
ar
X

iv
:1

30
6.

65
26

v4
 [

cs
.P

L
]

 1
9

M
ay

 2
01

4

A

Inference of Field-Sensitive
Reachability and Cyclicity

DAMIANO ZANARDINI, Technical University of Madrid (UPM), Spain

and SAMIR GENAIM, Complutense University of Madrid (UCM), Spain

In heap-based languages, knowing that a variable x points to an acyclic data structure is useful for analyzing

termination: this information guarantees that the depth of the data structure to which x points is greater

than the depth of the structure pointed to by x.fld, and allows bounding the number of iterations of a loop

which traverses the data structure on fld.
In general, proving termination needs acyclicity, unless program-specific or non-automated reasoning is

performed. However, recent work could prove that certain loops terminate even without inferring acyclicity,

because they traverse data structures “acyclically”. Consider a double-linked list: if it is possible to demon-

strate that every cycle involves both the “next” and the “prev” field, then a traversal on “next” terminates

since no cycle will be traversed completely.

This paper develops a static analysis inferring field-sensitive reachability and cyclicity information, which

is more general than existing approaches. Propositional formulæ are computed, which describe which fields

may or may not be traversed by paths in the heap. Consider a tree with edges “left” and “right” to the left

and right sub-trees, and “parent” to the parent node: termination of a loop traversing leaf-up cannot be

guaranteed by state-of-the-art analyses. Instead, propositional formulæ computed by this analysis indicate

that cycles must traverse “parent” and at least one between “left” and “right”: termination is guaranteed

as no cycle is traversed completely.

This paper defines the necessary abstract domains and builds an abstract semantics on them. A proto-

typical implementation provides the expected result on relevant examples.

Categories and Subject Descriptors: D.2.4 [Software/Program Verification]: Formal methods; F.3.1 [Specifying

and Verifying and Reasoning about Programs]: Logics of programs; Mechanical verification; F.3.2 [Semantics of

Programming Languages]: Program analysis; F.4.1 [Mathematical Logic]: Computational logic; I.2.2 [Automatic

Programming]: Program verification

General Terms: Theory, Analysis, Verification

Additional Key Words and Phrases: Heap manipulation, Cyclicity analysis, Termination analysis, Pointer analysis,
Shape analysis, Static analysis, Abstract Interpretation, Data Structures

ACM Reference Format:

Damiano Zanardini and Samir Genaim. 2014. Inference of Field-Sensitive Reachability and Cyclicity. ACM Trans.
Comput. Logic V, N, Article A (January YYYY), 39 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Programming languages with dynamic memory allocation, such as Java, allow creat-
ing and manipulating linked data structures in the heap. The presence of cyclic data
structures in the heap is a challenging issue in the context of termination analy-

Authors’ addresses: Damiano Zanardini, Departamento de Inteligencia Artificial, Escuela Técnica Superior de
Ingenieros Informáticos, Campus de Montegancedo, Boadilla del Monte, 28660 Madrid, Spain; Samir Genaim,
Departamento de Sistemas Informáticos y Computación, Facultad de Informática, Universidad Complutense de
Madrid, C/ Profesor José Garcı́a Santesmases s/n, 28040, Madrid, Spain.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies show this
notice on the first page or initial screen of a display along with the full citation. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, to redistribute to lists, or to use any component of this work in other works requires
prior specific permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© YYYY ACM 1529-3785/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

http://arxiv.org/abs/1306.6526v4

sis [Berdine et al. 2006; Cook et al. 2006; Albert et al. 2008; Spoto et al. 2010], resource us-
age analysis [Wegbreit 1975; Debray and Lin 1993; Albert et al. 2012; Albert et al. 2013],
garbage collection [Jones and Lins 1996], etc. Consider the loop “while (x!=null) do x:=x.f
”: if x points to an acyclic data structure before the loop, then the depth of the data structure
to which x points strictly decreases after each iteration; therefore, the number of iterations
is bounded by the initial depth of the structure. On the other hand, in general, nothing can
be said about such a decrement if acyclicity cannot be demonstrated, unless more complex,
program-specific or non-automated reasoning is performed. This makes acyclicity infor-
mation essential in order to bound loop iterations and, by extension, prove termination.

In mainstream Object-Oriented programming languages, data structures are usually
modified by means of field updates. Consider x. f :=y: if x and y are guaranteed to point
to disjoint parts of the heap before the command, then there is no possibility to cre-
ate a cycle. On the other hand, if they are not disjoint, i.e., they share a common part
of the heap, then a cyclic structure might be created. This simple mechanism, denoted
in the following as Ysh, has been used in previous work [Rossignoli and Spoto 2006]: x
and y are declared as possibly cyclic whenever they share before the update. Refine-
ments of Ysh have been proposed [Ghiya and Hendren 1996; Genaim and Zanardini 2010;
Genaim and Zanardini 2013; Nikolic and Spoto 2014], which also consider the reachability
between program variables. In this example, the acyclicity information can be more precise
if it is possible to know how x and y share: in general, it can be the case that (1) x and y alias,
i.e., point directly to the same location; (2) x reaches the location pointed to by y; (3) y reaches
the location pointed to by x; or (4) they both indirectly reach a common location (here, this
case is referred to as deep sharing, see Section 4.1.1). The field update x. f :=y might create
a cycle only in cases (1) or (3). The latter approach is able to prove acyclicity in cases like
“y:=x.next.next;x.next:=y;” (which typically removes an element from a linked list), where
the former fails. For simplicity, this technique will be denoted by Yrc, ignoring discrep-
ancies between the different works implementing such a reachability-based analysis. Yrc

improves on Ysh in that the class of data structures which can be proved to be acyclic is
larger.

However, recent research [Scapin 2012; Brockschmidt et al. 2012] went one step ahead
by proving, in some cases, the termination of programs even if the data structures they
traverse1 are cyclic. In fact, cycles often enjoy certain properties which allow to guarantee
that loops never traverse them completely. Suppose that x points to a cyclic data structure,
and the loop while (x!=null) do x:=x.f is supposed to traverse it. Recent works were able to
prove termination if either (a) no cycle can involve f [Scapin 2012]; or (b) cycles have to
involve a set X of fields which contains fields different from f [Brockschmidt et al. 2012]2.

The present cyclicity analysis, denoted in the following by Yfld, is more general and
more precise than the above approaches, and allows inferring field-sensitive reachability
and cyclicity information which can be used to prove termination of a wider class of
programs. The information inferred by Yfld takes the form of propositional formulæ which
indicate which are the fields involved (1) in paths between two variables; or (2) in cycles
reachable from a variable. A propositional formula can tell that a field never occurs in
cycle, or that it always occur, or that its presence in cycles is conditional. Consider the case
of a Tree class implementing trees where each node has a left and a right field pointing
to its left and right sub-trees, respectively, and a parent field pointing to the parent node.
Suppose also that two loops traverse the tree (1) from the root to a leaf, by following a
certain path; and (2) from this leaf, back to the root. The first loop traverses left and right
a certain number of times, while the second only traverses parent. This kind of tree is a

1The idea of traversing fields will be defined precisely later, but can be understood as dereference.
2This paper also deals with other cases of algorithms on cyclic data structures, which are beyond the scope of this
discussion.

2

cyclic data structure; however, it enjoys the property that every cycle has to traverse parent
and at least one between left and right . Condition (a) above does not hold for any of the
loops, since they traverse fields which are actually involved in cycles. Condition (b) does
not hold either, since the only field which is involved in all possible loops is parent, but
the second loop actually traverses it, so that termination cannot be proved. On the other
hand, the propositional formulæ computed by the present analysis represent the desired
cyclicity information which allows proving termination of both loops, since it is possible to
prove that they will never traverse a cycle completely. Another example of cyclic structure
where cycles can traverse several different sets of fields is a cyclic grid, i.e., some kind of
bidimensional double-linked list where each node has left , right , up, and down links to
neighbour nodes. This data structure has cycles which traverse left and right , or up and
down, but also longer cycles traversing all fields.

Following the well-known theory of Abstract Interpretation [Cousot and Cousot 1977], the
paper introduces abstract domains representing the properties of interest, and discusses their
relation with existing work. A sound abstract semantics is built on these domains, which
computes the desired reachability/cyclicity information. An intra-procedural subset of the
abstract semantics has been implemented, and gives the expected result on the examples
discussed in this introduction.

Main contributions. The main contributions of the present paper are as follows:

— The paper defines abstract domains which capture field-sensitive reachability and cyclic-
ity information in form of propositional formulæ.

— The domains are compared to related work and proved to be more precise.
— A sound abstract semantics is built on the abstract domains.
— The approach is partially implemented (only a subset of the intra-procedural component),

and the expected result is obtained on relevant examples.

1.1. Related work

The present paper is very related to research in the area of Pointer analysis [Hind 2001],
which considers properties of the heap and builds static analyses to enforce them. Clearly,
techniques which directly deal with the reachability and cyclicity originated by paths in the
heap represent the closest work in this area. Apart from that, Aliasing, Sharing, Points-to and
Shape analysis are the most related pointer analyses which can be found in the literature.

Termination analysis is a well-established research area which overlaps with Pointer anal-
ysis when heap-manipulating programming languages are considered; it also has to be
discussed as related work. Finally, Resource-usage analysis is also related because the same
results which are useful in order to prove termination can also help in estimating the
resource consumption of a program.

Pointer Analysis. A well-known technique in Pointer analysis, Aliasing analysis [Hind 2001]
investigates the program variables which might point to the same heap location at runtime.
Sharing analysis [Secci and Spoto 2005] is more general in that it determines if two variables
v1 and v2 can reach a common location in the heap, i.e., if the portions of the heap which
are reachable from v1 and v2 are not disjoint. Aliasing between two variables implies that
they also share. Points-to analysis computes the set of objects which might be referred to by
a pointer variable.

Research on Shape Analysis [Wilhelm et al. 2000] basically reasons about heap-
manipulating programs in order to prove program properties. In most cases, safety prop-
erties are dealt with [Bardin et al. 2004; Sagiv et al. 2002; Rinetzky et al. 2005]. On the other
hand, termination is a liveness property, and is, typically, the final property to be proved
when analyzing cyclicity; therefore, work on liveness [Reynolds 2002; Balaban et al. 2005;
Berdine et al. 2006; Cook et al. 2006; Brotherston et al. 2008] is closer to the present ap-

3

proach. Most papers use techniques based on Model Checking [Müller-Olm et al. 1999],
Predicate Abstraction [Graf and Saı̈di 1997], Separation Logic [Reynolds 2002] or Cyclic proofs
[Brotherston et al. 2008] in order to prove properties of programs manipulating the heap.
Typically, shape analyses capture aliasing and points-to information, and build a represen-
tation of the heap from which reachability information can be obtained. Such analyses are
very precise, sometimes at the cost of (i) limiting the shape of the data structures which can
be analyzed; (ii) simplifying the programming language to be dealt with; or (iii) reducing
scalability.

Reachability and Cyclicity analysis. The oldest notion of reachability dates back to
[Nelson 1983]: his reachability predicate is supposed to tell if a heap location reaches another
one in a linear list. A reachability-based acyclicity analysis for C programs was developed
by [Ghiya and Hendren 1996]. That analysis was presented as a data-flow analysis, and the
terms “direction” and “interference”, were used for, respectively, reachability and sharing.
Analyses which compute basically the same information were presented in more recent
work. [Genaim and Zanardini 2010; Genaim and Zanardini 2013] describe a formalization
of the analysis proposed by [Ghiya and Hendren 1996] in the framework of Abstract In-
terpretation, based on a Java-like Object-Oriented language and provided with soundness
proofs. The same analysis has been also formalized by means of Abstract Interpretation
by [Nikolic and Spoto 2014], which efficiently implement it in the Julia analyzer for Java
(bytecode) and Android3. As already discussed in the introduction, the analysis proposed
by [Rossignoli and Spoto 2006] is less precise since it does not consider reachability in order
to detect cycles. The present work also builds upon the results presented in [Scapin 2012;
Brockschmidt et al. 2012]. The relation with such works was explained in the introduction,
and will be made even more clear in the rest of the paper, especially in Section 3.6.

Termination and Resource-usage Analysis. The main goal of most approaches to reachabil-
ity and cyclicity analysis is to help Termination analysis proving the termination of loops
traversing data structures in the heap. This is the case of practically all the papers discussed
in the previous paragraph. In particular, [Scapin 2012] and [Brockschmidt et al. 2012] are
able to prove termination even when some kinds of cyclic data structures are traversed.
Proving termination of a given loop is typically done by finding a ranking function that
decreases in every iteration. For loops traversing acyclic data structures, the bound is inter-
preted in terms of the depth of the data structure [Spoto et al. 2010] (e.g, the length of a list,
the depth of a tree, etc.). On the other hand, for cyclic data structures which are traversed in
an acyclic way, the bound can be interpreted in terms of the acyclic depth, i.e., the maximal
length of acyclic paths.

The abstract domains defined by [Scapin 2012] can assess that a data structure, although
possibly cyclic, might only contain cycles with certain characteristics; namely, that the fields
traversed by the cycle do not belong to a given set. This way, it is possible to prove that
traversing a cyclic data structure will terminate, provided the traversal only concerns fields
which are guaranteed not to appear in cycles. Importantly, this abstract domain is not able
to deal with the examples of the cyclic tree and the double-linked list (Section 1.2 and 1.3),
since the field traversed by the loop are involved in cycles. As a matter of fact, the abstract
domain Īrc used byYfld and presented in Section 3 is strictly more expressive than the one
used by [Scapin 2012], as proved in Section 3.6.4.

[Brockschmidt et al. 2012] address a similar problem from a similar point of view: ter-
mination can be proved in cases where it is guaranteed that any cycle must traverse some
set of fields. Their work can prove the termination of a loop traversing a double-linked
list by building a Termination Graph and proving properties which entail program termi-

3http://www.juliasoft.com

4

nation. Such an analysis has been implemented in the AProVE tool [Giesl et al. 2006]. It is
important to point out that the property they manage is strictly less expressive than the
one represented by Īrc, as discussed in Section 3.6.5, and that the example of the cyclic tree
cannot be dealt with.

Being closely related to Termination analysis, Resource-usage analysis [Wegbreit 1975;
Debray and Lin 1993; Albert et al. 2012; Albert et al. 2013] also benefits from precise cyclic-
ity results, since the mechanisms which are used to compute upper or lower bounds on the
resource consumption of a program are similar to those used to prove its termination. In
fact, ranking functions can be used to provide bounds on the number of loop iterations.

1.2. Example: tree with edges to parent nodes

This code fragment works on a class Tree with fields left , right (pointing to the left and right
sub-tree, respectively), and parent (the link to the parent node). The procedure join takes
two trees l and r, and builds a new tree whose left and right branch are l and r, respectively.

1 class Tree {
2 Tree l e f t ;
3 Tree r i g h t ;
4 Tree parent ;
5 }

6 Tree j o i n (Tree l , Tree r) {
7 Tree t ; t := new Tree ;
8 t . l e f t := l ;
9 t . r i g h t := r ;

10 i f (l != nu l l) then l . parent := t ;
11 i f (r != nu l l) then r . parent := t ;
12 re turn t ;
13 }

In general, the parent link makes this data structure cyclic. However, a loop traversing a tree
either root-down (e.g., while (x!=null) x:=x. left) or leaf-up (e.g., while (x!=null) x:=x.parent)
will certainly terminate. In order to gather the necessary information to prove termination
of such loops, it is not enough to study which fields are never involved in cycles, as
[Scapin 2012] does, since all fields of Tree can be involved in some cycle. Moreover, to know
that some set of fields must be traversed by all cycles, as done by [Brockschmidt et al. 2012],
is also not enough, since the only field which must be obligatorily traversed is parent, so that,
for example, a leaf-up traversal would be imprecisely taken as potentially non-terminating
since it actually traverses all mandatory fields. However, termination could be proved by
detecting that every cycle must involve parent together with at least one between left and
right . This example is further discussed in Section 4.6.

1.3. Example: double-linked list

Consider this code fragment, working on a class Node with fields n and p, pointing to the
next and previous element of the list, respectively.

1 i := 1 ;
2 tmp := new Node ;
3 while (i <10) {
4 x := new Node ;
5 x . n := tmp ;
6 tmp . p := x ;
7 tmp := x ;
8 i := i +1;
9 }

10 while (x != nu l l) {
11 x := x . n ;
12 }

The code on the left-hand side creates a double-linked list with ten elements. It is clear
that such a list is a cyclic data structure; however, any cycle will certainly involve at least
once both n and p. Consequently, the loop on the right-hand side will terminate because
it only traverses n; in other words, it will never entirely traverse a cycle. Most standard

5

termination analyzers reject the second loop as potentially diverging, since acyclicity of the
data structure pointed to by x cannot be proved (indeed, it is cyclic). On the other hand,
the presented approach analyzes the loop in lines 3–9 and infers that any cyclic path must
traverse both n and p, thus making possible to prove that the loop in lines 10–12 terminates.
A similar piece of information is obtained by [Brockschmidt et al. 2012]. This example will
be further discussed in Section 4.7.

