integer size s(a) for each a ∈ A and a positive integer B [Garey and Johnson, 1979].

The problem is to determine whether there is A′ ⊆ A such that
∑

a∈A′ = B. For the

reduction all we need is a LoCo axiomatization containing a component type Cj for every

a ∈ A and giving rise to condition (3.22)

48 CHAPTER 3. LOCO– A LOGIC FOR CONFIGURATION PROBLEMS

∑
i

xi = |C| with lj ∗ |Cj| ≤
∑
i

xi ∗ nij ≤ uj ∗ |Cj|, all j

such that i = j = |A|, lj = uj = B and |Cj| = 1 for all j as well as 1 ≤ |C| ≤ |A|.
Finally, for each a ∈ A, let there be one corresponding disjunct i such that in that

disjunct nij = s(a) for j = a and nij = 0 for a 6= j.

In [Feinerer, 2013] it has been shown that computing lower bounds for problems

containing only binary connections or basic one-to-many connections can be solved in

polynomial time. The techniques used, however, do not extend to computing upper

bounds or to one-to-many connection axioms of the form (3.22).

But just how tight are the bounds that we compute? The best we can hope for is that

the bounds are tight for LoCo axiomatizations containing no constraints in the connection

axioms, no partial configurations and also no connection generating rules. That is the

axiomatization basically consists of connection axioms, the component catalogue and a

specification how many input components are to be used. Unfortunately, not even in

this case the bounds are tight. Assume there are two components C1 and C2, the former

an input and the latter a generated one. Further let each C1 be connected to at least

two C2 and each C2 be connected to at most two C1. If |C1| = 1 by 2 ∗ |C1| ≤ 2 ∗ |C2|
we obtain a lower bound of one on |C2| — but clearly this should be two. In general,

for a binary connection, this kind of error occurs when |C2| < l1 and |C1| > 0 after

solving l1 ∗ |C1| ≤ u2 ∗ |C2| — cf. [Feinerer, 2013] where it is proposed to fix the problem

by imposing the constraint |C1| > 0 ⇒ |C2| ≥ l1. We generalize the idea to LoCo’s

one-to-many axioms and obtain the result below.

Proposition 5 (Tightness of bounds). Assume given a LoCo axiomatization contain-

ing no constraints on the connection axioms, no partial configurations and no connection

generating rules. Then the lower and upper bounds computed are tight if the integer

programming solutions obtained satisfy the following additional conditions:

• |C1| > 0⇒ |C2| ≥ l1 for every binary connection axiom (3.1);

• |C| > 0⇒
∑

i |Ci| ≥ l1 for every one-to-many connection axiom (3.4);

3.5. ENFORCING FINITE CONFIGURATIONS 49

• |C| > 0⇒ (
∨

i |Ci| ≥ l1) for every exclusive-or one-to-many connection axiom (3.5);

and

• |C| > 0⇒ (
∨

i (
∧

j |Cj| ≥ nij)) for every one-to-many connection axiom of the form

(3.6).

Proof Sketch. We observe that in the absence of constraints on the connection axioms,

partial configurations and connection generating rules model finding reduces to finding

component sets of a suitable size as well as suitable interconnections. We then observe

that the linear inequalities are derived from the minimum and maximum number of con-

nections between the respective sets of components, but not the minimum and maximum

cardinality of those sets. In the case of upper bounds the maximum number of connec-

tions into a set is also an upper bound on that set’s cardinality. However, as illustrated

by the above example, for lower bounds this analogy does not hold.

So assume given a solution to the integer program. Then consider a binary connection

axiom from C1 to C2. The conditions

l1 ∗ |C1| ≤ u2 ∗ |C2| and l2 ∗ |C2| ≤ u1 ∗ |C1|,

|C1| > 0⇒ |C2| ≥ l1 as well as |C2| > 0⇒ |C1| ≥ l2

jointly guarantee that we can find valid connections: For each C1 there are at least l1 C2
to connect it to and the overall number of C2 is at least large enough to connect all the C1
(and analogously in the other direction). In general, the linear “local bounds” inequalities

guarantee that there are enough components from the right hand side to connect all the

components from the component type on the left hand side of a connection axiom. The

additional conditions satisfied by the solution to the integer program guarantee that for

each left hand side component there are enough different right hand side components to

connect it to: For a one-to-many connection axiom of the form (3.4) the overall number of

right hand side components is large enough; for an exclusive-or one-to-many connection

axiom of the form (3.5) there is a sufficient number of at least one of the right hand

side components; and for a one-to-many connection axiom of the form (3.6) there are

sufficient numbers of the right hand side components so that at least one of the cases

applies.

50 CHAPTER 3. LOCO– A LOGIC FOR CONFIGURATION PROBLEMS

Example 18. We want to show the interplay of connection axioms in terms of bounds

computation on a snapshot of our running example, distinguishing between two types of

things A and B that both have to be stored in cabinets. Things are input components

while Cabinets are of type generated with the aim of their number being minimised. We

take the binary connections from our running example in figure 1.1 and set the constants

cMaxNrTA and cMaxNrTB to 3 and 5 respectively. Assume having an instance with 10

Things of each kind, connection ThingA-Bin gives a lower bound of 4 and connection

ThingB-Bin gives a lower bound of 2 for component Cabinet using the lower bound com-

putations defined in formula 3.18. We take the maximum of all computed lower bounds,

hence the lower bound for Cabinet is 4.

Since in the binary connections we state that the cardinality lower bounds from Cabinet

to both types of Things is zero, a model could potentially contain an infinite number

of empty cabinets. This results in the fact that we can’t compute an upper bound for

Cabinet using solely the binary connections and would furthermore violate the finite model

requirement. In order to express that for a Cabinet to exist it needs to have at least one

Thing in it, we define a one-to-many connection between Cabinet and the set of Things

exactly as in example 4. It is sufficient to only define a lower bound for this connection

and in conjunction with the binary connections we can compute an upper bound of 20 for

Cabinet by using the computation of formula 3.20, a scenario which would occur if every

Thing would be put in a separate Bin.

Next let us consider the following question: Given a LoCo axiomatization, just how

many components can there be in the worst case? First let us point out that cycles

in the configuration graph can only lead to a decrease, but not to an increase of the

upper bounds. Then assume we have 2n binary connection axioms forming a path

(C1, C2, . . . , Cn) in the configuration graph, with C1 the only input component. Then,

for 1 ≤ i < n, let each Ci be connected to exactly two Ci+1 and each Ci+1 be connected

to exactly one Ci. As this describes a complete binary tree with each component type

forming one level of the tree there will be 2n instances of Cn at the leaf level, i.e. expo-

nentially many, cf. Figure 3.1.

3.6. THE COMPLEXITY OF DECIDING LOCO SATISFIABILITY 51

C1

C2

C3

...

Cn Cn

...

C3

...
...

C2

C3

...
...

C3

...
...

Cn Cn |Cn| = 2n

...

|C3| = 4

|C2| = 2

|C1| = 1

Figure 3.1: A full binary tree rooted at an input component of type C1

3.6 The Complexity of Deciding LoCo Satisfiability

We now turn to the computational complexity of determining whether a LoCo axiomati-

zation admits a model or, equivalently, whether there exists a configuration satisfying the

requirements. As there can be configurations containing exponentially many components

the usual technique for showing membership in NP (“guess and check”) does not work

for LoCo satisfiability. Still in [Aschinger et al., 2012] we expressed the hope that there

might be some workaround such that the question can nevertheless be decided in NP.

As the following result shows this only holds in the unlikely case of NP = ExpTime.

Proposition 6 (Deciding LoCo Satisfiability is ExpTime-complete). Assume

given a LoCo domain axiomatization plus instance knowledge with an intensional com-

ponent catalogue. Then it is ExpTime-complete to decide whether there exists a model

satisfying the axioms.

Proof. We first show membership in ExpTime. Deciding finiteness, identifying suitable

sets of input components and computing bounds on the number of components clearly

can all be done in ExpTime. We may hence assume that the number of instances for all

component types is finitely bounded. Observe that no component type may have more

52 CHAPTER 3. LOCO– A LOGIC FOR CONFIGURATION PROBLEMS

than exponentially many instances and that all attributes have finite ranges. In particu-

lar, there are at most exponentially many different combinations of attribute values that

satisfy the component catalogue. Hence in ExpTime we can generate:

• for each component type Ci all possible component sets within the size bounds,

• all possible combinations of these sets , and

• all possible extensions of the Ci Cj relations.

Finally we check whether some combination of the different possible component con-

nections and the different possible component sets is a model of the axioms.

Next we show hardness, by reducing an APSpace Turing machine to a LoCo axiom-

atization; by [Chandra et al., 1981] this suffices to show ExpTime hardness. The idea

is to encode the machine configurations into components (all of the same type CTM).

Transitions are then encoded as connections between the components. We need to have

O(2p(n)) components at our disposal. This is achieved by repeating the construction

sketched immediately below proposition 4 using p(n) many component types and con-

nection axioms. For each cell of the Turing machine we introduce an attribute. Hence

the components are of the form CTM(id, b, q, t1, . . . , tp(n)). Here b denotes the position of

the head and q indicates the machine state (including whether we are in an existential,

universal, accepting or rejecting state). The ti are the tape cells; the respective attribute

values range over the tape alphabet. We may assume that the Turing machine terminates

after exactly 2p(n) steps and that component identifiers are numbered starting from “1”.

The initial state may then be encoded as CTM(1, b, Q0, , . . . ,). We can now rule out

rejecting configurations of the Turing machine by using LoCo’s partial configurations:

(∀)¬CTM(id, b, reject, t1, . . . , tp(n)). We still need to encode the machine’s transitions:

For this we use a binary connection axiom of the form (3.3). We assume that in the

universal states each configuration has exactly two successors whereas in the existential

states there is exactly one successor.

3.6. THE COMPLEXITY OF DECIDING LOCO SATISFIABILITY 53

(∀ id, b, q,~ti)CTM(id, b, q, t1, . . . , tp(n))⇒[
(

[(∃11 îd) C(îd, b̂, q̂, t̂1, . . . , t̂p(n)) ∧ φ1]∨

[(∃22 îd) C(îd, b̂, q̂, t̂1, . . . , t̂p(n)) ∧ φ2])∧

[îd = id + 1]]
The formulas φ1 =

∨
ψ and φ2 =

∨
ψ contain one disjunct ψ per entry in the Turing

machine’s transition table; φ1 is for existential transitions and φ2 for universal ones. For

any transition leading from state Q to state Q̂ and replacing the symbol T with T̂ hence

ψ looks as follows, with B the current and B̂ the new head position:

∧
B

[
(b = B ∧ tb = T ∧ q = Q)⇒

(b̂ = B̂ ∧ t̂b = T̂ ∧ q̂ = Q̂ ∧
∧
i 6=B

ti = t̂i)
]

Given this basic setup it is straightforward to complete the definition of the LoCo

axiomatization in such a way that the APSpace Turing machine accepts if and only

if the corresponding LoCo axiomatization has a model: We stipulate that there are no

connection axioms beyond the binary connection from CTM to itself just sketched and the

binary connections used in the construction below proposition 4 in order to obtain 2p(n)

instances of CTM. For the latter we may assume that the respective component types have

no attributes beyond their identifiers and hence that there are no φ-constraints in the

connection axioms. Next, we may assume that the component catalogue neither specifies

nor rules out any attribute combinations for CTM. Finally, the partial configuration used

in the LoCo axiomatization shall consist only of the Turing machines initial state and the

axiom ruling out rejecting configurations.

54 CHAPTER 3. LOCO– A LOGIC FOR CONFIGURATION PROBLEMS

Discussion

It is well worth pointing out that the above proof does not work if we use an extensional

component catalogue as in this case all the reachable configurations of the Turing machine

have to be listed explicitly. On the other hand it is interesting to observe that the proof

uses only a very basic subset of the rich LoCo language: Binary connection axioms

with very simple φ-constraints and partial configurations suffice. So, in some sense,

the more expressive connection axioms of LoCo that admit much more natural problem

formulations come for free.

Chapter 4

LoCo Input Language

In order to put the LoCo axiomatization into practice we created the LoCo input language

(LIL). A major design requirement was the ability to represent the configuration knowl-

edge in standard ASCII text format. Nevertheless, as will be shown in this chapter, the

basic structure of this language is still strongly oriented on the original axiomatization.

The LoCo input language is separated into domain and instance knowledge. The domain

knowledge defines all used elements in the model, i.e. constants, components, attributes,

connection predicates, their associated connection axiom rules as well as consistency

rules for non-local constraints. On the contrary the instance knowledge then feeds the

model with the necessary data although in the LIL language there is no mutual exclusion

and these areas overlap to some extent as we will see. Generally the static knowledge

concerning the problem domain is defined in the LIL domain knowledge, whereas the

LIL instance knowledge contains the dynamic knowledge related to a specific problem

instance. The supported elements for describing the domain and the input knowledge

will be presented in detail and differences to the original axiomatization will be pointed

out.

55

56 CHAPTER 4. LOCO INPUT LANGUAGE

4.1 Basic elements

4.1.1 Constants

Constants can be defined either on the domain or on the instance knowledge level but

have to be declared on the domain level. Their definitions are pretty straight-forward.

Currently the prototype supports only integer constants although if needed the system

is easily expandable. Listing 4.1 shows the constants for our running example, starting

with values for the maximum height and width of a house component (lines 1-2) followed

by the maximum allowed sizes for things A and B (lines 3-4). Line 5 declares a constant

cMaxNrTB representing the upper bound of how many B things can be put in a cabinet.

Its value is left open on the domain level, meaning it needs to be instantiated on the input

level and because of this can vary for any given problem instance. Declarations without

a value assignment are generally not allowed on the instance level. Next to a standard

value assignment constants can also be defined by the use of arithmetic expressions as

shown in lines 7 and 8. Line 8 defines the maximum size of a cabinet for storing things of

type B with the value set to the product of the two constants cMaxNrTB and maxSizeTB.

Due to the fact that cMaxNrTB gets its value not until the instance level the same also

holds for cMaxSizeTB. The maximum number of allowed thingA components for each

cabinet in line 7 on the other hand is defined via a value constant and so the value for

cMaxSizeTA is already defined on the domain level.

4.1.2 Component and Attribute definitions

Every component is either defined as an input component (IC) or as a generated com-

ponent (GC). On the domain knowledge level components can also be left undefined (UC)

but still be used the same way as IC or GC components in rules and constraints. In such

a case their type needs to be stated explicitly later on the instance level where no unde-

fined components are allowed anymore. This feature makes it easy to quickly change the

problem structure in terms of which components are fixed and for which bounds have

to be computed. The internal ID attribute serving as the component key does not have

to be defined explicitly and is always implicitly part of every component definition. For

4.1. BASIC ELEMENTS 57

1 const hMaxHeight = 8.

2 const hMaxWidth = 5.

3 const maxSizeTA = 10.

4 const maxSizeTB = 12.

5 const cMaxNrTA.

6 const cMaxNrTB.

7 const cMaxSizeTA = 5 * maxSizeTA.

8 const cMaxSizeTB = cMaxNrTB * maxSizeTB.

9 const cMaxSize = cMaxSizeTA + cMaxSizeTB.

10 const rMaxPos = 4.

Listing 4.1: LoCo constants

attributes we currently support the data types Boolean, Integer and Enum. All attribute

values are clearly defined, i.e. open intervals or undefined bounds are not allowed. Integer

attributes are either bounded by range, i.e. by lower and upper bound, or by enumeration

which allows to leave “holes” in the domain. The domain of a Boolean attribute is auto-

matically set to TRUE and FALSE, represented internally by 1 and 0. Enum attributes

are basically represented by a set of Strings, i.e. {red,blue,green} for attribute color of

component cabinet.

Listing 4.2 shows the component definitions for our running example. Every compo-

nent definition starts with the component name followed by a colon. Next we specify the

component type, i.e. IC for input, GC for generated or UC for (currently) undefined as pre-

viously mentioned. This is followed up by a list of attributes encompassed in parentheses.

Attribute definitions are optional and in case of no explicitly specified attributes the only

component attribute is the internal ID. An example for this empty case is component

person in line 1. In the second line we define input component house which has 2 Integer

attributes height and width. Both of them are bounded by range with lower bounds zero

and respective constants from listing 4.1 as upper bounds. The thingA component in line

3 contains some Boolean attributes to specify properties such as big and dirty.

Notice that apart from the upper bound for attribute size the component definition

for thingB is identical to thingA. This scenario illustrates the potential advantage of some

form of classification-based inheritance supporting is-a relationships like in taxonomic

58 CHAPTER 4. LOCO INPUT LANGUAGE

1 person:IC ().

2 house:IC(height:INTEGER[0..hMaxHeight];width:INTEGER[0..hMaxWidth]).

3 thingA:IC(size:INTEGER[0..maxSizeTA];big:BOOL;dirty:BOOL;forUpper:BOOL;

4 minFloor:INTEGER[0..hMaxHeight];maxFloor:INTEGER[0..hMaxHeight]).

5 thingB:IC(size:INTEGER[0..maxSizeTB];big:BOOL;dirty:BOOL;forUpper:BOOL;

6 minFloor:INTEGER[0..hMaxHeight];maxFloor:INTEGER[0..hMaxHeight]).

