
This is a repository copy of A Sound and Complete Proof Technique for Linearizability of
Concurrent Data Structures.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/90972/

Version: Accepted Version

Article:

Schellhorn, G., Derrick, J. and Wehrheim, H. (2014) A Sound and Complete Proof
Technique for Linearizability of Concurrent Data Structures. ACM Transactions on
Computational Logic, 15 (4). 31. ISSN 1529-3785

https://doi.org/10.1145/2629496

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

A

A Sound and Complete Proof Technique for Linearizability of
Concurrent Data Structures

GERHARD SCHELLHORN, University of Augsburg, Germany

JOHN DERRICK, University of Sheffield, UK

HEIKE WEHRHEIM, University of Paderborn, Germany

Efficient implementations of data structures such as queues, stacks or hash-tables allow for concurrent access
by many processes at the same time. To increase concurrency, these algorithms often completely dispose
with locking, or only lock small parts of the structure. Linearizability is the standard correctness criterion
for such a scenario — where a concurrent object is linearizable if all of its operations appear to take effect
instantaneously some time between their invocation and return.

The potential concurrent access to the shared data structure tremendously increases the complexity of
the verification problem, and thus current proof techniques for showing linearizability are all tailored to

specific types of data structures. In previous work we have shown how simulation-based proof conditions
for linearizability can be used to verify a number of subtle concurrent algorithms. In this paper, we now

show that conditions based on backward simulation can be used to show linearizability of every linearizable
algorithm, i.e., we show that our proof technique is both sound and complete. We exemplify our approach
by a linearizability proof of a concurrent queue, introduced in Herlihy and Wing’s landmark paper on
linearizability. Except for their manual proof, none of the numerous other approaches have successfully
treated this queue.

Our approach is supported by a full mechanisation: both the linearizability proofs for case studies like
the queue, and the proofs of soundness and completeness have been carried out with an interactive prover,

which is KIV.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification

General Terms: Algorithms,Verification

Additional Key Words and Phrases: Z, refinement, concurrent access, linearizability, non-atomic refinement,
theorem proving, KIV

ACM Reference Format:

ACM Trans. Comput. Logic V, N, Article A (January YYYY), 35 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

The advent of multi- and many-core processors will see an increased usage of concurrent
data structures. These are implementations of data structures like queues, stacks or hash-
tables which allow for concurrent access by many processes at the same time. Indeed,
already libraries such as java.util.concurrent offer a vast number of such concurrent data
structures. To increase concurrency, these algorithms often completely dispose with locking,

Gerhard Schellhorn, Universität Augsburg, Institut für Informatik, 86135 Augsburg, Germany,
schellhorn@informatik.uni-augsburg.de
John Derrick, Department of Computing, University of Sheffield, Sheffield, UK, J.Derrick@dcs.shef.ac.uk
Heike Wehrheim, Universität Paderborn, Institut für Informatik, 33098 Paderborn, Germany,
wehrheim@uni-paderborn.de
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 1529-3785/YYYY/01-ARTA $15.00
DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 Gerhard Schellhorn et al.

or only lock small parts of the structure. Instead of locking, fine-grained synchronization
schemes based on atomic operations (e.g., Compare-And-Swap CAS or Load-Link/Store-
Conditional LL/SC) are employed in order to allow for a high degree of concurrency.

Whereas correctness for their sequential counter-parts is trivial, it can be complex and
subtle for these concurrent algorithms, particularly ones that exploit the potential for con-
currency to the full. For example, their design inevitably leads to race conditions. In fact,
the designers of such algorithms do not aim at race-free but at linearizable algorithms. Lin-
earizability [Herlihy and Wing 1990] requires that fine-grained implementations of access
operations (e.g., insertion, lookup or removal of an element) appear as though they take
effect instantaneously at some point in time, thereby achieving the same effect as an atomic
operation [Herlihy and Wing 1990]:

Linearizability provides the illusion that each operation applied by concurrent
processes takes effect instantaneously at some point between its invocation and
its response.

Since the original approach based on possibilities, a number of other approaches to prove
linearizability have appeared, and a number of algorithms have been shown to be lineariz-
able [Doherty et al. 2004; Colvin et al. 2005; Abrial and Cansell 2005; Hesselink 2007;
Vafeiadis et al. 2006; Amit et al. 2007; Calcagno et al. 2007; Derrick et al. 2008; 2011b].
Some of the proofs of correctness are manual, whereas others are partly supported by theo-
rem provers (for instance with PVS) or fully automatic. The latter, however, either require
user-annotations to the algorithm or – in the case of model checkers – only prove correctness
for a limited number of parallel processes.
The proof techniques vary as well, and range from using shape analysis or separation logic

to rely-guarantee reasoning and simulation-based methods. The simulation-based methods
show that an abstraction (or simulation or refinement) relation exists between the abstract
specification of the data structure and its concurrent implementation.
Whilst great progress has been made in the state-of-the-art in this area, a number of

weaknesses remain. For example, apart from our own [Derrick et al. 2008], all current
approaches only argue informally that their proof technique actually implies the original
linearizability criterion of [Herlihy and Wing 1990]. Rather, they have focused on providing
an efficient and practically applicable proof technique. We, however, have aimed to ensure
that we always have a mechanized proof of soundness of our method in addition to any
individual proof of correctness for a specific algorithm.
In addition, inspecting the current approaches, one finds that a number of techniques

(including our own so far) get adapted every time a new type of algorithm is treated.
Every new “trick” designers build into their algorithms to increase performance (e.g., like a
mutual push and pop elimination for stacks, or lazy techniques) requires an extension of the
verification approach. This is the case because the verification approaches are usually kept
as simple as possible to ease their application, and in particular to allow for a high degree
of automatization. Still, our motivation was to present a proof technique which can be used
to prove linearizability of every linearizable algorithm: we have derived a proof method that
is sound and complete for linearizability.
The approach is again a simulation-based method, this time based on backward simula-

tions — a technique usually applied for certain classes of data refinement. What is unusual
with the method is that in data refinement, two types of simulation (forward and backward)
are necessary in order to give completeness [He Jifeng et al. 1986; de Roever and Engelhardt
1998; Derrick and Boiten 2001]. However, for linearizability, we show that backward simula-
tion alone is already sufficient (and furthermore, that backward simulations are sound with
respect to linearizability). More precisely, we show that a fine-grained implementation is lin-
earizable with respect to an abstract atomic specification of the data structure if and only
if there is a backward simulation between the specification and the implementation. The

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Sound and Complete Proof Technique for Linearizability A:3

use of simulations for showing linearizability is not new; however, current refinement-based
approaches (e.g., [Doherty et al. 2004; Doherty and Moir 2009; Colvin and Groves 2005]) are
based on both backward and forward simulations. Note that our completeness result does
not imply a direct method for deriving a backward simulation for an existing linearizable
data structure; it just states the existence of such a simulation. This is in line with other
completeness results, e.g., for data refinement or for specific proof calculi: completeness only
states the existence of a proof, never a way of deriving this proof.
We nevertheless exemplify our approach to using just backward simulations by verifying

the queue implementation of Herlihy and Wing [Herlihy and Wing 1990]. None of the current
approaches to linearizability have treated this algorithm; and it is also not clear whether
the many approaches tailored towards heap usage (like separation logic or shape analysis
based techniques) can successfully verify the queue, as the complexity in the interaction
between concurrent processes in the queue is not due to a shared heap. There is no heap
involved at all, rather, the underlying store is an unbounded array. Along with this queue
example we also show how to systematically construct the backward simulations needed in
the linearizability proofs. Although the complete methodology determines the most general
backward simulation to use, in practice, it is often more convenient to use a smaller relation.
We do this in the queue verification, and to this end, we provide a number of guidelines for
deriving backward simulations in general.
Last, but not least, to fit our desire for a provenly correct methodology, we have a complete

mechanization of our approach. It is complete in the sense that we both carry out the
backward simulation proofs for our examples (here, the queue) with an interactive prover
(which is KIV [Reif et al. 1998]), and have verified within KIV that the general soundness
and completeness proof of our technique is correct. Proofs for the general theory as well as
for the case study can be found online at [KIV 2011].

The structure of the paper is as follows. The next section introduces our running example,
the Herlihy and Wing queue. We use Z to formalize the pseudo-code of the algorithm, which
will subsequently be verified in KIV. In section 3 we formally define linearizability of an
abstract and a concurrent data type, and define refinement and simulations between them.
The proof methodology is then derived in section 4. This is achieved by augmenting the
original data types with history information and using a particular type of finalization,
and showing that the abstract and concurrent data type are linearizable if and only if the
augmented concurrent data type is a backward simulation of the augmented abstract data
type. The proof uses a particular intermediate layer in its construction, reminiscent of the
definition of possibilities in [Herlihy and Wing 1990].
We return to the queue of Herlihy and Wing in section 5 to mechanically verify a proof

of its linearizability using a specific backward simulation.
For algorithms with complex linearization points, such as the queue considered here,

global backward simulations are needed, since by their nature such algorithms have non-
local behavior. However, for many simpler case studies it has been informally argued that
simpler, thread-local proof obligations are sufficient. Section 7 sketches, how the thread-
local proof obligations we defined in [Derrick et al. 2011b] can be derived from the general
backward simulation.
Finally, in sections 8 and 9 we discuss related work and some conclusions. This paper is an

extended version of [Schellhorn et al. 2012] in which we present the underlying theory in full
detail, the most important aspects of the KIV proof and add guidelines for the derivation
of backward simulations.

2. HERLIHY-WING QUEUE

The running example we use throughout this paper is the concurrent implementation of
an abstract queue, as specified by Herlihy and Wing in their original paper [Herlihy and

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 Gerhard Schellhorn et al.

Wing 1990]. We will mix the informal description with a formalization in the specification
language Z [Woodcock and Davies 1996], a state-based specification formalism which al-
lows the specification of data types by defining their state (variables), initial values and
operations, to describe an abstract queue and its concurrent implementation. The com-
plete system then consists of a number of processes, each capable of executing its queue
operations on the shared data structure. The key question we are interested in is whether
the concurrent implementation is correct with respect to the abstract specification – even
though the atomic steps of the concrete can be interleaved in a manner not feasible in the
abstract specification.
As usual, the queue is a data structure with two operations: enqueue appends new ele-

ments to the end of the queue and dequeue removes elements from the front of the queue.
We have one enqueue and dequeue for each process p ∈ P . Abstractly, we can specify the
queue as follows. The state, initialization and operations are given as schemas, consisting
of variable declarations plus predicates. We assume a given type T for queue elements.

AState
q : seqT

AInit
AState

q = 〈 〉

AEnqp
∆AState
el? : T

q ′ = q a 〈el?〉

ADeqp
∆AState
el ! : T

q = 〈el !〉a q ′

The first two schemas in the specification fix the state, AState, of the data structure queue (a
sequence of elements), and its initial value (the empty list given via its initialization AInit).
As usual in Z, a sequence q = 〈a1, . . . an〉 of length n (written #q = n) is a function from

the interval from 1 to n (written 1..n) to elements of T. Operator q1a q2 concatenates two
sequences, an element is selected with q(k) for k ∈ 1..n. The two operations enqueue and
dequeue for all the processes are written as AEnqp and ADeqp (A for abstract specification
and p for the process executing it). In such a specification the primed variables refer to the
value of variables in the after-state. Unprimed as well as primed variables of a particular
state schema are introduced into operation schemas by the ∆-notation. Input and output
variables are decorated by ? and !. In general, we can model all such data structures as
abstract data types ADT = (AState,AInit , (AOpp,i)p∈P,i∈I), where the set I is used for
enumerating the abstract operations. Each operation AOpp,i is defined over the state space
AState and can additionally specify inputs and outputs. Inputs are denoted here by in?
and outputs by out !, with types INi and OUTi (dependent on the operation i , but not on
the process p executing it) respectively.