2. A SIMPLE OBJECT-ORIENTED LANGUAGE

This section defines the syntax and the denotational semantics of a simplified version of
Java. Class, method, field, and variable names are taken from a set X of valid identifiers.
A program consists of a set of classes K ⊆ X partially ordered by the subclass relation ≺.
Following Java, a class declaration takes the form “class κ1 [extends κ2] { t1 fld1;. . . tn fldn; M1

. . . Mk}” where each “ti fldi” declares the field fldi to have type ti ∈ K ∪ { int }, and each M j

is a method definition. The optional statement “extends κ2” declares κ1 to be a subclass of
κ2. A method definition takes the form “t mth(t1 w1,. . .,tn wn) {tn+1 wn+1;. . .tn+p wn+p; com}” where:
mth ∈ X is the method name; t ∈ K ∪ { int } is the type of the return value; w1, . . . ,wn ∈ X
are the formal parameters; wn+1, . . . ,wn+p ∈ X are local variables; tn+k is the declared type of
wn+k, hereafter denoted by δ(wn+k); and the command com follows this grammar:

exp ::= n | null | v | v.fld | exp1 ⊕ exp2 | new κ | v.mth(v̄)
com ::= skip | v:=exp | v.fld:=exp | com1 ;com2 |

if exp then com1 [else com2] | while exp do com | return exp

where v,mth, fld ∈ X; v̄ ∈ X∗; n ∈ Z; κ ∈ K ; and ⊕ is a binary operator on int . For simplicity,
and without loss of generality, conditions in if and while statements are assumed not to have
side effects. A method signature κ.mth(t1, . . . , tn):t refers to a method mth defined in class κ,
taking n parameters of type t1, . . . , tn ∈ K ∪ { int }, and returning a value of type t. Given a

signature mth, let mthb be its code com (i.e., the command appearing in its definition); mthi

be its set of input variables {this,w1, . . . ,wn}, where this refers to the object receiving the call;

mthl be its set of local variables {wn+1, . . . ,wn+m}; and mths = mthi ∪mthl. Given a program,
F denotes the set of fields declared in it4.

A type environment τ is a partial map from X to K ∪ { int } which associates types to
variables at a given program point. Abusing notation, when it is clear from the context,
type environments will be confused with sets of variables when types are not important;
i.e., v ∈ τwill stand for v ∈ dom(τ). A state over τ is a pair consisting of a frame and a heap.
A heap µ is a partial mapping from an infinite and totally ordered setL of memory locations
to objects; µ(ℓ) is the object bound to ℓ ∈ L in the heap µ. An object o ∈ O is a pair consisting
of a class tag o.tag ∈ K , and a frame o.frm which maps its fields into V = Z ∪ L ∪ {null}.
For simplicity, it is assumed that no two fields κ.fld and κ′.fld with the same field name
can be declared in a program, so that fld will be usually a shorthand for κ.fld; this is not a
significant restriction w.r.t. Java since the actual field to which a Java expression v.fld may
refer to can be (and actually is) known statically. Shorthands are used: o.fld for o.frm(fld);
µ[ℓ 7→ o] to modify the heap µ such that a location ℓ contains the object o; and µ[ℓ.fld 7→ val]
to modify the value of the field fld of the object µ(ℓ) to val ∈ V. A frame φ maps variables
in dom(τ) to V. For v ∈ dom(τ), φ(v) refers to the value of v, and φ[v 7→ val] is the frame
where v has been set to val, or defined to be val if v < dom(φ). The set of states over τ is

Στ =

〈

φ, µ
〉

∣

∣

∣

∣

∣

∣

∣

1. φ is a frame over τ, µ is a heap, and both are well-typed
2. rng(φ) ∩ L ⊆ dom(µ)
3. ∀ℓ ∈ dom(µ). rng(µ(ℓ).frm) ∩ L ⊆ dom(µ)

4For simplicity, int fields will be often ignored since they have no impact on the heap.

6

Eιτ~n�(σ) =
〈

σ f [ρ 7→ n], σh
〉

Eιτ~null �(σ) =
〈

σ f [ρ 7→ null], σh
〉

Eιτ~new κ�(σ) =
〈

σ f [ρ 7→ ℓ], σh[ℓ 7→ newobj(κ)]
〉

where ℓ < dom(σh)

Eιτ~v�(σ) =
〈

σ f [ρ 7→ σ f (v)], σh
〉

Eιτ
�

v.fld
�

(σ) =
〈

σ f [ρ 7→ σh(σ f (v)).fld], σh
〉

Eιτ
�

exp1⊕exp2

�

(σ) =
〈

σ f
[

ρ 7→ σ
f

1
(ρ) ⊕ σ

f

2
(ρ)

]

, σh
2

〉

where

σ1 = Eιτ
�

exp1

�

(σ) and σ2 = Eιτ
�

exp2

� (〈

σ f , σh
1

〉)

Eιτ~v0.mth(v1, . . . , vn)�(σ) =
〈

σ f
[

ρ 7→ σ
f

2
(out)

]

, σh
2

〉

where σ2 = ι(mth)(σ1) s.t. σ1 is

σh
1
= σh; σ

f

1
(this) = σ f (v0);∀1≤i≤n. σ

f

1
(wi) = σ f (vi);

and mth = lookup(σ, v0.mth(v1, . . . , vn));
Cιτ~skip �(σ) = σ

Cιτ
�

v:=exp
�

(σ) =
〈

σ f
[

v 7→ σ
f
e (ρ)

]

, σh
e

〉

Cιτ
�

v.fld:=exp
�

(σ) =
〈

σ f , σh
[

ℓ.fld 7→ σ
f
e (ρ)

]〉

where ℓ = σ f (v)

Cιτ

�

if exp then com1

else com2

�

(σ) = if σ
f
e (ρ) , 0 then Cιτ~com1�(σ) else Cιτ~com2�(σ)

Cιτ
�

while exp do com
�

(σ) = δ(σ) where δ is the least fixpoint of

λw.λσ. if σ
f
e (ρ) , 0 then w(Cιτ~com�(σ)) else σ

Cιτ
�

return exp
�

(σ) =
〈

σ f
[

out 7→ σ
f
e (ρ)

]

, σh
e

〉

Cιτ~com1; com2�(σ) = Cιτ~com2�(C
ι
τ~com1�(σ))

Fig. 1. Denotations for expressions and commands. The state σe is Eιτ
�

exp
�

(σ).

Given σ ∈ Στ, σ f and σh refer to its frame and its heap, respectively. The lattice Iτ
♭
=

〈℘(Στ),⊤,⊥,∩,∪〉 defines the concrete domain, where ⊤=Στ and ⊥=∅.
A denotation δ over type environments τ1 and τ2 is a partial map from Στ1 to Στ2 : it

describes how the state changes when some code is executed. The set of denotations from
τ1 to τ2 is ∆(τ1,τ2). An interpretation ι is a special denotation which gives a meaning to
methods in terms of their input and output variables: it maps methods to denotations, such

that ι(mth) ∈ ∆(mthi,{out}) for each mth. The variable out is a special variable denoting the
return value of methods. Let Γ be the set of all interpretations.

Denotations for expressions and commands are depicted in Figure 1. An expression
denotation Eιτ

�

exp
�

maps states fromΣτ to states fromΣτ∪{ρ}, whereρ is a special variable for
storing the value of exp. A command denotation Cιτ~com�maps states to states, in presence
of ι ∈ Γ. The function newobj(κ) creates a new instance of κ with int fields initialized to 0
and reference fields initialized to null, while newloc(σh) returns the first free location, i.e., the
first ℓ < dom(σh) according to the total ordering on locations. The function lookup resolves
the method call according to the runtime type of the object, and returns the signature of
the method to be invoked. The concrete denotational semantics of a program is defined as the
least fixpoint (lfp) of the following transformer of interpretations [Bossi et al. 1994].

Definition 2.1.
The denotational semantics of a program P is the lfp of

TP(ι) =
{

mth 7→ λσ∈Σmthi .∃τ\out.Cιmths∪{out}

�

mthb
�

(ext(σ,mth))
}

mth∈P

where ext(σ,mth) =
〈

σ f [∀v ∈ mthl ∪ {out}.v 7→ 0/null], σh
〉

.

The denotation for a method signature mth ∈ P is computed by TP as follows: it (1) extends
(using ext(σ,mth)) the input state σ ∈ Σmthi such that local variables are set to 0 or null;

7

(2) computes the denotation of the code of mth, using Cι
mths∪{out}

~ �; and (3) restricts the

resulting denotation to out, using ∃τ\out.

3. THE ABSTRACT DOMAINS

This section formalizes the analysis Yfld by means of Abstract Interpreta-
tion [Cousot and Cousot 1977], relying on the notion of abstract domain. The following
example shows a class hierarchy which will be used in the rest of this section.

Example 3.1 ((class hierarchy)). Let the class hierarchy 〈K ,≺〉 under study be defined as
follows. Objects of class Emp model employees, which can be of level 1 (L1) or 2 (L2). An
employee has one main device (mD), which is a laptop (LP); level-2 employees also have a
tablet (TB) as an accessory device (aD) which is associated (lnk) to a laptop. Devices (Dev)
are also associated to their owner (owner).

class Emp { LP mD ; }
class L1 extends Emp { }
class L2 extends Emp { TB aD ; }
class Dev { Emp owner ; }
class LP extends Dev { }
class TB extends Dev { LP lnk ; }

Emp

L1 L2

Dev

LP TB
mD

aD

lnk

owner

In the figure, solid lines correspond to ≺; dotted lines represent fields.

3.1. Background in Logic

A Boolean function is a function f : Booln 7→ Bool with n ≥ 0, and can be represented as
a propositional formula over a set X with cardinality n. In this paper, Boolean functions
and propositional formulæ will be used interchangeably. Moreover, a truth assignment of
Boolean variables will be often represented as the set of variables which are true under
that assignment. In this framework, X will be the set P = {fld | fld ∈ F } of propositions fld
corresponding to program fields. Such propositions are called f-propositions. Propositional
formulæ over P are called path-formulæ. As usual, a truth assignment ω ⊆ P is a model
of a path-formula F if F evaluates to true under ω. The set of models of F is denoted by
modelsP(F).

The path-formula 〈ω〉 is defined as
∧

{ fld | fld ∈ω }∧
∧

{ ¬fld | fld ∈P\ω }, and represents
the formula whose only model is ω. An important special case is 〈∅〉 =

∧

{¬fld |fld ∈P};
moreover, 〈fld1 , ..fldk 〉will be a shorthand for 〈{fld1 ..fldk }〉.

A formula F is monotone if, for every two assignments ω and ω′, ω ⊆ ω′ and ω ∈
modelsP(F) imply ω′ ∈ modelsP(F). It is positive ifP ∈ modelsP(F). It is definite if, for every two
assignments ω′ and ω′′, ω′ ∈ modelsP(F) and ω′′ ∈ modelsP(F) implies ω′ ∩ω′′ ∈ modelsP(F).
Finally, set conjunction

∧

X and set disjunction
∨

X will be, respectively, true and false
whenever X = ∅. PF denotes the set of all path-formulæ.

3.2. Paths, cycles, and fields

The abstract domains used by Yfld are based on the notion of reachable heap locations, i.e.,
the part of the heap which can be reached starting from a given location (or the variable
pointing to it). Given a heap µ, a path π from ℓ′ ∈ dom(µ) to ℓ′′ ∈ dom(µ) is a sequence
〈ℓ0, .., ℓk〉 of locations such that (1) k ≥ 0; (2) ℓ0 = ℓ′; (3) ℓk = ℓ′′; and (4) for every 0 ≤ i ≤ k−1,
it holds that ℓi+1 ∈ rng(µ(ℓi).frm), i.e., ℓi+1 is the location bounded to a field of the object to
which ℓi is bound. The length of a path 〈ℓ0, .., ℓk〉 is k; empty paths are those with length 0.
A cycle is a path from ℓ to ℓ itself; it is an empty cycle if its length is 0. Given π1 = 〈ℓ0, .., ℓk〉
and π2 = 〈ℓk, .., ℓm〉, the concatenation π1 · π2 is the path 〈ℓ1, .., ℓk, .., ℓm〉.

8

Definition 3.2 ((reachable locations, similar to [Rossignoli and Spoto 2006])). The set of all
reachable locations from ℓ ∈ dom(µ) is R(µ, ℓ)= ∪ {Ri(µ, ℓ) | i ≥ 0}, where R0(µ, ℓ) = {ℓ}, and
Ri+1(µ, ℓ) is ∪{rng(µ(ℓ′).frm) ∩ L | ℓ′ ∈ Ri(µ, ℓ)}.

The rest of this section is developed in the context of a type environment τ, which will be
often left implicit. Yfld considers fields or field identifiers when collecting information about
paths; to this end, domains introduced in Sections 3.3 and 3.4 are based on the notion of
field-reachable heap locations, i.e., the part of the heap which can be reached from a location
by traversing (dereferencing) certain fields.

Definition 3.3 ((field traversal)). A path π is said to traverse a field fld ∈ F in the state σ if
(1) it is a path in σh; (2) π = 〈ℓ0, .., ℓi, .., ℓi+1, .., ℓk〉with k > i ≥ 0; (3) an object o of class κ′ � κ
(i.e., o.tag = κ′) is stored in ℓi (i.e., σh(ℓi) = o); and (4) o.fld points to the location ℓi+1, i.e.,
o.frm(fld) = ℓi+1.

Example 3.4 ((field traversal)). The path depicted below is compatible with the class
hierarchy of Example 3.1, and traverses fields L2.aD, TB.lnk and Dev.owner.

o1 : L2 o2 : TB o3 : LP o4 : L1
aD lnk owner

Definition 3.5 ((p-satisfaction)). A path π is said to p-satisfy an f-proposition fld iff it
traverses fld. Given a path-formula F, the p-satisfaction of F by π, written π։ F, follows
the usual logical rules:

π։ fld iff π traverses fld π։¬F iff π։F does not hold
π։F′ ∧ F′′ iff π։F′ and π։F′′ π։F′ ∨ F′′ iff π։F′ or π։F′′

As usual, true stands for a tautology, and false stands for a contradiction. Ordering on path-
formulæ is logical implication: F′ ≤ F′′ iff F′ ⇒ F′′ is valid. The meaning is straightforward:
for every π, if F′ ≤ F′′ and π։F′, then π։F′′.

Example 3.6 ((p-satisfaction)). The path of Example 3.4 p-satisfies aD ∧ owner , and any
path-formula which is implied by it, such as aD . On the other hand, it does not p-satisfy
¬owner ∨ mD .

A truth assignment ω ⊆ P is said to be viable if there exists some path π in some state σ
which p-satisfies 〈ω〉. To rule out non-viable truth assignments allows obtaining a Galois
insertion (i.e., without superfluous elements in the abstract domain) rather than a Galois
connection in the definition of the abstract domains for reachability and cyclicity.

Lemma 3.7 ((viability)). The viability of a truth assignment ω is decidable5.

Note that viability is not related to an assignment that satisfies a formula, but rather
to a property of the assignment itself: that it can represent a “real” path in a “real” heap
according to class declarations.

Example 3.8 ((viability of truth assignments)). Given the class hierarchy introduced in Ex-
ample 3.1, the truth assignment {aD, lnk, owner} is viable, as shown by the path of Example
3.4. On the other hand, {mD, lnk} is not viable. In fact, a path only traversing mD and lnk
should contain at least one TB object oTB and one LP object oLP since lnk must be traversed.
It must also include one Emp (or a subclass) object oEmp since mD must also be traversed.
Suppose oTB is the first object on the path: then the second must be oLP since owner cannot
be traversed, and there is no way to reach oEmp. On the other hand, if the oLP is the first
object, then no other object can be reached without traversing owner. Finally, if oEmp is the

5Proofs are available in Appendix A.

9

first object, then the second one must be oLP, and, again, no other object can be reached
from it.

Definition 3.9 ((equivalence)). The set PF of path-formulæ can be partitioned according
to the following equivalence relation: F and G are equivalent unless there is a path in
some state which p-satisfies one and only one of them. Note that this relation is “coarser”
than (i.e., implied by) standard logical equivalence since the discriminating path must be
compatible with the class hierarchy.

Lemma 3.10 ((equivalence)). The equivalence of two path-formulæ is decidable.

In the following, PF≡ will be PF with the equivalence relation of Definition 3.9.

3.3. The Field-Reachability domain

First, the definition of field-reachability between program variables is given.

Definition 3.11 ((field-reachability on variables)). A variable v is said to reach another vari-
able w in σ if there exists a path from σ f (v) to σ f (w). Moreover, given some F, v is said to
F-reach w in σ if every path from σ f (v) to σ f (w) p-satisfies F. This definition implies that any
variable v false-reaches w if and only if there is no path between them.

Example 3.12 ((reachability)). Consider the heap depicted below, based on Example 3.1.

v w

o1 : L2
o2 : LP

o3 : TB
o4 : L1

mD
aD lnk

owner

Among the path-formulæ F such that v F-reaches w, there are:

mD ∨ aD : all paths traverse either mD or aD
owner : all paths traverse owner
¬ lnk ∨ ¬mD : at most one between lnk and mD is traversed

An extension of the equivalence relation on path-formulæ is needed here: PF 2
≡ is a

function which takes a pair of variables (v,w), and returns the set PF equipped by the
following equivalence relation ≡v,w: F ≡v,w G unless there is a path from σ f (v) to σ f (w)
in some state which p-satisfies one and only one between F and G. The only difference
w.r.t. the original ≡ is that the path must connect v to w.

The reachability abstract domain is formalized similarly to Iτr
[Genaim and Zanardini 2013], and is actually a refinement of it (Section 3.6). The
next definition shows the lattice of abstract values representing reachability between
variables. In the following, functions are often represented by λ-notation, and τ is omitted.

Definition 3.13. The field-reachability abstract domain is the complete lattice

Īr =
〈

R̄, ⊑̄r, ⊥̄r, ⊤̄r, ⊓̄r, ⊔̄r

〉

— the set R̄ is the set of functions whose domain is X × X, and that return an element of
PF 2
≡ (v,w) = PF≡v,w for a pair of arguments (v,w);

— ⊑̄r is ≤ on path-formulæ, applied point-wise;
— ⊥̄r = λ(v,w).false and ⊤̄r = λ(v,w).true;
— f ′⊓̄r f ′′ = λ(v,w). f ′(v,w) ∧ f ′′(v,w) and f ′⊔̄r f ′′ = λ(v,w). f ′(v,w) ∨ f ′′(v,w).