7 cabinet:GC(size:INTEGER[0..cMaxSize];dirty:BOOL;big:BOOL;top:BOOL;

8 color:ENUM[red,blue,green]).

9 position:GC(nr:INTEGER[0,1,2,3]).

10 room:GC(size:INTEGER[0.."2*cMaxSize*rMaxPos"];

11 floor:INTEGER[0..hMaxHeight]; pos:INTEGER[0..hMaxWidth]).

Listing 4.2: Definition of LoCo components and attributes

hierarchies. For our running example, we would want to define an abstract component

thing containing all common attributes of the A and B types with thingA and thingB

being derived components each defining their own size attribute. This feature is not yet

implemented in the prototype but definitely considered as part of suggested future work.

One can find more on this topic in the closing chapter of this thesis.

The nr attribute of component position in line 9 is an example for an enumerated

Integer domain. Although in the given scenario the value enumeration isn’t necessarily

needed and could be replaced by a simple range bound [0..3], we wanted to include at

least one example to show the proper syntax for this use case. In general there are

many common application scenarios requiring the explicit modelling of “holes” in an

attribute domain interval though and this feature eases the representation of problem

knowledge sufficiently. For example, let’s consider a scenario where a component can

only be connected to another component at certain port numbers. Instead of listing the

whole domain and restricting the usage of forbidden ports by using constraints, we may

define an additional attribute allowedPorts for the component to be connected, containing

the enumeration of valid port numbers as its domain. The Enum attribute color in line 8 is

another example where the usage of an enumeration clearly simplifies the representation

of knowledge.

4.1. BASIC ELEMENTS 59

Next to using constants and numbers we can also define attribute bounds via ar-

bitrary arithmetic expressions. The upper bound for attribute size of component room

is an example for this situation. It is calculated by taking the maximum cabinet size

(cMaxSize), multiplying it with the maximum number of positions in a room (rMaxPos)

and further multiplying this by 2 since up to 2 cabinets can be put on every position.

The LoCo Input Language also supports the option to specify bounds on the number

of allowed instances for a component on the domain level. Usually component bounds

are set on the instance level but for some components it might be useful to predefine

bounds in case the number of instances stays constant, e.g. due to technical restrictions.

The way to achieve this effect is by putting lower and upper bounds in square brackets

between the component type and the component attributes when defining a component

type, like so:

1 thingA:IC[15,25](...).

2 thingB:IC[?,25](...).

3 cabinet:GC[1,10](...).

4 room:GC[3,?](...).

Listing 4.3: Component definitions with bounds

Component bounds in this context can be either defined for input or for generated

components although with different semantics. In case of an input component the upper

bound is not only a bound but defines the exact number of instances. The lower bound

has no effect since there will always be upper bound many instances. It is possible

to only define a lower or an upper bound by using the question mark placeholder for

unspecified bounds. For example thingB in line 2 has no lower bound but since it is an

input component its bound definition is identical to the one for thingA. For a generated

component the bounds set the minimum and maximum number respectively of allowed

generated components. In case both lower and upper bounds are specified like for a

cabinet in line 3, these manual bounds hold and the component is excluded from getting

its values by the automatic bounds computation. Line 4 expresses the fact that there have

to be at least 3 instances of generated component room while the bounds computation

algorithm will determine the corresponding upper bound later on in the process.

60 CHAPTER 4. LOCO INPUT LANGUAGE

4.2 Connection Rules

4.2.1 Binary connections

Standard Binary Connection

We investigate the syntactic differences between the axiomatization and the input lan-

guage based on the abstract form of a binary connection. To recapitulate, the axiomatized

version from chapter 3 looks like this:

(∀ id1, ~x) comp1(id1, ~x)⇒ (4.1)

(∃u1
l1
id2) [comp1 comp2(id1, id2) ∧ comp2(id2, ~y) ∧ φ(id1, id2, ~x, ~y)]

The equivalent syntactic structure in the LoCo input language has the following form:

(FORALL C1) comp1(C1)⇒ (4.2)

(EXISTS [l1,u1] C2) [comp1 comp2(C1,C2) && comp2(C2) && φ(C1, C2)]

It can be clearly seen that the text-based syntax of the LIL format matches strongly

with the original axiomatization. The specific logical symbols get replaced by appropriate

keywords, e.g. the universal quantification ∀ is matched to FORALL, existential quan-

tification with bounds ∃u1
l1

to EXISTS[l1,u1], etc. Also logical connectives get replaced by

textual representations. Binary connectives ∧ and ∨ become && and || respectively,

the unary negation connective ¬ becomes ! and so on s.t. all symbols have meaningful

textual equivalents. Table 4.1 summarizes the mapping.

Component variables C1 and C2 are used to address the component instance identifiers

id1 and id2 from the axiomatization but in addition to that also represent its associated

attribute vectors ~x and ~y. From this it follows that component attributes in the LIL

format don’t get quantified explicitly like in the axiomatization but implicitly instead

via the component variables. They can be addressed via dot-notation in a similar way

as in the standard object-oriented paradigm, i.e. via <Component>.<Attribute>. For

4.2. CONNECTION RULES 61

Logical symbol Axiomatization LoCo Input Language
Universal quantifier ∀ FORALL

Existential quantifier ∃ EXISTS
Conjunction ∧ &&
Disjunction ∨ ||
Negation ¬ !

Implication =⇒ =>
Equality ⇐⇒ <=>

Table 4.1: Mapping of language elements

a practical example the general format of a φ subformula in 4.2 gets replaced by a con-

straint expression. More on this together with different ways of addressing component

attributes will be discussed on snapshots of our running example below.

We now illustrate the mapping of a standard binary axiom on a transformation of

the connection from thingA to cabinet as already shown in Example 2 together with the

reverse direction shown in Example 19.

Example 19. In the House Problem each cabinet contains between zero and cMaxNrTA

things of type A whereas for each cabinet the sum of the size of all big things is not allowed

to be greater than five; moreover, a cabinet can only be put on a top position if all things

in it are suitable for being placed on top:

(∀ idC , ~attrC) cab(idC , ~attrC)⇒

(∃cMaxNrTA
0 idTA) thingA Cab(idTA, idC) ∧ thingA(idTA, ~attrTA) ∧

[
∑

(sizeTA [bigTA = TRUE]) ≤ 5 ∧ (¬topC ∨ forUpperTA)]

The LIL representations for Examples 2 and 19 are depicted in formulas 4.3 and 4.4.

Note that we can use either numbers or constants for expressing bounds of existential

counting quantifiers. For example in formula 4.4 the upper bound for thingA is defined

by constant cMaxNrTA.

62 CHAPTER 4. LOCO INPUT LANGUAGE

(FORALL TA) thingA(TA)⇒ (4.3)

(EXISTS [1,1] C) thingA cab(TA,C) && cab(C) &&

[(C.big && TA.big) || !(TA.big)].

(FORALL C) cab(C)⇒ (4.4)

(EXISTS [0,cMaxNrTA] TA) thingA cab(TA,C) && thingA(TA) &&

[SUM(TA.size [TA.big == TRUE]) <= 5 &&

(!(C.top) || TA.forUpper == TRUE)].

Both binary connections respectively contain φ constraint parts. The one in formula

4.3 is a simple comparison of Boolean attributes, i.e. we check that in case a thing is

marked as big then it can only be put in a cabinet that is also big. As mentioned before

attributes like big or size can be accessed via the component variables in the constraint

part, e.g. we can write TA.size to get attribute size of component thingA which is identified

by component variable TA.

The constraint of the reverse direction in formula 4.4 uses a summation aggregate

to determine the total size of all things in the cabinet. Aggregate functions can have

optional nested constraints. In our case [TA.big == TRUE] restricts things to be taken

into consideration to those having attribute big set to TRUE. Note that while it is possible

to use any component variable and its related attributes, in practice it only makes sense to

use aggregate functions in connection with existentially quantified variables. For example

in formula 4.4 component variable TA is existentially quantified and so an expression

like TA.size addresses all instances of component thingA belonging to this relation. An

aggregate involving attributes of universally quantified component variable C would only

make a computation over a single instance of a cabinet.

4.2. CONNECTION RULES 63

Unfolded Binary Connections

The unfolded version of a binary connection also has its representative in the LIL format.

Its basic use is to achieve a higher level of granularity by allowing a direct addressing

of specific component instances. Formula 4.5 shows the textual LIL representation of

example 3:

(FORALL P) pos(P)⇒ (4.5)

{(EXISTS [1,1] C) cab pos(C,P) && cab(C) &&

[C.top == FALSE] } ||

{(EXISTS [2,2] C) cab pos(C,P) && cab(C) &&

[!(C.big) && ((C[1].top && !(C[2].top)) || (!(C[1].top) && C[2].top))] }.

The rule differs between the two cases that either 1 or 2 cabinets are placed on a

position. Each case has its own φ sub-constraint. In the case of 1 connected cabinet

attribute top needs to be set to FALSE, expressing the fact that the cabinet cannot be

placed on top of another cabinet. Just like a Boolean comparison [C .top == TRUE]

could be equivalently expressed with reduced syntax C .top, also [C .top == FALSE]

could be formulated equivalently as !(C .top) for negating Boolean attributes.

The constraint for the second case is slightly more involved and needs some additional

explanation. The first conjunct !(C.big) states that in the case of 2 cabinets on a position

none of them can have its attribute big set to TRUE. Like in a standard binary connection

constraint, addressing an attribute via C.big without an index means that big has to hold

for all instances related to component variable C. The second and third conjuncts express

the fact that exactly one of the two cabinets needs to have the top attribute being set to

TRUE such that it is placed on top of the other cabinet.

Specific component instances can be addressed directly via an index after the compo-

nent identifier, e.g. C[1].top for the cabinet with index 1. The order of the instances is

undefined and generally of no matter, there just has to be one permutation of instances

that satisfies the constraint. Take for example a case with 3 instances and a constraint

64 CHAPTER 4. LOCO INPUT LANGUAGE

part where instances with indices 1 and 2 need to have certain properties. Then any 2

of those 3 component instances need to satisfy the requirements, i.e. one of the three

instances fulfills the role of index 1 and another the role of index 2. One of them, no

matter at which original position, remains “free” and won’t be considered in terms of

fulfilling the constraint.

We see that also in the case of unfolded binary connections the mapping from the

axiomatization to its textual LIL representation is quite natural. Note that when defining

an unfolded binary connection we don’t need to cover the whole range from the unique

lower to upper bound and are allowed to leave “holes” in the bounds, i.e. by only stating

those cases for which special constraints exist. For this reason there always needs to

exist a standard binary connection in addition to an unfolded one for the same direction

in order to specify the whole range, e.g. the concrete example requires the following

additional rule:

(FORALL P) pos(P)⇒ (4.6)

(EXISTS [1,2] C) cab pos(C,P) && cab(C).

Alternatively to using an unfolded binary connection we could express the same matter

with a standard binary connection and some aggregate functions as shown in formula 4.7.

In this version the constraint part is separated into 2 disjunctive cases having either 1

or 2 cabinets on a position. This is done respectively by the use of counting aggregates

[COUNT (C) == n] to determine the number n of connected cabinets. In the case of

one cabinet we simply form a conjunction of the aggregate with the original constraint

part !(C.top). The second disjunct uses an additional counting aggregate to exclude the

case of 2 cabinets being placed on the same position that are both marked as top. More

precisely, the aggregate COUNT (C .top) returns the number of cabinets with attribute

top set to TRUE and its return value has to be 1. This replaces the part of the unfolded

rule where we directly address component instances. Note while this does work in the

specific current case that in general an unfolded connection is more expressive and cannot

be replaced with a standard binary connection, i.e. we cannot always replace a direct

4.2. CONNECTION RULES 65

addressing of component instances with other language elements like aggregates.

(FORALL P) pos(P)⇒ (4.7)

(EXISTS [1,2] C) cab pos(C,P) ∧ cab(C) ∧

[(COUNT(C) == 1 && !(C.top)) ||

(COUNT(C) == 2 && !(C.big) && COUNT(C.top) == 1)].

4.2.2 One-to-many connections

This section contains the mappings of the various LoCo one-to-many connection axioms

from chapter 3. We shall see that just as for binary connections the text-based LIL

syntax goes in accordance and matches strongly with the LoCo axiomatization.

Standard One-to-Many connections

We start with the LIL representation of the standard one-to-many connection from

example 4 in chapter 3. This defines the relation between a cabinet and things of type

A and B and is shown in formula 4.8. The lower bound of 1 ensures that there can be

no empty cabinets and at least one thing of type A or B needs to be placed in it. A

question mark is used as a placeholder for the upper bound of the counting quantifier,

meaning the bound is unknown or left undefined. Since we stipulate that in parallel

there need to exist binary connections between the component on the left-hand side and

all components appearing on the right-hand side of every one-to-many connection, the

binary connections of our running example define the upper cardinality bound for the

one-to-many connection in this case.

66 CHAPTER 4. LOCO INPUT LANGUAGE

(FORALL C) cab(C)⇒ (4.8)

(EXISTS [1,?] T) [(T=TA && thingA cab(TA,C) && thingA(TA)) ||

(T=TB && thingB cab(TB,C) && thingB(TB))] &&

[COUNT(TA.big) + COUNT(TB.big) <= 4].

The φ sub-constraint counts the total number of big things in each cabinet by using

a counting aggregate function for each type of thing. In case a cabinet contains only A

or B things then the other counting aggregate with no elements simply returns zero. The

rule in formula 4.9 shows the resource balancing example 5:

(FORALL C) cab(C)⇒ (4.9)

(EXISTS [2,4] T) [(T=TA && thingA cab(TA,C) && thingA(TA)) ||

(T=TB && thingB cab(TB,C) && thingB(TB))] &&

[SUM(TA.tRes) >= SUM(TB.tRes)].

Exclusive-OR One-to-Many connections

Alternatively let’s say there’s a scenario where things of type A and B are not allowed

to be put together in the same cabinet and we would need exclusive disjunction. The

exclusive-or (XOR) variant in rule 4.10 stipulates that either 1 to 5 things of type A or 1

to 3 things of type B can be placed in a cabinet. An exclusive-or one-to-many connection

does not support φ sub-constraints because since the components on the right-hand side

are mutually exclusive the constraints between any of them and the component on the

left-hand side can be modelled via binary connections. We represent the exclusive-OR

operator ⊕ from the axiomatization with its textual LIL equivalent ˆˆ . The choice of

using ˆˆ as the textual representation of the logical XOR connective was influenced by

the common use of a single ˆ for a bitwise XOR operation.

4.2. CONNECTION RULES 67

(FORALL C) cab(C)⇒ (4.10)

[(EXISTS [1,5] TA) thingA cab(TA,C) && thingA(TA)] ˆˆ

[(EXISTS [1,3] TB) thingB cab(TB,C) && thingB(TB)].

General One-to-Many connections

The highest level of granularity can be achieved with a general one-to-many rule. Similar

to an unfolded binary connection this makes it possible to directly address the individual

connected components. We demonstrate this on the basis of example 7 from the previous

chapter. Note that the LIL version extends the original version by an additional case

that groups several connections together. The mentioned case for example ranges over

4 to 7 thingA and 5 to 7 thingB instances whereas in the axiomatization each of those

cases would have to be written down explicitly. By using this additional syntactic sugar

the LIL format allows to reduce the total size of the formula.

(FORALL C) cab(C)⇒ (4.11)

{ [(EXISTS [1,1] TA) thingA cab(TA,C) && thingA(TA)] &&

[(EXISTS [1,1] TB) thingB cab(TB,C) && thingB(TB)] &&

[thingA thingB(TA,TB)] } ||
...

{ [(EXISTS [2,2] TA) thingA cab(TA,C) && thingA(TA)] &&

[(EXISTS [3,3] TB) thingB cab(TB,C) && thingB(TB)] &&

[TA[1].size > TB.size] } ||
...

68 CHAPTER 4. LOCO INPUT LANGUAGE

{ [(EXISTS [3,3] TA) thingA cab(TA,C) && thingA(TA)] &&

[(EXISTS [4,4] TB) thingB cab(TB,C) && thingB(TB)] &&

[SUM(TA.size) < 5] } ||
...

{ [(EXISTS [4,7] TA) thingA cab(TA,C) && thingA(TA)] &&

[(EXISTS [5,7] TB) thingB cab(TB,C) && thingB(TB)] }.

4.3 Consistency Rules

We now look at the LIL representations of the consistency axioms. The basic syntactic

elements have already been discussed in the previous section and won’t be repeated

at this point anymore. Similar to the connection axioms the following types of rules

are strongly oriented on the original axiomatization with the same main difference of

replacing first-order language elements by suitable textual equivalents.

4.3.1 Candidate Key rules

Formulas 4.12 and 4.13 show the LIL representations of the respective examples 8 and 9

of chapter 3. After quantifying all involved component variables and assigning them to a

component type, the conjunction of attribute equalities forming the component key gets

listed in the constraint part. While in the axiomatization the respective component id’s

must be identical in the consequent, here the component variables serve as a substitute

for them.

(FORALL R1,R2) room(R1) && room(R2) && (4.12)

[R1.floor = R2.floor && R1.pos = R2.pos] ⇒ R1 == R2.

Formula 4.13 extends the list of attribute keys with additionally required component

connections/ports.