The queue is implemented by an array AR of unbounded length. All (used) slots of the
array are initialized with a special value null 6∈ T , signaling ’no element present’. A back
pointer back into the array stores the current upper end of the array where elements are
enqueued. Dequeues operate on the lower end of the array. An enq operation thus simply
gets a local copy of back , increments back (these two steps are executed atomically) and
then stores the element to be enqueued in the array. We can describe the operations in
pseudo-code as follows, where we annotate each line with a line number (E1 etc):

E0 enq(lv : T)
E1 (k,back) := (back, back+1); /* increment */
E2 AR[k]:= lv; /* store */
E3 return

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Sound and Complete Proof Technique for Linearizability A:5

D0 deq(): T
D1 lback := back; k:=0; lv := null
D2 if k < lback goto D3 else goto D1
D3 (lv, AR[k]) := (AR[k], lv); /* swap */
D4 if lv != null then goto D6 else goto D5
D5 k := k + 1; goto D2
D6 return(lv)

The deq operation proceeds in several steps: first, it gets a local copy of back and initializes
a counter k and a local variable, lv , which is used to store the dequeued element. It then
walks through the array trying to find an element to be dequeued. Steps D2 and D5 in the
code above constitute a loop consecutively visiting the array elements.
At every position k visited in the loop the array contents AR[k] is swapped with variable

lv . If the dequeue finds a proper non-empty element this way (lv 6= null), this will be
returned, otherwise searching is continued. In the case where no element can be found in
the entire array, deq restarts the search. Note that if no enq operations occur, deq will thus
run forever.

As we said, the complete system consists of a number of processes, each capable of executing
its queue operations on a shared data structure. For the concrete implementation therefore
these two algorithms can be executed concurrently by any number of processes — where
the individual steps in the operations are atomic. So, for instance, we could have a process
p executing E1 and then a process q executing D1 and (one of the branches of) D2, then
p continuing with E2, a third process r starting yet another deq with step D1 and so on.
Every interleaving of steps is possible. Formally, we can model the complete system (not
just for a single process) as a data type with the following state.

CState
AR : IN → T ∪ {null}
back : IN
kf : P → IN
lbackf : P → IN
lvf : P → T ∪ {null}
pcf : P → PC

CInit
CState

∀ i : IN • AR(i) = null
back = 0

In addition to AR and back (explained above), the state contains local variables for every
process from P , thus we have functions from P to the domain of the local variables. In
addition, every process p has a variable pcf (p) to denote the program counter. The program
counter can take values from PC = {N ,E1,E2,E3,D1,D2,D3,D4,D5,D6}, N denoting
the idle state of a process (the idle state needs to be the same state for each operation so
we use N as opposed to E0 and D0 here).

To model the operations, we introduce an operation denoting the invocation of an enqueue
(enq0) or dequeue (deq0) (i.e., statements E0 and D0), then we have one operation for every
line in the program (except for if-statements which are split into a true (e.g., deq2t) and a
false (deq2f) case). Each operation then corresponds to the granularity of atomicity in the
concurrent implementation.

Operation names are indexed by the process executing them. Thus in total we have
operations enq0p , enq1p , enq2p , enq3p , deq0p , deq1p , deq2tp , deq2fp , deq3p , deq4tp , deq4fp ,
deq5p and deq6p for every p ∈ P . Below we see a formal definition of some of the operations.

Z Notation: We assume the reader is familiar with the basics of the Z notation and its use
of schemas. In fact, in our use of the schema notation we take the Object-Z approach of just
specifying the changed values, and apply this at a functional level as well. This simply makes

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Gerhard Schellhorn et al.

the specifications much more readable (otherwise we would have to add a lot of predicates
of the form back ′ = back etc.) and has no semantic consequence. Formula pcf ′(p) = E1
denotes the expansion pcf ′ = pcf ⊕{p 7→ E1} that overwrites pcf (p) with E1, and similarly
for the other variables and functions in the schemas. The ordering of statements within the
programs for the operations are ensured by the use of program counters and appropriate
preconditions for operations.

enq0p
∆CState
lv? : T

pcf (p) = N ∧ pcf ′(p) = E1
lvf ′(p) = lv?

enq1p
∆CState

pcf (p) = E1 ∧ pcf ′(p) = E2
kf ′(p) = back ∧ back ′ = back + 1

deq2tp
∆CState

kf (p) < lbackf (p)
pcf (p) = D2 ∧ pcf ′(p) = D3

deq6p
∆CState
el ! : T

pcf (p) = D6 ∧ pcf ′(p) = N
el ! = lvf (p)

Formally, this defines our concrete data type CDT = (CState,CInit , (COpj)j∈J). Our ob-
jective is to show that the concrete data type is linearizable with respect to the abstract
data type, i.e., all runs of the concrete data type with whatever kind of interleaving of
operations of concurrent processes resemble correct queue operations. (We will formalize
the definition itself later.)
To illustrate the issue we first take a look at one run to demonstrate the interplay between

the operations of different processes. So imagine the following processes executing their
individual concrete operations on the shared data type. Here, the steps of processes are
given and (relevant parts of) the resulting state.

(1) Process 3 starts an enqueue for the element a (E0) and executes E1:
kf (3) = 0, pcf (3) = E2, back = 1 AR = [−,−,−, . . .]
Sequence of operations so far: 〈enq03, enq13〉

(2) Process 1 starts an enqueue for the element b and executes E1:
kf (1) = 1, pcf (1) = E2, back = 2 AR = [−,−,−, . . .]
Sequence of operations so far: 〈enq03, enq13, enq01, enq11〉

(3) Process 2 starts a dequeue and executes D0 and D1:
kf (2) = 0, pcf (2) = D2, lbackf (2) = 2, lvf (2) = null AR = [−,−,−, . . .]
Sequence of operations so far: 〈enq03, enq13, enq01, enq11, deq02, deq12〉

(4) Process 4 starts an enqueue for the element c and executes E0,E1,E2:
kf (4) = 2, pcf (4) = E3, back = 3 AR = [−,−, c,−, . . .]
Sequence of operations (continued): 〈. . . , enq04, enq14, enq24〉

(5) Process 2 continues its dequeue with D2,D3,D4,D5,D2:
kf (2) = 1, pcf (2) = D3, lbackf (2) = 2, back = 3 AR = [−,−, c,−, . . .]

(6) Process 3 finishes its enqueue executing E2 and E3:
pcf (3) = N AR = [a,−, c,−, . . .]

(7) Process 4 finishes its enqueue executing E3:
pcf (4) = N AR = [a,−, c,−, . . .]

(8) Process 2 finishes the dequeue and returns c:
pcf (2) = N , kf (2) = 2, lbackf (2) = 2, back = 3 AR = [a,−,−,−, . . .]

(9) Process 1 finishes the enqueue:
pcf (1) = N AR = [a, b,−,−, . . .]

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Sound and Complete Proof Technique for Linearizability A:7

The question of correctness is as follows: does this concrete run of operations (and its visible
effect on the shared data structure) in some sense correspond to a run of the abstract
specification?
In fact, it does in this case, specifically the above concrete run has (for instance) the

following matching run of the abstract data type:

〈AEnq4(c),ADeq2(c),AEnq3(a),AEnq1(b)〉

But notice that this correct abstract run is not the initially most obvious. Specifically,
one would be tempted to look at the ordering of the invocations of the operations:
〈AEnq3,AEnq1,ADeq2,AEnq4〉, or failing that, the returns (i.e., responses) of the oper-
ations: 〈AEnq3,AEnq4,ADeq2,AEnq1〉. Neither of these is the correct abstract sequence
necessary to give the right queue: in the first case the dequeue should return a, and in the
second case as well, which it however does not.
Rather, instead of the start or the end, it is the point in time where the effect of the

operation on the abstract queue becomes visible to other operations (this is known as the
linearizability point, or LP) that determines the corresponding abstract order. The effect
of enqueue of c becomes visible first even though it puts the element into position 2 of
the array, not 0. This is because it is the first position which the dequeue observes to be
non-empty as it has already gone past position 0 with its local array index k when the
element a is placed in position 0.
At this moment one would be tempted to exactly find the LP of each operation, e.g., it

might be E2 for enqueue and D5 for dequeue. Such an approach of finding fixed linearization
points in the concurrent algorithm works for some non-locking algorithms such as Treiber’s
stack [Treiber 1986] or Michael and Scott’s queue [Michael and Scott 1996]. However, for
other more complex algorithms the point where the effects become visible changes from
run to run according to the contents of the input/output or data structure. Examples of
algorithms that are like this include the lazy set algorithm [Heller et al. 2005]. However,
the behavior of the above is even more subtle — the LP in one operation depends on what
other operations have already started — i.e., depends on the whole global history. To see
this note that if the dequeue has not already gone past position 1 when process 1 enqueues
b, the dequeue would return b rather than c. Thus, it is not only the ordering of enqueue
operations of different processes which determines their abstract order, but it is also the
progression of dequeues (of which we can of course also have several ones).

This intricate interplay of enqueues and dequeues makes this algorithm the hardest type
for which to verify linearizability. Indeed, at first glance the hopes of finding some local
proof obligations (as opposed to reasoning about global histories) would seem remote, let
alone finding a complete methodology. However, this is what the following sections seek to
explore. We begin with the basic definitions.

3. BACKGROUND

Our proof technique is grounded in the theory of refinement and simulations. However,
before we start with the basic terminology for these, we want to formally define the notion
of linearizability. In this, we essentially follow Herlihy and Wing’s formalization.

3.1. Histories and Linearizability

Linearizability is a notion of correctness relating two specifications: a sequential abstract
specification and a concurrent implementation. Here, these are both given as data types
consisting of state space, the initialization and a number of operations executed by some
process, i.e., like in the example we have ADT = (AState,AInit , (AOpp,i)p∈P,i∈I) where
AInit ⊆ AState, and AOpp,i ⊆ INi ×AState×AState×OUTi . The concurrent implementa-
tion is given as CDT = (CState,CInit , (COpp,j)j∈J ,p∈P) where CInit ⊆ CState. We assume
a function abs : J → I that tells which concrete operation is a step of the implementation

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Gerhard Schellhorn et al.

of which abstract one. We will place some restrictions on abs below, e.g., it will be an 1-to-n
mapping between abstract and concrete. The concrete operations can be partitioned into
three classes. Invoking operations (deq0p and enq0p in the example) have input of type
INabs(j). Returning operations (deq6p and enq3p) have output of type OUTabs(j), all others
have neither input nor output, i.e., these operations are just relations over CState.
The last example already discussed the issue of finding an appropriate run of the abstract

data type for every run of the concrete implementation. Here, we will make the notion of
“appropriate” or “matching” abstract run more precise.
Formally, linearizability can be defined by comparing the histories formed by runs of the

abstract and concrete data type. Histories are finite sequences of events. Events can be
invocations and returns of particular operations by particular processes from the set P .