10

The meaning of an abstract value Īr is the following: it represents all the states where, for
every v and w (possibly the same variable), all paths from v to w p-satisfy F = Īr(v,w). Note
that F . false does not mean that there is some path from v to w in a concrete state: this
a “possible” analysis, so that non-reachability is always a possibility. On the other hand,
Īr(v,w) = false excludes reachability since no path p-satisfies false. The bottom ⊥̄r models the
(non-empty) set of all states where all reference variables are null , whereas ⊤̄r represents
Στ. Note that Īr(v, v) ≥ 〈∅〉 (recall that 〈∅〉 is

∧

{¬fld | fld ∈ P}) whenever v is not null . Unlike
Iτr , this abstract domain can also represent aliasing [Hind 2001] because empty paths are
also considered. This explains the different definition of the bottom element in Īr and Iτr .

Example 3.14 ((abstract values)). In a program where κ.fld1 and κ.fld2 are the only fields,
the abstract value Īr such that

Īr(v, v) = (¬fld1 ∧¬fld2) ∨ (fld1 ∧fld2)
Īr(v,w) = Īr(v,w′) = fld1
Īr(w, v) = Īr(w′, v) = false

Īr(w,w) = Īr(w,w′) = Īr(w′,w) = Īr(w′,w′) = ¬fld1 ∧¬fld2

represents heaps (a) and (b), but not (c). The last line allows w and w′ to alias, and this is
compatible with all heaps: in the first, w′ is null , so that there are no paths starting from
it, not even empty paths; in the second, they actually alias; in the third, self-aliasing holds
for both, but they do not alias with each other. Heap (a) is represented by Īr(v, v) since v
is not cyclic (only self-aliasing), by Īr(v,w) because the path from v to w actually traverses
fld1, and by Īr(v,w′) since there are no paths between v and w′. Note that Īr(v,w) also allows
paths to traverse fld2, as in this case. Heap (b) is also represented by Īr(v, v) because v is
self-reachable by a path traversing both fields, and there is no other path only traversing
one of them. It is also represented by Īr(v,w) and Īr(v,w′) since v does not need to actually
reach w or w′. Heap (c) is not represented by Īr(w, v) because false means that there can be
no reachability from w to v.

(a)

v w

o1 : κ o2 : κ

o3 : κ

fld1 fld2

(b)

v w w′

o1 : κ o2 : κ

o3 : κ o4 : κ

fld1 fld2 fld2

(c)

v w

w′

o1 : κ o2 : κ

o3 : κ

fld2

In general, the representation of most path-formulæ can be simplified by using the 〈〉-
notation: for example, Īr(v, v) can be written as 〈∅〉 ∨ 〈fld1 , fld2 〉.

Definition 3.15 ((abstraction and concretization)). The abstraction and concretization func-
tions between Īr and the concrete domain Iτ

♭
are:

ᾱr(σ) = λ(v,w).
∧

{ F | v F-reaches w in σ }
ᾱr(I♭) = λ(v,w).

∨

{ ᾱr(σ)(v,w) | σ ∈ I♭ }
γ̄r(Īr) = { σ ∈ Στ | ∀v,w ∈ τ. ∃F ≤ Īr(v,w). v F-reaches w in σ }

ᾱr is computed as follows: for every σ, the conjunction of all the F s.t. v F-reaches w comes
to be the strongest condition p-satisfied by all paths from v to w in σ (recall that F-reachability
means that all paths p-satisfy F). All strongest conditions are combined by disjunction on
states. On the other hand, γ̄r is the adjoint function required by Lemma 3.16. As expected,
given Īr s.t. Īr(v,w) = G, a state where v does not reach w is still compatible with γ̄r(Īr) (i.e.,

11

it belongs to the concretization unless other variables make it incompatible) since false ≤ G,
and v false-reaches w.

Lemma 3.16 ((insertion)). ᾱr and γ̄r define a Galois insertion between Īr and Iτ
♭
.

3.4. The Field-Cyclicity domain

The abstract domain Īc for cyclicity is similar to Īr, so that most technical details will not
be repeated. The following definition is similar to Definition 3.11.

Definition 3.17 ((field-cyclic variables)). A variable v is said to be cyclic in a state σ if there
exists a path from σ f (v) containing a cycle. Given a path-formula F, v is said to be F-cyclic
in σ if all cycles reachable from σ f (v) in σ p-satisfy F.

Note that the p-satisfaction of F is not required for the whole path starting at σ f (v); rather,
it must hold when only the cyclic part of the path is considered.

A new extension of the equivalence relation on path-formulæ is needed in order to deal
with cyclicity: PF 1

≡ will be a function which takes a variable v, and returns the set PF
equipped by the equivalence relation ≡v: F ≡v G unless there is a path in some state which
(1) starts at σ f (v); and (2) contains a cycle which p-satisfies one and only one between F
and G.

Definition 3.18 ((cyclicity abstract domain)). The abstract domain for field-cyclicity is sim-
ilar to the field-reachability domain: it is the complete lattice

Īc =
〈

Ȳ, ⊑̄c, ⊥̄c, ⊤̄c, ⊓̄c, ⊔̄c

〉

where Ȳ is the set of functions mapping each reference variable v to an element of PF 1
≡ (v);

⊑̄c is ≤, applied point-wise; ⊥̄c = λv.false, and ⊤̄c = λv.true; and ⊓̄c and ⊔̄c are, respectively,
∧ and ∨, applied point-wise.

Definition 3.19 ((abstraction and concretization)). The functions

ᾱc(σ) = λv.
∧

{ F | v is F-cyclic in σ }
ᾱc(I♭) = λv.

∨

{ ᾱc(σ)(v) | σ ∈ I♭ }
γ̄c(Īc) = { σ ∈ Στ | ∀v ∈ τ. ∃F ≤ Īc(v). v is F-cyclic in σ }

are the abstraction and concretization functions between Īc and Iτ
♭
.

Lemma 3.20 ((insertion)). ᾱc and γ̄c define a Galois insertion between Īc and Iτ
♭
.

An abstract value such that Īc(v) = F represents states where all cyclic sub-paths of paths
starting at σ f (v), if any, have to p-satisfy F. Similarly to reachability, the non-nullity of v

implies that Īc(v) ≥ 〈∅〉 since there always exists an empty path from σ f (v) to σ f (v).

Example 3.21. Let Īc be an abstract state, and Īc(v) = 〈∅〉∨〈fld1 , fld2 〉 be the path-formula
whose only models are ∅ and {fld1 , fld2 }. Consider the three heaps below.

v

o1 : κ

v

o1 : κ

o2 : κ o3 : κ

fld3 fld1

fld2

v

o1 : κ o2 : κ

o3 : κ

fld1

fld1 fld2

fld1

12

The heap depicted on the left is correctly represented by this abstract value because the
empty cycle from σ f (v) to σ f (v) p-satisfies ∅ which is a model of Īc(v). The second heap is
also represented because the only non-trivial cycle starts from o2 and traverses both fld1

and fld2; note that Īc(v) does not need to account for fld3 since this field is not traversed
by the cycle. On the other hand, the heap on the right is not correctly represented because
there is a cycle only traversing fld1, and {fld1 } is not a model of Īc(v).

3.5. The reduced product

The (direct) product of the abstract domains presented in this section is the set of pairs
Īrc = (Īr, Īc), and the theory of Abstract Interpretation guarantees that it identifies a Galois
connection with γ(Īr, Īc) = γ̄r(Īr) ∩ γ̄c(Īc). In the following, Īrc(v1, v2) will be a shorthand for
Īr(v1, v2), where Īr is the reachability part of Īrc, and Īrc(v) will stand for Īc(v), where Īc is the
cyclicity part of Īrc.

Usually, the reduced product [Cousot and Cousot 1979] is more interesting than the direct
product since it happens to generate a Galois insertion. It is obtained by “unifying” (by
means of an equivalence relation) abstract values with the same concretization (i.e., repre-
senting the same set of concrete states). Two different abstract values are mapped to the
same set of states when discrepancies between them do not “include” or “exclude” any
state. This happens when Īr contains information which is not compatible with Īc, similarly
to the abstract domains used in the reachability-based analysis Yrc described in Section 1
[Genaim and Zanardini 2013, Lemma 4.7].

Example 3.22 ((reachability vs. cyclicity)). Let Ī′rc = (Ī′r, Īc) and Ī′′rc = (Ī′′r , Īc) only differ in
the self-reachability part about x; i.e., the cyclicity part is the same, and Īc(x) = Ī′r(x, x) = F,
but Ī′′r (x, x) = G > F. In this case, there is, in general, a set X of states which are represented
by Ī′′r but not by Ī′r. In such states, this happens because of paths from x to x which p-satisfy
G but not F. However, states in X are incompatible with Īc since a path from x to x is a cycle,
but Īc(x) = F would not be p-satisfied by such a path. Therefore, the difference X between
γ̄r(Ī′r(x, x)) and γ̄r(Ī′′r (x, x)) is a set of concrete states which are not represented by γ̄c(Īc(x)),
so that γ̄r(Ī′r)∩ γ̄c(Īc) = γ̄r(Ī′′r)∩ γ̄c(Īc). As a conclusion, both Ī′rc and Ī′′rc actually represent the
same states.

Definition 3.23 ((normal form)). An abstract value (Īr, Īc) is in normal form if, for every
v ∈ τ, Īc(v) ≥ Īr(v, v). The normalizationN

(

Īr, Īc
)

is defined as
(

N
(

Īr, Īc
))

(v) = Īc(v) ∨ Īr(v, v)
(

N
(

Īr, Īc
))

(v,w) = Īr(v,w)

The reduced product of the reachability and cyclicity domains is the set of normal-form
pairs (Īr, Īc), as proved in the following lemma.

Lemma 3.24 ((reduced product)). The lattice based on
{ (Īr, Īc) | Īr∈R̄, Īc∈Ȳ, (Īr, Īc) is in normal form }

with γ̄rc(Īr, Īc) = γ̄r(Īr) ∩ γ̄c(Īc) is the reduced product between Īr and Īc.

In the following, operators on abstract values will be extended to the reduced product.
For example, since their domains are disjoint, Īc⊔̄Īr will be the function f such that (1)
f (v) = Īc(v); and (2) f (v,w) = Īr(v,w). Moreover, reachability and cyclicity abstract values
can be mixed: e.g., Īrc⊔̄Īr will be the function g such that (1) g(v) = Īrc(v) (i.e., the cyclicity
component); and (2) g(v,w) = Īrc(v,w) ∨ Īr(v,w).

3.6. Comparison with other approaches to the problem

This section refers to reachability; its extension to cyclicity is straightforward. The domain
Īr presented in Section 3.3 is very expressive since it can predicate a number of interesting

13

facts about paths. This section compares Īrc with a number of abstract domains which are
meant to tackle the same problem.

3.6.1. An abstract domain without field information. Such an abstract domain was inspired
by a static analysis for C programs [Ghiya and Hendren 1996], and formalized as an ab-
stract domain by [Genaim and Zanardini 2013]. It is structurally similar to Īr, but field
information is not considered.

Definition 3.25 ((without fields [Genaim and Zanardini 2013])). This abstract domain is the
complete lattice Iτr = 〈℘(X),⊆, ∅,X,∩,∪〉, where

X =
{

v w

∣

∣

∣

∣

∣

v,w ∈ dom(τ), and there exist κ1�τ(v) and κ2�τ(w)
such that κ2 is reachable from κ1

}

where the notion of reachability between classes is taken from [Secci and Spoto 2005]: “κ2

is reachable from κ1” means that it is possible to have a heap where an object of class κ1

reaches an object of class κ2.

An abstract value Ir is a set of statements : if v w < Ir, then the concretization of Ir

will not include any state where v reaches w. Iτr is an abstraction of Īr.

Lemma 3.26. The abstract domain Iτr is an abstraction of Īr.

As already mentioned, Īr is also able to represent aliasing [Hind 2001]. Indeed, it is also
a refinement of the standard abstract domain for aliasing analysis.

Lemma 3.27. The abstract domain Īr is a refinement of the aliasing domain.

A sound abstract semantics based on Iτr has been proposed by
[Genaim and Zanardini 2013]; very similar analyses can be found in the works by
[Ghiya and Hendren 1996], and by [Nikolic and Spoto 2014]. In terms of precision, Īr is
more precise than Iτr since the field information can rule out states where paths do not
p-satisfy a given formula. As discussed in the introduction, this is more evident when
dealing with cyclicity, since such an extra information about cycles can lead to prove the
termination of algorithms which traverse cyclic data structures. In terms of efficiency, it is
clear that an abstract semantics based on Īr and Īc instead of Iτr and Iτc is more expensive
since (1) operators on path-formulæ are more complex (e.g., ⊙ in Section 4); and (2) the
convergence of the global fixpoint (Section 4.4) can be slower; in fact, for every pair (v,w),
Īr allows ascending chains of path-formulæ whose length is exponential on the number
of fields, while Iτr only allows 2-long chains (“does not reach” < “reaches”).

3.6.2. An abstract domain based solely on class reachability. Another abstract domain which
can be studied is the one where just the class hierarchy is considered: a variable v is
regarded as potentially reaching w whenever the class of w is reachable from the class of
v [Secci and Spoto 2005]. Such a domain will be denoted by κIr; needless to say, it is an
abstraction of both Iτr and (by transitivity) Īr.

Definition 3.28 ((class-based)). The domain κIr is defined as the lattice

κIr =
〈

℘(XK×K)≡,⊆, ∅,X
K×K ,∩,∪

〉

where (1) XK×K is the set of all pairs (κ1, κ2) s.t. κ2 is reachable from κ1; and (2) the
equivalence relation is such that S1 ≡ S2 are equivalent if they have the same downward
closure w.r.t. �. Formally: let S� = {(κ′

1
, κ′

2
) | ∃(κ1, κ2) ∈ S, κ′

1
� κ1, κ′2 � κ2}, i.e., pairs

obtained by adding all subclasses of classes belonging to a pair. Then S1 ≡ S2 iff S�
1
= S�

2
.

14

An abstract value κIr contains pairs of classes, and the intended meaning is that it rep-
resents all the states where a path goes from a κ1 object to a κ2 object only if (κ1, κ2) ∈ κIr.
As discussed below, this is a very rough approximation of the concrete semantics. Due to
how the equivalence relation is defined, abstract values can be considered as being closed
on subclasses, like S�.

Lemma 3.29. κIr is an abstraction of Iτr .

It is straightforward to see that an abstract semantics based on κIr and the corresponding
κIc would be much less precise than any other approaches to reachability/cyclicity analysis
discussed in this paper: a variable of type κ is condemned to be potentially cyclic as long
as there is some possibility to create a cycle starting from a κ object. On the other hand, the
analysis is fully computable: it is only necessary to take the class hierarchy into account.
This also implies that the reachability/cyclicity information does not depend on the program
point: it can be computed once and used whenever needed. The interest of κIc is mainly
theoretical because its lack of precision makes it impractical as the core of a static analyzer.
However, it could be used as a first approximation which rules out some paths or cycles
without the need of running more precise, but more expensive analyses like the other ones
discussed here.

3.6.3. Abstract domains with restrictions on path-formulæ. The abstract domains introduced
in this section are very similar to Īr, the only difference being the restriction of path-
formulæ to some specific class of propositional formulæ. Domains pIτr , mIτr , and dIτr restrict
path-formulæ to, respectively, positive, monotone, and definite Boolean functions (Section
3.1).

The domain pIτr deals with positive Boolean functions with the addition of the bottom
element false. The class of path-formulæ that can be represented includes monotone func-
tions (note that the addition of false is needed to have this property), so that pIτr can be
easily proved to be a refinement of mIτr .

The restriction to monotone Boolean functions makes sense because a monotone function
(with the exception of false, which is p ∧ ¬p for some p, and true) can be represented by
a conjunctive normal form where all literals are positive. In terms of paths and fields, a
monotone formula can say that paths have to traverse a field, but not that they do not have
to. Monotonicity implies that if a path π p-satisfies a monotone path-formula F, then any
path which contains π as a part of it will also p-satisfy F.

Finally, the use of dIτr can be motivated by the fact that, given a definite formula F,
and two paths p-satisfying it and sharing a common part in the heap, their common
part is guaranteed to p-satisfy F. For example, let F be {f, g, h}; in this case, the formula
g is definite. Consider the heap depicted below: both π1 and π2 p-satisfy g , and their
intersection π is also guaranteed to p-satisfy it.

π1

π

π2

o1 : κ o2 : κ o3 : κ o4 : κf g h

The rest of this section will formally define mIτr and demonstrate that it is a strict abstrac-
tion of Īr; similar results can be also proved for pIτr and dIτr .

Definition 3.30 ((monotone reachability)). The monotone field-reachability abstract domain is
the complete lattice

mIτr = 〈
mRτ, m⊑r,

m⊥r,
m⊤r,

m⊓r,
m⊔r〉

15

— mRτ is the set of functions from X × X to monotone path-formulæ, equipped with an
equivalence relation similar to ≡v,w;

— m⊑r is ≤ on path-formulæ, applied point-wise;
— m⊥r = λ(v,w).false, and m⊤r = λ(v,w).true;
— m⊓r is ∧ applied point-wise, and m⊔r is ∨ applied point-wise.

Lemma 3.31. The following abstraction and concretization functions define a Galois connection
between Īr and mIτr : the latter strictly abstracts the former.

(α(Īr))(v,w) =

false if Īr(v,w)|=false
true if true|=Īr(v,w)
∧

{ fld1 ∨ .. ∨ fldk | Īr(v,w)|=fld1 ∨ .. ∨ fldk } otherwise
γ(mIr) = mIr

mIτr is strictly more abstract than Īr, as shown by the following example.

Example 3.32 ((monotone reachability)). Part (a) of the figure below shows a heap where
v can reach w by traversing two paths.

v w

o1 : κ o2 : κ
f

g

v w

o1 : κ o2 : κ

o3 : κ o4 : κ

o5 : κf

h
h

g

(a) (b)

The abstract value which best represents such a heap in Īr is Īr such that Īr(v,w) = (f ∨
g)∧ (¬ f ∨¬g) (exclusive disjunction). On the other hand, the best abstract value from mIτr
would be such that mIr(v,w) = f ∨ g . It can be easily seen that mIr also represents heaps like
part (b), where a path traverses both f and g, whereas Īr does not.