4.3. CONSISTENCY RULES 69

(FORALL P1,P2,R) pos(P1) && pos(P2) && room(R) && (4.13)

[P1.nr = P2.nr && pos room(P1,R) && pos room(P2,R)] ⇒

P1 == P2.

4.3.2 Connection-generating rules

We now look at the LIL representation of connection-generating rules. In contrast to

the LoCo axiomatization all component variables have to be explicitly quantified. The

binary connection chain in the φ subformula of rule 4.14 establishes the connection from

a person to a room component. Just like in other rule types the subformula could also

contain additional attribute comparisons and arithmetic expressions. The consequent

part after the implication consists solely of the connection instance to be compelled.

(FORALL PE,TA,C,PO,R) (4.14)

pers(PE) && thingA(TA) && cab(C) && pos(PO) && room(R) &&[
pers thingA(PE,TA) && thingA cab(TA,C) &&

cab pos(C,PO) && pos room(PO,R)
]
⇒

room pers(R,PE).

4.3.3 General First-Order rules

For the representation of the most general form of consistency rules we investigate the

text-based LIL versions of the examples 11, 12 and 13 from chapter 3. Rule 4.15 depicts

the simple example of an intensional component catalogue axiom.

70 CHAPTER 4. LOCO INPUT LANGUAGE

(FORALL C,P) cab(C) && pos(P) && (4.15)

[cab pos(C,P) && (P.nr == 1 || P.nr == 2)] ⇒

[C.color == blue].

Rule 4.16 is similar to a connection-generating rule but instead of enforcing the exis-

tence of a connection the consequent consists of a set of attribute comparisons that has

to be fulfilled.

(FORALL TB,C,P,R) thingB(TB) && cab(C) && pos(P) && room(R) && (4.16)

[thingB cab(TB,C) && cab pos(C,P) && pos room(P,R)] ⇒

[TB.minFloor <= R.floor && TB.maxFloor >= R.floor].

Next we look at the supplementation of GFO rules with existential quantifiers (formula

4.17). The necessary existence of a person component instance which is connected to a

thing infers from the fulfilment of the antecedent. Notice that the existential counting

quantifier has no bounds and we make no assumption on the number of existing persons

apart from the fact that there has to exist at least one.

(FORALL TA,C) thingA(TA) && cab(C) && (4.17)

[thingA cab(TA,C) && TA.dirty == C.dirty] ⇒

(EXISTS P) person(P) && [person thingA(P,TA)].

4.4. DOMAIN KNOWLEDGE 71

4.4 Domain Knowledge

The LoCo Domain Knowledge defines all used elements in the model, i.e. constants,

components, attributes, connection predicates, their associated connection axiom rules

as well as consistency axiom rules for non-local constraints. This involves basically all

the language features we’ve discussed so far in this chapter. We won’t repeat those and

only present the remaining elements of domain knowledge.

Ports Next to connection predicates components can be also connected via so-called

ports in order to support the component-port model. This is the commonly accepted

and widely used representation pattern for (technical) configuration problems [Mittal and

Frayman, 1989, Mailharro, 1998]. The representation of port connections in our model

is analogous to the modelling of binary connections. Ports themselves are modelled just

like components with the exception that they don’t possess any attributes apart from

their ID and are related to exactly one component. In a certain way one could view a

port as an extension of the component it belongs to. The LIL format of example 14 for

expressing the fact that every room component contains 4 position ports for connections

with cabinets looks as follows:

(FORALL R) room(R)⇒ (4.18)

(EXISTS [4,4] P) pos room(P,R) && pos(P).

Component Catalogue The domain knowledge also contains the mandatory com-

ponent catalogue. By design the LoCo input language already makes sure to prevent

the possibility of constructing models with infinite domains. Because of the requirement

that all component attributes need to have finite bounds, the Cartesian product of the

attribute domains stipulates a finite set of allowed tuples for each component type. So

even without any specific catalogue knowledge the component definitions in listing 4.2

could represent an intensional component catalogue on its own. This would already be

72 CHAPTER 4. LOCO INPUT LANGUAGE

sufficient for the demands of a valid component catalogue but could quite possibly pro-

duce a high number of potential attribute assignments. As discussed in the previous

chapter we can narrow the set of possible assignments down by either an extensional list-

ing of valid attribute tuples or by an intensional representation via adequate formulas.

We first depict the LIL equivalent of example 15 from chapter 3:

(FORALL TA) thingA(TA) <=> (4.19)

TA.attrVec = { (5,TRUE,FALSE,FALSE, 0, 2) ||

(3,FALSE,FALSE,TRUE, 1, 1) ||

(4,FALSE,TRUE,FALSE, 1, 3) ||

(. . .) }.

The expression TA.attrVec in this context is used for accessing the attribute vector

of component TA and hence attrVec is a reserved language keyword which is not allowed

for a regular attribute name. For a component type with n attributes we need to have

n-ary attribute vectors. Vector values are ordered in the same way as attributes at their

time of definition, i.e. the second value of a vector belongs to the second attribute of

the component definition. We don’t consider the internal ID of the component since its

value is set automatically. The right side of formula 4.19 after the logical equivalence

contains the disjunction of all allowed attribute vectors for a component instance.

We have already mentioned in chapter 3 that the intensional catalogue axioms from

example 16 and 17 can be merged to one expression. The LIL version of the combined

formula looks as follows:

4.5. INSTANCE KNOWLEDGE 73

(FORALL TA) thingA(TA) <=> (4.20)

[((TA <= 3) => (TA.forUpper == TRUE)) &&

((TA > 3) => (TA.forUpper == FALSE)) &&

(TA.minFloor <= TA.maxFloor) &&

(TA.size < maxSizeTA)

].

Since attributes already get finite bounds when they are declared, not all attributes

of a component have to be considered in the catalogue axioms. They can be either

(1) left unconsidered in the catalogue with their values getting restricted through some

constraints or (2) be assigned later on the instance level in case their value is part of a

specific problem setting.

4.5 Instance Knowledge

The LoCo instance knowledge contains the knowledge of a specific problem instance and

in combination with the domain knowledge forms a complete problem model. It basically

represents the data while the domain knowledge represents the structure although as we

will see below these areas are not completely separated and overlap to some extent.

Constants and attributes The instance knowledge can eventually contain additional

constants but definitely needs to provide value assignments for existing constants that

have been declared as a placeholder in the domain knowledge. In general instance knowl-

edge always overwrites domain knowledge, i.e. we can give pre-defined domain constants

as well as attributes new values.

Component types While we are not allowed to change the existing component defi-

nitions at this point anymore we could still change its component types. Also the final

subdivision of the component types needs to take place on the instance level. So if not

74 CHAPTER 4. LOCO INPUT LANGUAGE

already set by the domain knowledge, we have to separate all components into either type

input or type generated. From this it follows that components which have been declared

as undefined need to get a type assignment.

The component definitions we’ve presented in listing 4.2 all have a clearly defined type

so in this case there wouldn’t be anything left to specify on the instance level. In order

to show the benefits of a more flexible model let’s suppose we change all types from the

initial definition to UC (undefined) instead at the domain level. In doing so we would then

have to define the types on the instance level. One advantage of this approach is to gain

additional flexibility in how to use a problem model: For example, the House Problem

could be quickly turned upside down and instead of creating cabinets and rooms for a

given set of things we could ask the following question: Given a specified house layout

with pre-defined rooms and cabinets in them, calculate the maximum possible number of

things to be stored while a certain subset of things needs to satisfy additional constraints.

1 person:IC().

2 house:IC().

3 thingA:GC();

4 thingB:GC();

5 cabinet:IC();

6 position:IC();

7 room:GC();

Listing 4.4: Definition of component types for a modified House Problem

Listing 4.4 contains the type definitions for this scenario. The lists of component

attributes here are empty since they are already defined as part of the original component

definitions on the domain level.

Concerning the remark about additional constraints on things, the LoCo input lan-

guage supports the usage of consistency rules in the instance knowledge. The following

rule for example extends the problem by stating that blue cabinets can only contain small

things:

4.5. INSTANCE KNOWLEDGE 75

(FORALL TA) thingA(TA)⇒ (EXISTS C) cab(C) &&

[thingA cab(TA,C) && (C.color == ”BLUE” => TA.big == ”FALSE”)].

We have to use a GFO type of rule in this case since the existing connection rules

as well as their constraints from the domain knowledge cannot be changed or extended.

As pointed out before, the connection axioms and the component definitions are the

elements for guaranteeing a finite problem model and so additional consistency axioms

can only narrow the finite problem space further. In the worst case this would result in an

unsatisfiable problem and therefore cannot lead to undecidable or infinite configurations.

Input components If not already done as part of the component definition we need

to stipulate for every input component exactly how many instances exist in the model.

The same procedure is also applicable for generated components although not neces-

sary because in case of no explicit bounds the automatic bounds computation ensures

the finiteness for them. Concerning input components though the bounds computation

expects them to be set manually.

In order to define complete input components or partial configuration constructs of

any kind we have the additional option to assign values to attributes of specific component

instances. Listing 4.5 illustrates the syntax and shows a snapshot of some knowledge for

input components.

In line 1 the upper bound for component person is set to two. Since person is an input

component the upper bound reflects at the same time the exact number of instances.

Our model furthermore contains one house instance (line 3) for which we also set its

attributes height and width (lines 4-5). Attributes in this context can be addressed via

dot-notation similar to how they can be accessed in φ constraints. In order to state

which instance the attribute belongs to we list the internal ID in brackets after the

component name. Internal IDs always start at 1 for the first component and will be

allocated automatically in ascending order. So since there is only one house instance

we address its attribute values using component ID 1. The remaining code lines below

76 CHAPTER 4. LOCO INPUT LANGUAGE

1 #person = 2.

2

3 #house = 1.

4 house(1).height = 5.

5 house(1).width = 2.

6

7 #thingA = 5.

8 thingA(1).size = 3.

9 thingA(1).big = TRUE.

10 thingA(1).dirty = FALSE.

11 ...

12 thingA(2).size = 4.

13 thingA(2).big = FALSE.

14 ...

Listing 4.5: Input component knowledge

depict the domain closure for thingA including a couple of attribute definitions for various

instances. In case bounds for a component have already been specified at the time of

definition the previous existing bounds will be overwritten. Note that not all attribute

values of an input component have to be specified though. The values of the remaining

unspecified ones might be determined by (resource) constraints, connection structures or

optimization conditions during the actual model finding process. If an attribute is not

relevant for the current configuration and not influenced by any of the aforementioned

language elements then it will just get a random value of its domain in a model.

Input connections Next to input components we can also define domain closures on

input connections. A definition begins with the keyword IConn followed by the predicate

name of the connection which needs to be consistent throughout the model. Encompassed

in curly brackets one then specifies the set of actual connection instances. The involved

component instances are identified by their internal IDs in the correct order of the pred-

icate. Listing 4.6 shows an example input connection definition between components

person and thingA.

4.5. INSTANCE KNOWLEDGE 77

1 IConn: person_thingA {

2 person_thingA(1,1).

3 person_thingA(1,2).

4 person_thingA(2,3).

5 person_thingA(2,4).

6 person_thingA(1,5).

7 ...

Listing 4.6: Input connections between persons and things

Partial configurations A common use case in configuration is to start the solving

process from an existing partial configuration which then needs to get extended to a

valid model. The solving process for this scenario is analogous to searching for a model

from scratch with the main difference that a solution requires the pre-defined set of

component and connection instances to be part of the configuration. In a certain way

one could see the input components and connections discussed above already as some

form of partial configuration. While for input elements the exact listing of all entities

plus a closure on their domains is mandatory, we also want to enforce the existence

of specific components and connections without ruling out the existence of additional

instances of the same types, i.e. without closing their domain. This feature therefore

focuses mainly on the generated components and connections for the purpose of building

partial configurations. The following LIL code snippet gives some insight on how this

can be achieved:

1 #cabinet = 7.

2 room(5).

3 room(5).size = 18.

4 room(5).floor = 2.

5 room(7).roomID = R005.

6 room(7).size = 15.

7 ...

8 cab_thingB(2,3).

Listing 4.7: Partial configuration knowledge

78 CHAPTER 4. LOCO INPUT LANGUAGE

The first line of listing 4.7 shows a component bound definition for component cabinet

using the same syntax as above for input components. In fact, its effect is also similar

in terms of bounds by setting the upper bound to 7 but with the difference that for a

generated component this does not determine how many instances of those will actually

be part of a model apart from that it can’t be more than 7.

The enforcement of a room component instance with ID 5 in line 2 is the LIL equiv-

alent of a simple ground fact in the axiomatization. Referencing ID 5 implicitly requires

that there need to exist at least 5 instances in total or the problem becomes unsatisfiable

because internal IDs for components start to get counted from 1 upwards in ascending

order. Furthermore we set some attribute values for this component instance (lines 3-4).

The assignment of an attribute value for a room component with index 5 implicitly im-

plies that the specified component instance has to exist. This means that either line 3

or 4 would make line 2 redundant but for better readability and maintenance though it

is still recommended to also define the component instance explicitly.

Let’s imagine a scenario where the structure of the house plan provides a specific set

of identifier keys for rooms which should be used instead of the automatic IDs. The

best way to handle this is to define an additional attribute for a room representing

these manual IDs. Of course it doesn’t necessarily have to be a number and could also

be alphanumeric in form of an enumeration attribute like roomID in line 5. We could

now address the specific instance by this attribute instead of the ID in connection or

consistency rules.

Next to components partial configurations can also contain specific connections as

demonstrated in line 8. The mentioned component instances of the connection need to

be part of a valid solution, i.e. the cabinet instance with ID 2 and the thingB instance

with ID 3 need to be among the selected component instances of a model.

We can also exclude certain instances of components and connections from being

part of a model. This is simply done by putting an exclamation mark representing unary

negation as a prefix. The exclusion of a component instance like room with ID 4 in line

1 prevents it also from being part of any connection. This definition of no-go entities of

course only makes sense for generated components and for connections that are not of

4.5. INSTANCE KNOWLEDGE 79

type input.

1 !room(4).

2 !cab_thingB(2,4).

3 ...

Listing 4.8: Excluding components and connection instances

While partial configurations are primarily supposed to be defined on the instance

level, it is possible to define component and connection instances also on the domain

level in order to make them static for all instances. A possible scenario for this could

be that due to the technical specification some specific instances of type A should be

included in every model and hence should not be defined on the instance level.

Chapter 5

Prototypical Implementation

One of the major objectives in the design of LoCo was to ensure finiteness of the logical

models without forcing the knowledge engineer to finitely bound everything herself. This

finiteness of configurations also gives us access to state-of-the-art software for solving

combinatorial search problems via Sat solvers or constraint and integer programming.

As already mentioned the idea of LoCo is to serve as a high-level source language that

gets translated into a range of different executable target languages. To show that the

formalism works in practice we have prototypically implemented a transformation to

ASP, more precisely using the Potassco framework [Gebser et al., 2011] as a target

language. The main motivation for this choice was twofold:

1. Being a dialect of rule-based logic programming [Gelfond, 2008], ASP allows a quite

natural representation of LoCo problems, especially when extended with so-called

cardinality constraints.

2. The Potassco framework [Gebser et al., 2011] gives us access to a state-of-the

art conflict-driven clause learning solver much like contemporary Sat solvers. This

technology has proven to be highly efficient and robust on numerous challenging

academic and industrial problems.

While there are other mature systems implementing the answer set semantics like e.g.

DLV [Leone et al., 2006], we also chose Potassco over those alternatives because it

80

5.1. WORKFLOW 81

proved to have the best performance at recent ASP competitions like e.g. [ASP Compe-

tition, 2011] and because of its active research community. In addition to ASP we have

also developed a transformation to MiniZinc [Nethercote et al., 2007], providing us with

access to a whole portfolio of integer programming, Sat and constraint solvers. However,

a prototypical implementation for MiniZinc in the same way as for ASP has not been

in the scope of this project and so the main ideas of this transformation will only be

discussed on a theoretical level in section 5.3.

Concerning future work it would also be promising to develop an implementation

that follows the idea of incrementally adding components instead of pre-generating all

potentially useful ones. The idea to start from lower bound many components only to

incrementally add components until a configuration is found is practically very appealing

and would resemble the basic approach of generative CSP with additional upper bounds.

However, there are currently no freely available solvers for generative or conditional Csp

which we could use as a potential LoCo target language. Also the existing tool support

concerning ASP does not yet meet our needs for implementing this idea [Gebser et al.,

2008].

5.1 Workflow

Figure 5.1 depicts an overview of the transformation workflow. First the problem gets

specified in the LoCo input language; domain and instance knowledge can optionally

be defined together or separately in order to reuse a one-time definition of a problem

specification with varying problem instances. The current version of the prototype only

supports the representation of the LoCo knowledge via text-based input files. While

this is sufficient for the purpose of a prototypical implementation, one of the main goals

concerning future extensions is to develop a graphical user interface that creates the

textual LoCo representation automatically. Next we parse the input files including a

syntax and semantic check for correctness. The system is able to give the user appropriate

and practical feedback in case of any errors. After that we determine the bounds for the

generated components and check if the model is finite by traversing the configuration

graph constructed during the parsing step. The specification is then translated into

82 CHAPTER 5. PROTOTYPICAL IMPLEMENTATION

executable code, resulting in one or more output files depending on the chosen target

language and the chosen output mode. For example, the ASP implementation allows to

translate instance and domain knowledge in separate files or everything altogether in one

output file.