Event ::= inv〈〈P × I × INi〉〉 | ret〈〈P × I ×OUTi〉〉
History = seqEvents

Events are defined using Z notation for free data types. Typical elements of the type are
inv(p, i , in) and ret(p, i , out), where p is a process, i is an operation index, and in ∈ INi and
out ∈ OUTi are elements of the input resp. output type of AOpp,i . Setting I = {enq , deq},
a possible history of our queue implementation is

h = 〈inv(3, enq , a), inv(1, enq , b), inv(2, deq ,), inv(4, enq , c), ret(3, enq ,),
ret(4, enq ,), ret(2, deq , c), ret(1, enq ,)〉

This is the history corresponding to the above run detailed in the previous section, where,
for example, ret(3, enq ,) denotes the return of the enqueue operation undertaken by pro-
cess 3. The return event of enqueue has no output, thus the last argument is empty. The
corresponding history of the abstract queue is

hs = 〈inv(4, enq , c), ret(4, enq ,), inv(2, deq ,), ret(2, deq , c),
inv(3, enq , a), ret(3, enq ,), inv(1, enq , b), ret(1, enq ,)〉

Of course, there is no interleaving at the abstract level, thus ret(1, enq ,) immediately follows
its invocation inv(1, enq , b), that is histories of the abstract specification (like this one) will
always be sequential (definition coming up). These histories are in a sense an abstraction
of the concrete run (with just invocations and returns), but not as abstract as the initial
specification which did not even differentiate between invocation and return. We will use
them to compare our abstract and concrete runs in a fashion detailed below. First, some
basic definitions.

We use predicates inv?(e) and ret?(e) to check whether an event e ∈ Event is an invoca-
tion or a return, and we let Ret ! be the set of return events. We let e.p ∈ P be the process
executing the event e and e.i ∈ I the index of the abstract operation to which the event
belongs.

Not all sequences of events are correct histories of a data type. Thus we need the idea of
a legal (concurrent) history: a legal history consists of matching pairs of invocation and
return events plus some pending invocations, where an operation has started but not yet
finished1

Definition 3.1 (Legal histories). Let h : seqEvent be a sequence of events. Two positions
m,n in h form a matching pair, denoted mp(m,n, h) if

0 < m < n ≤ #h ∧ inv?(h(m)) ∧ ret?(h(m)) ∧ h(m).p = h(n).p ∧ h(m).i = h(n).i ∧
∀ k : IN • m < k < n ⇒ h(k).p 6= h(m).p

1The definition of legal histories in [Herlihy andWing 1990] (there called well-defined) requires all projections
of the history to one process to be sequential. We prefer our equivalent definition, since many proofs must
reason about the properties of matching pairs and pending invokes in legal histories.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Sound and Complete Proof Technique for Linearizability A:9

A position n : 1..#h in h is a pending invocation, denoted pi(n, h), if

inv?(h(n)) ∧ ∀m • n < m ≤ #h ⇒ h(m).p 6= h(n).p

The set of all pending invokes h(n) with pi(n, h) is denoted as pi(h). h is legal, denoted
legal(h), if

∀n : 1..#h • if inv?(h(n)) then pi(n, h) ∨ ∃m : 1..#h • mp(n,m, h)
else ∃m : 1..#h • mp(m,n, h)

2

Both of the above given histories are legal. In the history h we, for instance, have matching
pairs 1 and 5, mp(1, 5, h), and no pending invocations (all invocations are followed by a
matching return).
Later, we will formally define how to construct histories out of a data type. For the

moment note that history hs as well as all other histories of the abstract data type are
sequential. This is formalized in the following predicate:

sequ(h) == ∃n • #h = 2n ∧ ∀m : 1..n • mp(m +m − 1,m +m)

A (complete2) sequential history is a sequence of matching pairs. For a legal history, function
complete(h) defined as

complete(〈〉) = 〈〉

complete(〈e〉a h) = if pi(1, 〈e〉a h) then complete(h) else 〈e〉a complete(h)

removes all pending invocations from a legal history h. To determine, whether a concurrent
history h is linearizable it is compared with abstract sequential histories, to see whether
one can be found, that matches. First of all, h might need to be extended by some (but not
necessarily all) returns h0 ∈ seqRet ! that match the pending invocations. This is the case
when h contains operations where the effect has already taken place, though they have not
returned. An example for this is the operation D3 in the dequeue: once the swap occurs on
a non-empty array element, the effect of the operation has taken place although it has not

returned yet. This results in a history h a h0 which is now compared to a sequential history
hs according to two conditions:

L1. when projected onto processes, complete(hah0) and hs have to be equivalent, and
L2. the ordering of operation executions in h needs to be preserved in hs.

Here, two operations are ordered if the second one starts after the first one has returned.
We rephrase this in a more formal way using a bijection f (denoted ֌→ using Z notation)
between h and hs so that it can be used in our theorem prover:

Definition 3.2 (Linearizable histories). Given two histories h, hs, we define h to be in
lin-relation with hs, denoted lin(h, hs), if

∃ f : 1..#h ֌→ 1..#hs •
legal(h) ∧ sequ(hs) ∧ ∀n : 1..#h • h(n) = hs(f (n))

∧ ∀m,n : 1..#h • mp(m,n, h) ⇒ f (n) = f (m) + 1
∧ ∀m,n,m ′,n ′ : 1..#h • mp(m,n, h) ∧ n < m ′ ∧mp(m ′,n ′, h) ⇒ f (n) < f (m ′)

A (concrete) history h is linearizable with respect to some sequential (abstract) history hs,
denoted linearizable(h, hs), if

∃ h0 : seqRet ! • legal(h a h0) ∧ lin(complete(h a h0), hs)

2[Herlihy and Wing 1990] allow a final pending invocation in sequential histories. For the definition of
linearizability only complete sequential histories are needed.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Gerhard Schellhorn et al.

A concrete data type CDT is linearizable with respect to an abstract data type ADT if
every history of CDT is linearizable with respect to some history of ADT . 2

Example 1: The history h from our running example is linearizable with respect to hs. 2

Example 2: An example of a non-linearizable concrete history is

h1 = 〈inv(1, enq , a), ret(1, enq ,), inv(2, enq , b), inv(3, deq ,), ret(3, deq , b)〉

For it to be linearizable we would have to find a sequential history hs1 which keeps the
ordering of operations (condition L2), i.e., in which the enqueue of a comes before the
other two operations, and in which the dequeue still returns a b (condition L1). Neither the
placement of the enqueue of b before nor after the dequeue would give us a valid abstract
history. 2

3.2. Data refinement and simulations

The central aim of work on linearizability is to derive proof methods to verify that a particu-
lar concurrent algorithm is linearizable. As we have seen, linearizability is a global condition
defined over histories, so we are particularly interested in proof obligations that are local
(in some sense, e.g., in terms of verifying conditions on an operation per operation basis)
as opposed to global so that we can avoid reasoning over all histories.
Indeed, in our previous work on proving linearizability [Derrick et al. 2008; 2011a] we have

derived proof obligations that examine one step at a time instead of full runs, using the ideas
of data refinement between the two data types, specifically the obligations are all based on
the idea of showing simulations between the data types. That is, we have exploited the fact
that simulations are step-local obligations that can verify the global refinement property.
The essence of our proof method is thus to derive local proof obligations such that local
proof obligations between ADT and CDT imply CDT to be a certain sort of refinement of
ADT which in turn can be shown to imply CDT is linearizable wrt ADT .
Using these methods we have been able to verify some of the standard benchmark algo-

rithms for work in this area. For example, in [Derrick et al. 2008] we show how to verify
a lock-free implementation of a stack. However, the proof obligations were not complete,
that is not every case of linearizability could be verified using the methodology, and to cover
more complex or subtle algorithms, the proof obligations had to be adapted to tackle all new
aspects. For example, the lazy set implementation [Heller et al. 2005] tackled in [Vafeiadis
et al. 2006] and [Colvin et al. 2006] has linearization points set by processes other than the
one executing the operation, and we needed to use more general simulation conditions to
treat this aspect.
For all of our proof obligations we have a mechanized proof of soundness, i.e., we have

formally shown that the validity of the proof obligations implies linearizability. Here, we
are now also interested in completeness of proof obligations: we aim to derive a proof tech-
nique which is general enough to show linearizability for every linearizable data type and
algorithm. Of course, soundness needs to be kept.
The technique which we develop next is based on the idea of data refinement and simula-

tions as was the original method. Essentially, we show that given an abstract and a concrete
data type ADT and CDT (representing an abstract view and concurrent implementation,
respectively) we can construct a particular simulation relation between ADT and CDT
if and only if CDT is linearizable with respect to ADT . This opens up a way of proving
linearizability for arbitrarily complex algorithms. Of course, there is no hope in keeping full
locality — and simulations give us the best sense of locality that we can preserve — since we
now are deriving a method general enough for all linearizable algorithms, even ones where
an operation is linearized by that of another process.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Sound and Complete Proof Technique for Linearizability A:11

Because our completeness proof and proof obligations for linearizability are based on
simulations, we briefly discuss data refinement and the simulation methodology before we
explain the approach further.
Simulations are used to show a refinement relationship between data structures. The

purpose of data refinement [de Roever and Engelhardt 1998; Derrick and Boiten 2001] is
to support a formal model-based design by giving a correctness criterion for changes made
on the data representation or the operations of a data type. A data refinement relationship
between two data types A and C guarantees substitutability of one data type by another:
when invoking the same operations on C instead of on A, the outcome (i.e., observation)
is one which has to be possible for A as well. The concept of “outcome” is formalized by a
specific additional finalization operation, which determines what is observable at the end of
every program. Normally, finalizations return the outputs that have been observed during
execution of the program, and are thus not stated explicitly. However, in our case, we will
use finalizations which return histories, i.e., Fin ⊆ State × History , as the histories are
the observations we are interested in. In its basic form we thus have a definition of data
refinement as follows, where it is assumed that we have exactly one concrete operation for
every abstract operation.

Definition 3.3 (Data Type). A data type D = (State,Obs, Init , (Opi)i∈I ,Fin) consists
of a set State of states, a set Obs of observations3, an initialization relation Init ⊆ Obs ×
State, a set of operations Opi ⊆ State × State for i ∈ I , and a finalization relation Fin ⊆
State × Obs. A program Prg is a sequence of operations, and running a program Prg =
j1 . . . jn creates the execution (a relation ⊆ Obs ×Obs)

Prg(C) =̂ Init o
9 Opj1

o
9 . . .

o
9 COpjn

o
9 CFin 2

In the following we set Op =̂
⋃

i∈I Opi and define Op∗ to be the reflexive, transitive closure
of this relation.

Definition 3.4 (Data refinement). Let A = (AState,Obs,AInit , (AOpi)i∈I ,AFin) and
C = (CState,Obs,CInit , (COpi)i∈I ,CFin) be two data types with the same observations.
Then C is a data refinement of A, normally denoted A ⊑ C , if for all programs Prg ,
Prg(C) ⊆ Prg(A) holds. 2

The definition assumes that initialization, operations and finalization are all relations (and
o
9 is relational composition), the operations relate two states of the data types, and finaliza-
tions relate states of data types with some observation set used for comparison. For a more
detailed account of data refinement see [Derrick and Boiten 2001].

In our setting, however, things are a bit different. For one thing, we have one abstract
operation implemented by a whole number of concrete operations: e.g., an atomic enqueue
is split into several smaller operations in the concrete implementation, and the function abs
gives us the correspondence. We thus have a 1-to-n relationship here between abstract and
concrete operations.
Conversely, we might also have the case that one concrete step in the implementation

linearizes several operations (an n-to-1 relationship), as we shall see below for instance the
Herlihy-Wing queue.