As mentioned before, mIτr is an abstraction of pIτr , while dIτr can be compared with neither
mIτr nor pIτr : for example, (1) p∨q is monotone but not definite, whereas¬p∨q is definite but
not monotone; and (2) p ∨ q is positive but, again, not definite, whereas ¬p ∧ ¬q is definite
but not positive.

3.6.4. An domain excluding fields from paths. The abstract domain introduced by
[Scapin 2012], which will be denoted by Aτ in this paper, also considers field informa-
tion to improve on existing techniques [Ghiya and Hendren 1996; Nikolic and Spoto 2014;
Genaim and Zanardini 2013]. The property tracked by Aτ is “there are no paths from v to
w which traverse any field belonging to a set F”. The following definition is taken from
[Scapin 2012, Def. 5.1], and slightly modified in order to adapt notation and only consider
reachability.

Definition 3.33 ((Scapin’s)). The complete lattice Aτ is 〈URτ,⊑A,⊓A,⊔A〉, where URτ is
℘(X×X × ℘(F)), ⊑A is ⊆, ⊓A is ∩, and ⊔A is ∪.

An abstract value containing a triple (v,w,B)6, originally expressed as v 6 B w, represents
states where v can only reach w without traversing any fld ∈ B.

6To avoid confusion with path-formulæ, B is used here instead of the original F to denote field sets.

16

Lemma 3.34. The following functions define a Galois insertion between Īr and Aτ: the latter
is a strict abstraction of the former.

α(Īr) =
{

v 6 B w | ∀fld ∈ B. Īr(v,w) |= ¬fld
}

γ(IA) = λv,w.
∧

fld∈B

¬fld where B is the maximal set s.t. v 6 B w ∈ IA

The abstract semantics and the complete analysis based on this domain is described
by [Scapin 2012]. Importantly, it is not able to express the property that every cycle has
to traverse certain fields, so that termination of the double-linked-list or the cyclic-tree
example cannot be proved. However, the convergence of the global fixpoint is likely to be
faster since Aτ only allows ascending chains of path-formulæ whose length is linear on the
number of fields.

3.6.5. An analysis detecting that all paths have to traverse certain fields. The analysis presented
by [Brockschmidt et al. 2012] uses some kind of field-sensitive information in order to prove
termination. In fact, it is able to detect situations where all cycles which can occur in a data
structure must traverse a certain set of fields, as in the example of Section 1.3. It is easy to
see that such a piece of information, which is obtained by a component of their work, can
be formalized into an abstract domain which is strictly less refined than mIτr . Unlike the
other domains discussed in this section, the following definition refers to cyclicity instead
of reachability since cyclicity is represented more explicitly by [Brockschmidt et al. 2012].

Definition 3.35. The complete lattice Qτ is
〈

UCτ,⊑Q,⊓Q,⊔Q

〉

, where UCτ is the set of

partial functions from X to ℘(F). An abstract value IQ represents concrete states where (1)
for every v ∈ dom(IQ) such that IQ(v) = B, v can only be cyclic by means of paths which
traverse all fld ∈ B; and (2) for every w < dom(IQ), w cannot be cyclic. Moreover,

— I1
Q
⊑Q I2

Q
iff, for every v ∈ dom(I1

Q
), it holds that v ∈ dom(I2

Q
) and I2

Q
(v) ⊆ I1

Q
(v) (i.e., I1

Q

allows less variables to be cyclic and, in this case, puts stricter conditions on paths);
— IQ = I1

Q
⊓Q I2

Q
is such that dom(IQ) = dom(I1

Q
) ∩ dom(I2

Q
), and, for every v ∈ dom(I1

Q
) ∩

dom(I2
Q

), it holds that IQ(v) = I1
Q

(v) ∪ I2
Q

(v);

— IQ = I1
Q
⊔Q I2

Q
is such that dom(IQ) = dom(I1

Q
) ∪ dom(I2

Q
), and (1) for every v ∈ dom(I1

Q
) ∩

dom(I2
Q

), it holds that IQ(v) = I1
Q

(v) ∩ I2
Q

(v); (2) for every v ∈ dom(I1
Q

) \ dom(I2
Q

), it holds

that IQ(v) = I1
Q

(v); and (3) for every v ∈ dom(I2
Q

) \ dom(I1
Q

), it holds that IQ(v) = I2
Q

(v).

Lemma 3.36. The following functions define a Galois insertion between Īc and Qτ: the latter
is a strict abstraction of the former.

α(Īc) = IQ with domain D = { v | Īc(v) , false} and such that

IQ(v) = { fld | Īc(v) |= fld }

γ(IQ) = λv.

{
∧

fld∈IQ(v) fld if v ∈ dom(IQ)
false otherwise

As a matter of fact, Qτ is also an abstraction of the cyclicity counterpart of mIτr since mono-
tone boolean functions can capture the desired property. Indeed, the path formulæ returned
by the function γ presented in Lemma 3.36 (i.e., either false or

∧

fld∈IQ(v) fld) are monotone.

3.6.6. Even more expressive abstract domains. Most domains discussed so far follow a sim-
ilar pattern: an abstract value assigns to a pair of variables (v,w) (or to a single variable,
in the case of cyclicity) a logical formula which is in charge of describing a property of all

17

paths between v and w. This observation leads to consider more refined logics capturing
finer-grained properties of paths.

For example, one could be interested in the order in which a path traverses fields. Such
an order could be either a total or a partial order, stating that, for example, every path from
v to w only traverses fld′′ after traversing fld′. Another potentially interesting property is
the (minimum or maximum) number of occurrences of a given field in a path. In principle,
these properties can be combined to represent even more precise properties such as all paths
traverse fld′ at least once, and fld′′ at least twice; the first occurrence of fld′′ comes before the first of
fld′; the second occurrence of fld′′ comes after the first of fld′.

To define such domains and discuss their applicability is beyond the scope of this paper.
Anyway, it is likely that this kind of properties of paths could be represented by first-order
logic or some version of temporal logic or separation logic.

4. THE FIELD-SENSITIVE ABSTRACT SEMANTICS

This section defines an abstract semanticsYfld based on Īrc. The semantics has to take into
account any modification to the heap which may occur at runtime. In particular, paths can
be created and removed by means of field updates. On the contrary, updating a reference
variable (not one of its fields) does not modify the heap structure, but has to be reflected
anyway in the resulting abstract values. An abstract denotation ξ from τ1 to τ2 is a partial
map from Īτ1

rc to Īτ2
rc . It describes how the abstract input state changes when a piece of code

is executed. The set of all abstract denotations from τ1 to τ2 is denoted by Ξ(τ1, τ2). As in
the concrete setting, interpretations provide abstract denotations for methods in terms of
their input and output arguments. An interpretation ζ maps method signatures to abstract

denotations, and is such that ζ(mth) ∈ Ξ(mthi,mthi ∪ {out}) for every mth. Note that the

range of denotations is mthi ∪ {out}, unlike the concrete semantics where only out is needed
since changes in the memory are directly observable in the heap. The set of all abstract
interpretations is denoted byΨ.

4.1. Preliminaries

4.1.1. Auxiliary analyses. Yfld uses deep-sharing and purity [Genaim and Spoto 2008] anal-
yses as pre-existent components; i.e., programs are assumed to have been analyzed
w.r.t. these properties using state-of-the-art tools. Two reference variables v and w deep-
share in σ iff they both reach a common location by traversing non-empty paths, i.e.,
R+(σh, σ f (v)) ∩ R+(σh, σ f (w)) , ∅, where R+(·, ·) is like R(·, ·) but excludes empty paths. This
property, written as 〈v.w〉, is different from standard sharing [Secci and Spoto 2005] since
paths from σ f (v) and σ f (w) to the common location must have length ≥ 1. A variable deep-
shares with itself if the depth of the data structure pointed to by it is at least 2; the relation
is symmetric.

Example 4.1 ((deep-sharing)). In the following heap, x deep-shares with itself and with y;
y deep-shares with itself, with x, and with z; z only deep shares with itself and with y; m1

and m2 alias but do not deep-share, not even with themselves.

x y z m1 m2

o1 : κ o2 : κ

o3 : κ

o4 : κ

o5 : κ o6 : κ

o7 : κ

f f

g

f

f

Note that two variables may deep-share without being reachable from each other, and one
may reach the other without deep-sharing with it. This property is not exactly like %$ of

18

[Brockschmidt et al. 2012] since it requires both paths to have length ≥ 1, not only one of
them. However, it can be (and actually is, see Section 5) easily implemented as a variation of
standard sharing analysis. Importantly, it is a possible analysis, i.e., a deep-sharing statement
has to be added to the abstract description of the heap whenever there is the possibility of
deep-sharing.

The i-th argument of a method mth is said to be pure if mth does not update
the data structure to which the argument initially pointed. The analysis proposed by
[Genaim and Spoto 2008], based on previous work by [Secci and Spoto 2005], can be used
as purity analysis.

For each mth, a denotation SPmth is given: for Isp 〈mth〉 safely describing the deep-sharing
and purity between actual arguments in the input state, I′sp 〈mth〉 = SPmth(Isp 〈mth〉) is such
that (1) if 〈v.w〉 ∈ I′sp 〈mth〉, then v and w might become deep-sharing during the execution
of mth; and (2) v̇i ∈ I′sp 〈mth〉means that the i-th argument might be impure. In the following,

the domain Iτsp will combine deep-sharing and purity information: 〈v.w〉 ∈ Isp means that
Isp allows v and w to deep-share; and v̇i ∈ Isp means that Isp allows the i-th argument of the
method under consideration to be impure.

4.1.2. Operations on abstract values. Projection ∃vĪrc (easily extensible to sets of variables)
of Īrc sets Īc(v), Īr(v, v), any Īr(w1, v), and any Īr(v,w2) to false, leaving the rest unchanged.

Renaming Īrc[v/w] replaces v by w: the result Ī′rc is such that Ī′c(w) = Īc(v) and Ī′c(v) = false;
Ī′r(v, v) = Ī′r(v

′, v) = Ī′r(v, v
′) = false for every v′; moreover, Ī′r(w,w) = Ī′r(v, v), Ī′r(w, v

′) = Īr(v, v′)
and Ī′r(v

′,w) = Īr(v′, v) for every v′ , v.
Copy Īrc[v + w] is similar to renaming but v is not removed: the result Ī′rc is s.t.

— Ī′c(w) = Ī′c(v) = Īc(v);
— Ī′r(w,w) = Ī′r(v, v) = Īr(v, v) and Ī′r(v,w) = Ī′r(w, v) = Īr(v, v);
— Ī′r(w, v

′) = Ī′r(v, v
′) = Īr(v, v′) and Ī′r(v

′,w) = Ī′r(v
′, v) = Īr(v

′, v) if v′ < {v,w}.

Finally, update Īrc [(v,w)←F] sets Īr(v,w) to F, leaving the rest unchanged, and Īrc [v←F]
sets Īc(v) to F.

4.1.3. Path-formulæ. The path-concatenation operator⊙ : PF ×PF 7→ PF is used to combine
formulæ when concatenating paths. The path-formula F ⊙ G has the following models:
{ ω′ ∪ ω′′ | ω′∈modelsP(F) ∧ ω′′∈modelsP(G) ∧ ω′ and ω′′ are viable }. In other words, the
models of F ⊙ G are obtained by “concatenating” the models of F with those of G. This
makes sense because of the following lemma.

Lemma 4.2 ((path-concatenation)). Let π′ and π′′ be two paths such that the last location
of π′ is the first of π′′. Then, π′։F and π′′։G imply π′ · π′′։F ⊙ G.

It is easy to see that ⊙ preserves equivalence of path-formulæ: if F1 ≡ F2 and G1 ≡ G2,
then F1 ⊙ F2 ≡ G1 ⊙ G2 since only viable models are considered.

The path-difference operator ⊖ : PF × PF 7→ PF defines modelsP(F ⊖ G) to be
{ω′\X | ω′∈modelsP(F) ∧ ω′′∈modelsP(G) ∧ X⊆ω′′ ∧ ω′ and ω′′ are viable}

Note that every model of F is still a model of F⊖G, since ∅ is a subset of all sets. The use of
this operation is motivated by Lemmas 4.3 and 4.4: ⊖models path difference.

Lemma 4.3. Let π be π′ · π′′; let π։F and π′։G. Then, π′′։F ⊖ G.

Lemma 4.4. Let π be 〈ℓ0, ℓ1.., ℓk〉 and π′ be 〈ℓ1, .., ℓk〉. Let the path from ℓ0 to ℓ1 traverse fld,
and π p-satisfy F. Then, π′։F ⊖ 〈fld 〉.

19

(1e) Eζ~n�(Īrc) = Īrc

(2e) Eζ~null �(Īrc) = Īrc

(3e) Eζ~new κ�(Īrc) =
(

Īr

[

(ρ, ρ)←〈∅〉
]

, Īc

[

ρ←〈∅〉
])

(4e) Eζ~v�(Īrc) = if τ(v)=int then Īrc else Īrc[v + ρ]

(5e) Eζ
�

exp1⊕exp2

�

(Īrc) = ∃ρ.Eζ
�

exp2

� (

∃ρ.Eζ
�

exp1

�

(

Īrc

)

)

(6e) Eζ
�

v.fld
�

(Īrc) = if fld has type int then Īrc else Īrc⊔̄Ī′rc where
Ī′c(ρ) = Īc(v)
Ī′c(w) = false for every w , ρ

Ī′r(ρ, ρ) = Īc(v)
Ī′r(ρ,w) = Īr(v,w) ⊖ 〈fld 〉 for every w , ρ

Ī′r(w, ρ) =
{

Īr(w, v) ⊙ 〈fld 〉
true

if 〈w.v〉 < Isp

if 〈w.v〉 ∈ Isp

Ī′r(w1,w2) = false in all the other cases

Fig. 2. The abstract semantics for expressions

(7e) Eζ~v0.mth(v1, .., vn)�(Īrc) = Īrc ⊔̄ Ī′′rc ⊔̄ Ī′′′rc ⊔̄ Ī′′′′rc where v̄={v0, .., vn} and
Ī′rc=∃(τ\v̄).Īrc I′sp = ∃(τ\v̄).Isp

Ī′′rc = ⊔̄ { (ζ(mth)(Ī′r[v̄/mthi]))[mthi/v̄, out/ρ] | mth can be called here }
I′′sp = ∪{ SPmth(I′sp[v̄/mthi])[mthi/v̄, out/ρ] | mth can be called here }

Ī
i j
r (w1,w2) =

Īr(w1, vi) ⊙ Ī′′r (vi, v j) ⊙ Īr(v j,w2) if

(

〈w1.vi〉 < Isp ∧
〈

vi.v j

〉

< I′′sp ∧

Īr(v j,w2) , false ∧ v̇i ∈ I′′sp

)

Īr(w1, vi) ⊙ true if

(

〈w1.vi〉 < Isp ∧
〈

vi.v j

〉

∈ I′′sp ∧

Īr(v j,w2) , false ∧ v̇i ∈ I′′sp

)

true ⊙ Īr(v j,w2) if

(

〈w1.vi〉 ∈ Isp ∧
〈

vi.v j

〉

< I′′sp ∧

Īr(v j,w2) , false ∧ v̇i ∈ I′′sp

)

true if

(

〈w1.vi〉 ∈ Isp ∧
〈

vi.v j

〉

∈ I′′sp ∧

Īr(v j,w2) , false ∧ v̇i ∈ I′′sp

)

false otherwise

Ī′′′r = ⊔̄ { Ī
i j
r | i, j ∈ {1..n}}

Ī′′′′r = Ī′′′r

[

(ρ,w)←∨0≤i≤n Fi

]

for each w

where Fk =

{

true if
〈

vk.ρ
〉

∈ I′′sp

(Ī′′r (ρ, vk) ⊙ Īr(vk,w)) ∨ (Īr(vk,w) ⊖ Ī′′r (vk, ρ)) otherwise

Īi
c(w) =

{

Ī′′c (vi) if v̇i ∈ I′′sp ∧
(

〈w.vi〉 ∈ Isp ∨ Īr(w, vi) , false ∨ Īr(vi,w) , false
)

false otherwise
Ī′′′c = ⊔̄ { Īi

c | i ∈ {1..n}}
Ī′′′′c = Ī′′′c

[

ρ←
∨

{ Īc(vk) | 0 ≤ k ≤ n, Ī′′r (vk, ρ) , false }
]

Fig. 3. The abstract semantics for method calls

4.2. Expressions

Figures 2 and 3 describe how the abstract semantics Eζ~ � works on expressions. It is
based on a type environment τ (left implicit) and an interpretation ζ on methods. The
special variable ρ represents the result of evaluating the expression. It is easy to see that
p-formulæ which are not in normal form are never generated.

Easy cases. As expected, the evaluation of an int value (case 1e) or null (case 2e) does not
modify the current abstract value (i.e., there is no new reachability/cyclicity) since ρ will
not have any relation with any existing variable (either because it is a number or because
it does not point to a valid heap location). When a new object is created (case 3e), the
sharing information does change, but this is left implicit. More importantly, ρ is correctly
represented as (1) reaching itself through an empty path (only this kind of paths can p-

20

satisfy 〈∅〉), which means that it aliases with itself; and (2) similarly, being cyclic because of
an empty path.

In case 4e, information about v is copied to ρ, without removing the original information
as v is still accessible. In case 5e, ⊕ stands for a binary operation on int ; side effects are the
only possible source of new information.

Field access. Case 6e is harder: if the declared type of fld is a reference type, then the new
abstract value is obtained by adding to the old one the following information.