Figure 5.1: LoCo Workflow

The prototype has been implemented in Java. For parsing and analyzing the LoCo

input language we use the JavaCC parser generator [JavaCC, 2014]. The bounds compu-

tation is implemented in ECLiPSe-Prolog [ECLiPSe, 2014] using the integer programming

solver of the open-source optimization suite COIN-OR [COIN-OR, 2014]. Although the

technical implementation has been a major part of the project in terms of both time and

effort we decided not to include a detailed discussion of it since it would mainly involve

a presentation about basic software engineering topics.

5.2 Transformation to ASP

The main focus of this section lies on discussing and presenting the automatically gener-

ated ASP code starting from a LIL specification. While we mention and explain the used

ASP language constructs in a short and compressed way, a basic background knowledge

5.2. TRANSFORMATION TO ASP 83

about logic programming and ASP in particular might be helpful for a better understand-

ing. A detailed coverage of all needed topics though definitely goes beyond the scope of

this thesis and instead we refer the reader to [Gebser et al., 2012,Brewka et al., 2011] for

a deeper look into both ASP and Potassco.

Note that we explicitly represent all generated components that might be used in the

configuration given by the derived finite upper bound. During the solving process LoCo

then picks a subset of these generated components, possibly a minimal subset for an

optimization problem. In case the specification can be satisfied and a solution is found,

the chosen components form a valid model.

5.2.1 Constant and Component definitions

Constants We first depict the manually defined constants of our model in ASP code in

listing 5.1. The transformation output is rather self-explanatory since it is highly similar

and more or less a one-to-one mapping from the LoCo input language definition in listing

4.1 of the previous chapter.

1 #const hMaxHeight = 10.

2 #const hMaxWidth = 5.

3 #const maxSizeTA = 10.

4 #const maxSizeTB = 12.

5 #const cMaxNrTA = 5.

6 #const cMaxNrTB = 3.

7 #const cMaxSizeTA = 5 * maxSizeTA.

8 #const cMaxSizeTB = 7 * maxSizeTB.

9 #const cMaxSize = cMaxSizeTA + cMaxSizeTB.

10 #const rMaxPos = 4.

Listing 5.1: Definition of user-defined constants in ASP

In addition to these manual constants we need to create constants representing the

upper bounds for the input components (listing 5.2). This information can be defined

on either level or can even be separated between the two as it has been outlined in the

previous chapter. In case we define a bound for a component on the instance level that

84 CHAPTER 5. PROTOTYPICAL IMPLEMENTATION

already received a value on the domain level, the instance level value will have priority in

this situation and will be the one used at this point. Since the internal component IDs

simply run starting from 1 in ascending order up to their defined upper bounds, there is

no need to state lower bounds for input components and the upper bounds at the same

time represent the number of given instances.

1 % Upper bound for input component person

2 #const person_UB = 2.

3 % Upper bound for input component house

4 #const house_UB = 1.

5 % Upper bound for input component thingA

6 #const thingA_UB = 5.

7 % Upper bound for input component thingB

8 #const thingB_UB = 5.

Listing 5.2: Upper bounds for input components

In contrast to this generated components come with both a lower and an upper bound

as shown in listing 5.3. Of course the upper bound is the important one here to maintain

the finiteness of the model and in case of an undefined lower bound we could assume it

to be one without any real ill effects. The automatic bounds computation nevertheless

also computes a lower bound for every generated component which helps to reduce the

domain sizes and consequently the total search space for the problem. We investigate in

more detail how these bounds constants are practically used further below.

Input component definition Listing 5.4 depicts the component definition for input

components house and thingA. As already discussed the ASP transformation creates all

possible component instances from which it then picks a subset during the solving process.

Hence our knowledge base contains upper bound many instances for all component types.

For this purpose the predicates named after the component with an added ”Gen” as a

postfix are determined to fulfill this role, i.e. predicate houseGen in line 2 representing

the finitely many component instances which might be used in the configuration for

component house. The instances of predicate house on the other hand are those that

5.2. TRANSFORMATION TO ASP 85

1 % Setting computed lower bound for generated component cabinet

2 #const cabinet_LB = 2.

3 % Setting computed upper bound for generated component cabinet

4 #const cabinet_UB = 10.

5 % Setting computed lower bound for generated component room

6 #const room_LB = 1.

7 % Setting computed upper bound for generated component room

8 #const room_UB = 10.

Listing 5.3: Bounds for generated components

actually are used as part of a solution set. Since in the case of input components the

number of effective instances is equal to the upper bound, all of these generated instances

will be actually used. So every houseGen object automatically becomes a house object

(line 3). This is the major difference in comparison to the ASP representation of generated

components as we shall see below.

Lines 4 and 5 represent the two defined house attributes height and width. In order to

maintain uniqueness of predicate names the component name is put as a prefix to every

attribute name, e.g. attribute height becomes houseHeight in the ASP code. Both are

Integer attributes with bounds of [0..hMaxHeight-1] and [0..hMaxWidth-1] respectively.

Let’s have a quick look at the output code for these attributes: Both lines use so-called

cardinality constraints [Simons et al., 2002] which are a special case of weighted constraint

rules and a form of aggregate constraints for counting the number of occurrences. The

numbers outside the curly brackets represent the cardinality limits and for the purpose

of attribute definitions both the upper and lower cardinalities are set to 1 since every

house instance should have exactly one width attribute. Inside this choice construct

there is a conditional construct selecting only those literals in front of the colon for

which the conditional part afterwards holds. Lines 5 expresses the fact that for every H

serving as an identifier of a house instance there is exactly one ground instance of the

predicate houseWidth(H,HW) whereas HW represents the width attribute. The conditional

part [HW=0..hMaxWidth-1] represents the attribute bounds and restricts the attribute

value to be between zero and [hMaxWidth-1], with hMaxWidth being a manually-defined

86 CHAPTER 5. PROTOTYPICAL IMPLEMENTATION

1 % Input component house

2 houseGen(1..house_UB).

3 house(H) :- houseGen(H).

4 1 { houseHeight(H, HH) : HH = 0..hMaxHeight-1 } 1 :- house(H).

5 1 { houseWidth(H, HW) : HW = 0..hMaxWidth-1 } 1 :- house(H).

6

7 % Input component thingA

8 thingAGen(1..thingA_UB).

9 thingA(T) :- thingAGen(T).

10 1 { thingASize(T,TS) : TS = 0..tMaxSizeA } 1 :- thingA(T).

11 1 { thingABig(T,TB) : TB = 0..1 } 1 :- thingA(T).

12 1 { thingADirty(T,TD) : TD = 0..1 } 1 :- thingA(T).

13 1 { thingAForUpper(T,TF) : TF = 0..1 } 1 :- thingA(T).

14 1 { thingAMinFloor(T,TM) : TM = 0..hMaxHeight-1 } 1 :- thingA(T).

15 1 { thingAMaxFloor(T,TMA) : TMA = 0..hMaxHeight-1 } 1 :- thingA(T).

Listing 5.4: Input components house and thingA

constant from above. For a deeper look into this and other related ASP and Potassco

language elements we again refer to [Gebser et al., 2012,Simons et al., 2002].

In an analogous manner to a house component we illustrate the full encoding for a

thingA component in lines 8-15. Next to some Integer attributes this component definition

contains attributes big, dirty and forUpper of type Boolean in lines 11-13. Internally

Boolean attributes are mapped to the interval [0,1] as can be seen in the conditional

parts of the cardinality constructs.

Generated component definition The definition for a generated component is highly

similar to the one for input components we’ve just covered. In fact, the representation

of attributes is identical and the only difference concerns the selection and generation

process of instances. Remember that for every generated component we select a subset of

the possible instances with its cardinality between a lower and an upper bound instead of

making every cabinetGen object automatically a cabinet object. The selection process is

done via a choice rule [Niemelä et al., 1999] in line 3 which is basically another variant of

using the weighted constraint syntax of a cardinality constraint in Potassco. Inside the

5.2. TRANSFORMATION TO ASP 87

1 % Generated component cabinet

2 cabinetGen(1..cabinet_UB).

3 cabinet_LB { cabinet(C) : cabinetGen(C) }.

4 cabinet(C) :- cabinetGen(C), cabinetGen(C2), cabinet(C2), C < C2.

5 1 { cabinetSize(C,CS) : CS = 0..cMaxNrTA*tMaxSizeA+cMaxNrTB*tMaxSizeB } 1

6 :- cabinet(C).

7 1 { cabinetDirty(C,CD) : CD = 0..1 } 1 :- cabinet(C).

8 1 { cabinetBig(C,CB) : CB = 0..1 } 1 :- cabinet(C).

9 1 { cabinetTop(C,CT) : CT = 0..1 } 1 :- cabinet(C).

10 1 { cabinetColor(C,CC) : cabinetColorEnum(CC) } 1 :- cabinet(C).

11 cabinetColorEnum(red).

12 cabinetColorEnum(blue).

13 cabinetColorEnum(green).

Listing 5.5: Generated component cabinet

curly brackets the conditional construct [cabinet(C) : cabinetGen(C)] is a short-cut for a

collection of all possible cabinet instances C instantiated with variables from cabinetGen.

The lower bound on the left side states that from the available collection of instances

there have to be at least lower bound many selected. On the right side of the curly

brackets we can omit the upper bound since the maximum number of occurrences is

already implicitly bounded by the domain of cabinetGen in line 2. Line 4 represents a

symmetry breaking constraint for the selection of cabinets s.t. instances with lower ID

get priority. Note that this additional constraint is not necessary for input components

since we don’t make a selection for them. Complex expressions for attribute bounds are

easy to map since the conditional part of a conditional construct in Potassco can also

contain arithmetic expressions (line 5). The subsequent lines show some attributes of the

same structure as discussed previously. Attribute color in line 10 is again more interesting

since it is an enumeration type. Instead of a specified range in the conditional part we

use a conjunction of domain predicates for attributes of this type. The available options

are defined as simple facts, e.g. colors red, blue and green in lines 11-13.

88 CHAPTER 5. PROTOTYPICAL IMPLEMENTATION

5.2.2 Connection rules

We now cover the transformation of rules and start with the supported forms of con-

nection rules. In order to maintain a uniform persistent structure we will map the same

snapshots of the House Problem that were already discussed in chapters 3 and 4. Since

the mappings of some φ constraint parts get very large, most of them for both the con-

nection and consistency rules will be presented in a shortened way or left out for the sake

of better clarity and presentation. We will discuss the main constructs for representing

a constraint on the basis of a standard binary connection and after that only discuss

additional elements that haven’t been presented before or which are specific to the type

of mapped rule.

Standard binary connections

The code snippet in listing 5.6 shows the transformation of a standard binary connection

between thingA and cabinet from the axiomatization of example 2 in chapter 3. The

first line represents the existence enforcement of the required binary connection pred-

icate by again using cardinality constraints [Simons et al., 2002] with the numbers or

constants outside the curly brackets specifying the lower and upper bounds: In more

detail it expresses the fact that there is exactly one ground instance of the predicate

thingA Cab(TA,C) for every TA such that C and TA are identifiers of cabinets and things

of type A. Conditional literals are used for the generation of the binary connection predi-

cates consisting of a main part and a conditional part, e.g. thingA Cab(T,C):cabGen(C)

in line 1. From this it follows that every id C used in the generated connection predicate

must belong to a valid cabinet instance. The conditional part (cabGen(C) in this case)

for such rules must be specified by ground facts in the knowledge base as done previ-

ously during the definition of bounds for the component types. Hence our knowledge

base contains all possible instances of cabGen, i.e. the finitely many component instances

which might be used in the configuration. The instances of cab and thingA are those

that actually are used as part of a solution set. The integrity constraint in line 3 then

ensures that every cabinet that features in a connection is also in the extension of the

cab predicate.

5.2. TRANSFORMATION TO ASP 89

1 % Binary connection thingA -> cabinet

2 1 { thingA_cabinet(TA,C) : cabinetGen(C) } 1 :- thingA(TA).

3 :- thingA_cabinet(TA,C), not cabinet(C).

4 % Phi Constraint

5 :- not c1(TA,C), thingA_cabinet(TA,C).

6 c1(TA,C) :- c1_1(TA,C).

7 c1(TA,C) :- c1_2(TA,C).

8 c1_1(TA,C) :- c1_1_1(TA,C), c1_1_2(TA,C).

9 c1_1_1(TA,C) :- thingA_cabinet(TA,C), thingA(TA), cabinet(C), cabinetBig(C,CB), CB == 1.

10 c1_1_2(TA,C) :- thingA_cabinet(TA,C), thingA(TA), cabinet(C), thingABig(TA,TAB), TAB == 1.

11 c1_2(TA,C) :- not c1_2_1(TA,C), thingA_cabinet(TA,C), thingA(TA), cabinet(C).

12 c1_2_1(TA,C) :- thingA_cabinet(TA,C), thingA(TA), cabinet(C), thingABig(TA,TAB), TAB == 1.

Listing 5.6: ASP output for the connection from thingA to cabinet

Lines 5-12 depict the mapping of the constraint subformula from example 2. The

integrity constraint in line 5 states that for every connection between a thing and a cabinet

the constraint c1 must hold. Every φ constraint of a connection or consistency rule gets

assigned a distinct number s.t. the name of the corresponding constraint predicate is c

concatenated with this allocated number. The following lines 6-7 represent the mapping

of a disjunction where either one of them has to hold in order to justify c1.

When mapping a logical connective we add nested constraint predicates with new

names created by further concatenating an underscore with another running number

in ascending order. In the current case the left- and right-hand side expressions of

the disjunction are represented by c1 1 and c1 2. The left disjunction is separated

furthermore in two conjunction operand expressions (line 8). Lines 9 and 10 then check for

both of these parts if attribute big of cabinet and thingA respectively is set to TRUE. The

second part of the disjunction on the top level contains a negation connective, represented

here in that the body of line 11 is fulfilled when the rule in line 12 fails.

In the just described way the generated connection predicates of a φ constraint form

a kind of expression tree where the fulfillment of a predicate depends on the fulfillment of

lower-level predicates or on an expression in case it is a leaf predicate. Figure 5.2 shows

the structure for the predicates we have just described in the previous paragraph for a

better understanding.

Next to transforming φ constraints in the presented way the translator component of

90 CHAPTER 5. PROTOTYPICAL IMPLEMENTATION

C1

Ú

C1_1 C1_2

Ù Ø

C1_1_1 C1_1_2 C1_2_1

Figure 5.2: Predicate tree for listing 5.6

the prototypical implementation also fulfills some additional optimization steps on top

of that for simplifying their structure. The main purpose here is to decrease the number

of needed predicates as well as to reduce the depth of the resulting predicate tree.

Listing 5.7 depicts the reduced version of the φ constraint. We present the main

undertaken steps from the bottom up: First we can eliminate the negation from lines 11-

12 in the original constraint since it is an attribute comparison and we can simply change

it to comparing attribute big with zero instead of one. The optimizer also eliminates the

conjunction in lines 8-10 and reduces it to one ASP rule (lines 3-4 in the new constraint).

Since we could remove all logical connectives of the tree on the lower levels the disjunction

can also be moved up one level by eliminating the helper predicates c1 1 and c1 2.

1 % Simplified Phi Constraint

2 :- not c1(TA,C), thingA_cabinet(TA,C).

3 c1(TA,C) :- thingA_cabinet(TA,C), thingA(TA), cabinet(C), thingBig(TA,TAB), cabinetBig(C,CB),

4 TAB == 1, CB == 1.

5 c1(TA,C) :- thingA_cabinet(TA,C), thingA(TA), cabinet(C), thingABig(TA,TAB), TAB == 0.

Listing 5.7: Modified φ constraint

Side note: The attentive reader might have noticed that there are other different and

easier ways to formulate the original constraint. In fact since the LoCo input language

5.2. TRANSFORMATION TO ASP 91

and the translator component also support logical implication, the constraint C.big ->

TA.big would be logically equivalent.

Listing 5.8 shows the reverse direction of the binary connection from cabinet to thingA.

For this and all remaining connection and consistency rules we will only present the al-

ready optimized constraint parts. While the basic structure is analogous to the rule in

the other direction, the transformation of a summation aggregate in lines 7-10 is the

interesting topic that shall be discussed here. The main constraint part is shown in lines

9-10, ensuring that the calculated sum TAS SUM is at most 5. TAS SUM represents the

sum of all thingA sizes for a certain cabinet C in extension of predicate c2 Aggr1 (line 7)

which represents the combination of the connection predicate with the size attribute of

thing. However, c2 Aggr1 only contains those tuples that satisfy the nested constraint

c2 Constr1 (line 8) ensuring that only big things will be taken into consideration. The

structure of a nested constraint is analogous to a standard constraint. For a more thor-

ough and deeper understanding of the mentioned ASP language elements here we refer

again to [Gebser et al., 2012,Brewka et al., 2011].

1 % Binary connection cabinet -> thingA

2 0 { thingA_cabinet(TA,C) : thingAGen(TA) } 5 :- cabinet(C).

3 :- thingA_cabinet(TA,C), not thingA(TA).

4 % Phi Constraint

5 :- not c2(TA,C), thingA_cabinet(TA,C).

6 c2(TA,C) :- c2_1(TA,C), c2_2(TA,C).