As a consequence, we cannot have the same program (Prg in the definition above) execute
on concrete and abstract data type, but need a very relaxed form of refinement in which
the effect of a concrete program in C can be achieved by some arbitrary program in A. Note
that this is different from weak data refinement as given by [Derrick et al. 1997].

3Observations are often called global states. To avoid confusion with global and local states of threads we
use the term observation here.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 Gerhard Schellhorn et al.

FS

C
Init C

F
in

A
In
it

A
F
in

COpp,jCOpq,i

AOp∗ AOp∗

Fig. 1: Forward simulation conditions

Definition 3.5 (Weak data refinement). Let A = (AState,Obs,AInit , (AOpp,i)p∈P,i∈I ,
AFin) and C = (CState,Obs,CInit , (COpp,j)p∈P,j∈J ,CFin) be two data types, each with
an explicit finalization.
C is a weak data refinement of A if (a) the empty concrete program refines the empty

abstract program, and (b) for all programs Prg , Prg(C) ⊆ AInit o
9 AOp∗ o

9 AFin. 2

It is well known that a refinement relationship can be verified by simulations. Instead of
needing to compare all behaviors, the beauty of the simulation conditions is that they
allow for a step-by-step comparison treating initialization, the operations and finalization
separately. Simulations come in two flavors, forward and backward simulation. Together,
these are sound and jointly complete as a methodology for verifying refinements [de Roever
and Engelhardt 1998; Derrick and Boiten 2001]. In most standard applications of refinement,
observation is the input/output of the data type [Woodcock and Davies 1996], however, in
the context of verifying linearizability, our notion of observable behavior is the histories. In
the next sections we will show that the concrete data type is a weak data refinement of the
abstract data type using a finalization operation extracting histories. Here, we first of all
define a notion of forward and backward simulation appropriate for weak data refinement.

Figure 1 shows the proof obligations for a forward simulation. As with all simulations,
we need to find an abstraction (or retrieve) relation FS relating states of the concrete
and the abstract data type, and show that initialization, finalization and operations of the
concrete data type can be forward simulated by the abstract data type (in the sense that
the diagrams commute).

Definition 3.6 (Forward simulation). Let A = (AState,Obs,AInit , (AOpp,i)p∈P,i∈I ,

AFin) and C = (CState, Obs, CInit , (COpp,j)p∈P,j∈J , CFin) be two data types with
finalization. A relation FS : AState ↔ CState is a forward simulation from A to C if the
following three conditions hold:

— Initialization: CInit ⊆ AInit o
9 FS ,

— Finalization: FS o
9 CFin ⊆ AFin,

—Correctness: ∀ p ∈ P , j ∈ J • FS o
9 COpp,j ⊆ AOp∗ o

9 FS . 2

In the correctness condition we see that now one operation of the concrete data type can
be matched by a (possibly empty) sequence of arbitrary abstract operations. We will use
the term ”match” in the following to mean the (sequence of) abstract operations for some
concrete operation during simulation, both for forward and backward. We sometimes also
say that a concrete operation ismapped to some abstract operation, or a sequence of abstract
operations.
In Figure 2 we show the diagram for backward simulations, in which simulation by the

abstract data type is carried out in a backward fashion (in the sense that the diagrams
commute).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Sound and Complete Proof Technique for Linearizability A:13

C
Init C

F
in

A
In
it

A
F
in

COpp,jCOpq,i

AOp∗ AOp∗

BS

Fig. 2: Backward simulation conditions

Definition 3.7 (Backward simulation). Let A = (AState,Obs,AInit , (AOpp,i)p∈P,i∈I ,

AFin) and C = (CState,Obs,CInit , (COpp,j)p∈P,j∈J ,CFin,GState) be two data types
with the same observations. A relation BS : AState ↔ CState is a backward simulation
from C to A if the following three conditions hold:

— Initialization: CInit o
9 BS ⊆ AInit ,

— Finalization: CFin ⊆ BS o
9 AFin,

—Correctness: ∀ p ∈ P , j ∈ J • COpp,j o
9 BS ⊆ BS o

9 AOp∗. 2

These two definitions give us a very general form of simulations which is needed for weak
data refinement.

4. A SOUND AND COMPLETE PROOF TECHNIQUE

The starting point for our linearizability proofs is the following. Let ADT =
(AState,AInit , (AOpp,i)p∈P,i∈I) and CDT = (CState,CInit , (COpp,j)p∈P,j∈J) be two data
types, where sets I and J are used to index the abstract and concrete operations, and P is
a set of process identifiers. The function abs : J → I defines the correspondence between
abstract and concrete operations, and is assumed to be total and surjective, and an n-to-1
mapping between concrete and abstract operations. Abstract operations AOpp,i have input
and output denoted in? : INi and out ! : OUTi , concrete operations COpp,j either have
an input in? : INabs(j) (invoking operations), or an output out? : OUTabs(j) (returning
operations) or no input and output at all.

Our objective now is to show that we can always prove linearizability via a backward
simulation, i.e., CDT is linearizable with respect to ADT if and only if there is a backward
simulation between two specifically constructed data types, called HBDT and HCDT . These
data types first of all serve as a theoretical vehicle for proving the completeness result;
however, they can also be used in linearizability proofs for case studies as we will see for
the Herlihy-Wing queue.

In the following we will construct in total three data types from ADT and CDT , called
HADT , HBDT and HCDT . HADT and HBDT are constructed out of ADT and HCDT
out of CDT . We will speak of the data types ADT and HADT as residing on level A,
HBDT to constitute level B , and finally CDT and HCDT to lay on level C . This idea of
levels originates from the usual way of drawing refinement relationships, where the abstract
specification is drawn on top of the concrete specification. In our case, level B constitutes
some intermediate level.

Each of the new data types will, in addition to the state we had so far, have histories –
which the definition of linearizability is based on – in their state. Adding the history as an
auxiliary variable does not change the runs of the data types. It enables to add a finalization
schema that compares the collected histories, implying that HADT , HBDT and HCDT are
instances of data types as defined in Def. 3.3.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Gerhard Schellhorn et al.

ADT HADT

HCDT

⇔

+ conc. histories
CDT

refinement

+ seq. histories

Fig. 3: Previous approach

HBDT
+ conc. histories

+ linearisation points
ADT

⇔ backward simulation

CDT
+ conc. histories

HCDT

+ seq. histories
HADT

(uniform) forward simulation

Fig. 4: New approach

4.1. Constructing our data types

Figure 3 shows our approach as detailed in previous papers. From a given ADT and CDT
we first of all constructed data types HADT and HCDT which enhanced them with histories
and a generalized finalization operation returning histories. For these, we showed that CDT
is linearizable to ADT if and only if a refinement from HADT to HCDT exists. This is the
main result we proved in [Derrick et al. 2011a]. Proving refinement usually involved forward
and backward simulations.
Here, we are now interested in proving completeness of backward simulation alone for

linearizability. To this end, we define the new intermediate specification HBDT (we can
think of these as forming three levels, and thus HBDT sits in between level ADT and
CDT , see Figure 4), which adds concurrency and a notion of linearization point to ADT .
It, however, does not yet resemble the concurrent implementation. Just like HADT , HBDT
is constructed from the abstract data type ADT only. Level B splits the operations of ADT
into invocations, returns and an explicit linearization operations, i.e., operations where the
effect on the data structure happens. The main result of this paper is now that CDT is
linearizable to ADT if and only if there is a backward simulation between HBDT and
HCDT . For the proof of this fact we need a further property of these three levels, namely
that there always is a forward simulation between HADT and HBDT , i.e., even if CDT is
not linearizable. The existence of this forward simulation justifies that we can safely work
with HBDT in our completeness theorem.
The result implies that all linearizability proofs can in principle be done with backward

simulation. However, it does not directly provide us with a technique for constructing these
backward simulations for concrete examples. We next explain all levels and the forward and
backward simulations in detail.

Abstract level. For our first level A we extend ADT with histories and final-
ization giving us a new data type HADT = (HAState,History , History × HAInit ,
(HAOpp,i)p∈P,i∈I ,HAFin). Basically, we extend the local state of ADT with a new variable
storing the current history of a run. States are thus of type (as, hs) where as is a state of
ADT and hs a sequential history.

HAState =̂ AState ∧ [hs : seqEvent]
Obs =̂ History
HAInit =̂ AInit ∧ [hs ′ : seqEvent | hs ′ = 〈 〉]
HAOpp,i =̂ ∃ in? : INi , out? : OUTi •

AOpp,i ∧ [hs, hs ′ : seqEvent | hs ′ = hs a 〈inv(p, i , in?), ret(p, i , out !)〉]
HAFin =̂ HAState ∧ [H : seqEvent | linearizable(H , hs)]

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Sound and Complete Proof Technique for Linearizability A:15

As in all following definitions, initialization ignores the input history: it is defined to relate
any history to the initial states specified by HAInit ⊆ History ×Astate. Operations imme-
diately add invocations and returns to the history, thus level A is sequential. Furthermore
note that the finalization does not return the sequential history itself but nondeterminis-
tically returns a concurrent history which is linearizable into the sequential history. Thus
the finalization here is consistent with the finalization of a concrete data type returning a
concurrent history iff the concurrent history is linearizable wrt. the sequential history.
For future reference in simulations we define a predicate linval(hs, as), that characterizes

possible final values as after running the operations of a sequential history hs by

linval(hs, as) =̂ (hs, as) ∈ HAOp∗(| HAInit |)

The definition makes use of the Z operator R(| S |) returning the relational image of set
S under relation R.

Intermediate level. In the intermediate level B we use a variable R which takes sets of
return events. The state of data type HBDT is defined to be of type (as, h,R), where as is a
state of ADT , h a history and R a set of returns. This set R resembles the return events used
in the linearizability definition to extend the current history (∃ h0 : seqRet ! • . . .). These
are the returns which have not happened so far but for which the effect of the operation has
already taken place. Since we have an explicit formalization of linearization point in HBDT
(see next), it is easy to determine when such a return event has to be in the set R.
In addition, we divide the abstract operations into invocation, return and linearization

operations. Invocation of an operation from a process p can only occur if there is no pend-
ing invocation of the same process in the history, returns can only occur when there is a
pending invocation. The linearization operation, called Lin, is used to make the notion of
“an operation taking effect” explicit. Thus the new operation Lin adds an appropriate re-
turn event to R. So, invocations and returns just extend the histories, whereas linearization
changes both the local state AState of the data structure and adds an event to R.

This gives data type HBDT = (HBState,History ,History × HBInit , (Linp,i)p∈P,i∈I ∪
(Invp,i)p∈P,i∈I ∪ (Retp,i)p∈P,i∈I ,HBFin) defined by

HBState =̂ AState ∧ [h : seqEvent ,R : PRet]

Obs =̂ History

HBInit =̂ AInit ∧ [h = 〈 〉 ∧ R = ∅]

Invp,i =̂ [(¬ ∃ i ′, in ′ • inv(p, i ′, in ′) ∈ pi(h)) ∧
∃ in? : INi • as ′ = as ∧ R′ = R ∧ h ′ = h a 〈inv(p, i , in?)〉]

Linp,i =̂ [∃ in, out • inv(p, i , in) ∈ pi(h) ∧ (¬ ∃ out2 • ret(p, i , out2) ∈ R) ∧
AOpp,i(in, as, as

′
, out) ∧ h ′ = h ∧ R′ = R ∪ {ret(p, i , out)}]

Retp,i =̂ [∃ out ! : Outi • ret(p, i , out !) ∈ R ∧ h ′ = h a 〈ret(p, i , out !)〉 ∧
R′ = R \ {ret(p, i , out !)} ∧ as ′ = as]

HBFin =̂ HBState ∧ [H : seqEvent | H = h]

Again the initialization relation ignores the initial history. We define HBOp to be the union
relation

⋃
p∈P,i∈I (Linp,i ∪Retp,i ∪Invp,i) of all operations of HBDT , Lin =̂

⋃
p∈P,i∈I Linp,i

is all linearization operations, and similarly for Ret and Inv .
Note that level B is concurrent, i.e., produces concurrent histories. Note also that level

B is only derived from level A, and uses the same index set I for operations.