— The cyclicity information about v contained in Īrc affects Ī′rc in two ways: the path-formula
is “copied” into both Ī′c(ρ) and Ī′r(ρ, ρ) indicating that the cyclicity of v implies that (1) the
data structure reachable from v.fld is still possibly cyclic; and (2) it is also possible that
the location pointed to by v.fld is part of the cycle, so that it can be reachable from itself.
The corresponding path-formula is copied as it is: the new path-formula Ī′c(ρ) = Ī′r(ρ, ρ)
is not greater than Īc(v) because the set of cycles reachable from v.fld is a subset of those
reachable from v, so that they will satisfy the same condition (i.e., p-satisfy the same
path-formula); on the other hand, it cannot be smaller because, by soundness, it is not
possible to refine the condition. Note that the definition also works if Īc(v) = false: in this
case, v was guaranteed to be acyclic, so that ρ is still guaranteed to be acyclic.

— The cyclicity of all the other variables is not modified: Ī′c(w) = false implies that the final
cyclicity information Īc(w)⊔̄c Ī

′
c(w) for any w is still the old Īc(w).

— If v can F-reach some w in Īrc, then v.fld can also reach w since it could be exactly on
the path from v to w. Therefore, Ī′r(ρ,w) is set to F′ where F′ is obtained from Īr(v,w) via
⊖ (Section 4.1.3). This means that it is no longer possible to guarantee that fld will be
traversed by a path from σ f (ρ) to σ f (w).

— Every w possibly deep-sharing with v may reach ρ. In fact, deep-sharing means that
there is a location which is reachable from both, and such a location could be exactly
the one pointed to by ρ. In this case, the corresponding path-formula is true because it
is not possible to put any condition on paths (deep-sharing as it is used by Yfld is field-
insensitive). On the contrary, if w and v do not deep-share, then the following information
is added: if w F-reaches v, then Ī′r(w, ρ) is set to F ⊙ 〈fld 〉, indicating that any new path
from σ f (w) to σ f (ρ) will traverse fld (old paths are already accounted for by Īr). Note that
false ⊙ F = false, so that any w not reaching v will not reach ρ, as expected.

Example 4.5 ((field access)). Consider the heap depicted in the right-hand side of the
figure, which is the result of executing the program on the left-hand side.

1 x := new κ ;
2 y := new κ ;
3 x . f := y ;
4 x . g := new κ ;
5 z := new κ ;
6 y . h := z ;
7 y := nu l l ;
8 x := x . f ;

x z

o1 : κ

o2 : κ o3 : κ

o4 : κ

f
h

g

Let the abstract value Ī7
rc computed by the analysis after line 7 be such that Ī7

r (x, z) = 〈 f , h 〉
(the computation of such an abstract value will be explained in Example 4.8). The new
path-formula Ī8

r (x, z) after line 8 is obtained by ⊖: first, Ī7
r (ρ, z) is updated with Ī7

r (x, z)⊖ 〈 f 〉;
afterward (see case 2c in Figure 4), the new path-formula is copied to Ī8

r (x, z). The final
path-formula will be h ∧

∧

{¬fld | fld<{f, h}} since it is no longer possible to guarantee that
all paths from x to z traverse f. Anyway, note that f does not appear as a negative literal
either, as it is still possible that some path traverses it.

21

Method call. Finally, case 7e in Figure 3 describes the behavior ofYfld on method calls. Note
that methods without return value are not included in the language; however, they could
be easily dealt with by slightly modifying this case. As usual in Object-Oriented programs,
a reference variable v with declared type δ(v) = κ may store at runtime any object of type
κ′�κ. The set of possible runtime types of v can be computed statically by class analysis
[Spoto and Jensen 2003] whenever needed; if such an analysis is not available, then it can
be taken, conservatively, as {κ | κ�δ(v)}. Abstract values Ī′rc and I′sp are obtained by restricting

the corresponding initial values to the actual parameters v̄ of mth. Also, Ī′′rc and I′′sp come
from applying the denotation of mth for, resp., reachability/cyclicity (see Section 4.4) and
deep-sharing/purity (which is taken as pre-computed information, see Section 4.1.1).

For every two actual parameters vi and v j, the non-purity of vi implies that it is possible
to create a path in mth from vi (or any w1 reaching it or deep-sharing with it) to v j (or

any w2 reachable from it). This is taken into account by Ī
i j
r (note that there is an abstract

value Ī
i j
r for every pair of parameters (vi, v j), and all the values are combined into Ī′′′r), and

happens because modifying the data structure pointed to by vi during the execution of mth
can possibly create a new path from w1 to w2. Four cases (plus an “otherwise” fifth case)
are considered, depending on whether deep-sharing between w1 and vi before the call or
between vi and v j after the call is possible; all cases apply only if v j may reach w2

7 and vi is
not pure. Basically, each of the four cases deals with the different scenarios with respect to
deep-sharing: since this property is not field-sensitive, some field information about paths
is lost whenever two variables may deep-share, since there can be complex paths in the
heap for which no field-sensitive information is available (and which may be hidden from
reachability analysis).

— The first case models a scenario where all new paths from w1 to vi and from vi to v j are
captured by reachability path-formulæ, so that it is possible to say that any path from
w1 to w2 must traverse a sub-path captured by Īr(w1, vi), then another sub-path captured
by Ī′′r (vi, v j) and, finally a third one captured by Īr(v j,w2). In order to account for this
situation, the path-formula Īr(w1, vi) ⊙ Ī′′r (vi, v j) ⊙ Īr(v j,w2) is returned.

— The second case models a partial loss of information due to possible deep-sharing between
vi and v j. In this case, it is still possible to say that the first part of any new path from w1

to w2 is captured by Īr(w1, vi), but nothing can be inferred about the rest of the path.
— The third case is dual: here, the loss of information occurs in the first part of the path,

since there is no field-sensitive information about paths starting from w1 and reaching vi.
— Finally, the fourth case happens when deep-sharing is possible both between w1 and

vi and between vi and v j. In this case, reachability from w1 to w2 must be admitted as
a possibility, but no field-sensitive information can be gathered, so that true has to be
returned.

The following example describes the loss of information due to deep-sharing.

Example 4.6 ((method call)). Consider the figure below (only solid lines): let vi and v j

be parameters of mth which are initially not sharing; let w1 (which is not a parameter)
deep-share with vi, and v j reach w2.

7Actually, in the first and third case there is no need of such a condition since false is the absorbing element of ⊙;
for instance, in the first case, Īr(w1, vi) ⊙ Ī′′r (vi, v j) ⊙ false comes to be false anyway.

22

w1 vi v j w2

o1 : κ o2 : κ

o3 : κ

o4 : κ o5 : κ

o6 : κf
f

g

fx y

f f

If the instructions x:=vi.f; y:=v j.f; x.f:=y are executed in mth, then vi and v j become deep-
sharing. Moreover, executing y. f :=v j.g creates a path from w1 to w2, depicted by dashed
lines in the figure above. Note that (1) the new deep-sharing between vi and v j is reflected
by the denotation of mth; (2) there is never any reachability between vi and v j, so that
field-sensitive information is not available outside mth (i.e., when applying its denotation);
and (3) there is no way to create the path unless v j is reaching w2. This situation falls into
the fourth case of the semantics, so that true is returned as the reachability from w1 to w2.

Note that, in the example, o3 happens to be a cutpoint [Rinetzky et al. 2005], i.e., an
object which is (a) reachable from a parameter of mth in at least one step; and (b) also
reachable by traversing a path which does not include any object which is reachable from
any parameter of mth. The existence of a cutpoint is possible in the third and fourth case
above, where 〈w1.vi〉 ∈ Isp. Techniques similar to [Rinetzky et al. 2005] can be used to
deal with such cases; alternatively, the analysis could be limited to cutpoint-free programs
[Kreiker et al. 2013], since cutpoint-freeness is a decidable property.

Observation (3) in Example 4.6 shows that the reachability between two variables w1 and

w2 will be certainly taken into account by some of the Ī
i j
r , namely, the ones where vi and

v j become sharing (in the normal sense, not deep-sharing), and w1 shares with vi, and v j

reaches w2.
The next step is to propagate the information about some vi in Ī′′′r to ρ whenever vi

(standard-)shares with ρ after the call. This is needed in order to take into account some
cases similar to Example 4.7.

Example 4.7 ((return value)). Consider the following fragment:

1 κ m() {
2 κ a ; a := new κ ;
3 a . f := th i s . f ;
4 re turn a ; }

5 x1 . g := y ;
6 x2 . f := x1 ;
7 z := x2 .m() ;

The abstract semantics computes the formula F = 〈 f , g 〉 for the reachability from x2 to y
after line 6. After line 7, z should be reaching y, but this cannot be taken into account by
the denotation of m since y is not a parameter. In fact, the denotation of m can only detect
that ρ and this share at the end of m, i.e., that z and x2 share after the call. The only way to

be sound here (note that this is pure, so that this situation is not detected by any Ī
i j
r) is to

copy the reachability from x2 to y to the reachability from ρ to y, which is in turn copied
into Īr(z, y). However, this is still unsound because the condition on paths could change:
the two cases for Fk in the abstract semantics account for the different scenarios: (1) if ρ
reaches this , then the new path is obtained by using ⊙; (2) if this reaches ρ, then ⊖ is used;
or (3) if they only deep-share, as in the example, then no information can be gathered, and
true is returned.

As for cyclicity, each Īi
c deals with cases where a cycle is built in mth which is reachable

from vi, and w was sharing8 with vi; in this case, w also becomes possibly cyclic. The rest of
the treatment of cyclicity is similar to reachability.

8Note that standard sharing is the disjunction between deep-sharing and both directions of reachability.

23

(1c) Cζ~skip �(Īrc) = Īrc

(2c) Cζ
�

v:=exp
�

(Īrc) = (∃v.Eζ
�

exp
�

(Īrc))[ρ/v]

(3c) Cζ
�

v.fld:=exp
�

(Īrc) = ∃ρ.(Ī′rc⊔̄Ī′′r ⊔̄Ī′′c) where
Ī′rc = Eζ

�

exp
�

(Īrc)
Ī′′r (w1,w2) = Ī′r(w1, v) ⊙ (〈fld 〉∨(〈fld 〉 ⊙ Ī′r(ρ, v))) ⊙ Ī′r(ρ,w2)

Ī′′c (w) =
{
(

Ī′r(ρ, v) ⊙ 〈fld 〉
)

∨ Īc(ρ) if Ī′r(w, v) , false
false otherwise

(4c) Cζ

�

if exp then com1

else com2

�

(Īrc) = Ī1
rc⊔̄Ī2

rc where

Ī1
rc = Cζ~com1�(Īrc)

Ī2
rc = Cζ~com2�(Īrc)

(5c) Cζ
�

while exp do com
�

(Īrc) = ξ(Īrc) where ξ is the least fixpoint of
λw.λĪrc.w(Cζ~com�(Īrc))

(6c) Cζ~com1; com2�(Īrc) = Cζ~com2�(Cζ~com1�(Īrc))

(7c) Cζ
�

return exp
�

(Īrc) = Eζ
�

exp
�

(Īrc)[ρ/out]

Fig. 4. The abstract semantics for commands

4.3. Commands

Figure 4 shows the behavior of the abstract semantics Cζ~ � on commands. Easy cases are
considered first, leaving field update at the end.

Case 1c is trivial. Case 2c for variable assignment is also easy: the semantics evaluates
exp, which could have side effects, and copies the information about ρ to v, after removing
the information about v since its initial value will be lost. Note that the information about
the location pointed to by v needs not be lost, since there could be other variables pointing to
it.

In cases 4c and 5c, standard principles for the design of abstract semantics are followed.
Both branches of the conditional are analyzed9; Cζ~ � is path-insensitive in that the results
obtained for each branch are simply combined by means of ∨, applied point-wise. In the
case of loops, standard fixpoint design is used. Termination of the fixpoint is guaranteed
by the fact that Īrc does not allow infinite ascending chains 〈F0, .., Fi, ..〉 where F j⊑̄rcF j+1

for each j ≥ 0. However, in principle, there can be chains whose length is exponential on
the cardinality of F , as discussed in Section 3.6, so that convergence can be slow unless
some mechanism for speeding it up is used (e.g., some widening [Cousot and Cousot 1979]
operator mapping path-formulæ to true whenever abstract values have been updated more
than k times for some fixed number k).

The last two cases, 6c and 7c, are straightforward.

Field update. In v.fld:=exp, the heap is modified, and new paths can be created. In partic-
ular, a path π from the location pointed to by v to the location pointed to by ρ is created,
which p-satisfies fld . The information about π must be joined with the original abstract
value by means of ⊔̄.

The abstract semantics focuses on two kinds of variables: the first kind, pre-variables,
contains those w1 which can reach v. The second kind of variables, post-variables, contains
those w2 which can be reached from ρ after exp has been evaluated, and the abstract value
Ī′rc has been computed. Clearly, v is a pre-variable since it reaches itself. Moreover, a variable
may belong to both kinds; in this case, it will be considered twice. The new reachability
information Ī′′r must take into account paths from all pre-variables w1 to all-post variables
w2, due to the creation of π. The new paths certainly p-satisfy Ī′r(w1, v) ⊙ (〈fld 〉∨(〈fld 〉 ⊙
Ī′r(ρ, v)))⊙ Ī′r(ρ,w2) (see Lemma 4.2).

9Recall that guards have no side effects.

24

Note that both the newly-created path (represented by 〈fld 〉) and the possible cycle
(represented by 〈fld 〉 ⊙ Ī′r(ρ, v)) which is created by the update are considered; this will
become more clear when discussing the example in Section 4.7. Note also that this formula
will not necessarily be the final reachability information about w1 and w2. In fact, suppose
that there existed another path from w1 to w2, completely disjoint from the new one, and
p-satisfying G: in this case, the final reachability between w1 and w2 will be G∨ (Ī′r(w1, v) ⊙
(〈fld 〉∨(〈fld 〉 ⊙ Ī′r(ρ, v)))⊙ Ī′r(ρ,w2)), due to the use of ⊔̄.

The cyclicity information comes from two cases: the definition of Ī′′c considers cycles
created by closing existing paths from ρ to v. Every w reaching v will become possibly
cyclic, and the associated path-formula will be the combination of the old path with fld .
Note that the conditions on the cyclicity of w do not need to take into account Ī′r(w, v), since,
in general, it is not in the cycle (if it is, then this information is already contained in Ī′c).

Example 4.8 ((field update)). Consider the code of Example 4.5: it is easy to see that
the abstract value Ī5

rc after line 5 is such that Ī5
r (x, y) = 〈 f 〉. Moreover, Ī5

r (x, x) = Ī5
r (y, y) =

Ī5
r (z, z) = 〈∅〉, and Ī5

r (,) = false everywhere else. Such a value is obtained by observing that
neither x nor y reach any other variable before line 5. Consequently, Ī5

r (x, y) comes to be
〈∅〉 ⊙ 〈 f 〉 ⊙ 〈∅〉 = 〈 f 〉 since 〈∅〉 is the neutral element for ⊙. Similarly, Ī6

rc(y, z) = 〈h 〉. The
path-formula Ī6

rc(x, z) = Ī7
rc(x, z) is computed as 〈 f 〉 ⊙ 〈h 〉 = 〈 f , h 〉, and its only model is

{ f , h }.

4.4. Global fixpoint

The following definition defines the abstract denotational semantics of a program P as the
least fixpoint (lfp) of an (abstract) transformer of interpretations. Variables ū play the role
of shallow variables. Note that shallow variables appear at the level of the semantics, rather
than as a result of program transformation; they are introduced in order to keep track
of the data structures to which input variables point at the beginning of a method, since
otherwise they could be lost if the corresponding variables are updated.

Example 4.9. Consider the following method mth (lines 1–4), invoked in line 5:

1 κ mth (κ x1 , κ x2) {
2 x1 . f := x2 ;
3 x1 := nu l l ;
4 re turn x2 ; }

5 z := mth (y1 , y2) ;

Here, the reachability from the first to the second parameter of mth after its execution would
be lost if a copy of them is not maintained as a shallow variable. On the other hand, copying
the information about x1 and x2 into shallow variables u1 and u2 allows detecting that u1 is
reaching u2 and ρ at the end of mth. Afterward, this is copied back to actual parameters y1
and y1 (line 5) in order to be available after the call.

Definition 4.10. The abstract denotational semantics of a program P is the lfp of

TP(ζ) =
{

mth 7→ λĪrc ∈ I
mthi

rc

(

∃X.Cζ
�

mthb
�

(

Īrc[w̄ + ū]
)

)

[ū/w̄] |mth ∈ P
}

where mthi = {this,w1, . . . ,wn}, and ū is a variable set {u1, . . . , un} such that ū ∩ mths = ∅;
moreover, dom(τ) = mthl ∪ ū, and X = dom(τ)\(ū ∪ {this, out}).

The operator TP is quite standard, and transforms the interpretation ζ by assigning a new
denotation for each mth defined in P, using existing denotations from ζ. The new denotation

maps a given input value Īrc ∈ Ī
mthi

rc to an output value from Īmthi∪{out}
rc , as follows:

25

(1) it obtains an abstract value Ī0
rc = Īrc[w̄ + ū] in which the parameters w̄ are cloned into

the shallow variables ū;

(2) it applies the denotation of the code of mth to Ī0
rc, getting Ī1

rc = Cζ
�

mthb
�

(Ī0
rc);

(3) all variables but ū ∪ {this, out} are eliminated from Ī1
rc (using ∃X); and

(4) shallow variables ū are finally renamed back to w̄.

4.5. Soundness

This section discusses the soundness of Yfld. Consider a command C: soundness amounts
to say that, for every initial state σ correctly represented by the initial abstract value (i.e.,
such that σ ∈ γ̄rc(Īrc)), the final concrete state σ∗ = Cιτ~C�(σ) is such that σ∗ ∈ γ̄rc(Ī∗rc) where
Ī∗rc = Cζ~C�(Īrc). This means that every possible path from w1 to w2 created by C, and
traversing a set X of fields, has to be reflected by a model ω = {fld | fld ∈ X} of Ī∗rc(w1,w2). A
similar observation holds for cyclicity. Most of the evidence for soundness has been given
while discussing the abstract semantics; this section summarizes and completes the proof.
Only the most interesting cases are presented.