7 c2_1_Aggr1(C,TA,TAS) :- thingA_cabinet(TA,C), thingASize(TA,TAS), c2_1_Constr1(TA,C).

8 c2_1_Constr1(TA,C) :- thingA_cabinet(TA,C), thingA(TA), cabinet(C), thingABig(TA,TAB), TAB == 1.

9 c2_1(TA,C) :- thingA_cabinet(TA,C), thingA(TA), cabinet(C),

10 TAS_SUM = #sum [c12_1_Aggr1(C,_,TAS) = TAS], TAS_SUM <= cMaxSizeTA.

11 c2_2(TA,C) :- thingA_cabinet(TA,C), thingA(TA), cabinet(C), cabinetTop(C,CT), CT == 0.

12 c2_2(TA,C) :- thingA_cabinet(TA,C), thingA(TA), cabinet(C), thingAForUpper(TA,TAF), TAF == 1.

Listing 5.8: ASP output for the binary connection from cabinet to thingA

Unfolded Binary Connections

Let’s now have a look on the transformation of unfolded binary connections on the basis of

the LIL rule 4.5 from chapter 4. At this point we will only discuss the additional elements

92 CHAPTER 5. PROTOTYPICAL IMPLEMENTATION

which are necessary for this type of axiom. The choice rule in line 1 stipulates that for

every position P either one of the two cases positionUBC1(P) or positionUBC2(P) has

to hold. Every possible case then determines the number of connected cabinets for it

(lines 2-3). The constraint for the first case in lines 5-6 has the same structure as the

constraints for the standard binary connections discussed previously.

Case 2 is more interesting since we introduce the addressing of specific component in-

stances. The integrity constraint in line 8 enforces the existence of a fact positionUBC2-

Constr(P,C) for every case 2. In line 9 we introduce additional variables C1 and C2 for

representing the component instances. This way positionUBC2Constr(P,C) must hold

for every position P connected to a cabinet C and for the fulfillment of constraint pred-

icate c4 the two specific component instances C1 and C2 are added and need to satisfy

the conditions expressed in the constraint part of case 2. Thus, by using this construct

C1 and C2 can be seen as existentially quantified variables.

The body of the lower-level predicates c4 1 and c4 2 contains cabinet atoms for the

variables C, C1 and C2. An attribute addressed via C, e.g. attribute big in c4 1, refers to

all cabinet instances connected to a position s.t. none of the cabinet instances are allowed

to be big. On the other hand the top attribute addressed by C1 and C2 respectively refers

in each case to only one specific instance whereupon the instances referenced by C1 and

C2 have to be different from each other.

One-to-many connections

Listing 5.10 shows the ASP output for the standard one-to-many connection from example

4.8. We chose to present the transformation of this instead of example 4.9 because the

constraint part contains counting aggregates which haven’t been discussed as of yet.

Similar to binary connections we employ a choice rule in line 1 to enforce the required

connections for every cabinet instance. In this case though the cardinality construct in

the head contains two conditional literals each for connections with thingA and thingB

respectively to choose from. The lower cardinality is set to one and the upper cardinality

is undefined, expressing the fact that for each cabinet C at least one connection atom

thingA cabinet(TA,C) or thingB cabinet(TB,C) needs to exist.

5.2. TRANSFORMATION TO ASP 93

1 1 { positionUBC1(P), positionUBC2(P) } 1 :- position(P).

2 1 { cabinet_position(C,P) : cabinetGen(C) } 1 :- positionUBC1(P).

3 2 { cabinet_position(C,P) : cabinetGen(C) } 2 :- positionUBC2(P).

4 % Case 1

5 :- not c3(P,C), positionUBC1(P), cabinet_position(C,P), cabinet(C), position(P).

6 c3(P,C) :- positionUBC1(P),cabinet_position(C,P),cabinet(C),position(P),cabinetTop(C,CT),CT == 0.

7 % Case 2

8 :- not positionUBC2Constr(P,C), positionUBC2(P), cabinet_position(C,P), cabinet(C), position(P).

9 positionUBC2Constr(P,C) :- c4(P,C,C1,C2).

10 c4(P,C,C1,C2) :- c4_1(P,C,C1,C2), c4_2(P,C,C1,C2).

11 c4_1(P,C,C1,C2) :- positionUBC2(P), cabinet_position(C,P), cabinet(C), position(P),

12 cabinet_position(C1,P), cabinet(C1), cabinet_position(C2,P), cabinet(C2), C1!=C2,

13 cabinetBig(C,CB), CB == 0.

14 c4_2(P,C,C1,C2) :- positionUBC2(P), cabinet_position(C,P), cabinet(C), position(P),

15 cabinet_position(C1,P), cabinet(C1), cabinet_position(C2,P), cabinet(C2), C1!=C2,

16 cabinetTop(C1,C1T), cabinetTop(C2,C2T), C1T == 1, C2T == 0.

17 c4_2(P,C,C1,C2) :- positionUBC2(P), cabinet_position(C,P), cabinet(C), position(P),

18 cabinet_position(C1,P), cabinet(C1), cabinet_position(C2,P), cabinet(C2), C1!=C2,

19 cabinetTop(C1,C1T), cabinetTop(C2,C2T), C1T == 0, C2T == 1.

Listing 5.9: ASP output for an unfolded binary connection

Let’s have a look at the φ constraint and in particular on the transformation of count-

ing aggregates: Similar to the summation aggregate in listing 5.8 each of the counting

aggregates has a nested constraint for restricting the counting of instances to only big

things of type A or B respectively. The structure for these nested constraints is identical

to the summation aggregate; see lines 5-6 for thingA and lines 7-8 for thingB. In line 10

we use the built-in counting aggregates of Potassco to assign the number of counted

instances to variables TA CNT and TB CNT and state that their sum needs to be smaller or

equal to 4 (TA CNT + TB CNT <= 4). Note that in case there are only connections from

a cabinet to either thingA or to thingB then the counting aggregate with no elements

simply returns zero.

Exclusive-OR One-to-Many connections

Following the same pattern as for the other connection types discussed so far we depict

the ASP code for the LIL example 4.10 from chapter 4. Since in this case cabinets can

94 CHAPTER 5. PROTOTYPICAL IMPLEMENTATION

1 % One-to-many connection

2 1 { thingA_cabinet(TA,C) : thingAGen(TA), thingB_cabinet(TB,C) : thingBGen(TB) } :- cabinet(C).

3 % Phi Constraint

4 :- not c5(C,TA,TB),cabinet(C),thingA(TA),thingB(TB),thingA_cabinet(TA,C),thingB_cabinet(TB,C).

5 c5_Aggr1(C,TA) :- thingA_cabinet(TA,C), c5_AggrConstr1(TA,C).

6 c5_AggrConstr1(TA,C) :- thingA_cabinet(TA,C), thingA(TA), cabinet(C), thingABig(TA,TAB), TAB==1.

7 c5_Aggr2(C,TB) :- thingB_cabinet(TB,C), c5_AggrConstr2(TB,C).

8 c5_AggrConstr2(TB,C) :- thingB_cabinet(TB,C), thingB(TB), cabinet(C), thingBBig(TB,TBB), TBB==1.

9 c5(C,TA,TB) :- cabinet(C), thingA(TA), thingB(TB), thingA_cabinet(TA,C), thingB_cabinet(TB,C),

10 TA_CNT = #count{c5_Aggr1(C,_)}, TB_CNT = #count{c5_Aggr2(C,_)}, TA_CNT + TB_CNT <= 4.

Listing 5.10: ASP output for a standard one-to-many connection

be only connected to either things of type A or to type B, the transformation starts with

a choice rule requiring to select either case cabinetXORC1(C) or case cabinetXORC2(C)

(line 2). Lines 3-4 contain the ASP code for the first case: We stipulate in line 3 that for

every cabinet C and case one there need to exist between 1 and 5 connections to thingA.

Line 4 expresses the fact that the existence of at least one connection with thingA enforces

case one to hold for this specific cabinet. This reverse direction is needed to guarantee the

exclusivity of the two cases. Lines 5 and 6 represent the analogous mapping for thingB.

As already mentioned, XOR connections don’t possess φ constraints of any kind.

1 % XOR One-to-many connection

2 1 { cabinetXORC1(C), cabinetXORC2(C) } 1 :- cabinet(C).

3 1 { thingA_cabinet(TA,C):thingAGen(TA) } 5 :- cabinetXORC1(C).

4 cabinetXORC1(C) :- thingA_cabinet(_,C).

5 1 { thingB_cabinet(TB,C):thingBGen(TB) } 3 :- cabinetXORC2(C).

6 cabinetXORC2(C) :- thingB_cabinet(_,C).

Listing 5.11: ASP output for a XOR one-to-many connection

General One-to-Many connections

The last type of one-to-many connection is the most expressive form which provides the

opportunity to address individual component instances. Same as before the transforma-

tion starts out with a separation into distinct cases (line 2); we show here the 4 cases

from rule 4.11. The exact number of involved instances for each component type is also

5.2. TRANSFORMATION TO ASP 95

defined by choice rules, e.g. case one in lines 4-5 stipulates exactly one connection to

each type of thing. Lines 13-14 show that next to an exact number of instances a case

can also cover an interval of allowed instances; case 4 here subsumes every configuration

with 4 to 7 connected thingA instances and 5 to 7 thingB instances.

Every case can also have an optional constraint part. We depict the constraint for

case 2 in lines 16-19 which stipulates that the size of at least one thingA instance needs

to be bigger than all connected thingB instances. The structure of the constraint and the

addressing of specific instances is highly similar to the example that has been discussed

for unfolded binary connections.

1 % General one-to-many connection

2 1 { cabinetGI2MC1(C), cabinetGI2MC2(C), cabinetGI2MC3(C), cabinetGI2MC4(C) } 1 :- cabinet(C).

3 % Case 1

4 1 { cabinet_thingA(C,TA) : thingAGen(TA) } 1 :- cabinetGI2MC1(C).

5 1 { cabinet_thingB(C,TB) : thingBGen(TB) } 1 :- cabinetGI2MC1(C).

6 % Case 2

7 2 { cabinet_thingA(C,TA) : thingAGen(TA) } 2 :- cabinetGI2MC2(C).

8 3 { cabinet_thingB(C,TB) : thingBGen(TB) } 3 :- cabinetGI2MC2(C).

9 % Case 3

10 3 { cabinet_thingA(C,TA) : thingAGen(TA) } 3 :- cabinetGI2MC3(C).

11 4 { cabinet_thingB(C,TB) : thingBGen(TB) } 4 :- cabinetGI2MC3(C).

12 % Case 4

13 4 { cabinet_thingA(C,TA) : thingAGen(TA) } 7 :- cabinetGI2MC4(C).

14 5 { cabinet_thingB(C,TB) : thingBGen(TB) } 7 :- cabinetGI2MC4(C).

15 % Phi constraint for Case 2

16 :- not cabinetGI2MC2Constr(C,TB), cabinetGI2MC2(C), cabinet(C), cabinet_thingB(C,TB), thingB(TB).

17 cabinetGI2MC2Constr(C,TB) :- c6(C,TB,TA1).

18 c6(C,TB,TA1) :- cabinetGI2MC2(C), cabinet(C), cabinet_thingB(C,TB), thingB(TB),

19 cabinet_thingA(C,TA1), thingA(TA1), thingASize(TA1,TA1S), thingBSize(TB,TBS), TA1S > TBS.

Listing 5.12: ASP output for a general one-to-many connection

96 CHAPTER 5. PROTOTYPICAL IMPLEMENTATION

5.2.3 Consistency rules

Let’s now investigate the transformation of the non-local constraint parts of consistency

rules.

Candidate key rules

ASP is well-suited to express candidate key axioms in a convenient and natural way.

We look at the transformation of both examples from chapter 4, starting with rule 4.12.

The set of attributes which uniquely identifies a component instance is represented in

standard constraint form. Constraint c7 checks the equivalence of attributes floor (line

3) and pos (line 4). If constraint c7 holds for two room instances R1 and R2 then the

integrity constraint in line 2 only holds if expression R1 != R2 fails, i.e. both instances

have to be equal. This condition represents the consequent part of the axiom.

1 % Candidate key rule

2 :- R1 != R2, room(R1), room(R2), c7(R1,R2).

3 c7(R1,R2) :- room(R1), room(R2), roomFloor(R1,R1F), roomFloor(R2,R2F), R1F == R2F,

4 roomPos(R1,R1P), roomPos(R2,R2P), R1P == R2P.

Listing 5.13: ASP output for a candidate key rule

Listing 5.14 then shows the extended version of a cardinality key axiom by taking

also connections to other component types into account. Next to having the identical

nr attribute value, two positions have to be equal in case they belong to the same room

instance. One could certainly see the incorporation of connection predicates as just a

comparison of foreign keys and therefore not vastly different from standard component

attributes.

Connection-generating rules

We depict the transformation of the connection-generating rule from example 10 in listing

5.15. The body of the ASP rule represents the antecedent and contains the chain of

connected components. In this case the mapping can be reduced to a single ASP rule.

5.2. TRANSFORMATION TO ASP 97

1 % Candidate key rule

2 :- P1 != P2, position(P1), position(P2), room(R),

3 position_room(P1,R), position_room(P2,R), c8(P1,P2,R).

4 c8(P1,P2,R) :- position(P1), position(P2), room(R), position_room(P1,R), position_room(P2,R),

5 positionNr(P1,P1N), positionNr(P2,P2N), P1N == P2N.

Listing 5.14: ASP output for an extended candidate key rule

If the antecedent would also consist of additional attribute comparisons or arithmetic

expressions, it would be modelled as a separate constraint in the usual way with the

body of the main rule being replaced by the respective constraint predicate.

1 % Connection-generating rule for connection room_person(RO,PERS)

2 room_person(RO,PERS) :- person(PERS), thingB(TB), cabinet(CAB), position(POS), room(RO),

3 person_thingB(PERS,TB), thingB_cabinet(TB,CAB),

4 cabinet_position(CAB,POS), position_room(POS,RO).

Listing 5.15: ASP output for a connection-generating rule

General First Order rules

GFO rules are able to express more complex non-local constraints. They are also used for

modelling intensional component catalogue knowledge. Following the same pattern as for

the other connection and consistency rules we show the ASP mapping for the respective

examples that have been introduced in axiom form in chapter 3 and in LIL form in

chapter 4.

We start with example 11 for coloring cabinets blue in case they are placed on positions

1 or 2 : The transformation is broken down into 2 constraint parts with the constraint

identified by predicate c9 representing the antecedent and predicate c10 representing the

consequent of the constraint. The integrity constraint in line 2 then determines that c10

has to hold for a given cabinet-position connection if pre-condition c9 is fulfilled.

The second GFO example in listing 5.17 shows an application of this rule type for a

slightly extended connection-generating rule where the consequent doesn’t solely consist

of a connection that needs to exist but of a potentially more complex φ constraint part (in

98 CHAPTER 5. PROTOTYPICAL IMPLEMENTATION

1 % general FO rule

2 :- not c10(C,P), cabinet(C), position(P), cabinet_position(C,P), c9(C,P).

3 c9(C,P) :- cabinet(C), position(P), cabinet_position(C,P), positionNr(P,PN), PN == 1.

4 c9(C,P) :- cabinet(C), position(P), cabinet_position(C,P), positionNr(P,PN), PN == 2.

5 c10(C,P) :- cabinet(C), position(P), cabinet_position(C,P), cabinetColor(C,CC), CC == blue.

Listing 5.16: ASP output for a general FO rule (1)

this case some attribute comparisons). The connection chain in the integrity constraint

enforces the fulfillment of constraint predicate c11 which is then simply modelled in

standard constraint form.

1 % general FO rule

2 :- not c11(TB,R,C,P), thingB(TB), room(R), cabinet(C), position(P), thingB_cabinet(TB,C),

3 cabinet_position(C,P), position_room(P,R).

4 c11(TB,R,C,P) :- thingB(TB), room(R), cabinet(C), position(P), thingB_cabinet(TB,C),

5 cabinet_position(C,P), position_room(P,R), thingBMinFloor(TB,TBM), roomFloor(R,RF),

6 TBM <= RF, thingBMaxFloor(TB,TBMA), roomFloor(R,RF), TBMA >= RF.

Listing 5.17: ASP output for a general FO rule (2)

The final GFO example in listing 5.18 covers the introduction of additional variables

in the consequent part of the rule. Like for the first GFO mapping in listing 5.16 there

exists a pre-condition represented here by constraint part c12(TA,C). Line 4 is key for the

mapping of the existential quantifier and expresses the fact that c14(TA,C) holds when

c13(TA,C,P) is fulfilled. Variable P here is the newly introduced variable representing an

arbitrary person component instance. Hence the mapping for the introduction of a new

variable via an existential quantifier is analog to the way we address component instances

in unfolded binary connections (see also the mapping from listing 5.9) .

5.2.4 Domain and Instance Knowledge

Having now finished the presentation of connection and consistency rules, let’s shift our

attention to the mapping of configuration problem specifications.

5.2. TRANSFORMATION TO ASP 99

1 :- not c14(TA,C), thingA(TA), cabinet(C), thingA_cabinet(TA,C), c12(TA,C).

2 c12(TA,C) :- thingA(TA), cabinet(C), thingA_cabinet(TA,C),

3 thingADirty(TA,TAD), cabinetDirty(C,CD), TAD == CD.