Example: As an example we give a run of HBDT which resembles the concrete run given
in Section 2. Note that there is more than one such run. Recall that the state is 〈as, h,R〉
and as is the queue.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Gerhard Schellhorn et al.

〈〈 〉, 〈 〉,∅〉

−
Inv3,enq(a)−−−−−−→ 〈〈 〉, 〈inv(3, enq , a)〉,∅〉

−
Inv1,enq(b)−−−−−−→ 〈〈 〉, 〈inv(3, enq , a), inv(1, enq , b)〉,∅〉

−
Inv2,deq()−−−−−→ 〈〈 〉, 〈inv(3, enq , a), inv(1, enq , b), inv(2, deq ,)〉,∅〉

−
Inv4,enq(c)−−−−−−→ 〈〈 〉, 〈inv(3, enq , a), inv(1, enq , b), inv(2, deq ,), inv(4, enq , c)〉,∅〉

−
Lin4,enq−−−−→ 〈〈c〉, 〈inv(3, enq , a), inv(1, enq , b), inv(2, deq ,), inv(4, enq , c)〉, {ret(4, enq ,)}〉

−
Lin2,deq−−−−→ 〈〈 〉, 〈. . .〉, {ret(4, enq ,), ret(2, deq , c)}〉

−
Ret4,enq()−−−−−→ 〈〈 〉, 〈. . . , ret(4, enq ,)〉, {ret(2, deq , c)}〉

−
Lin3,enq−−−−→ 〈〈a〉, 〈. . . , ret(4, enq ,)〉, {ret(2, deq , c), ret(3, enq ,)}〉

−
Ret2,deq(c)−−−−−−→ 〈〈a〉, 〈. . . , ret(4, enq ,), ret(2, deq , c)〉, {ret(3, enq ,)}〉

−
Ret3,enq()−−−−−→ 〈〈a〉, 〈. . . , ret(4, enq ,), ret(2, deq , c), ret(3, enq ,)〉,∅〉

−
Lin1,enq−−−−→ 〈〈a, b〉, 〈. . . , ret(4, enq ,), ret(2, deq , c), ret(3, enq ,)〉, {ret(1, enq ,)}〉

−
Ret1,enq()−−−−−→ 〈〈a, b〉, 〈. . . , ret(4, enq ,), ret(2, deq , c), ret(3, enq ,), ret(1, enq ,)〉,∅〉

2

Concrete level. In a third step we now construct level HCDT consisting of the con-
crete operations in the concurrent implementation extended with histories. This is sim-
ilar to the extension HADT which we have already defined for ADT . One difference
here is that the finalization returns the history itself. In order to determine when to
extend histories by inv ’s or ret ’s we classify all operations of the concrete data type
into invocation, return or other operations. Therefore our final data type is defined as
HCDT = (HCState,History ,History × HCInit , (HCOpp,j)p∈P,j∈J ,HCFin) where

HCState =̂ CState ∧ [h : seqEvent]
Obs =̂ History
HCInit =̂ CInit ∧ [h ′ : seqEvent | h ′ = 〈 〉]
HCFin =̂ HCState ∧ [H : seqEvent | H = h]

and the operations are defined by

HCOpp,j =̂



∃ in? : INabs(j) • COpp,j ∧ [h, h ′ : seqEvent | h ′ = h a 〈inv(p, abs(j), in?)〉]
iff j is an invoke operation

∃ out ! : OUTabs(j) • COpp,j ∧ [h, h ′ : seqEvent | h ′ = h a 〈ret(p, abs(j), out !)〉]
iff j is a return operation

COpp,j ∧ [h, h ′ : seqEvent | h ′ = h]
otherwise

All operations of the embedded type now work on the concrete state plus the history.
Embedding an operation COpp,j that invokes an algorithm and has input in? gives an
operation HCOpp,j that adds a corresponding invoke event to the history, and similarly for
returning operations. All others leave the history unchanged. Again, as expected, level C is
concurrent.

Example: For the Herlihy-Wing queue we have invocation operations enq0p and deq0p and
return operations enq3p and deq6p for all p ∈ P . This gives the following examples of
enhanced concrete operations:

HCEnq0p =̂ ∃ lv? • enq0p ∧ [h, h ′ : seqEvent | h ′ = h a 〈inv(p, enq , lv?)〉]

HCEnq1p =̂ enq1p ∧ [h, h ′ : seqEvent | h ′ = h〉]

HCDeq6p =̂ ∃ el ! • deq6p ∧ [h, h ′ : seqEvent | h ′ = h a 〈ret(p, enq , el !)〉]

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Sound and Complete Proof Technique for Linearizability A:17

2

4.2. Soundness and Completeness Results

These definitions help us to establish the main result of the paper, namely that backward
simulations are sound and complete for showing linearizability. So, for the constructed data
types of levels A, B and C we will now show that

(1) there always exists a forward simulation from HADT to HBDT (by showing that Invp,i
and Retp,i in HBDT are matched by empty steps of HADT and Linp,i in HBDT by
HAOpp,i in HADT), and – the main result – that

(2) a backward simulation from HCDT to HBDT exists if and only if CDT is linearizable
with respect to ADT .

Central to both proofs will be the notion of possibilities. Possibilities have already been
introduced in [Herlihy and Wing 1990] as an alternative way of defining linearizability.
A possibility is a triple consisting of a history h, a set of return events R and a state as.
Intuitively, Poss(as, h,R) means that it is possible to reach abstract state as when executing
the history h assuming that all returns in R have taken place, i.e., these operations have
already taken effect and have changed the state. In [Derrick et al. 2011a] there is a rule-
based definition of possibilities, which exactly matches the way we construct the state of
level B . Thus we directly use it here.

Definition 4.1. A possibility is a reachable state of the B -level. Thus we define
Poss(as, h,R) by the following (remember from above HBOp is the union of all operations
in B) :

Poss(as, h,R) =̂ (as, h,R) ∈ HBOp∗(| HBInit |) 2

Note that the histories occurring in possibilities are concurrent. We get the following prop-
erty of possibilities.

Proposition 4.2. Possibilities are prefix-closed: If Poss(as, h0 a h,R) for some his-
tories h0, h, set of returns R and abstract state as, then there are as0 and R0, such that

Poss(as0, h0,R0) and HBOp∗((as0, h0,R0), (as, h0 a h,R)).

Proof: Simple induction over the number of operation applications necessary to reach the

final state (as, h0 a h,R), since every operation adds at most one event and we start with
the empty history. Remark: This lemma is already known from [Herlihy and Wing 1990],
p. 487. 2

Possibilities and linearizability are equivalent in the following sense: Whenever we have a
possibility (as, h,R), then we can arrange the return events in R into some arbitrary order,
append them to h and by this get a linearizable history. Conversely, if a concurrent history
can be extended (with those returns for which the effect of the operation has already taken
place) and is then linearizable, we also have a possibility for this history.
To formally state this close connection, we need a definition to relate return event sets

and histories. We let setof (h) stand for the set of events occurring in h. We then define
R = setof (h) to be true iff h is a (duplicate free) sequence that contains the same set of
events as R. The following theorem just formalizes one direction, namely that linearizability

implies possibilities. (Recall that complete(ha h0, hs) removes all pending invocations from

(h a h0, hs), and lin is the linearizable predicate.)

Theorem 4.3. Let h be a history and as an abstract state. Then the following holds.

∃ h0, hs • lin(complete(h a h0), hs) ∧ linval(hs, as) ∧ h0 ⊆ seqRet !
⇒ Poss(as, h, setof (h0))

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Gerhard Schellhorn et al.

This theorem is very similar to Theorem 10 of [Herlihy and Wing 1990]; we have given a
proof in [Derrick et al. 2011a]. 2

With these definitions and results at hand, we can formulate and prove our first result about
the existence of a forward simulation between levels A and B .

Theorem 4.4. Let HADT and HBDT be the data types of levels A and B as defined
in Section 4.1. Then there exists a forward simulation from HADT to HBDT.

Proof: We construct a forward simulation relation FS from HADT to HBDT . Note that
states of HADT are of the form (as, hs) and those of HBDT of type (bs, h,R). We first
define the forward simulation relation we will use as the following:

FS = {((as, hs), (bs, h,R)) | as = bs ∧ Poss(bs, h,R) ∧ linval(hs, as) ∧

∀ h0 • R = setof (h0) ⇒ lin(complete(h a h0, hs)}

remembering that the predicate linval(hs, as) characterizes possible final values as after
running the operations of a sequential history hs.
We need to show that this is indeed a forward simulation.

Initialization. Straightforward as HBInit(bs, h,R) implies AInit(bs) and the definition
of HBDT immediately gives us Poss(bs, h,R). The rest then follows by the fact that
lin(〈 〉, 〈 〉) holds.
Finalization. Straightforward: by definition of FS we know that for all
((as, hs), (bs, h,R)) ∈ FS the history h is linearizable into hs.
Correctness. Let ((as, hs), (bs, h,R)) ∈ FS . We split the correctness proof into three
cases covering invoke, return and linearization operations.
(1) Assume the concrete operation in level B to be executed is an invoke. Hence

(bs, h,R) −
Invp,i−−−→ (bs, h a 〈inv(p, i , in?)〉,R) for some input in?. For the level A

we choose an empty (skip) step. Thus we need to show that ((as, hs), (bs, h a

〈inv(p, i , in?)〉,R)) ∈ FS :
— (i) as = bs still holds,

— (ii) Poss(bs, h a 〈inv(p, i , in?)〉,R) holds by definition of Poss,

— (iii) ∀ h0 • R = setof (h0 ⇒ lin(complete(ha 〈inv(p, i , in?)〉ah0, hs)) holds since
complete is removing the (new) pending invoke,

— (iv) linval(hs, as) is still true.
(2) Assume the concrete operation in level B to be executed is a return. Hence

(bs, h,R) −
Retp,i−−−→ (bs ′, h ′,R′) where (bs ′, h ′,R′) is (bs, h a 〈ret(p, i , out !)〉,R \

{ret(p, i , out !)}) for some output out !. For the level A we again choose an empty

(skip) step. Thus we need to show that ((as, hs), (bs, h a 〈ret(p, i , out !)〉,R \
{ret(p, i , out !)})) ∈ FS :
— (i) as = bs still holds,

— (ii) Poss(bs, h a 〈ret(p, i , out !)〉,R \ {ret(p, i , out !)}) by definition of Poss,

— (iii) We need to show ∀ h ′
0 • R′ = setof (h ′

0) ⇒ lin(complete(h ′ah ′
0, hs)). We take

an arbitrary h ′
0. From this we construct a sequence h0 =̂ 〈ret(p, i , out !)〉 a h ′

0.

For this we have R = setof (h0), hence lin(complete(h a h0, hs)). The fact that

h a h0 = h ′ a h ′
0 gives us the desired result.