Field update, reachability. Consider a field update v.f:=v′. Given two variables w1 and w2,
every path π from σ f (w1) to σ f (w2) is either an old one (already in the heap before the
update) or a newly-created one traversing f at σ f (v). If π was already in the heap, then, by
hypothesis, it is represented by Īr, and also by Ī∗r since Ī∗r⊒̄r Īr. On the other hand, if π is new,
then it is the concatenation of the following sub-paths:

— a path π1 from σ f (w1) to σ f (v), which, by hypothesis, is correctly represented by the
initial abstract value Īr(w1, v);

— one of the following: either the path π′ of length 1 going from σ f (v) to σ f (v′) and p-
satisfying 〈 f 〉; or the path π′′ going from σ f (v) to σ f (v′), then to σ f (v) and back to σ f (v′),
and p-satisfying 〈 f 〉 ⊙ Īr(v

′, v); and
— a path π2 from σ f (v′) to σ f (w2), which is correctly represented by Īr(v′,w2).

The alternative of π′′ has to be taken into account because it is possible that the field
update closes a cycle, i.e., that there was already a path from σ f (v′) to σ f (v) which has now
become a cycle from σ f (v′) to σ f (v′). In this case, there is a path from σ f (w1) to σ f (w2) which
goes until σ f (v) and σ f (v′), then traverses the cycle until reaching σ f (v′) again, and finally
reaches σ f (w2). Note that false is the absorbing element for ⊙, so that π′′ will be guaranteed
to p-satisfy false (i.e., not to exist) if the initial information was able to exclude paths from
σ f (v′) to σ f (v) (i.e., if Īr(v′, v) = false).

Example 4.11. Consider the following heap before executing v.f:=v′ (which is the dashed
line). After the field update, w2 is reachable from w1 either directly or “touching” o5 any
number of times. Note that a path touching o5 once p-satisfies the same path-formula as
one touching o5 more than once. Reachability from w1 to w2 p-satisfies 〈 f 〉 ∨ 〈 f , g 〉.

w1 v v′ w2

o1 : κ o2 : κ o3 : κ o4 : κ

o5 : κ

f ff

gg

It is easy to see that both cases (π′ and π′′) are dealt with by the definition of Ī′′r in case
(3c) of Figure 4. This follows from the definition of ⊙ and Lemma 4.2.

It is worth noting that the field update could break some old paths. Conservatively, this
is not taken into account by the semantics: the removal of a path from a heap can never

26

imply that a path-formula is no longer p-satisfied, so that to update abstract values is not
needed. More formally, it is possible to consider a field update as the combination of two
operations: first set v.f to null, then assigning it to v′. Let σ and σ− be two states such that
the heap of σ− is obtained by breaking (e.g., by setting some object fields to null) one or
more paths in the heap of σ; then, σ ∈ γ̄rc(Īrc) implies σ− ∈ γ̄rc(Īrc). This choice is sound but
could lead, in some cases, to losing precision. A possible improvement (already discussed
by [Genaim and Zanardini 2013] for Yrc) would be to distinguish cases where the class of
v only declares the field f; in this case, to update f would be guaranteed to break all existing
paths starting from σ f (v), and this information could be used in order to set all Irc(v,w) to
false for every w before computing the final Ī∗rc.

Field update, cyclicity. As for cyclicity, the initial information Īc(w) about a variable w is
updated only if w can possibly reach v. In fact, new cycles reachable from w can appear
only if (1) an existing cycle is made reachable from v by the field update; or (2) a new cycle
is created which touches both σ f (v) and σ f (v′). In both cases, the cycle under study will
not be reachable from w unless v is reachable from w: (1) in the first case, because the new
path from w to the cycle has to touch σ f (v); and (2) in the second case, because a variable
reaching a cycle must reach every single heap location belonging to the cycle itself.

Example 4.12. Consider the following heap before the field update (dashed line): the
cycle which will be created will not be reachable from w, even though it deep-shares with
(but does not reach) v.

w v v′

o1 : κ o2 : κ o3 : κ o4 : κ

o5 : κo6 : κ

g g

f

g

f

g

On the other hand, reachability from w to v implies that new cycles can become reach-
able from w. The path-formula

(

Īr(v′, v) ⊙ 〈 f 〉
)

∨ Īc(v′), where v′ plays the role of ρ, ac-
counts exactly for both kinds of loops discussed above: (1) newly-created loops p-satisfying
Īr(v′, v) ⊙ 〈 f 〉; and (2) existing loops which were reachable from v′ and now are reachable
from v and (by transitivity) from w.

Method call, reachability. Consider a method call v := v0.mth(v1..vk), and two variables w1

and w2 which are visible from the caller. Let the interest be on the reachability from w1 to
w2 after executing mth. Let also Mi be the portion of the heap which is reachable from some
vi: it is clear that nothing will be modified by mth outside M =M0 ∪ .. ∪Mk.

The path-formula describing paths from w1 to w2 which are possibly created inside mth
depends on the position of ℓ1 = σ f (w1) and ℓ2 = σ f (w2) w.r.t. v0..vk and M0..Mk. The abstract
semantics analyzes the position of ℓ1 and ℓ2 with respect to each pair (vi, v j) separately, and

joins the results together. The definition of Ī
i j
r (w1,w2) in Figure 3), consists of five cases,

named (a), (b), (c), (d), and (e) in the following. If ℓ2 does not belong to M j, then no path
can be created which reaches it, and the abstract semantics correctly returns false (case (e)).
Also, vi must not be pure, otherwise there is no way to create new paths in mth. Cases (a),
(b), (c), and (d) capture the different scenarios w.r.t. ℓ1, vi and v j.

— If ℓ1 reaches vi, but does not deep-share with it, and vi does not deep-share with v j after
the call, then the information is completely captured by reachability abstract values, i.e.,
no field-sensitive information is lost. The formula returned in case (a) correctly represent
the reachability between w1 and w2 since new paths will touch σ f (vi) (there can be new

paths not touching σ f (vi), but they will be captured by some different Ī
i′ j′

r). Note that

27

a new path does not need to touch any other parameter than vi; in this case, it will
be accounted for, at least, when j coincides with i. Note also that false is the absorbing
element for ⊙, so that non-reachability between w1 and vi, or between vi and v j, or
between v j and w2, implies that no path is actually created.

— If ℓ1 reaches vi, but does not deep-share with it, and vi may deep-share with v j, then some
field-sensitive information may be lost after mth. This is reflected by case (b), where the
second part of the formula is set to true. The first part is still the reachability from w1 to
vi.

— If ℓ1 deep-shares with vi, and vi does not deep-share with v j, then, again, some field-
sensitive information may be lost after mth. This is accounted for by case (c), where the
first part of the formula is true. On the other hand, the second part is the reachability
from v j to w2 since it is possible to guarantee that the last part of the new path will follow
reachability paths between these two variables.

— Case (d) is trivially sound since true is returned.

Method call, cyclicity. Consider, again, the method call v := v0.mth(v1..vk) and a variable
w of the caller. Suppose the interest is on the cyclicity of w after executing mth. Again, the
portion M = M0 ∪ .. ∪Mk of the heap which can be affected by the execution of mth is the
set of locations which are reachable from some of the vi in zero or more steps. The location
ℓ = σ f (w) can fall into one of the following cases:

— ℓ < Mi and no location of Mi is reachable from ℓ; in this case, no new cycles will be
reachable from w, and there is nothing to prove.

— ℓ < Mi and some vi is reachable from it; in this case, suppose that a new cycle is created
in the heap by the execution of mth, which is reachable from vi: soundness requires that
the cycle has to be also reachable from w after the call. This is satisfied by the abstract
semantics since:
— vi is impure (otherwise, no new cycle can be created); and
— there is reachability from w to vi, by hypothesis.
Under these circumstances, the path-formula returned for the cyclicity of w will be Ī′′c (vi),
which is correct since every cycle reachable from vi will be also inferred to be reachable
from w.

— ℓ ∈ Mi: in this case, ℓ is reachable from vi and, again, the path-formula Ī′′c (vi) is a correct
description of cycles reachable from w. In fact, Īi

c(w) is not greater than Ī′′c (vi) since the
portion of the heap which is reachable from w is a subset of the portion reachable from
vi, so that the same path-formula is certainly satisfied; on the other hand, it cannot be
smaller because, in general, it is not possible to identify any cycle reachable from vi

which is not reachable from w.
— ℓ < Mi and 〈w.vi〉; in this case, the first location reachable from both happens to be a

cutpoint [Rinetzky et al. 2005]. Anyway, cycles reachable from w are still the same cycles
reachable from vi (this is different w.r.t. reachability because path-formulæ for cyclicity
ignore the acyclic part of the path).

4.6. Back to the cyclic-tree example

Consider the code of Section 1.2. Suppose that the input parameters of join are represented
by the abstract values depicted on the right-hand side of the figure, probably inferred
by previous steps of the analysis. Different input abstract values would yield comparable
results.

28

6 Tree j o i n (Tree l , Tree r) {
7 Tree t ; t := new Tree ;
8 t . l e f t := l ;
9 t . r i g h t := r ;

10 i f (l != nu l l) then l . parent := t ;
11 i f (r != nu l l) then r . parent := t ;
12 re turn t ;
13 }

Īr(l, l) = Īc(l) = 〈∅〉
Īr(r, r) = Īc(r) = 〈∅〉
Īr(,) = Īc() = false elsewhere

This information indicates that both parameters, which will be the sub-trees of the tree
created by join , represent trees of at most one node (they could be also null pointers
representing 0-node trees, since the previous analysis could have been overly conservative).
Next tables show the result of the analysis. Īi

rc = (Īi
r, Ī

i
c) is the abstract value computed after

line i, while l̊, r̊ and p̊ stand, resp., for, left , right , and parent .

i Īi
r(l, l) Īi

r(l, r) Īi
r(l, t) Īi

r(r, l) Īi
r(r, r) Īi

r(r, t) Īi
r(t, l) Īi

r(t, r) Īi
r(t, t)

6 〈∅〉 false false false 〈∅〉 false false false false
7 〈∅〉 false false false 〈∅〉 false false false 〈∅〉
8 〈∅〉 false false false 〈∅〉 false l̊∧¬r̊∧¬p̊ false 〈∅〉
9 〈∅〉 false false false 〈∅〉 false l̊∧¬r̊∧¬p̊ r̊∧¬l̊∧¬p̊ 〈∅〉

10 〈∅〉∨ false p̊∧¬r̊ false 〈∅〉 false l̊∧¬r̊ r̊∧¬l̊∧¬p̊ 〈∅〉∨
(p̊∧l̊∧¬r̊) (p̊∧l̊∧¬r̊)

11 〈∅〉∨(p̊∧l̊) p̊∧r̊ p̊ p̊∧l̊ 〈∅〉∨ p̊ l̊∧(r̊→ p̊) r̊∧(l̊→ p̊) 〈∅〉∨
(p̊∧r̊) (p̊∧(l̊∨r̊))

i Īi
c(l) Īi

c(r) Īi
c(t)

6 〈∅〉 〈∅〉 false
7 〈∅〉 〈∅〉 〈∅〉
8 〈∅〉 〈∅〉 〈∅〉
9 〈∅〉 〈∅〉 〈∅〉
10 〈∅〉∨(p̊∧l̊∧¬r̊) 〈∅〉 〈∅〉∨(p̊∧l̊∧¬r̊)
11 〈∅〉∨(p̊∧l̊) 〈∅〉∨(p̊∧r̊) 〈∅〉∨(p̊∧(l̊∨r̊))

The tables give an idea of how abstract values are obtained; however, line 11 alone is
enough to appreciate the results.

The final value for Īc(l) indicates that a cycle starting at σ f (l) is either an empty path or
one involving both p̊ and l̊. In fact, to traverse p̊ and l̊ is needed to reach σ f (t) and go back
to σ f (l). There are also cycles which touch σ f (r) and traverse all fields at least once; this is
also taken into account since the truth assignment {left, right, parent} is still a model of Īc(l).
A similar reasoning holds for Īc(r).

Finally, Īc(t) represents all kinds of cycles starting from σ f (t), each of them corresponding
to a model of the path-formula: (1) an empty one; (2) one that reaches σ f (l) at least once,
without reaching σ f (r); (3) a dual one which only reaches σ f (r); and (4) one that reaches
both σ f (l) and σ f (r) at least once.

It is important to point out that it is not possible to precisely describe the heap
structure by simply inferring a set of fields which have to be traversed by every cycle
[Brockschmidt et al. 2012]. In fact, parent is the only field which is involved in every cycle,
but this information alone would not be enough to guarantee that a loop going from a leaf
to the root terminates.

29

4.7. Back to the double-linked-list example

Consider again the code discussed in Section 1.3. The following annotated code shows the
deep-sharing information after each line upon reaching the fixpoint.

1 i := 1 ;
2 tmp := new Node ;
3 while (i <10) {
4 x := new Node ; / / 〈tmp.tmp〉
5 x . n := tmp ; / / 〈x.x〉 ,〈x.tmp〉 ,〈tmp.tmp〉
6 tmp . p := x ; / / 〈x.x〉 ,〈x.tmp〉 ,〈tmp.tmp〉
7 tmp := x ; / / 〈x.x〉 ,〈x.tmp〉 ,〈tmp.tmp〉
8 i := i +1; / / 〈x.x〉 ,〈x.tmp〉 ,〈tmp.tmp〉
9 } / / 〈x.x〉 ,〈x.tmp〉 ,〈tmp.tmp〉

Next table shows how the present analysis works on this example. Again, the first column
refers to the program line; primed numbers correspond to the second time a given line is
considered; Īi

rc = (Īi
r, Ī

i
c) is the abstract value computed after line i.

i Īi
r(x, x) Īi

r(x, tmp) Īi
r(tmp, x) Īi

r(tmp, tmp) Īi
c(x) Īi

c(tmp)
1 false false false false false false

2, 3 false false false 〈∅〉 false 〈∅〉
4 〈∅〉 false false 〈∅〉 〈∅〉 〈∅〉
5 〈∅〉 〈n 〉 false 〈∅〉 〈∅〉 〈∅〉
6 〈∅〉∨〈n , p 〉 n p 〈∅〉∨〈n , p 〉 〈∅〉∨〈n , p 〉 〈∅〉∨〈n , p 〉

7, 8 〈∅〉∨〈n , p 〉 〈∅〉∨〈n , p 〉 〈∅〉∨〈n , p 〉 〈∅〉∨〈n , p 〉 〈∅〉∨〈n , p 〉 〈∅〉∨〈n , p 〉
3′ 〈∅〉∨〈n , p 〉 〈∅〉∨〈n , p 〉 〈∅〉∨〈n , p 〉 〈∅〉∨〈n , p 〉 〈∅〉∨〈n , p 〉 〈∅〉∨〈n , p 〉
4′ 〈∅〉 false false 〈∅〉∨〈n , p 〉 〈∅〉 〈∅〉∨〈n , p 〉
5′ 〈∅〉 n false 〈∅〉∨〈n , p 〉 〈∅〉∨〈n , p 〉 〈∅〉∨〈n , p 〉
6′ 〈∅〉∨〈n , p 〉 n p 〈∅〉∨〈n , p 〉 〈∅〉∨〈n , p 〉 〈∅〉∨〈n , p 〉

7′, 8′ 〈∅〉∨〈n , p 〉 〈∅〉∨〈n , p 〉 〈∅〉∨〈n , p 〉 〈∅〉∨〈n , p 〉 〈∅〉∨〈n , p 〉 〈∅〉∨〈n , p 〉

The first reachability information is added at line 2: the creation of an object implies that
tmp is reachable from itself and cyclic by means of an empty path. The same happens
at line 4 with x. The update of x.n implies that tmp is reachable from x, and it can be
guaranteed that the new path will only traverse n. In the following line, a cycle is created
by the field update of tmp.p. At this point, both variables are cyclic, and it is possible to
guarantee that a cycle will either (1) be empty; or (2) traverse both fields. The value for
Ī6
r (tmp, x) is computed as the disjunction between Ī5

r (tmp, x) = false and the new formula
〈∅〉⊙(〈p 〉∨(〈p 〉⊙Ī5

r (x, tmp)))⊙〈∅〉 = p , giving p as the final result. Note that the disjunction
between 〈p 〉 and 〈p 〉 ⊙ Ī5

r (x, tmp) takes into account both ways to go from tmp to x: either
directly, or traversing the new cycle and touching x twice. Therefore, it is not possible to
guarantee that no path will traverse n. Line 7 assigns x to tmp, so that the reachability
information I7

r (x, tmp) and I7
r (tmp, x) is copied from I6

r (x, x). The second iteration is needed
since line 3 is entered the second time with a different abstract value (row 3′ of the table). At
row 4′, reachability and cyclicity information about x is removed, but non-empty cyclicity
of tmp is still admitted. A fixpoint is reached after the second iteration, as shown by the
fact that row 8 and row 8′ of the table are equal. The final result, which is finally copied to
Ī9
rc, correctly shows that any non-empty cycle reachable from either x or tmp has to involve

both n and p, so that a loop which only traverses one of these fields (as the one depicted in
Section 1.3, lines 10–12) is guaranteed to terminate.

30

5. PRACTICAL ISSUES

The analysis has been partially implemented10 in its intra-procedural part, based on the
Chord Java bytecode analyzer [Naik 2011]. The implementation covers most sequential
Java bytecode instructions which may occur in the single method the analysis focuses on.
The examples of Sections 1.2 and 1.3 have been analyzed, and the result appears in the
tables of Sections 4.6 and 4.7.