4 c14(TA,C) :- c13(TA,C,P).

5 c13(TA,C,P) :- thingA(TA), cabinet(C), person(P), person_thingA(P,TA).

Listing 5.18: ASP output for a general FO rule (3)

Domain knowledge We can tick off the transformation of ports since it is identical to

connection axioms as well as the transformation of attribute ranges since this has already

been discussed as part of the component definitions in section 5.2.1. The mapping for

the intensional Component Catalogue rules is identical to the mapping of General First

Order rules, so that concerning the Domain Knowledge this leaves the mapping of the

extensional Component Catalogue as the only open topic that needs to be addressed

specifically at this point.

Extensional Component Catalogue Listing 5.19 depicts the ASP code for the ex-

tensional catalogue from example 15 of chapter 3: For every instance of thingA exactly

one of the possible attribute tuples needs to be selected (line 1). The selected tuple option

then assigns values to all component attribute values, e.g. tuple 1 implies the attribute

size being set to 5 (line 3), the Boolean attribute big being set to TRUE (line 4) and

continues to assign values in the same manner to all remaining attributes of thingA. In

order to create a dependency in both directions the existence of the complete attribute

vector also implies the selection of tuple 1 (lines 7-8), i.e. the attribute vector uniquely

identifies the selected tuple option and vice versa. The mapping of further tuples is done

the same way as just described for the first one.

Instance knowledge Same as for the Domain Knowledge the main parts of the ASP

transformation for the Instance Knowledge have already been described. While the in-

stance knowledge can define additional constants, their mapping at this point is identical

to the standard constants in listing 5.1. The parser component detects if constants get

a new value at this level s.t. in case of multiple values there will be only one assignment

for each constant in the ASP output code. The same process also applies when setting

100 CHAPTER 5. PROTOTYPICAL IMPLEMENTATION

1 1 { thingATuple1(TA), thingATuple2(TA), ... } 1 :- thingA(TA).

2 % Tuple 1

3 thingASize(TA,5) :- thingATuple1(TA).

4 thingABig(TA,1) :- thingATuple1(TA).

5 thingADirty(TA,0) :- thingATuple1(TA).

6 ...

7 thingATuple1(TA) :- thingA(TA), thingASize(TA,5), thingABig(TA,1), thingADirty(TA,0),

8 thingAForUpper(TA,0), thingAMinFloor(TA,0), thingAMaxFloor(TA,2).

9 % Tuple 2

10 thingASize(TA,3) :- thingATuple2(TA).

11 ...

Listing 5.19: Extensional component catalogue for thingA

manual bounds resulting in multiple values for bounds constants. The ASP mapping of

bounds for both input and generated components has been presented before in listings

5.2 and 5.3.

Let’s now investigate the mapping of component knowledge, starting with the input

components. The according ASP code for the input component knowledge of listing 4.5

from chapter 4 is depicted in listing 5.20:

1 #const person_UB = 2.

2

3 #const house_UB = 1.

4 houseHeight(1,5).

5 houseWidth(1,2).

6

7 #const thingA_UB = 5.

8 thingASize(1,3).

9 thingABig(1,1).

10 thingADirty(1,0).

11 ...

12 thingASize(2,4).

13 thingABig(2,1).

Listing 5.20: Input component knowledge

It is mandatory that for all input components the number of instances needs to be

stated. Line 1 represents the mapping for the LIL specification #person = 2. Remember

5.2. TRANSFORMATION TO ASP 101

that when defining component person the number of instances are defined via predicate

personGen(1..person UB), so declaring a constant person UB and setting its value to

2 gives the desired outcome. We get the same type of mapping for components house

and thingA in lines 3 and 7. The remaining lines contain the corresponding attribute

predicates, e.g. houseHeight(1,5) in line 4 states that attribute height of the house

instance identified by ID 1 gets value 5. Values for Boolean attributes are represented

by 1 and 0, s.t. thingABig(2,1) in line 13 sets attribute big of the thingA instance 2 to

being TRUE.

The mapping of input connections to ASP in listing 5.21 is quite straightforward

since the LIL representation of connection predicates is equal to the one in ASP (lines

5-9). In order to eliminate the possibility of invalid IDs the rules in lines 2-3 make sure

that the IDs used in the connections belong to component instances of person or thingA

respectively.

1 % Input connections for person_thingA

2 person(P) :- person_thingA(P,_).

3 thingA(T) :- person_thingA(_,T).

4

5 person_thingA(1,1).

6 person_thingA(1,2).

7 person_thingA(1,3).

8 person_thingA(1,4).

9 person_thingA(1,5).

Listing 5.21: Input connections between persons and things

The input component and connection knowledge can be seen as a mandatory part of a

partial configuration that needs to be defined for every problem instance. Next to compo-

nent and connection knowledge of type input for which it is imperative to be specified on

the instance level we can optionally also specify component bounds, attribute values and

the existence of specific component and connection instances for generated components.

Listing 5.22 shows the transformation of some partial configuration knowledge from the

LIL specification of listing 4.7.

102 CHAPTER 5. PROTOTYPICAL IMPLEMENTATION

1 #const cabinet_UB = 7.

2 #const cabinet_LB = 1.

3 room(5).

4 roomSize(5,18).

5 roomFloor(5,2).

6 roomRoomID(7,R005).

7 roomSize(7,15).

8 ...

9 cab_thingB(2,3).

Listing 5.22: Partial configuration knowledge

Since cabinet is a generated component the mapping for #cabinet = 7 results in an

ASP output of constants for both the upper and lower bound (lines 1-2). The automatic

bounds computation potentially overwrites lower bounds, e.g. suppose it computes a

lower bound of 3 then cabinet LB in line 3 would be set to 3 instead. Ground facts like

room(5) in line 3 have to the same form in both LIL and ASP and so don’t need any

type of processing. The next lines contain some attribute value assignments (lines 4-7)

and an example of a single connection instance (line 9).

Listing 5.23 shows how to exclude component and connection instances from the

model. The mapping to ASP again is rather simple by transforming negated facts into

integrity constraints.

1 :- room(4).

2 :- cab_thingB(2,4).

Listing 5.23: Excluding components and connections

5.2.5 Remarks

Default vs. classical negation

An important point that needs to be addressed is that the source and target languages

may have different semantics in terms of negation. In particular, the LoCo axiomatiza-

tion uses classical (or strong) negation whereas ASP was primarily conceived using default

5.2. TRANSFORMATION TO ASP 103

negation [Gelfond and Lifschitz, 1991] and only later extended to support classical nega-

tion too. Default negation basically expresses the fact that a literal not L holds by default

unless L is derived whereas the classical negation of L holds only if the complement of

the proposition, expressed by −L, can be derived.

Our approach for solving this is to use classical negation throughout the whole work-

flow. However, LoCo axiomatizations allow the negation of arbitrarily complex constructs,

e.g. in the φ constraint subformulas of rules. This could involve an arithmetic expression

or a combination of several expressions by logical connectives whereas classical negation

in ASP can be applied to atoms only. We sidestep this issue by transforming every φ

formula into negation normal form (NNF) such that negation occurs only at the atomic

level, i.e. only constructs without logical connectives have to be negated. If the re-

spective atom is an attribute comparison, a component or a connection atom then we

can directly use classical negation in ASP. In case the atom represents an arithmetic

expression we eliminate negation by transforming the expression, i.e. by changing the

arithmetic operator, for example:

¬(3a+ 5b ≤ c) =⇒ 3a+ 5b > c

Alternatively, we support a second approach by simply interpreting negation in the

axiomatization as default negation. This basically means that the semantics of the ax-

iomatization in terms of negation is defined by the chosen target language and not by

the axiomatization itself. For an overview on the topic of default vs. classical negation,

see the fundamental paper by Gelfond and Liftschitz [Gelfond and Lifschitz, 1991].

Disjunction semantics

Note also that our translation does not rely upon disjunctive ASP dialects, i.e. ASP

extensions for modelling inclusive/exclusive disjunctions. A well-known problem with

the ASP stable model semantics is that inclusive disjunction could be falsely interpreted

as exclusive disjunction because of the minimal model interpretation. Disjunction in ASP

is neither strictly inclusive nor exclusive but subject to minimization. By using cardinality

rules with appropriate bounds instead we are able to enforce the intended disjunction

104 CHAPTER 5. PROTOTYPICAL IMPLEMENTATION

semantics in (exclusive-or) one-to-many connections. An inclusive disjunction can be

modelled with a cardinality rule by setting lower bound l = 1 and upper bound u = n,

with n being the number of disjunctive components; similarly, an exclusive disjunction

can be obtained by setting l = 1 and u = 1. Disjunctions in the φ constraint subformulas

are generally inclusive.

Complexity of reasoning

Let us briefly comment on the complexity of the relevant reasoning tasks in ASP: Deciding

satisfiability of answer set programs is NExpTime-complete [Dantsin et al., 2001] if

programs contain logical variables. Hence this task is probably slightly harder than

deciding LoCo satisfiability. For ground answer set programs (i.e. programs where logical

variables have been substituted by ground terms in an equivalence preserving manner)

deciding satisfiability is NP-complete [Simons et al., 2002] — the grounding algorithms

incur an exponential blowup.

5.3 Transformation to MiniZinc

This section deals with a presentation on how to transform the main LoCo language

elements to MiniZinc on an abstract level. MiniZinc is a medium-level constraint

modelling language gaining a lot of interest recently for its aim of becoming a standard

modelling language for the constraint programming community [Nethercote et al., 2007].

It supports solver-independent modelling by compiling high-level user-defined methods

into low-level solver methods, so in a way it has a similar workflow than our LoCo ap-

proach. Currently more and more state-of-the-art solvers from the integer programming,

Sat or constraint programming community provide interfaces to MiniZinc s.t. a trans-

formation from LoCo to MiniZinc is very promising since it would instantly provide us

with a whole portfolio of industry-level solvers as potential target languages.

5.3. TRANSFORMATION TO MINIZINC 105

5.3.1 Representing Components

Component Usage

We represent whether a component is used or not via a Boolean variable:

array[1..n] of var bool : c-id-used;

We write c-id-used[i]=true to express the fact that component instance i of component

c is used in the model. For the input components we include for all n:

constraint c-id-used[n] = true;

Component Catalogue

Next we show how to include an extensional component catalogue. Of course, the cata-

logue can just as well be described by any combination of constraints available/definable

in MiniZinc. For each component type we include a 2D array of the possible component

instantiations. As above let n denote the maximum available number of components of

type C.

% Components attributes

set of int : ATTRIBUTES = 1..noofattributes;

% Naming the attributes

% Can later write c-components[i,attr2name] to

% access the attr2name attribute (2nd attribute) of component instance i

int : attr1name = 1;

int : attr2name = 2;

...

int : attrnoofattributesname = noofattributes;

% No of catalogue entries

set of int : ENTRIES = 1..cataloguesize;

% The catalogue in extension

array[ENTRIES,ATTRIBUTES] of int : catalogue =

106 CHAPTER 5. PROTOTYPICAL IMPLEMENTATION

[firsttuple |

nexttuple |

...

lasttuple];

% A null-tuple

array[ATTRIBUTES] of 0 : zeroentry;

% An array of the available components

% e.g.: access attribute name of instance i of component c

% by writing c-components[i,name]

array[1..n,ATTRIBUTES] of var int : c-components;

% Each component conforms to some catalogue entry

% (or is unused)

constraint

forall(i in 1..n)

((c-id-used[i] = true ->

table(c-components[i,_],catalogue))

/\

(c-id-used[i] = false ->

table(c-components[i,_],zeroentry)));

Note that the above model allows integer-valued component attributes only. In order to

represent enumerations we would for example need to introduce an intermediate map-

ping structure from integers to strings. Since the main purpose of this section is not

completeness but to show the basic ideas on how to transform the main LoCo language

elements we will leave it with attributes being of type integer.

5.3.2 Representing Connections

We now turn to connections between components. For the moment we ignore constraints

on the connections — all we are interested in is how to represent the cardinality con-

straints arising from LoCo’s various connection axioms. We represent connections be-

tween components via a matrix-model. Assume component type C1 can be connected to

5.3. TRANSFORMATION TO MINIZINC 107

component type C2 and |C1| = n as well as |C2| = m. We use 0-1-integer variables for

1 ≤ i ≤ n and 1 ≤ j ≤ m.1

Binary Connections

A binary connection between C1 and C2 is then modelled via a matrix:

array[1..n,1..m] of var int 0..1 : c1-to-c2;

For the lower and upper bounds LB, UB on the number of connections between any one

given C1 and all of the C2 for each 1 ≤ i ≤ n we introduce the respective count variables

and constraints:

array[1..n] of var LB..UB : c1-to-c2-count;

constraint

forall(i in 1..n)(c1-id-used[i] = true ->

count_eq(c1-to-c2[i,_], 1, c1-to-c2-count[i]));

If C1 is not an input component we also add the constraint:

constraint

forall(i in 1..n) (member(c1-to-c2[i,_], 1) ->

c1-id-used[i] = true);

Now repeat all of the above for the lower and upper bounds in the direction from C2 to

C1 (swapping rows and columns in the matrix).

Self Connections Self connections are special in that the matrix is now symmetric:

constraint

forall(i, j in 1..n where i < j) (c-to-c[i,j] = c-to-c[j,i]);

1If we use Booleans instead we lose a lot of global constraints.

108 CHAPTER 5. PROTOTYPICAL IMPLEMENTATION

Unfolded Binary Connections For unfolded binary connections with multiple cases

(say m) we modify the model as follows:

array[1..n,1..m] of var int : c1-to-c2-count;

array[1..m] of int : m-lbs = [lb1,...,lbm];

array[1..m] of int : m-ubs = [ub1,...,ubm];

constraint

forall(i in 1..m)

(forall(j in 1..n)

(c1-to-c2-count[i,j] >= m-lbs[i] /\

c1-to-c2-count[i,j] =< m-ubs[i]));

constraint

forall(i in 1..n)(exists (j in 1..m)

(c1-id-used[i] = true ->

(count_eq(c1-to-c2[i,_], 1, c1-to-c2-count[i,j]))));

We may assume at this point that the m cases are mutually exclusive so that the “exists”

(which becomes an ordinary disjunction) is ok.

One-to-many Connections

For one-to-many connections we reuse the 0-1-integer variables we introduced for the

binary connections.

Standard One-to-many Connections Assume there are up to n instances of com-

ponent type C. Let m be the sum of the upper bounds on the number of component

instances appearing on the right hand side of the axiom. We use a n×m matrix. Assume

that c-to-ci is the name of the binary connection matrix between C and Ci. By r we

denote the number of different component types on the right hand side.

array[1..n,1..m] of var int 0..1 : c-to-cs =

[c-to-c1[1,1], c-to-c2[1,2], ..., c-to-ci[1,r-max]|

...,

c-to-c1[n,1], c-to-c2[n,2], ..., c-to-ci[n,r-max]];

5.3. TRANSFORMATION TO MINIZINC 109

The counting constraints are similar to the binary connections:

array[1..n] of var LB..UB : c-to-cs-count;

constraint

forall(i in 1..n)(c-id-used[i] = true ->

count_eq(c-to-cs[i,_], 1, c-to-cs-count[i]));

There is no need to post constraints that activate c-id-used-variables; this is done in

the binary connection axioms.

Exclusive-OR One-to-many Connections Next there are one-to-many connections

of the “exclusive or” variant:

% As before

array[1..n] of var LB..UB : c-to-cs-counts;

% The indices of the different component types in the

% matrix, one per type, 1 <= j <= r

set of int : c-j-range = l..u;

...

% The constraint

constraint

forall(i in 1..n)(c-id-used[i] = true ->

(count_eq(c-to-cs[i,_], 1, c-to-cs-count[i]) /\

% Include the below for all c-j-range

% (We use at least one c-j, hence...)

(member(c-to-cs[i,c-j-range],1) ->

% Use conjunction over all c-notj-range

% (... we cannot use any c-notj)

(count_eq(c-to-cs[i,c-notj-range],1,0)))));

Generalized One-to-many Connections Assume that there are r different compo-

nents mentioned on the right hand side of the axiom, and that the axiom has c cases.

Assume there are at most n components of type C. Let’s introduce a 2D matrix of the

cardinalities mentioned in the axiom. We also introduce an array of r count variables for

each component of type C; these are tabled over the 2D matrix.

110 CHAPTER 5. PROTOTYPICAL IMPLEMENTATION

% The cardinalities in the axiom

array[1..c,1..r] of int : c-to-cs-cards =

[firsttuple |

nexttuple |

...

lasttuple];

% A tuple of r zeros

array[1..r] of 0 : zerotuple;

% For each component a tuple of r cardinality variables

array[1..n,1..r] of var int : c-to-cs-counts;

% The array of 0-1 connection variables

array[1..n,1..m] of var int 0..1 : c-to-cs =

[c-to-c1[1,1], c-to-c1[1,2], ..., c-to-ci[1,r-max]|

...,

c-to-c1[n,1], c-to-c1[n,2], ..., c-to-ci[n,r-max]];

% Count the respective 1-entries in the above matrix

% The indices of the different component types in the

% matrix, one per type, 1 <= j <= r

set of int : c-j-range = l..u;

...