— (iv) linval(hs, as) is still true.
(3) Assume the concrete operation in level B to be executed is a lineariza-

tion step. Hence (bs, h,R) −
Linp,i−−−→ (bs ′, h ′,R′) where for bs ′ we know that

AOpp,i(in?, bs, bs
′, out !) and inv(p, i , in?) ∈ pi(h), h ′ = h and R′ = R ∪

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Sound and Complete Proof Technique for Linearizability A:19

{ret(p, i , out !)}. Now we choose AOpp,i as corresponding abstract step and this

brings the abstract state to as ′ =̂ bs ′ and hs ′ =̂ hs a 〈inv(p, i , in?), ret(p, i , out !)〉.
Again we get as ′ = bs ′,Poss(bs ′, h ′,R′) and linval(hs ′, as ′) by definition. The in-
teresting part is again the requirement about lin.

Since we have taken a Lin-step, inv(p, i , in) ∈ pi(h) must hold, so h = h1
a

〈inv(p, i , in)〉 a h2 for some h1 and h2. Also AOpi(in, as, as
′, out) and R′ = R ∪

ret(p, i , out) must be true to have Poss(as ′, h ′,R′).

We set hs ′ =̂ hs a 〈inv(p, i , in), ret(p, i , out)〉, and have to prove lin(complete(h ′ a

h ′
0, hs

′)) for every h ′
0 that satisfies R′ = setof (h ′

0). The latter implies h ′
0 = h ′

1
a

〈ret(p, i , out)〉 a h ′
2, since ret(p, i , out) ∈ h ′

0, and we can choose h0 =̂ h ′
1
a h ′

2 in

the induction hypothesis. Since h0 satisfies R = setof (h0), we get lin(complete(h a

h0), hs) and linval(hs, as).

Now, complete(hah0) = complete(h1ah2
ah ′

1
ah ′

2) since inv(p, i , in) is a pending

invoke in hah0, that is dropped by the complete-function. The induction hypothesis

therefore gives an order-preserving bijection between complete(h1 a h2
a h ′

1
a h ′

2)
and hs. This bijection can be extended to one between

complete(h ′ a h ′
0) = complete(h1 a 〈inv(p, i , in)〉a h2

a h ′
1
a 〈ret(p, i , out)〉a h ′

2)
and hs ′ as required to prove lin. This is done by adding a mapping between the
two additional events inv(p, i , in) and ret(p, i , out) (the technical details are quite
complex, since positions must be mapped, which change by one for events between
the invoke and the return, and by two for events in h ′

2). The new mapping is order

preserving, since no operation is started in h ′ a h ′
0 after the return ret(p, i , out).

2

As a corollary we now get the other connection between possibilities and linearizability (a
strengthened version of Theorem 9 in [Herlihy and Wing 1990]):

Corollary 4.5. Let h be a history, R a set of return events and as an abstract state.
Then

Poss(as, h,R) ⇒

∃ hs • ∀ h0 • R = setof (h0) ⇒ lin(complete(h a h0), hs) ∧ linval(hs, as)

Proof: Assuming Poss(as, h,R), the forward simulation asserts the existence of (hs, as ′)
with FS ((hs, as ′), (h, as,R)). Expanding the definition of FS gives the desired conclusion.
2

Our second result is the one that links the intermediate to the concrete level. Here, we can
show that linearizability is equivalent to the existence of a backward simulation. This is our
soundness and completeness result for linearizability.

Theorem 4.6. Let HBDT and HCDT be the data types of levels B and C as defined
above, and let ADT and CDT be the original data types we started with. Then CDT is
linearizable with respect to ADT if and only if there is a backward simulation between
HCDT and HBDT.

Proof: We have to prove two parts: (a) Soundness: the existence of an arbitrary BS being
a backward simulation between HBDT and HCDT implies that CDT linearizable wrt.
ADT , and (b) Completeness: CDT linearizable wrt. ADT implies that there is a backward
simulation BS (which we will give).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 Gerhard Schellhorn et al.

(cs ′, h ′
C)

BS

(cs, hC)

(as ′, h ′
B ,R

′)

BS

HCOpp,j

HBOp∗

∃(as, hB ,R)

Fig. 5: Correctness rule for backward simulation

Part (a): Assume there is a backward simulation BS between HCDT and HBDT ,
and assume an arbitrary run of HCDT is given, that starts with (cs0, h0) such
that cs0 is initial and h0 = 〈〉, goes through (csi , hi) for 0 ≤ i ≤ n and
ends in (csn , hn). We have to prove that hn is a linearizable history. The finaliza-
tion condition ensures that there is a state (asnhn ,Rn) of HBDT with the same
hn . Now the correctness condition of backward simulation (see Fig. 5) guarantees
that (asn−1, hn−1,Rn−1) can be found with BS ((csn−1, hn−1), (asn−1, hn−1,Rn−1)) and
HBOp∗((asn−1, hn−1,Rn−1), (asn , hn ,Rn)). Iterating the construction (see Fig. 6) gives
states (asi , hi ,Ri), all linked via BS (and therefore all having the correct hi because
of finalization) such that HBOp∗((asi , hi ,Ri), (asi+1, hi+1,Ri+1). Altogether we have
HBOp∗((as0, h0,R0), (asn , hn ,Rn). Since HCInit(cs0, h0) holds, the initialization condition
implies HBInit(as0, h0,R0). Together this implies that (asn , hn ,Rn) is a reachable state of
HBDT , i.e., Poss(asn , hn ,Rn). Finally, Corollary 4.5 gives the desired linearizability of hn .

Part (b): assume CDT is linearizable wrt. ADT . We prove that BS defined by

BS = {((cs, hC), (as, hB ,R)) | Poss(as, hB ,R) ∧ hB = hC ∧ (hB = 〈 〉 ⇒ AInit(as))}

is always a backward simulation.

Initialization. if HCInit(cs, hC) and BS ((cs, hC), (as, hB ,R)) then we know that
hB = hC and thus empty, and furthermore AInit(as) and R = ∅ which implies
HBInit(as, hB ,R).

Correctness. requires that given a concrete transition (cs, hC) −
HCOpp,i−−−−−→ (cs ′, h ′

C)
and an abstract state (as ′, h ′

B ,R
′) we need to find a state (as, hB ,R) such that

((cs, hC), (as, hB ,R)) ∈ BS and (as, hB ,R) −
HBOp∗

−−−−→ (as ′, h ′
B ,R

′) (see Figure 5). Es-
sentially this follows from Proposition 4.2: We know that hC is a prefix of h ′

C (histories
are only extended by operations), thus by prefix-closedness of possibilities there must
be some possibility Poss(as, hC ,R) such that HBOp∗((as, hC ,R), (as ′, h ′

C ,R′)). If hC
is moreover empty, as has to be an initial state since possibilities with empty histories
always contain an initial state. Thus we get BS ((cs, hC), (as, hC ,R)).

Finalization. If HCFin((cs, hC), hC) then by linearizability of CDT wrt. ADT we get

the following: ∃ hS such that ∃ h0 ∈ seqRet ! • lin(complete(hC a h0), hS) ∧ ∃ as •
linval(hS , as). By Theorem 4.3 we get Poss(as, hC , setof (h0)). Hence this has to be a
state of HBDT . Furthermore, if hC (and thus hB) is empty, we have AInit(as) as the
initial state is the only one which belongs to a possibility with an empty history, and
thus BS ((cs, hC), (bs, hC , setof (h0)). 2

A comparison of Theorem 4.6 to general completeness results, which imply that backward
simulations and history variables are jointly complete for data refinement is given in Section

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Sound and Complete Proof Technique for Linearizability A:21

(csn , hn)

BS

(asn , hn ,Rn)

BS

HCOpp,jn

HBOp∗

(cs0, h0)

(as0, h0,R0)
HBOp∗

HCOpp,j1

BS

...

...

(asn−1, hn−1,Rn−1)

(csn−1, hn−1)

Fig. 6: Composing commuting bw. sim. diagrams

8 on related work. In summary, Theorem 4.6 shows, that for linearizability, the only history
variable ever needed is the history needed to define linearizability (i.e., possibilities) itself.

The backward simulation BS of the completeness proof is in some sense a maximal back-
ward simulation, since every other backward simulation B will satisfy

B((cs, hB), (as, hC ,R)) → BS ((cs, hB), (as, hC ,R))

for all reachable states (cs, h) as the soundness proof shows. BS is also completely inde-
pendent of the concrete state cs. In applications we will of course make use of cs to define
smaller simulations: relating fewer states (but not too few!) makes the proof of the main
correctness condition for backward simulation easier, since fewer commuting diagrams have
to be completed in the correctness condition.
Since any backward simulation must always keep the concrete and the abstract history

identical, the “matching” sequence HBOp∗ used in the commuting diagrams of Fig. 5 can
be specialized. For an invoking operation the sequence must have the form Lin∗ o

9 Inv o
9Lin

∗,
(recall, that Lin is the union of all linearization operations Linp,i ; similarly for Inv and
Ret), since only sequences of that type will update the history by adding one invoke event.

For a returning operation the matching sequence HBOp∗ must be Lin∗ o
9 Ret o

9 Lin
∗. All

other operations can only correspond to a sequence Lin∗ of linearization points.
In the case study we will map only internal operations (i.e., ones that do not change

the history) to Lin-steps. This seems to be possible in general, when invoke and return
operations only copy input/output to/from local buffers, and when all algorithms have
at least one step between invoke and return. For the maximal backward simulation it is
possible to show that it executes all linearization points as early as possible, i.e., directly
with invoking operations. This can be shown based on the following observation.

Proposition 4.7. For processes p, q ∈ P, p 6= q, and arbitrary operation indices i , j ,
the operations of HBDT satisfy

Linp,i o
9 Invq,j = Invq,j o

9 Linp,i and Linp,i o
9 Retq,j = Retq,j o

9 Linp,i

Linearization steps commute with both invoke and return steps of other processes.

Therefore we can strengthen the completeness part of theorem 4.6 above to:

Theorem 4.8. If CDT is linearizable with respect to ADT, then it is possible to find
a backward simulation between HBDT and HCDT such that in the correctness condition

HCOpp,j o
9 BS ⊆ BS o

9 HBOp∗

the abstract operation sequence HBOp∗ can be strengthened to:

—Retp,i , when the concrete operation is a return operation and abs(j) = i
— Invp,i o

9 (skip ∪ (Linp,i o
9 Lin

∗)) for invoke operations
— skip for other operations

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 Gerhard Schellhorn et al.

Proof:
The backward simulation is the same as in the completeness proof above.

— Internal steps were already matched to skip in the original proof.
— For return steps, the possibility (as, h,R) that was found in the proof above is connected

to (as ′, h ′,R′) via a sequence Lin∗ o
9 Retp,i o

9 Lin
∗, where p is the process executing the

concrete return for operation i . The second sequence cannot contain any linearization

steps for p, since process p is not running an operation (h ′ = h a 〈ret(p, i , out)〉, so
p has no pending invoke). Therefore all these steps can be commuted with the return
step, giving (Lin∗ o

9Retp,i)((as, h,R), (as ′, h ′,R′)). The backward simulation can therefore
choose the state (as0, h0,R0) right before Retp,i , and match the concrete return step to
a return step only.