A path-formula is explicitly represented as the set of its models, which are, in turn,
sets of fields: for example, {{fld1}, {fld2}} represents the exclusive disjunction (fld1 ∧¬fld2)∨
(fld2 ∧¬fld1) if fld1 and fld2 are the only fields in the program. During the fixpoint compu-
tation, path-formulæ are always combined by disjunction, which amounts to add new sets
of fields (models) to their representation.

Example 5.1 ((implementation of ⊙)). Consider the field update v.fld:=v′. Let F1 and F2 be
the reachability information from some w1 to v and from v′ to some w2, respectively. Both
formulæ are represented as sets of sets of fields:

Fi =
{ {

fldi
11, .. , fldi

1k1

}

, .. ,
{

fldi
n1, .. , fldi

1kn

} }

where each truth assignment {fldi
j1, .., fldi

jk j
} is a model of Fi. The newly-computed formula

Ī′′r (w1,w2) = Ī′r(w1, v) ⊙
(

〈fld 〉∨
(

〈fld 〉 ⊙ Ī′r(v
′, v)

))

⊙ Ī′r(v
′,w2)

can be obtained by taking each pair of sets (X1,X2) belonging to F1×F2, and each Y belonging
to (the set representation of) G = Ī′r(v

′, v), and computing the unions X1 ∪ {fld} ∪ X2 and
X1 ∪ {fld} ∪ Y ∪ X2. More formally,

Ī′′r (w1,w2) = { X1 ∪ {fld} ∪X2 | Xi ∈ Fi } ∪ { X1 ∪ {fld} ∪ Y ∪X2 | Xi ∈ Fi,Y ∈ G }

The global fixpoint terminates when no new models are added to path-formulæ.

5.1. Scalability

With respect to similar analyses discussed as related work, the main threats to scalability
seem to be the complexity of operations on path-formulæ and the potentially large number
of reference fields in a program. The implementation deals with path-formulæ operations
such as ⊙ in the way suggested in Example 5.1. A set of fields can be easily represented
as a bit vector, so that union between sets of fields can be efficiently obtained by standard
bitwise operations. A large number of fields would imply the need of more memory to
store bit vectors, but no significant slowdown in bitwise computations.

Moreover, to have a large number of fields to be tracked does not necessarily mean that
operations like the one described in the example above have to deal with a huge number
of field sets Xi and Y: there is no reason to have path-formulæ with more models if the
program has, globally, more fields. Suppose, for example, that the code presented in Section
1.3 is part of a bigger program with many class declarations: the path-formula computed,
say, for Ī8

c (tmp) = 〈∅〉∨ (n ∧p) would have the same two models {} and {n, p}, the difference
being that the bit vectors representing them would be much longer vectors with almost all
bits set to 0.

However, there are at least two ways to go in the direction of improving efficiency; both
are based on the observation that the analysis of data structures in the heap can benefit from
knowledge of what the information to be inferred will be used for. In the case of proving
termination of loops traversing such data structures, which is one of the main indirect
goals of the present paper, to know in advance which loops will possibly traverse the data
structure under study is a valuable piece of information which can significantly improve

10Available at http://costa.ls.fi.upm.es/~damiano/reachCycle/.

31

efficiency. The next two paragraphs discuss two improvements relying on the example of
Section 1.2: the goal is to gather information on the structure of the tree built by

x:= join (tree1,tree2)
knowing in advance that it will be traversed by the loop

while (x!=null) x:=x. left
and that the final goal is to prove termination of such a loop.

Backward program slicing. In order to reduce the portion of code to be analyzed, backward
static slicing [Xu et al. 2005] can be used. A slice can be computed backwards from the value
of x at the program point before the loop, which includes the part of the program potentially
affecting the value of the variable x at that point. Backward static slicing is a well-known
technique which has been applied to programming languages like Java and has reached a
considerable level of maturity.

Field abstraction. The problem of dealing with a large number of reference fields can be
alleviated by observing that some fields are not really relevant when focusing on specific
parts of the code. Consider the example presented above: if it is known in advance that the
only loop traversing the tree pointed to by x will do it on the left field, then the only question
to be answered is: “is { left } a model of Īc(x)?”; in other words, is there the possibility of a cycle
which only traverses left ? This question can be given an answer without knowing exactly
which fields are involved in cycles and under which circumstances, so that a simplification
can be performed on the implementation of the analysis.

If left is the only field to be tracked explicitly, as in this case, then all the other fields
can be abstracted to a special field any, so that the analysis only has to take left and any
into account instead of all reference fields in the program. Operations on field sets are also
simplified: e.g., {any, fld1} ∪ {any, fld2} = {any, fld1, fld2}where fld1 and fld2 are the fields to be
tracked explicitly. On the other hand, {any, fld1} \ {fld2} results in both {any, fld1} and {fld1}
since any could be representing, at that point, exactly fld2 alone. In the example above, the
models of Īc(x) come to be {}, {any}, and {any, left }, thus making it possible to detect that no
cycle will only traverse left . This feature has been added to the implementation described
in this section: it is possible to specify manually which fields have to be tracked explicitly;
if not specified, then all fields are tracked.

6. CONCLUSIONS

The present paper describes a novel approach to cyclicity analysis which is able to provide,
even for possibly cyclic data structures, information that is useful to prove termination
or bounds on the resource usage of programs traversing them. This is accomplished by
considering the fields through which a cyclic path goes through. If, for example, it is possible
to prove that any cycle has to involve certain fields, then the result of the analysis can be
successfully used to prove the termination of a loop which never traverses any cycle
completely.

A typical example is a tree with edges to parent nodes: this is clearly a cyclic data structure,
but loops traversing it one-way (e.g., from the root to a leaf, or the other way around)
terminate. Existing cyclicity analyses cannot give enough information about this example,
so that termination of loops which traverse the data structure cannot be guaranteed. On
the contrary, this analysis provides the required field-sensitive information in form of
propositional formulæ, which are expressive enough to capture relevant properties of
cycles.

Future work will be mainly devoted to complete the prototypical implementation dis-
cussed in Section 5. This will involve adding more features like static fields, making the
analysis interprocedural, and build a user interface. Moreover, the precision of the abstract
semantics and the implementation could be improved, especially on method calls, by a

32

field-sensitive version of the deep-sharing analysis of Section 4.1.1. More speculative work
will look for further insight into the abstract domains mentioned in Section 3.6.6.

A. PROOFS

Lemma 3.7. The viability of a truth assignment ω is decidable.

Proof. The goal is to find a state where there is a path π which traverses all and only
the fields whose f-proposition belongs to ω, i.e., π should traverse all and only the fields in
ϕ = {fld|fld ∈ ω}.

The first step is to compute, for every class κ ∈ K , the set of types of objects which can be
reached from objects of type κ by only traversing fields in ϕ, i.e., the reflexive and transitive
closure R∗ of the relation

R = {(κ′, κ′′) | κ′ ∈ K ∧ ∃κ′.fld ∈ ϕ. κ′.fld has declared type κ, with κ′′ � κ}

Note that paths of length 0 are also considered. The closure is computable since K ×K is
finite and R∗ ⊆ K ×K , so it is guaranteed that a fixpoint will be reached in a finite number
of steps. In the end, (κ′, κ′′) ∈ R∗ means that it is possible to reach a κ′′ object from a κ′

object in zero or more steps, by only traversing ϕ.
The second step is to consider, one at a time, all the permutations of ϕ (which, as a subset

of F , is finite). For each permutation 〈κp1 .fldp1
, .., κpn

.fldpn
〉, a path π is searched for, which

has the following form: it traverses κp1 .fldp1
, then goes through ϕ from the second location

to a location where an object of class κp2 is stored, then traverses κp2 .fldp2
, then goes through

ϕ from the last-obtained location to a location where an object of class κp3 is stored, and so
on until it traverses κpn

.fldpn
. Such a path would have the desired property of traversing all

and only the fields in ϕ, regardless of how many times every single field is traversed.
The existence of π depends on R∗. Let ℓ′

i
and ℓ′′

i
be, resp., the locations where the objects

before and after traversing κpi
.fldpi

are stored; the object stored at ℓ′
i

would have type κpi
,

while the object stored at ℓ′′
i

would have some type compatible with class declarations. The
possibility to connect some ℓ′′

i
to ℓ′

i+1
(i.e., to fill the gap between consecutive fields in the

permutation) depends on whether there is some (κ?
i
, κpi+1) ∈ R∗ s.t. κ?

i
is a subclass of the

declared type of κpi
.fldpi

. If such a pair exists, then a heap can be picked where the object at

ℓ′′
i

has type κ?
i
.

o′
1

: κp1 o′′
1

: κ?
1

κp1 .fldp1

(according to
R∗, a κ?

1
object

can reach a
κp2 object)

o′
2

: κp2 o′′
2

: κ?
2

κp2 .fldp2 . . .

If there is a permutation of ϕ such that all the gaps can be filled, then such a π exists,
which only traverses fields in ϕ, and traverses all of them; in this case, ω is guaranteed to
be viable. On the other hand, if all the permutations have been considered but it was not
possible to build π for any of them, then ω is not viable. It is easy to see that the whole
process is computable.

Lemma 3.10. The equivalence of two path-formulæ is decidable.

Proof. Truth assignments are finite since F is also finite. Therefore, it is enough to
find a viable one which is a model of one path-formula and a counter-model of the other.
To decide if a truth assignment is a model of a formula is easy; moreover, its viability is
decidable by Lemma 3.7, so that the whole problem is decidable.

33

Lemma A.1. (This lemma is only presented in the appendix) ᾱr and γ̄r are monotone. Moreover,
for every Ī′r, Ī

′′
r ∈ Īr, Ī′r , Ī′′r implies⇒ γ̄r(Ī′r) , γ̄r(Ī′′r).

Proof. Suppose that there exists a pair of variables (v,w) such that Ī′r(v,w) . Ī′′r (v,w);
this means that the corresponding path-formulæ do not belong to the same equivalence
class, i.e., that there is a viable ω which is a model of one and only one of them. Suppose
ω is a model of Ī′r(v,w) but not of Ī′′r (v,w) (the dual case is similar). By the definition of the
equivalence onPF≡v,w , there must be a state σwhere there is a path π from v to w traversing
all and only the fields belonging to {fld|fld ∈ ω}, so that π։ Ī′r(v,w), but πg Ī′′r (v,w).
Obviously, there can be many such states; w.l.o.g., σ can be chosen among them, such that
π is the only path in the heap (note that this is always possible since the other variables are
not relevant, and there is no need for any other path from v to w). Now, σ clearly belongs to
γ̄r(Ī′r), but not to γ̄r(Ī′′r) (because there is no path-formula F ≤ Ī′′r (v,w) such that v F-reaches
w in σ), and this concludes the proof.

Lemma 3.16. ᾱr and γ̄r define a Galois insertion between Īr and Iτ
♭
.

Proof. We first prove I♭ ⊆ γ̄r(ᾱr(I♭)), i.e., that σ ∈ I♭ implies σ ∈ γ̄r(ᾱr(I♭)). Given a
concrete state σ ∈ I♭, the following holds for every v and w:

Gv,w =
∧

{F | v F-reaches w in σ} ≤ (ᾱr(I♭))(v,w)
since a part of a disjunction always implies the disjunction itself. Now, due to the behavior
of path-formulæ, v Gv,w-reaches w in σ, so that Gv,w is the path-formula F required by γ̄r in
order to guarantee that σ ∈ γ̄r(ᾱr(I♭)).

The second part of the proof demonstrates that ᾱr(γ̄r(Īr))⊑̄rĪr holds for every Īr. This
amounts to saying that

∀Īr. ∀v,w. (ᾱr(γ̄r(Īr)))(v,w) ≤ Īr(v,w)
The goal is to prove that any path π p-satisfying (ᾱr(γ̄r(Īr)))(v,w) will also p-satisfy Īr(v,w),
since ≤ is logical implication. By the definition of ᾱr and γ̄r:

π։ (ᾱr(γ̄r(Īr)))(v,w)
⇔ π։

∨

{
∧

{F|v F-reaches w in σ}|σ ∈ γ̄r(Īr)}
⇔ π։

∨

{
∧

{F|v F-reaches w in σ}|
σ ∈ Στ ∧ ∀v′,w′.∃G ≤ Īr(v′,w′). v′ G-reaches w′ in σ}

For every σ satisfying (∀v′,w′.∃G ≤ Īr(v
′,w′). v′ G-reaches w′ in σ), the instance (∃G ≤

Īr(v,w). v G-reaches w in σ) also holds, where v and w are the variables of interest. This
implies

∧

{F|v F-reaches w in σ} ≤ Īr(v,w) since the mentioned G is actually one of the F’s in
the conjunction, so that

∧

{F|v F-reaches w in σ} ≤ G, and G ≤ Īr(v,w) by hypothesis. Since
this holds for every σ satisfying the property above (i.e., for all σ ∈ γ̄r(Īr)), the disjunction
on all such states required by ᾱr is still less than or equal to Īr(v,w). Therefore, since a
path-formula

∨

{
∧

{F | v F-reaches w in σ} | σ satisfies the condition above}
has been found such that π p-satisfies it, and is less than or equal to Īr(v,w), the statement
π ։ Īr(v,w) holds. Thus, the implication π ։ (ᾱr(γ̄r(Īr)))(v,w) ⇒ π ։ Īr(v,w) has been
proved, and this completes the second part of the proof.

Joining both parts demonstrates that ᾱr and γ̄r build a Galois connection. Lemma A.1
guarantees that the correspondence is indeed a Galois insertion.

Lemma 3.20. ᾱc and γ̄c define a Galois insertion between Īc and Iτ
♭
.

Proof. Very similar to Lemma 3.16. Note that this proof requires to prove monotonicity
(easy), and a unicity result for cyclicity similar to Lemma A.1, i.e., that Ī′c , Ī′′c implies
γ̄c(Ī′c) , γ̄c(Ī′′c); such a result is also easy to prove.

34

Lemma 3.24. The lattice based on { (Īr, Īc) | Īr∈R̄, Īc∈Ȳ, (Īr, Īc) is in normal form }, with con-
cretization function γ̄rc(Īr, Īc) = γ̄r(Īr) ∩ γ̄c(Īc), is the reduced product of Īr and Īc.

Proof. The goal is to prove that γ̄rc is injective, i.e., that Ī′rc , Ī′′rc implies γ̄rc(Ī′rc) , γ̄rc(Ī′′rc).
If Ī′rc , Ī′′rc, then either (a) Ī′r , Ī′′r or (b) Ī′c , Ī′′c .

(a) Suppose the abstract values differ on the reachability from v to w. By Lemma A.1, γ̄r(Ī′r)
must be different from γ̄r(Ī′′r). Suppose there are states σ ∈ γ̄r(Ī′r) \ γ̄r(Ī′′r) (the dual case is
similar). Without loss of generality, σ can be taken as follows:
— its behavior on (v,w) is as required by Lemma A.1: there is a path from v to w which

p-satisfies Ī′r(v,w) but not Ī′′r (v,w);
— no other variables reach each other;
— if v and w are different variables, then there are no cyclic variables;
— if v and w are the same variable, then the path from v to w is actually a cyclic path,

and it is the only cycle in the heap (note that this is allowed since Ī′c(v) ≥ Ī′r(v, v) is
required in normal forms).

With this definition, σ ∈ γ̄c(Ī′c) and σ ∈ γ̄r(Ī′r), so that it belongs to γ̄rc(Ī′rc). On the other
hand, σ < γ̄rc(Ī′′rc) because it does not belong to γ̄r(Ī′′r).

(b) Suppose the abstract values differ on the cyclicity of v. There are results for cyclicity
which are similar to their reachability counterpart, and imply γ̄c(Ī′c) , γ̄c(Ī′′c). A state σ
belonging to the set difference γ̄c(Ī

′
c) \ γ̄c(Ī

′′
c) can be taken as follows:

— its behavior on v is such that there is one and only one cycle on v, and such a cycle
p-satisfies Ī′c(v) but not Ī′′c (v);

— no variables reach each other, not even v reaches itself (this is possible since the unique
cycle on v can be supposed to start from some location reachable from v, not from
σ f (v) itself).

With this definition, σ trivially belongs to both γ̄r(Ī′r) and γ̄r(Ī′′r); therefore, it does belong
to γ̄rc(Ī′rc) although not to γ̄rc(Ī′′rc).

Lemma 3.26. The abstract domain Iτr is an abstraction of Īr.

Proof. In order to prove this result, an abstraction function α and a concretization
function γ have to be given, which satisfy the definition of Galois connection. Let F∨ be
∨

fld∈F fld , i.e., the formula having all and only non-empty models.

α(Īr) = { v w ∈ X | Īr(v,w) ∧ F∨ , false }

γ(Ir) = λ(v,w).
{

true if v w ∈ Ir

¬F∨ otherwise

α means that v w will be included in the abstraction whenever the path-formula Īr(v,w)
has some non-empty model; this is because, unlike Īr, Iτr only considers paths whose
length is at least 1. On the other hand, γ assigns true whenever v w ∈ Ir because Iτr does
not track conditions on paths; on the other hand, the path-formula returned when v w < Ir

still admits paths of length 0, as expected.
The first thing to prove is that γ(α(Īr))⊒̄r Īr; this follows easily since (1) if Īr(v,w) has no

non-empty models, then it is either false or equivalent to ¬F∨; therefore, (γ(α(Īr)))(v,w)
is ¬F∨ which is ≥ Īr(v,w). On the other hand, if (2) Īr(v,w) has non-empty models, then
(γ(α(Īr)))(v,w) is true ≥ Īr(v,w). In both cases, (γ(α(Īr)))(v,w) ≥ Īr(v,w), which proves the
result. Note that, at a first sight, if Īr(v,w) = F has non-empty models but v w < X , then
the statement will not be added to α(Īr), so that (γ(α(Īr)))(v,w) will be ¬F∨, which seems to
be smaller than F. However, such case never happens since v w < X implies that there
is no path from v to w of length ≥ 1, so that either F ≡v,w false or F ≡v,w ¬F∨.