% The counting constraints

constraint

forall(i in 1..n)

% Include the below for all c-j-range

(count_eq(c-to-cs[i,c-j-range], 1, c-to-cs-count[i,j]) /\

... /\

count_eq(c-to-cs[i,c-j-range], 1, c-to-cs-count[i,j]));

% Ensure the 1-entries adhere to one of the axiom’s cases

constraint

forall(i in 1..n)

((c-id-used[i] = true ->

table(c-to-cs-counts[i,_], c-to-cs-cards))

/\

(c-id-used[i] = false ->

table(c-to-cs-counts[i,_], zerotuple)));

5.3. TRANSFORMATION TO MINIZINC 111

5.3.3 Adding the Constraints on Connections

Recall that for each component type we have a matrix c-components with one entry

per component instance (not all of which have to be used). For each instance there is

a row in the matrix, representing its attributes. We can access an attribute name of

component i by writing c-components[i,name]. For each instance there is a Boolean

variable c-id-used[i] indicating whether that instance is used in the configuration.

MiniZinc supports logical combinations of constraints, in particular using the con-

nectives /\, \/, ->, <-, <-> and not.

For the constraints φ(~x) in LoCo’s axioms we have to consider two cases:

(1) The ~x occur in some aggregate like sum, count.

(2) The ~x appear in some abbreviated conjunction of atomic constraints like ~x < 5 (i.e.∧
i xi < 5).

Binary Connections

Assume we have a binary connection axiom with MiniZinc matrix c1-to-c2. Let the

constraint be φ(~x, ~y) with ~x the attributes of C1 and ~y the attributes of C2. For the

Boolean structure of φ we use MiniZinc’s Boolean connectives. On the atomic level we

distinguish two cases: For case (1) we use a global constraint such as

(c-id-used[i] ->

count_eq([c1-components[i,name],

c2-components[1,name]*c1-to-c2[i,1],

...,

c2-components[m,name]*c1-to-c2[i,m]],

5));

By multiplying C2’s attributes with the variable representing the connection between C1

and C2 we filter out those component instances that are not connected to this C1.

For case (2) we use a conjunction of primitive constraints such as

112 CHAPTER 5. PROTOTYPICAL IMPLEMENTATION

(c-id-used[i] ->

(c1-components[i,name] < 5 /\

c2-components[1,name]*c1-to-c2[i,1] < 5 /\

...,

c2-components[m,name]*c1-to-c2[i,m] < 5));

The resulting translation of φ to MiniZinc then has to be added to the counting con-

straint on the matrix representing the binary connection (this also is where the i comes

from). Note that this renders the use of the conditional c-id-used[i] superfluous.

One-to-many Connections

For one-to-many connections the story is very similar. The major difference is that we

need to address different component types in the translation on the atomic level. Again

the formulas have to be added to the counting constraints on the connection matrices.

5.3.4 Adding Partial Configurations

Partial configurations to be used/avoided in the final configuration can be enforced by

setting the respective connection or attribute variables (positive information) or posting

disequality constraints (negative information).

Chapter 6

Evaluation

6.1 Industrial benchmark problems

The evaluation focuses on two problems we got from our industrial partner Siemens of

which both have highly practical relevance. The House Problem has been introduced

in section 1.3 and has been our running example throughout this thesis. Since the

problem has now been discussed in large parts even down to the representation of its

main constraints there is no need for another problem description at this point anymore.

The interested reader can find a detailed problem analysis in [Bettex, 2009].

The second practical problem we received from Siemens is the Partner Units Problem

(PUP) presented in [Falkner et al., 2011]. Next to modelling the problem in LoCo for

benchmark purposes we have spent substantial time and effort in a deeper analysis of

this problem with theoretical and practical results published in [Aschinger et al., 2011a,

Aschinger et al., 2011c,Aschinger et al., 2011d]. For this reason we present the problem

in more detail and give a short overview of the main research results.

The PUP problem originated from configuring railway interlocking systems but is

not limited to this application domain and has also widespread practical relevance in

other domains such as security and surveillance systems. It captures the essence of

a specific type of configuration problem that frequently occurs in industry and occurs

whenever sensors that are grouped into zones have to be attached to control units and

the communication between units should be kept as simple and effective as possible.

113

114 CHAPTER 6. EVALUATION

Typical applications include intelligent traffic management or surveillance and security

applications. It has recently also been introduced as a benchmark problem in the Third

Answer Set Programming Competition [ASP Competition, 2011] where it turned out to

be one of the most difficult problems to solve efficiently.

Informally the PUP can be described as follows: Consider a set of sensors that are

grouped into zones. A zone may contain many sensors and a sensor may be attached

to more than one zone. The task of the PUP then is to connect the sensors and zones

to control units, where each control unit can be connected to the same fixed maximum

number UnitCap of zones and sensors. Moreover, if a sensor is attached to a zone, but

the sensor and the zone are assigned to different control units, then the two control units

in question have to be directly connected. However, a control unit cannot be connected

to more than InterUnitCap other control units (the partner units).

Figure 6.1: Room layout for a PUP scenario

The PUP occurs e.g. in the following application domain: Consider a museum where

we want to keep track of the number of visitors that populate certain parts (zones) of

the building. The doors leading from one zone to another are equipped with sensors.

To keep track of the visitors the zones and sensors are attached to control units; the

adjacency constraints on the control units ensure that communication between units can

be kept simple. Figure 6.1 shows a potential room layout with 8 rooms. Most rooms

are equipped with a sensor. For example, there is a sensor between rooms 1 and 2 but

not between 2 and 3. Rooms are grouped into zones, e.g. zones Z1 (white), Z2378 (light

6.1. INDUSTRIAL BENCHMARK PROBLEMS 115

gray) and Z45 (dark gray). The number sequence represents the rooms involved in a

zone. Zones can also overlap, i.e. a room potentially belongs to more than one zone. The

relationship between zones and sensors of this example can be depicted in the form of a

bipartite graph (6.2).

Figure 6.2: Bipartite graph representation of the room layout from figure 6.1

This representation is the cornerstone of the formal definition: The PUP consists of

partitioning the vertices of a bipartite graph G = (V1, V2, E) into a set U of bags such

that each bag

• contains at most UnitCap vertices from V1 and at most UnitCap vertices from V2;

and

• has at most InterUnitCap adjacent bags where the bags U1 and U2 are adjacent

whenever vi ∈ U1 and vj ∈ U2 and (vi, vj) ∈ E.

To every solution of the PUP we can associate a solution graph. For this we associate to

116 CHAPTER 6. EVALUATION

every bag u ∈ U a vertex u′ ∈ U ′. Then the solution graphG∗ has the vertex set V1∪V2∪U ′

and the set of edges {(v, u′) | v ∈ u ∧ u ∈ U} ∪ {(u′i, u′j) | ui and uj are adjacent.}.
Figure 6.3 shows a PUP instance and a solution for the case UnitCap=InterUnitCap=2 :

six sensors (left) and six zones (right) which are completely inter-connected are parti-

tioned into units - shown as squares - respecting the adjacency constraints. Note that

for the given parameters this is a maximal solvable instance; it is not possible to connect

a new zone or sensor to any of the existing ones.

Figure 6.3: Partitioning of a K6,6 Partner Units Instance

In [Aschinger et al., 2011d] we have shown that the case where InterUnitCap = 2 and

UnitCap = k for some fixed k is tractable by giving a specialized Nlogspace algorithm

that is based on the notion of path decomposition. This special case is of great interest

to our industrial partner. The paper includes a detailed description of the mentioned

algorithm and shows that it can find optimal solutions much faster than a standard Csp

encoding of the PUP. We have also been working on encodings of the general version of

the PUP - that is where both UnitCap and InterUnitCap are arbitrary fixed constants

- in the frameworks of answer set, integer and constraint programming as well as Sat

solving [Aschinger et al., 2011a]. Both of these papers also include a number of complexity

results for other special cases of the problem.

6.2. BENCHMARKS 117

6.2 Benchmarks

We have evaluated our LoCo encodings of both problems on a set of benchmark instances

that we received from our industrial partners.1 We compare the runtimes of our LoCo

implementation against previously developed hand-crafted ASP encodings. The exper-

imental results that we obtain are very encouraging: For the House Problem we can

compete with the hand-written problem encoding in answer set programming presented

in [Friedrich et al., 2011]; it turns out that our translation of the declarative LoCo speci-

fication yields a very similar program.

Problem instance
Search Optimization

LoCo enc. Manual enc. LoCo enc. Manual enc.
p02t06 0.03 0.03 0.1 0.03
p02t10 0.05 0.03 0.12 0.05
p03t15 0.07 0.04 0.22 0.35
p04t20 0.13 0.05 0.65 0.5
p05t25 0.18 0.06 1.33 0.75
p10t50 0.92 0.21 X X
p15t75 2.95 0.51 X X
p20t100 7.14 1.19 X X
p30t150 24.72 4.35 X X
p40t200 65.15 25.92 X X

Table 6.1: Benchmarks for the House Problem

Table 6.1 shows the benchmark results for the House Problem. All experiments were

conducted on a 2.5GHz Intel Core2 Quad CPU with 4 GB RAM running Windows7

64-bit. In general we have imposed a ten minute time limit for finding solutions in our

experiments. In this evaluated variant of the House Problem persons and things are set

to be input components and the task is to find the minimal number of needed cabinets

and rooms. The problem instances differ only with regard to the number of given persons

and things involved and hence to the size of the search space.

We have evaluated the instances in two different settings: (1) the original setting

(Optimization) and (2) a simplified version (Search) where the effectively needed number

1Available from: http://proserver3-iwas.uni-klu.ac.at/reconcile/index.php/benchmarks

118 CHAPTER 6. EVALUATION

of all components is already part of the input. In the latter case the search for the minimal

number of needed components is eliminated and the configuration problem reduces to

connecting components correctly with regard to the side constraints. In general the

outcome of our experiments can be summarized as follows: The LoCo encoding performs

slightly worse than the manual encoding in both settings. This overhead probably has to

be attributed to the additional helper predicates created when transforming the constraint

parts of the rules. In the easier “Search” setting all instances are solvable whereas in the

“Optimization” setting both the LoCo and the manual encoding run into timeouts for

the same instances.

Problem instance
Search Optimization

LoCo enc. Manual enc. LoCo enc. Manual enc.
small-7 0.1 0.1 0.13 0.11
small-8 0.1 0.1 0.21 0.15

single-11 0.15 0.1 0.19 0.4
small-no 1.18 0.95 33.05 70.16
double-10 0.15 0.08 0.35 0.19
double-14 0.77 0.19 10.63 1.6
double-16 1.32 0.53 X 379.64
double-20 44.15 1.52 X X

Table 6.2: Benchmarks for the Partner Units Problem

We have evaluated the LoCo version of the PUP and were able to reach about the

same performance as the manually written answer set program presented in [Aschinger

et al., 2011a] if for the latter the problem-specific search strategy is turned off (see table

6.2 for results). In particular, the gap between the automatic translation and the hand-

written problem encoding is similar to what we have experienced for the House Problem

which further justifies our trust in the quality of the automated LoCo transformations.

[Aschinger et al., 2011a] further compares the ASP version of the PUP with Sat, Csp and

integer programming encodings as well as with a Java-based implementation optimized

for a special case. Since all these encodings are using problem-specific solving heuristics

we are not taking them into account for the benchmarks presented here.

Chapter 7

Conclusion

7.1 Summary and main results

The main scientific contribution of LoCo as a whole to the area of configuration research

can be summarized as follows: Like conditional or generative Csp LoCo supports the con-

ditional inclusion of components into configurations as a knowledge representation idiom.

In contrast to competing approaches, in LoCo the number of available components does

not have to be specified manually for all component types involved; yet LoCo does not face

termination issues. Apart from this, LoCo features ports, a means to describe arbitrary

component connection layouts as well as a rich language for describing constraints on the

admissible combinations. Moreover, the user can specify partial configurations (not) to

be used for building the configuration. Our prototypical implementation in answer set

programming has proven that our approach is applicable in practice. Benchmark results

have shown that the automatically generated output code for practically relevant prob-

lem scenarios is competitive. Note that the main intention here is not to compete with

highly specialized problem-specific encodings but rather on the knowledge representation

level in order to provide a way to formalise the configuration knowledge on a high level

without the need of any solver-specific details. The final results of this project have been

published in the ACM Transactions on Computational Logic [Aschinger et al., 2014].

119

120 CHAPTER 7. CONCLUSION

7.2 Future Work

Let us conclude by pointing out promising directions for future research. On the theoreti-

cal side it would be nice to determine the complexity of deciding LoCo satisfiability in the

case of extensional component catalogues. Likewise it would be interesting to determine

fragments of LoCo where this question is tractable. We observe that a starting point for

this could be the tractable fragments of the configuration logic introduced in [Gottlob

et al., 2007] — a LoCo fragment restricted to input components only.

In order to increase the practical usability of LoCo it would be helpful to either de-

velop a graphical user interface or to single out a fragment/extension of UML and OCL

corresponding to LoCo. On the reasoning side there also remain a number of challenges:

On the one hand side, the implementation via answer set programming is now mature,

and a detailed description thereof together with a thorough experimental evaluation is

currently underway. On the other hand, we would like to have complementary reasoning

methods at our disposal. To this end we have theoretically developed a translation into

the MiniZinc language [Nethercote et al., 2007], providing us with access to a whole

portfolio of integer programming, Sat and constraint solvers; however, an implemen-

tation is still missing. It would also be promising to develop an implementation that

follows the idea of incrementally adding components instead of pre-generating all poten-

tially useful ones; here, the absence of freely available solvers for generative or conditional

Csp constitutes an additional obstacle.

Concerning possible extensions of LoCo, first on the list are adding support for ex-

planation as well as for computing optimal configurations. Support for reconfiguration

just as well as the integration with a classification-based configuration formalism appear

to be considerably more challenging: The former because of the need for dealing with

inconsistencies in a logical framework, the latter because of the apparent need for some

kind of inheritance relation between the constraints attached to connections.

Bibliography

[Amilhastre et al., 2002] Amilhastre, J., Fargier, H., and Marquis, P. (2002). Consis-

tency Restoration and Explanations in Dynamic CSPs—Application to Configuration.

Artificial Intelligence, 135(1–2):199–234.

[Andersen et al., 2010] Andersen, H. R., Hadzic, T., and Pisinger, D. (2010). Interactive

cost configuration over decision diagrams. Journal of Artificial Intelligence Research

(JAIR), 37:99–139.

[Aschinger et al., 2011a] Aschinger, M., Drescher, C., Friedrich, G., Gottlob, G., Jeav-

ons, P., Ryabokon, A., and Thorstensen, E. (2011a). Optimization methods for the

partner units problem. In Proceedings of the 8th International Conference on Integra-

tion of Artificial Intelligence and Operations Research Techniques in Constraint Pro-

gramming for Combinatorial Optimization Problems (CPAIOR 2011), Lecture Notes

in Computer Science, Berlin, Germany.

[Aschinger et al., 2011b] Aschinger, M., Drescher, C., and Gottlob, G. (2011b). Intro-

ducing LoCo, a Logic for Configuration Problems. In Proceedings of the 2nd Workshop

on Logics for Component Configuration, LoCoCo 2011, Perugia, Italy.

[Aschinger et al., 2011c] Aschinger, M., Drescher, C., Gottlob, G., Jeavons, P., and

Thorstensen, E. (2011c). Structural decomposition methods, and what they are good

for. In Proceedings of the 28th International Symposium on Theoretical Aspects of

Computer Science (STACS 2011), Dortmund, Germany. Invited Paper.

121

122 BIBLIOGRAPHY

[Aschinger et al., 2011d] Aschinger, M., Drescher, C., Gottlob, G., Jeavons, P., and

Thorstensen, E. (2011d). Tackling the partner units configuration problem. In Pro-

ceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI

2011), Barcelona, Spain.

[Aschinger et al., 2014] Aschinger, M., Drescher, C., Gottlob, G., and Vollmer, H. (2014).

LoCo — A Logic for Configuration Problems. ACM Transactions on Computational

Logic. Accepted for publication.

[Aschinger et al., 2012] Aschinger, M., Drescher, C., and Vollmer, H. (2012). LoCo — A

Logic for Configuration Problems. In Proceedings of the 20th European Conference on

Artificial Intelligence (ECAI 2012), pages 73–78. IOS Press.

[Aschinger et al., 2010] Aschinger, M., Jessenitschnig, M., and Zanker, M. (2010).

Constraint-based personalized configuring of product and service bundles. Interna-

tional Journal on Mass Customization, 3(4):407–425.

[ASP Competition, 2011] ASP Competition (2011). Third International Answer Set Pro-

gramming Competition.

https://www.mat.unical.it/aspcomp2011/.

[Baader et al., 2003] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-

Schneider, P. F. (2003). The Description Logic Handbook: Theory, Implementation,

Applications. Cambridge University Press, Cambridge, UK.

[Bettex, 2009] Bettex, M. (2009). House configuration problem using constraint opti-

mization. Master’s thesis, School of Computer and Information Science, University of

South Australia, Adelaide, Australia.

[Bettex et al., 2009] Bettex, M., Falkner, A., Mayer, W., and Stumptner, M. (2009). On

Solving Complex Rack Configuration Problems using CSP Methods. In Configura-

tion Workshop at the 21st International Conference on Artificial Intelligence (IJCAI),

pages 53–60, Pasadena, California. AAAI Press.