—The sequence of abstract operations matching a concrete step is Lin∗ o
9 Invp,i o

9 Lin
∗. A

similar argument to the above would move all Lin-steps after the invoke, which does
not help. Moving all Lin-steps before the invoke is possible only, if the sequence does
not contain a linearization step for p itself. If it does, the best we can do is to leave a
sequence Linp,i o

9 Lin
∗ after the invoke, and just as for the return, choose the possibility

right before Invp,i . 2

The maximal simulation that is used by Theorems 4.6 therefore has (by virtue of matching
particular concrete to abstract operations) linearization points as early as possible, where
they are matched directly with invoking steps on the concrete level.
The simulation we construct for our case study will however, delay possible linearization

points as far as possible to the end of running an operation. This has the advantage of
making the backward simulation smaller (than the most general one used in the proof) and
therefore makes the correctness conditions easier to verify.

In summary the theorems of this section give us a sound and complete proof technique
for showing linearizability. The key part of a linearizability proof thus lies in finding an
appropriate backward simulation (and showing it to actually be one). Next, we will see
how this works for the Herlihy-Wing queue, and along this example we give some general
guidelines for finding backward simulations.

5. VERIFICATION OF THE CASE STUDY

The theory given in the last section ensures that any linearizable algorithm can be verified
using a backward simulation BS between HBDT and HCDT . In addition, if we can find
a backward simulation between the data types, we know linearizability holds. However,
the actual backward simulation BS used in the completeness result is, as we commented,
maximal in some sense. Thus it is not always practical to use this backward simulation for
a specific verification. In this section we show how to use the insights gained from what the
backward simulation must be to derive a smaller relation between concrete states (cs, h)
and abstract states (as,H ,R) that can verify the Herlihy-Wing queue linearizable.
As the abstract state in our case study consists of the queue variable q only, we also write

(q ,H ,R) for the state of HBDT . As a first observation, the finalization condition requires
h = H and thus we can always split BS into the part relating state spaces and that of
relating histories.

BS ((cs, h), (q ,H ,R)) =̂ B(cs, q ,R) ∧ h = H

The key insight we now need for this case study is that for finding the backward simulation
one has to analyze the observations made by future behaviors. We believe this to be a
strategy which is useful for other examples as well.

To explain this idea, assume we want to define the set of states (as, h,R) related via BS
to some state (cs, h). The smaller we make this set, the fewer states we have to consider

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Sound and Complete Proof Technique for Linearizability A:23

in the proof of the correctness condition (every (as, h,R) will have to be considered as an
instance of (as ′, h ′

B ,R
′) in Figure 5). Now the future runs from (cs, h) will give us some

information, which states we cannot avoid to include. To understand this consider a run
from (cs0, h0) := (cs, h) to some state (csn , hn). Assume we know already that BS must map
(csn , hn) to (asn , hn ,Rn). Candidates for (csn , hn) are quiescent states, where no process is
running. For these it is clear that set R must be empty, and the correct abstract state is
usually obvious. E.g., when csn has no running processes and an empty array, it is obvious
that the corresponding abstract state related must have an empty queue and an empty set
R.
Then it is necessary to define at least one witness (as, h,R) related via BS to the

current state (cs, h), that shows that the state (asn , hn ,Rn) is possible, i.e. for which
HBOp∗((as0, h0,R0), (asn , hn ,Rn)) holds. Otherwise the diagram shown in Figure 6 will
not commute.

To demonstrate the idea for our example consider the state cs (which corresponds to
the example run explained in Section 2 up to step 7) shown at the top of Figure 7. The
state shows a situation where the array contains two elements, AR(0) = a and AR(2) = c.
Furthermore process 1 is running an enqueue operation that tries to enqueue the element
b at position 1, which has reached pcf (1) = E2, but then has been preempted. We call
such an operation with pcf (1) = E2 a pending enqueue, and write PE1(b) in the figure
to indicate it. Note that the “gap” in the array is due to this enqueue: it has increased
the global back pointer before the enqueue of c, but has not executed statement E2 yet.
In addition there is a pending dequeue of process 2 (PD2) currently looking at position 1
as well. Such a dequeue operation has already initialized its lback (pc 6= D1), but has not
yet successfully retrieved an element (pc 6= D6, and if pc = D4, then still lv = null). The
history so far is

h = 〈inv(3, enq , a), inv(1, enq , b), inv(2, deq ,), inv(4, enq , c), ret(3, enq ,), ret(4, enq ,)〉

To define B we now have to find out what possible abstract queue states this concrete
state could correspond to. For this we look at observations made about this state when
proceeding with executions on it. The observation tree shows all future executions from this
state when new observers are started. An observer gives us information about the elements
in the data structure, most often by extracting data from it. For our queue, the observers
are dequeue operations. Processes currently running (like the enqueue) might or might not
be continued.

First, consider the leftmost branch. It describes the following steps: (1) the pending
enqueue of process 1 runs to completion (PEnq1), then (2) the pending dequeue runs to
completion and returns the element in position 1 which is b (PDeq2(1)), (3) a new dequeue is
started (of whatever process), runs to completion and returns the element stored in position
0 which is a (NDeq(0)), and (4) another new dequeue starts, completes and returns the
element in position 2 which is c. Hence from the point of view of these dequeues the queue
content has been 〈b, a, c〉. Note that we do not start any new enqueues, we just observe the
existing state of the queue.

The rightmost branch executes pending operations in a different order (first the dequeue
and then the enqueue) and again runs two observing dequeues. Here, we see that the queue
is 〈c, a, b〉. Different future executions thus give different orderings of queue elements. Still,
the order is not arbitrary: for instance 〈b, c, a〉 is impossible. We see that it is not only
the current state of the array which determines the queue content, but also the pending
enqueues and dequeues, and their current position into the array. Hence we cannot define
our backward simulation B as a function from concrete to abstract state since this would
contradict one or the other run. In summary, the backward simulation we look for must
relate the current state cs to any queue that is possible in a future observation.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 Gerhard Schellhorn et al.

a

c

c

a

b

c

b

ccc

a

c

b

c

a

b

a

b

PE1(b)

PE1(b)PD2

PD2

NDeq(0)

NDeq(0)

PEnq1 PDeq2(2)

NDeq(1)

PD2

PE1(b)

PD2

PDeq2(1)
NDeq(2)

PDeq2(1)

PD2

PDeq2(2)NDeq(2)

PD2

NDeq(2)

NDeq(0)

PDeq2(1)

PD2

(〈b, a, c〉, {ret(enq , 1,)})

PEnq1

NDeq(1)

PD2
PD2

PEnq1

NDeq(2)

PE1(b)

(〈a, c〉,∅)
PE1(b)

NDeq(0)

PDeq2(2)

PE1(b)

PE1(b)

(〈c, a〉,∅)

NDeq(1)

NDeq(0)

(〈c, a, b〉, {ret(enq , 1,)})(〈a, b, c〉, {ret(enq , 1,)}) (〈a, c, b〉, {ret(enq , 1,)})

Fig. 7: Observation tree for an example state cs

We still have to determine the R-components B relates concrete states to. Recall that
R collects linearization points. Again, general advice on finding a backward simulation
is to defer decisions as far as possible to the future (this observation is not specific to
linearizability or concurrency, see [Banach and Schellhorn 2010]). For our case, we delay
any linearization point that still can be executed to the future, i.e. we do not add it to
set R. This is possible for pending dequeues. These can linearize at the time they swap
the element: they have a definite linearization point in the sense that we can attach it to
line D3 when they swap a non-null element. However, enqueue operations cannot linearize
in the future, since they would put the element in the wrong place in the queue. We find
that enqueue already potentially linearizes when it executes E1, but only if the future run
considered executes the operation to the end. In other runs, linearization will happen when
the element is actually inserted at line E2.

These considerations now help us towards defining B . We write NDeq(n)(cs, cs ′) to mean
that a new (observer) dequeue is started, returns the element in array position n and brings
the concrete state from cs to cs ′:

NDeq(n)
∆CState

eb(AR, 0,n)
AR(n) 6= null
AR′(n) = null

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Sound and Complete Proof Technique for Linearizability A:25

where eb (“empty between”) is defined as

eb(AR,m,n) =̂ ∀ k • m ≤ k < n ⇒ AR(k) = null

Similarly, we write PDeqp(n)(cs, cs
′) to say the same for an already running (pending)

dequeue of process p:

PDeqp(n)
∆CState

(pcf (p) ∈ {D4,D5} ∧ kf (p) + 1 ≤ n ∧ eb(AR, kf (p) + 1,n))
∨ (pcf (p) ∈ {D2,D3} ∧ kf (p) ≤ n ∧ eb(AR, kf (p),n))
n < lbackf (p)
lvf (p) = null ∧ lvf ′(p) = AR(n)
AR(n) 6= null ∧ AR′(n) = null
pcf ′(p) = N

and finally PEnqp(cs, cs
′) for the completion of a pending enqueue:

PEnqp
∆CState

pcf (p) = E2 ∧ pcf ′(p) = N
AR′(kf (p)) = lvf (p)

The actual definition of B recursively follows the paths of the tree and has to consider four
cases:

—The array is empty. Then the queue is empty as well and the set R consists of return
events for those processes which have definitely achieved their effect (denoted outs(cs)).
In our case, these are all the enqueues after their store (at E3), and the dequeues after
the non-null swap (at D6 or at D4, when lv 6= null).

—An observing dequeue (newly started) returns the element in position n of the array. All
elements below n must be null . The corresponding abstract queue thus has AR(n) as
its first element. The rest of the queue (and of B) is defined by recursion.

—A pending dequeue finishes and returns the element in position n of the array. Thus
again one of the corresponding abstract queues has AR(n) as first element. The rest of
the queue (and B) is defined by recursion.

—A pending enqueue finishes and the corresponding return event is already in R. Then the
effect on the abstract queue has already taken place, i.e., ret(p, enq ,) ∈ R. B is defined
by recursion using the same queue q , but removing the return event from R.

Putting into one definition (and taking as abstract state as the queue state q) we get

B(cs, q ,R) := (∀ i : IN • AR(i) = null) ∧ q = 〈〉 ∧ R = outs(cs))

∨ (∃ q ′,n • q = 〈AR(n)〉a q ′ ∧ (NDeq(n) o
9 B)(cs, q ′,R))

∨ (∃ q ′, p,n • q = 〈AR(n)〉a q ′ ∧ (PDeqp(n) o
9 B)(cs, q ′,R))

∨ (∃ p • ret(enq , p,) ∈ R ∧ (PEnqp o
9 B)(cs, q ,R \ {ret(enq , p,)}))

Applying this technique to our example state cs in the root of Figure 7 gives a total of six
pairs (q ,R) with B(cs, q ,R). These are written with shaded background at those nodes of
the tree where the array is empty.
Note that the definition of B is well-founded: PEnq removes a pending enqueue process

(and adds one element to the array), PDeq and NDeq each remove an array element. The
corresponding well-founded order <B plays a central role in the correctness proofs of the
next section.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 Gerhard Schellhorn et al.

6. VERIFICATION WITH KIV

The previous section has discussed the verification of the Herlihy-Wing queue, specifically it
defined the backward simulation B we will use. In this section we discuss the mechanization
of the proof obligations with KIV. KIV [Reif et al. 1998] is an interactive verifier, based on
structured algebraic specifications using higher-order logic (simply typed lambda-calculus).
Crucial features of KIV used in the proofs here are the following.

—Proofs in KIV are explicit proof trees of sequent calculus which are graphically dis-
played and can be manipulated by pruning branches, or by replaying parts of proofs
after changes. This is of invaluable help to analyze and efficiently recover from failed
proof attempts due to incorrect theorems, which is typically the main effort when doing
a case study like the one here.

—KIV implements correctness management: lemmas can be freely used before being proved.
This allows to focus on difficult theorems first, which are subject to corrections. Changing
a lemma invalidates those proofs only that actually used it.