35

The second part of the proof is to demonstrate that α(γ(Ir)) is smaller than or equal to
Ir. It is straightforward to see that equality holds, so that the correspondence is actually a
Galois insertion.

Lemma 3.27. The abstract domain Īr is a refinement of the aliasing domain.

Proof. The aliasing domain Ia is defined as the lattice of sets of pairs 〈v·w〉 of variables,
ordered by ⊆, and by the following abstraction and concretization functions w.r.t. the
concrete domain:

αa(I♭) = {〈v·w〉 | ∃σ ∈ I♭. σ
f (v) = σ f (w)}

γa(Ia) = {σ | ∀v,w. σ f (v) = σ f (w)⇒ 〈v·w〉 ∈ Ia}

In order to prove the result, the definition of suitable abstraction and concretization func-
tions between Ia and Īr is needed.

α(Īr) = {〈v·w〉 | Īr(v,w) ∧ 〈∅〉 , false}

γ(Ia) = λv,w.
{

true if 〈v·w〉 ∈ Ia

false otherwise

As usual, it must me proved that γ(α(Īr))⊒̄r Īr and α(γ(Ia)) is smaller than or equal to Ia. The
first part follows from observing that 〈v·w〉 ∈ α(Īr) whenever ∅ ∈ modelsP(Īr(v,w)). In this
case, (γ(α(Īr)))(v,w) will be true ≥ Īr(v,w). On the other hand, the equality between α(γ(Ia))
and Ia is straightforward.

Lemma 3.29. κIr is an abstraction of Iτr .

Proof. The abstraction and concretization function identifying a Galois insertion be-
tween κIr and Iτr are as follows (here, δ(v) is the declared type of v):

α(Ir) = {(δ(v), δ(w)) | v w ∈ Ir}
γ(κIr) = {v w | (κ1, κ2) ∈ κIr, δ(v) � κ1, δ(w) � κ2}

It is straightforward to see that γ(α(Ir)) ⊇ Ir since (1) (δ(v), δ(w)) ∈ α(Ir) for every statement
v w ∈ Ir; (2) v w ∈ γ(α(Ir)) since the declared types of v and w are equal to the κ1 and κ2

required in the definition of γ.
On the other hand, α(γ(κIr)) = κIr holds: in fact, applying γ adds all statements v w

where v and w are any variables with compatible types. Afterward, α(γ(κIr)) is computed
as the set of pairs of declared types of all such variables. The last set can be larger, as it
could include more subclasses; however, it is equivalent to κIr according to the equivalence
relation on ℘(XK×K).

Lemma 3.31. The following abstraction and concretization functions define a Galois connection
between Īr and mIτr : the latter strictly abstracts the former.

(α(Īr))(v,w) =

false if Īr(v,w)|=false
true if true|=Īr(v,w)
∧

{fld1∨..∨fldk |Īr(v,w)|=fld1∨..∨fldk } otherwise
γ(mIr) = mIr

Proof. It is straightforward to see that the path-formula returned by α for every v and
w is greater than or equal to Īr(v,w), so that γ(α(Īr))⊒̄r Īr.

The second part of the proof, that α(γ(mIr)) =
mIr, follows from the fact that mIr(v,w) is a

monotone formula, and, if it is neither true nor false, can be transformed into an equivalent
conjunctive normal form: mIr[∗] = (fld11 ∨..∨ fld1k1)∧..∧(fldi1 ∨..∨ fldiki) for some numbers

i and ki. Each of the (fld j j ∨ .. ∨ fld jk j) is clearly implied by (γ(mIr))(v,w), since the latter is

36

logically equivalent to mIr[∗](v,w). Therefore, (α(γ(mIr)))(v,w) is a disjunction of (at least) all
the disjunctions (fld j j ∨ .. ∨ fld jk j), so that it is less than or equal to (i.e., implies) mIr(v,w).

If mIr(v,w) is either true or false, the result is easy.
This proves that there is a Galois insertion between Īr and mIτr .

Lemma 3.34. The following functions define a Galois insertion between Īr and Aτ: the latter is
a strict abstraction of the former.

α(Īr) =
{

v 6 B w | ∀fld ∈ B. Īr(v,w) |= ¬fld
}

γ(IA) = λv,w.
∧

fld∈B

¬fld where B is the maximal set s.t. v 6 B w ∈ IA

Proof. The first part demonstrates that γ(α(Īr))⊒̄r Īr, i.e., that Īr(v,w) implies
(γ(α(Īr)))(v,w) for every v and w. This follows from observing that

(γ(α(Īr)))(v,w) =
∧

{¬fld | Īr(v,w) |= ¬fld }
which is clearly implied by Īr(v,w) since it is a conjunction made of f-propositions which
are all implied by Īr(v,w).

The second part proves that α(γ(IA)) = IA. Let v 6 B w ∈ IA for some v and w. Then,
(γ(IA))(v,w) will be the conjunction F containing all the negative f-propositions for fields in
B (note that F could contain more literals since γ takes the maximal B0 s.t. v 6 B0 w ∈ IA).
It is easy to see that α(γ(IA)) will contain all statements v 6 B′ w such that B′ ⊆ B0,
thus including v 6 B w. On the other hand, let v 6 B w ∈ α(γ(IA)): this means that
∀fld ∈ B. (γ(IA))(v,w) |= ¬fld , i.e., that the conjunction γ(IA)(v,w) contains all negated
literals ¬fld for fields in B. Therefore, there must be a statement v 6 B′ w ∈ IA, with B ⊆ B′.
Since abstract values in Aτ are closed under ⊆ [Scapin 2012, Lemma 4.7], v 6 B w also
belongs to IA, and the proof is complete.

Lemma 3.36. The following functions define a Galois insertion between Īc and Qτ: the latter is
a strict abstraction of the former.

α(Īc) = IQ with domain D = { v | Īc(v) , false}

IQ(v) = { fld | Īc(v) |= fld }

γ(IQ) = λv.

{
∧

fld∈IQ(v) fld if v ∈ dom(IQ)
false otherwise

Proof. By definition, (γ(α(Īc)))(v) is false if and only if Īc(v) was false. On the other hand,
if Īc(v) , false, then (γ(α(Īc)))(v) is the formula

∧

{fld | Īc(v) |= fld }, which is clearly implied
by Īc(v).

The second part of the proof is also easy: α(γ(IQ)) is equal to IQ since v ∈ dom(α(γ(IQ)))
if and only if γ(IQ) , false, which holds if and only if v ∈ dom(IQ). Moreover, in this case,
(α(γ(IQ)))(v) is exactly the set of fields whose corresponding f-proposition is entailed by
(γ(IQ))(v). But (γ(IQ))(v) comes to be

∧

fld∈IQ(v) fld , and the set of f-propositions entailed by
such a formula is exactly IQ(v).

Lemma 4.2. Let π′ and π′′ be two paths such that the last location of π′ is the first of π′′. Then,
π′։F and π′′։G imply π′ · π′′։F ⊙ G.

Proof. The set of fields traversed by π′ · π′′ is the union of the fields traversed by both
sub-paths. Since, by hypothesis, the fields traversed by π′ and π′′ correspond, respectively,
to a model ω′ of F and a model ω′′ of G, the union ω = ω′ ∪ ω′′, which is a model of F ⊙ G

37

by definition of ⊙, is exactly the set of fields traversed by π′ · π′′, so that the result clearly
holds.

Lemma 4.3. Let π be π′ · π′′; let π։F and π′։G. Then, π′′։F ⊖ G.

Proof. Let ϕ be the set of fields which are traversed by π, and ϕ′ and ϕ′′ be the corre-
sponding field sets for π′ and π′′. Clearly, ϕ = ϕ′ ∪ ϕ′′, so that ϕ′′ comes to be the result
of removing from ϕ some of the fields belonging to ϕ′. Such fields are exactly one of the X
mentioned in the definition, so that the truth assignment corresponding toϕ′′ is guaranteed
to be a model of F ⊖ G. Therefore, π′′։F ⊖ G.

Lemma 4.4. Let π be 〈ℓ0, ℓ1.., ℓk〉 and π′ be 〈ℓ1, .., ℓk〉. Let the path from ℓ0 to ℓ1 traverse fld, and
π p-satisfy F. Then, π′։F ⊖ 〈fld 〉.

Proof. If π′ traverses fld (i.e., this field is traversed at least twice by π), then the set of
fields traversed by π′ is the same as π. Such a set is a model of F ⊖ 〈fld 〉 since every model
of F is also a model of F ⊖ 〈fld 〉, so that π′։F ⊖ 〈fld 〉.

On the other hand, if π′ does not traverse fld, then the set of fields traversed by π′ is a
model of F from which fld has been removed. Due to the definition of ⊖, such a set is a
model of F ⊖ 〈fld 〉, so that, again, π′։F ⊖ 〈fld 〉.

ACKNOWLEDGMENTS

This work was funded partially by the European research project FP7-ICT-610582 ENVISAGE: Engineering
Virtualized Services (website: http://www.envisage-project.eu), and by the Spanish projects TIN2008-05624
and TIN2012-38137.

REFERENCES

Albert, E., Arenas, P., Codish, M., Genaim, S., Puebla, G., and Zanardini, D. 2008. Termination analysis of java
bytecode. In Int. Conf. on Formal Methods for Open Object-Based Distributed Systems (FMOODS). LNCS, vol.
5051. Springer, 2–18.

Albert, E., Arenas, P., Genaim, S., Puebla, G., andZanardini, D. 2012. Cost Analysis of Object-Oriented Bytecode
Programs. Theoretical Computer Science (Special Issue on Quantitative Aspects of Programming Languages) 413, 1,
142–159.

Albert, E., Genaim, S., andMasud, A.N. 2013. On the inference of resource usage upper and lower bounds. ACM
Transactions on Computational Logic 14, 3, 22:1–22:35.

Balaban, I., Pnueli, A., andZuck, L. D. 2005. Shape Analysis by Predicate Abstraction. In Int. Conf. on Verification,
Model Checking, and Abstract Interpretation (VMCAI). LNCS, vol. 3385. Springer, 164–180.

Balaban, I., Pnueli, A., and Zuck, L. D. 2007. Shape Analysis of Single-Parent Heaps. In Int. Conf. on Verification,
Model Checking, and Abstract Interpretation (VMCAI). LNCS, vol. 4349. Springer, 91–105.

Bardin, S., Finkel, A., and Nowak, D. 2004. Toward Symbolic Verification of Programs Handling Pointers. In
Int. Workshop on Automated Verification of Infinite-State Systems (AVIS).

Berdine, J., Cook, B., Distefano, D., and O’Hearn, P. 2006. Automatic termination proofs for programs with
shape-shifting heaps. In Int. Conf. on Computer Aided Verification (CAV). LNCS, vol. 4144. Springer, 386–400.

Bossi, A., Gabbrielli, M., Levi, G., andMartelli, M. 1994. The s-semantics approach: Theory and applications.
Journal of Logic Programming 19&20, 149–197.

Brockschmidt, M., Musiol, R., Otto, C., and Giesl, J. 2012. Automated Termination Proofs for Java Programs
with Cyclic Data. In Int. Conf. on Computer Aided Verification (CAV). LNCS, vol. 7358. Springer, 105–122.

Brotherston, J., Bornat, R., and Calcagno, C. 2008. Cyclic Proofs of Program Termination in Separation Logic.
In ACM Symposium on Principles of Programming Languages (POPL). ACM Press, 101–112.

Cook, B., Podelski, A., and Rybalchenko, A. 2006. Termination proofs for systems code. In ACM Conf. on Pro-
gramming Language Design and Implementation (PLDI). ACM Press, 415–426.

Cousot, P. and Cousot, R. 1977. Abstract Interpretation: a Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints. In ACM Symposium on Principles of Programming Languages
(POPL). ACM Press, 238–252.

Cousot, P. and Cousot, R. 1979. Systematic Design of Program Analysis Frameworks. In ACM Symposium on
Principles of Programming Languages (POPL). ACM Press, 269–282.

38

Debray, S. K. and Lin, N. W. 1993. Cost analysis of logic programs. ACM Transactions on Programming Languages
and Systems 15, 5 (November), 826–875.

Genaim, S. and Spoto, F. 2008. Constancy analysis. In Workshop on Formal Techniques for Java-like Programs.

Genaim, S. and Zanardini, D. 2010. The acyclicity inference of COSTA. In Int. Workshop on Termination.

Genaim, S. and Zanardini, D. 2013. Reachability-based Acyclicity Analysis by Abstract Interpretation. Theoretical
Computer Science 474, 0, 60–79.

Ghiya, R. andHendren, L. J. 1996. Is it a tree, a dag, or a cyclic graph? a shape analysis for heap-directed pointers
in c. In ACM Symposium on Principles of Programming Languages (POPL). ACM Press, 1–15.

Giesl, J., Schneider-Kamp, P., and Thiemann, R. 2006. Automatic termination proofs in the dependency pair
framework. In Int. Joint Conf. on Automated Reasoning (IJCAR). LNCS (LNAI), vol. 4130. Springer, 281–286.

Gotsman, A., Berdine, J., and Cook, B. 2006. Interprocedural shape analysis with separated heap abstractions. In
Static Analysis Symposium (SAS). LNCS, vol. 4134. Springer, 240–260.

Graf, S. and Saı̈di, H. 1997. Construction of abstract state graphs with PVS. In Int. Conf. on Computer Aided
Verification (CAV). LNCS, vol. 1254. Springer, 72–83.

Hind, M. 2001. Pointer analysis: haven’t we solved this problem yet? In ACM Workshop on Program Analysis For
Software Tools and Engineering (PASTE). 54–61.

Jones, R. and Lins, R. 1996. Garbage collection: algorithms for automatic dynamic memory management. John Wiley &
Sons, Inc., New York, NY, USA.

Kreiker, J., Reps, T., Rinetzky, N., Sagiv, M., Wilhelm, R., and Yahav, E. 2013. Interprocedural Shape Analysis for
Effectively Cutpoint-Free Programs. Programming Logics. LNCS. vol. 7797. Springer, 414–445.

Müller-Olm, M., Schmidt, D. A., and Steffen, B. 1999. Model-Checking: A Tutorial Introduction. In Static Analysis
Symposium (SAS). LNCS, vol. 1694. Springer, 330–354.

Naik, M. 2011. Chord: A Versatile Platform for Program Analysis. User Manual.

Nelson, G. 1983. Verifying Reachability Invariants of Linked Structures. In ACM Symposium on Principles of
Programming Languages (POPL). ACM Press, 38–47.

Nikolic, D. and Spoto, F. 2014. Reachability analysis of program variables. In ACM Transactions on Programming
Languages and Systems 35, 4, . 14:1–14:68.

Reynolds, J. C. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In IEEE Symposium on Logic
in Computer Science (LICS). 55–74.

Rinetzky, N., Bauer, J., Reps, T. W., Sagiv, S., andWilhelm, R. 2005. A semantics for procedure local heaps and
its abstractions. In ACM Symposium on Principles of Programming Languages (POPL). ACM Press, 296–309.

Rossignoli, S. and Spoto, F. 2006. Detecting Non-Cyclicity by Abstract Compilation into Boolean Functions.
In Int. Conf. on Verification, Model Checking, and Abstract Interpretation (VMCAI). LNCS, vol. 3855. Springer,
95–110.

Sagiv, S., Reps, T. W., andWilhelm, R. 2002. Parametric shape analysis via 3-valued logic. ACM Transactions on
Programming Languages and Systems 24, 3, 217–298.

Scapin, E. 2012. Field-Sensitive Unreachability and Non-Cyclicity Analysis. M.S. thesis, Dept. of Computer Science,
University of Verona.

Secci, S. and Spoto, F. 2005. Pair-Sharing Analysis of Object-Oriented Programs. In Static Analysis Symposium
(SAS). LNCS, vol. 3672. Springer, 320–335.

Spoto, F. and Jensen, T. 2003. Class analyses as abstract interpretations of trace semantics. ACM Transactions on
Programming Languages and Systems 25, 5, 578–630.

Spoto, F., Mesnard, F., and Payet, É. 2010. A Termination Analyser for Java Bytecode based on Path-Length. ACM
Transactions on Programming Languages and Systems 32, 3. Article 8.

Wegbreit, B. 1975. Mechanical Program Analysis. Communications of the ACM 18, 9, 528–539.

Wilhelm, R., Sagiv, S., and Reps, T. W. 2000. Shape analysis. In Int. Conf. on Compiler Construction (CC). LNCS, vol.
1781. Springer, 1–17.

Xu, B., Qian, J., Zhang, X., Wu, Z., and Chen, L. 2005. A Brief Survey of Program Slicing. SIGSOFT Software
Engineering Notes 30, 2, 1–36.

Received Month Year; revised Month Year; accepted Month Year

39

	1 Introduction
	1.1 Related work
	1.2 Example: tree with edges to parent nodes
	1.3 Example: double-linked list

	2 A simple object-oriented language
	3 The abstract domains
	3.1 Background in Logic
	3.2 Paths, cycles, and fields
	3.3 The Field-Reachability domain
	3.4 The Field-Cyclicity domain
	3.5 The reduced product
	3.6 Comparison with other approaches to the problem
	3.6.1 An abstract domain without field information
	3.6.2 An abstract domain based solely on class reachability
	3.6.3 Abstract domains with restrictions on path-formulæ
	3.6.4 An domain excluding fields from paths
	3.6.5 An analysis detecting that all paths have to traverse certain fields
	3.6.6 Even more expressive abstract domains

	4 The field-sensitive abstract semantics
	4.1 Preliminaries
	4.1.1 Auxiliary analyses
	4.1.2 Operations on abstract values
	4.1.3 Path-formulæ

	4.2 Expressions
	4.3 Commands
	4.4 Global fixpoint
	4.5 Soundness
	4.6 Back to the cyclic-tree example
	4.7 Back to the double-linked-list example

	5 Practical issues
	5.1 Scalability

	6 Conclusions
	A Proofs