BIBLIOGRAPHY 123

[Borgida et al., 1989] Borgida, A., Brachman, R., McGuinness, D., and Resnick, L.

(1989). Classic: A structural data model for objects. In Proceedings of the ACM

SIGMOD International Conference on Management of Data, pages 59 – 67, Portland,

Oregon.

[Brewka et al., 2011] Brewka, G., Eiter, T., and Truszczyński, M. (2011). Answer set

programming at a glance. Communications of the ACM, 54(12):92–103.

[Brown and Chandrasekaran, 1989] Brown, D. and Chandrasekaran, B. (1989). Design

Problem Solving: Knowledge Structures and Control Strategies. Pitman Publishing

Ltd., London, UK.

[Brown, 1998] Brown, D. C. (1998). Defining configuring. Artificial Intelligence for Engi-

neering Design, Analysis and Manufacturing (AI EDAM), Special Issue: Configuration

Design, 12(4):301 – 305.

[Buchheit et al., 1995] Buchheit, M., Klein, R., and Nutt, W. (1995). Constructive prob-

lem solving: A model construction approach towards configuration. Technical Report

TM-95-01, DFKI.

[Chandra et al., 1981] Chandra, A. K., Kozen, D. C., and Stockmeyer, L. J. (1981).

Alternation. Journal of the ACM, 28(1):114–133.

[Chandrasekaran, 1990] Chandrasekaran, B. (1990). Design problem solving. AI Maga-

zine, 11(4):59 – 71.

[COIN-OR, 2014] COIN-OR (2014). COIN-OR - COmputational INfrastructure for Op-

erations Research. http://www.coin-or.org/.

[Cunis et al., 1989] Cunis, R., Günter, A., Syska, I., Peters, H., and Bode, H. (1989).

PLAKON - an approach to domain-independent construction. In Proceedings of the

Second International Conference on Industrial and Engineering Applications of Arti-

ficial Intelligence and Expert Systems (IAE/AIE), pages 866 – 874.

124 BIBLIOGRAPHY

[Dantsin et al., 2001] Dantsin, E., Eiter, T., Gottlob, G., and Voronkov, A. (2001).

Complexity and expressive power of logic programming. ACM Computing Surveys,

33(3):374–425.

[Dowling and Gallier, 1984] Dowling, W. F. and Gallier, J. H. (1984). Linear-Time Algo-

rithms for Testing the Satisfiability of Propositional Horn Formulae. Journal of Logic

Programming, 1(3):267–284.

[Enderton, 1972] Enderton, H. B. (1972). A Mathematical Introduction to Logic. Aca-

demic Press.

[Falkner et al., 2010] Falkner, A., Feinerer, I., Salzer, G., and Schenner, G. (2010). Com-

puting Product Configurations via UML and Integer Linear Programming. Journal of

Mass Customisation, 3(4):351–367.

[Falkner et al., 2011] Falkner, A., Haselböck, A., Schenner, G., and Schreiner, H. (2011).

Modeling and solving technical product configuration problems. AI EDAM, 25(2):115–

129.

[Falkner and Schreiner, 2014] Falkner, A. and Schreiner, H. (2014). Siemens: configura-

tion and reconfiguration in industry. In Felfernig, A., Hotz, L., Bagley, C., and Tiiho-

nen, J., editors, Knowledge-based Configuration - From Research to Business Cases,

pages 199 – 210. Morgan Kaufmann, Waltham, MA.

[Feinerer, 2013] Feinerer, I. (2013). Efficient large-scale configuration via integer linear

programming. AI EDAM, 27(1):37–49.

[Fleischanderl et al., 1998] Fleischanderl, G., Friedrich, G., Haselböck, A., Schreiner, H.,

and Stumptner, M. (1998). Configuring large systems using generative constraint

satisfaction. IEEE Intelligent Systems, 13(4):59–68.

[Friedrich et al., 2011] Friedrich, G., Ryabokon, A., Falkner, A. A., Haselböck, A., Schen-

ner, G., and Schreiner, H. (2011). (re)configuration based on model generation. In

Drescher, C., Lynce, I., and Treinen, R., editors, LoCoCo, volume 65 of EPTCS, pages

26–35.

BIBLIOGRAPHY 125

[Friedrich and Stumptner, 1999] Friedrich, G. and Stumptner, M. (1999). Consistency-

Based Configuration. In Configuration Workshop at the 16th National Conference on

Artificial Intelligence (AAAI), pages 35–40, Orlando, Florida. AAAI Press.

[Garey and Johnson, 1979] Garey, M. R. and Johnson, D. S. (1979). Computers and

Intractability. W.H. Freeman and Co., New York.

[Gebser et al., 2011] Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub,

T., and Schneider, M. (2011). Potassco: The Potsdam Answer Set Solving Collection.

AI Communications, 24(2):105–124.

[Gebser et al., 2008] Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub,

T., and Thiele, S. (2008). Engineering an incremental ASP solver. In de la Banda,

M. G. and Pontelli, E., editors, Logic Programming, 24th International Conference,

ICLP, volume 5366 of Lecture Notes in Computer Science, pages 190–205, Udine,

Italy. Springer.

[Gebser et al., 2012] Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T. (2012).

Answer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and Ma-

chine Learning. Morgan and Claypool Publishers.

[Gelfond, 2008] Gelfond, M. (2008). Answer Sets. In van Harmelen, F., Lifschitz, V., and

Porter, B., editors, Handbook of Knowledge Representation, pages 285 – 316. Elsevier.

[Gelfond and Lifschitz, 1991] Gelfond, M. and Lifschitz, V. (1991). Classical negation in

logic programs and disjunctive databases. New Generation Computing, 9(3/4):365–

386.

[Gelle and Weigel, 1996] Gelle, E. and Weigel, R. (1996). Interactive configuration using

constraint satisfaction techniques. In In Second International Conference on Practi-

cal Application of Constraint Technology, PACT-96, pages 37–44. Menlo Park, AAAI

Press.

[Gottlob et al., 2007] Gottlob, G., Greco, G., and Mancini, T. (2007). Conditional con-

straint satisfaction: Logical foundations and complexity. In IJCAI’07.

126 BIBLIOGRAPHY

[Hentenryck, 1999] Hentenryck, P. V. (1999). The OPL optimization programming lan-

guage. MIT Press, Cambridge, MA, USA.

[Hermann and Sertkaya, 2008] Hermann, M. and Sertkaya, B. (2008). On the Complex-

ity of Computing Generators of Closed Sets. In Proceedings of the 6th International

Conference on Formal Concept Analysis ICFCA’08, pages 158–168, Montreal, Canada.

Springer.

[Hubaux et al., 2012] Hubaux, A., Jannach, D., Drescher, C., Murta, L., Mannisto, T.,

Czarnecki, K., Heymans, P., Nguyen, T., and Zanker, M. (2012). Unifying software

and product configuration: A research roadmap. In Proceedings of the ECAI 2012

Workshop on Configuration, pages 31–35, Montpellier, France. CEUR-WS.

[JavaCC, 2014] JavaCC (2014). JavaCC - Java Compiler Compiler.

https://javacc.java.net/.

[Johnson et al., 1988] Johnson, D. S., Yannakakis, M., and Papadimitriou, C. H. (1988).

On Generating All Maximal Independent Sets. Information Processing Letters, 27:119–

123.

[Junker, 2004] Junker, U. (2004). QUICKXPLAIN: Preferred explanations and relax-

ations for over-constrained problems. In Proceedings of the Nineteenth National Con-

ference on Artificial Intelligence, AAAI’04, pages 167–172, San Jose, California, USA.

AAAI Press / The MIT Press.

[Junker, 2006] Junker, U. (2006). Configuration. In Rossi, F., van Beek, P., and Walsh,

T., editors, Handbook of Constraint Programming, pages 837 – 874. Elsevier.

[Karatas et al., 2010] Karatas, A. S., Oguztüzün, H., and Dogru, A. H. (2010). Global

constraints on feature models. In Proceedings of the 16th International Conference

on Principles and Practice of Constraint Programming, CP 2010, pages 537–551, St.

Andrews, Scotland, UK. Springer.

[Kiziltan and Hnich, 2001] Kiziltan, Z. and Hnich, B. (2001). Symmetry breaking in a

rack configuration problem. In Proceedings of the IJCAI-2001 Workshop on Modelling

and Solving Problems with Constraints, Seattle, Washington.

BIBLIOGRAPHY 127

[Kolaitis and Vardi, 1998] Kolaitis, P. G. and Vardi, M. Y. (1998). Conjunctive-query

containment and constraint satisfaction. In PODS’98.

[Lenzerini and Nobili, 1990] Lenzerini, M. and Nobili, P. (1990). On the satisfiabil-

ity of dependency constraints in entity-relationship schemata. Information Systems,

15(4):453 – 461.

[Leone et al., 2006] Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S.,

and Scarcello, F. (2006). The DLV system for knowledge representation and reasoning.

ACM Transactions on Computational Logic, 7(3):499–562.

[Lucchesi and Osborn, 1978] Lucchesi, C. L. and Osborn, S. L. (1978). Candidate Keys

for Relations. Journal of Computer and System Sciences, 17(2):270–279.

[Mailharro, 1998] Mailharro, D. (1998). A classification and constraint-based framework

for configuration. AI EDAM, 12(4):383–397.

[McDermott, 1982] McDermott, J. (1982). R1: A Rule-based Configurer of Computer

Systems. Artificial Intelligence, 19:39–88.

[McGuinness, 2003] McGuinness, D. L. (2003). Configuration. In Baader, F., Calvanese,

D., McGuinness, D., and Patel-Schneider, D. N. P., editors, The Description Logic

Handbook: Theory, Implementation and Applications, pages 397 – 414. Cambridge

University Press.

[McGuinness and Wright, 1998] McGuinness, D. L. and Wright, J. R. (1998). Conceptual

modelling for configuration: A description logic-based approach. AI EDAM, 12(4):333–

344.

[Mittal and Falkenhainer, 1990] Mittal, S. and Falkenhainer, B. (1990). Dynamic Con-

straint Satisfaction Problems. In Proceedings of the 8th National Conference on Ar-

tificial Intelligence (AAAI), pages 25–32, Boston, Massachusetts. AAAI Press / The

MIT Press.

128 BIBLIOGRAPHY

[Mittal and Frayman, 1989] Mittal, S. and Frayman, F. (1989). Towards a generic model

of configuration tasks. In Proceedings of the 11th International Conference on Artificial

Intelligence (IJCAI), pages 1395 – 1401, Detroit, Michigan. Morgan Kaufmann.

[Mouhoub and Sukpan, 2007] Mouhoub, M. and Sukpan, A. (2007). Solving conditional

and composite constraint satisfaction problems. In Proceedings of the 2007 ACM Sym-

posium on Applied Computing (SAC ’07), pages 336–337, New York, NY, USA. ACM.

[Nardi and Brachman, 2003] Nardi, D. and Brachman, R. (2003). An introduction to

description logics. In Baader, F., Calvanese, D., McGuinness, D., and Patel-Schneider,

D. N. P., editors, The Description Logic Handbook: Theory, Implementation and Ap-

plications, pages 5 – 44. Cambridge University Press.

[Nethercote et al., 2007] Nethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck,

G. J., and Tack, G. (2007). MiniZinc: Towards a Standard CP Modelling Language.

In Proceedings of the 13th International Conference on Principles and Practice of Con-

straint Programming CP, Providence, RI.

[Niemelä et al., 1999] Niemelä, I., Simons, P., and Soininen, T. (1999). Stable model

semantics of weight constraint rules. In Gelfond, M., Leone, N., and Pfeifer, G.,

editors, LPNMR, volume 1730 of Lecture Notes in Computer Science, pages 317–331.

Springer.

[Sabin and Freuder, 1996] Sabin, D. and Freuder, E. C. (1996). Configuration as Com-

posite Constraint Satisfaction. In Proceedings of the Artificial Intelligence and Manu-

facturing Research Planning Workshop (AIMRP), pages 153 – 161, Albuquerque, New

Mexico. AAAI Press.

[Sabin and Weigel, 1998] Sabin, D. and Weigel, R. (1998). Product configuration frame-

works - a survey. IEEE Intelligent Systems, 13(4):42–49.

[Schneeweiss and Hofstedt, 2011] Schneeweiss, D. and Hofstedt, P. (2011). Fdconfig: A

constraint-based interactive product configurator. In 19th International Conference on

Applications of Declarative Programming and Knowledge Management (INAP 2011),

pages 239–255. Springer.

BIBLIOGRAPHY 129

[Simons et al., 2002] Simons, P., Niemelä, I., and Soininen, T. (2002). Extending and

implementing the stable model semantics. Artificial Intelligence, 138(1–2):181–234.

[Sinz et al., 2003] Sinz, C., Kaiser, A., and Küchlin, W. (2003). Formal methods for the

validation of automotive product configuration data. AI EDAM, 17(1):75–97.

[Soininen and Gelle, 1999] Soininen, T. and Gelle, E. (1999). Dynamic constraint satis-

faction in configuration. In Papers from the AAAI Workshop on Configuration, pages

95 – 100. AAAI Press.

[Soininen and Niemelä, 1998] Soininen, T. and Niemelä, I. (1998). Developing a declar-

ative rule language for applications in product configuration. In Gupta, G., editor,

Practical Aspects of Declarative Languages, volume 1551 of Lecture Notes in Computer

Science, pages 305–319. Springer Berlin / Heidelberg.

[Stumptner, 1997] Stumptner, M. (1997). An overview of knowledge-based configuration.

AI Communications, 10(2):111–125.

[Stumptner and Haselböck, 1993] Stumptner, M. and Haselböck, A. (1993). A gener-

ative constraint formalism for configuration problems. In Proceedings of the Third

Congress of the Italian Association for Artificial Intelligence on Advances in Artificial

Intelligence, AI*IA ’93, pages 302–313, London, UK. Springer-Verlag.

[Stumptner et al., 1994] Stumptner, M., Haselböck, A., and Friedrich, G. (1994). CO-

COS - a tool for constraint-based, dynamic configuration. In Proceedings of the 10th

Conference on Artificial Intelligence for Applications, pages 373–380, San Antonio,

TX, USA.

[Stumptner et al., 1998] Stumptner, M., Haselböck, A., and Friedrich, G. (1998). Gener-

ative constraint-based configuration of large technical systems. AI EDAM, 12(4):307–

320.

[ECLiPSe, 2014] ECLiPSe (2014). ECLiPSe-Prolog. http://eclipseclp.org/.

[Thorstensen, 2010] Thorstensen, E. (2010). Capturing configuration. In Doctoral Pro-

gram at CP’10.

130 BIBLIOGRAPHY

[Tsang, 1993] Tsang, E. P. (1993). Foundations of Constraint Satisfaction. Academic

Press, London and San Diego.

[Wielinga and Schreiber, 1997] Wielinga, B. J. and Schreiber, G. (1997). Configuration-

design problem solving. IEEE Intelligent Systems, 12(2):49 – 56.

[Wright et al., 1995] Wright, J., McGuinness, D., Foster, C., and Vesonder, G. (1995).

Conceptual modeling using knowledge representation: Configurator applications. In

Proceedings of the Artificial Intelligence in Distributed Information Networks Work-

shop, IJCAI-95, Montreal, Canada.

[Wright et al., 1993] Wright, J. R., Weixelbaum, E., Vesonder, G. T., Brown, K. E.,

Palmer, S. R., Berman, J. I., and Moore, H. H. (1993). A knowledge-based configurator

that supports sales, engineering, and manufacturing at AT&t network systems. AI

Magazine, 14(3):69 – 80.

Appendix A

Publications

• Aschinger, M., Drescher, C., Gottlob, G., and Vollmer, H. (2014). LoCo – A

Logic for Configuration Problems. In ACM Transactions on Computational Logic.

Accepted for publication.

• Aschinger, M., Drescher, C., and Vollmer, H. (2012). LoCo – A Logic for Con-

figuration Problems. In Proceedings of the 20th European Conference on Artificial

Intelligence (ECAI 2012), pages 7378. IOS Press.

• Aschinger, M., Drescher, C., and Gottlob, G. (2011). Introducing LoCo, a Logic

for Configuration Problems. In Proceedings of the 2nd Workshop on Logics for

Component Configuration, LoCoCo 2011, Perugia, Italy.

• Aschinger, M., Drescher, C., Gottlob, G., Jeavons, P., and Thorstensen, E. (2011).

Structural decomposition methods, and what they are good for. In Proceedings

of the 28th International Symposium on Theoretical Aspects of Computer Science

(STACS 2011), Dortmund, Germany. Invited Paper.

• Aschinger, M., Drescher, C., Friedrich, G., Gottlob, G., Jeavons, P., Ryabokon,

A., and Thorstensen, E. (2011). Optimization methods for the partner units prob-

lem. In Proceedings of the 8th International Conference on Integration of Artificial

Intelligence and Operations Research Techniques in Constraint Programming for

131

132 APPENDIX A. PUBLICATIONS

Combinatorial Optimization Problems (CPAIOR 2011), Lecture Notes in Computer

Science, Berlin, Germany.

• Aschinger, M., Drescher, C., Gottlob, G., Jeavons, P., and Thorstensen, E. (2011).

Tackling the partner units configuration problem. In Proceedings of the 22nd In-

ternational Joint Conference on Artificial Intelligence (IJCAI 2011), Barcelona,

Spain.