—KIV uses heuristics (e.g., for quantifier instantiation and induction) together with con-
ditional higher-order rewrite rules to automate proofs. The rules are compiled into func-
tional code, which runs very efficiently even for a large number of rules: the case study
here uses around 2000 rules, 1500 of these were inherited from KIV’s standard library of
data types.

KIV was used to verify the completeness result for backward simulation as well as to prove
the resulting proof obligations for the queue case study. A web presentation of all specifica-
tions and proofs can be found online [KIV 2011]. The completeness proof follows the proof
given in Section 4, in terms of mechanization the difficult part is Theorem 4.4.
The correctness of the queue implementation is proved by instantiating the backward

simulation relation B with the concrete operations of the Herlihy-Wing queue which were
sketched in Section 2. This results in proof obligations that are instances of the backward
simulation as given in Definition 3.7.
The interesting proof obligations for the case study are the correctness conditions for each

operation. These can be written as4

(HCOpp,j o
9 BS)((cs,H), (q ′,H ′,R′)) ⇒
∃ q ,R • BS ((cs,H), (q ,H ,R)) ∧ HBOp∗((q ,H ,R), (q ′,H ′,R′))

Whilst the previous section defined the simulation we will use, it did not determine the
specific operation(s) that HBOp∗ should be instantiated to. Thus the question now is which
HBOp∗ to use here. A suitable sequence of abstract operations HBOp∗ that fixes q and
R is easy to determine in most cases: for invoking and returning operations it is just the
corresponding abstract invoke and return. For all other operations, except enq1p , enq2p and
deq3tp (the case of deq3, where the swap is with a non-null element), the sequence is empty.
These correspond to cases where the observation tree for the current state cs is not changed
by the operation. For deq3tp and enq2p the sequence is the linearization step Linp,deq resp.
Linp,enq . These two operations reduce the observation tree to one of its branches. The only
difficult case is when COpp,j is enq1p which is explained below. With (q ′,R′) denoting the
result state of the chosen sequence HBOp∗, all other proof obligation simplify to

(COpp,j o
9 B)(cs, q ′,R′) ⇒ B(cs, q ,R)

The simplicity of the changes to the observation tree is then reflected by the simplicity of
the proofs: they all are by well-founded induction over <B , followed by a case split over the
definition of B . This gives a trivial base case and three recursive cases for each operation

4For easier readability, we leave out the invariants of the two data types.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Sound and Complete Proof Technique for Linearizability A:27

a

PE2(b)

possible pairs (q ,R):
〈a〉,∅
〈a, b〉, {ret(2, enq .)} a

PE2(b)
PE1(c)

possible pairs (q ′,R′):
〈a〉,∅
〈a, b〉, {ret(2, enq ,)}
〈a, c〉, {ret(1, enq ,)}
〈a, b, c〉, {ret(1, enq ,), ret(2, enq ,)}
〈a, c, b〉, {ret(2, enq ,), ret(1, enq ,)}

Fig. 8: Results of B before and after executing enq12

PN ∈ {PDeqq(n),PEnqq ,NDeq(n)}. The resulting goals can be closed immediately with
the induction hypothesis by noting that COpp,j and each of the operations in PN always
commute. The only exception is deq3fp which needs an auxiliary lemma that PEnqq o

9deq3fp
commutes with every operation in PN . This case crucially relies on the obvious invariant
that there may be no more than one pending enqueue process for each array element.
The only difficult case is enq1p which adds a new pending enqueue process, and has to

deal with a potential linearization point. To see what happens, consider the example shown
in Fig. 8. It shows a situation on the left where an element a is in the array and process
2 is pending with element b, together with the possible observations (q ,R) returned by
the simulation B . Process 1 then executes enq11(cs, cs

′) and becomes pending too with
element c. This is shown on the right, together with the possible pairs (q ′,R′) such that
B(cs ′, q ′,R′).

The pairs (q ,R) before the operation are exactly the subset of those pairs (q ′,R′) where
ret(1, enq ,) 6∈ R′, i.e., the potential linearization point has not been executed. For this
case simulation is trivial, choosing the empty sequence as HBOp∗. The difficult cases have
ret(1, enq ,) ∈ R′. As the last result with q ′ = 〈a, c, b〉 shows, the element c may be observed
to be not the last element of the queue. This demonstrates that one linearization step with
c is not sufficient on the abstract level. Instead the right choice for (q ,R) is (〈a〉,∅), and
it is necessary to instantiate HBOp∗ to the sequential composition of both linearization
steps, i.e. take HBOp∗ to be Lin1,enq o

9 Lin2,enq . This exploits the fact that the potential
linearization of process 2 may not have been executed, and can still be executed after the
one for process 1.
In general, the element c enqueued by some process p may be observed in any place

behind the current elements of the array: we have q ′ = q a 〈c〉 a q2, where q2 consists of
elements only that pending enqueues will add in the future.
Defining LinEr := Linr1,enq

o
9. . .

o
9Linrn ,enq to denote the sequence of linearization steps for

a sequence r = 〈r1, . . . rn〉 of processes, the proof obligation for the case with ret(1, enq ,) ∈
R′ for enq1p is strengthened to

(enq1p o
9 B)(cs, q ′,R′) ∧ ret(p, enq ,) ∈ R′ ⇒
∃ q , q2,R, r • B(cs, q ,R) ∧ LinE

〈p〉ar
((q ,H ,R), (q ′,H ,R′))

The abstract steps first linearize the enqueue of process p, and then may execute lin-
earization steps for some other pending enqueue processes in r . Again the proof follows the
standard well-founded induction scheme over <B . The difficult case occurs when unfolding
B executes PEnqp for the same process p. This case requires another induction to prove
that enq1p o

9PEnqp commutes with all operations PN . This works except for a new dequeue
process that removes the element just added by process p, which can only happen for an
empty array. In this case we finally have to prove the implication

(∀ i • AR(i) = empty) ∧ B(cs, q ,R) ⇒
∃ r • B(〈 〉, outs(cs), cs) ∧ LinEr ((〈 〉,H , outs(cs)), (q ,H ,R))

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 Gerhard Schellhorn et al.

It states that the observable queues for an empty array consist of some (or none) of the
elements of pending enqueues (in any order). Although this fact is obvious, an attempt
to prove the lemma with the standard induction scheme fails: after one PEnq has been
executed, the array is nonempty again, so the induction hypothesis is not applicable. The
necessary generalization is

B(cs, q a 〈a〉,R) ⇒
∃ p • ret(p, enq ,) ∈ R ∧ a = lvf (p) ∧ pcf (p) = E2

∧ B(cs, q ,R \ {ret(p, enq ,)})
∨ ∃n • n < back ∧ AR(n) = a ∧ B(cs{AR(n) 7→ null}, q ,R)

It says, that the last element a of any nonempty queue q a 〈a〉 returned by B for state
cs is either an element that some pending enqueue wants to add or some array element
AR(n). In the first case the corresponding return event is in R, and B may also return q ,
by not executing this pending enqueue. In the other case, B will return (q ,R), when calling
it with the modified state cs{AR(n) 7→ null}, where the array element has been removed.
The proof of the generalized lemma is again by standard induction over <B , the original
lemma follows from the special case, where the array is empty.

This closes the last of our backward simulation proofs for operation enq1p , implying
linearizability of the Herlihy-Wing queue by our main Theorem 4.6.

7. THREAD-LOCAL PROOF OBLIGATIONS

Verification of the queue example is particularly difficult, since it is neither possible to define
an abstraction function, nor to fix a specific instruction of the code as the linearization point
of enqueue. However, it is easier to verify linearizability in many standard algorithms since,
e.g., they allow one to define an abstraction function which simplifies the proof obligations.
For algorithms falling into simpler classes, using the general backward simulation in the

verification is unnecessary complex, it is easier to specialize the proof obligations to the
class first. Typically the specialization will exploit symmetries to derive thread-local proof
obligations.
Linearizability as a notion is inherently global, however, for simpler algorithms one aims

to find local more compositional proof obligations. In a sense the use of simulations is one
aspect of locality — since they allow an operation-by-operation comparison. The other type
of locality we aim for is thread-local by which we mean we can just consider one thread of
the program — that is, the effect of one process at a time.
In [Derrick et al. 2011b] we have discussed thread-local proof obligations for such a class,

and this section will explain the ideas necessary to prove that these conditions imply the
global backward simulation in this paper (and therefore imply linearizability).

For thread-local conditions, the state cs is split into a global state gs and local states
lsf (p) for each process p (so cs =̂ (gs, lsf)). In our example gs consists of the queue q and
the back pointer, and lsf (p) returns the tuple of values kf (p), lback(p), lvf (p) and pcf (p).
In many cases (but not in the one considered here), it is then possible to specialize the

abstract states as, that must be related to (cs, h) to a single state, using an abstraction
function abs that depends on the global state gs only (ignoring both the history h and
the local states). Thus we will be able to write abs(gs) = as as the abs is independent of
h and lsf . The abstraction function is typically defined on states that satisfy an invariant
inv(gs, lsf)5. If such an abstraction function abs exists, the backward simulation can be
written as

BS ((gs, lsf , h), (as,H ,R)) =̂ inv(gs, lsf) ∧ abs(gs) = as ∧ h = H ∧ Rets(h, gs, lsf ,R)

5formally, an invariant ginv(gs) with only the global state as argument would be sufficient. To maintain
such an invariant, however, it is usually necessary to have restrictions on the local states too.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Sound and Complete Proof Technique for Linearizability A:29

using an auxiliary relation Rets, which determines the set of return events R for linearized
processes.
Now whether an operation of process p has linearized or not, and what the return value

will be often depends on the local state lsf (p) of process p only: a standard case is, that
the linearization point of an algorithm is a specific instruction, so just the local program
counter is relevant. These are the cases when thread-locality is achieved as the behavior is
not dependent on other processes. In this case Rets can be defined as

Rets(h, gs, lsf ,R) =̂ R =
⋃

p retp(lsf (p))

where retp returns an empty set when the algorithm is before the linearization point (as
determined by the program counter of p), and a set of one return event if it is after the
linearization point.
A standard example where such a definition is possible is Treiber’s stack [Treiber 1986],

where linearization happens with the CAS (compare and swap) instruction that does the
main modification of the data structure.
Our queue example allows such a definition for dequeue (but not for enqueue!). There,

retp(lsf (p)) would return {ret(p, deq , lvf (p))}, when pcf (p) ∈ {D4,D6} ∧ lvf (p) 6= null,
otherwise returning the empty set.
Note, that when both an abstraction function and a retp-function can be defined for all

operations, BS becomes a (partial) function. And when a simulation relation is in fact a
function (whether partial or total) the distinction between forward and backward simulation
disappears and thus either set of proof obligations could be used (usually forward simulations
are easier to verify).

More complex examples have operations with potential linearization points, like the en-
queue operation of our running queue example. What makes this example particularly dif-
ficult is that linearization of enqueue modifies the abstract queue value that the concrete
state represents. A much more common case of potential linearization points is when the ab-
stract operation has no effect on the abstract state. Either the operation is one that always
reads from the abstract data structure — the lookup operation of the Heller et al’s [Heller
et al. 2005] lazy set data structure, which is discussed in detail in [Derrick et al. 2011b]
is one case — or the specific run just reads from the data structure. Michael and Scott’s
queue [Michael and Scott 1996] provides one example, where a potential LP is needed for
the attempt to dequeue from an empty queue (which leaves the empty queue unchanged!).
For reading operations the potential linearization value often depends on the global state.

Again, Heller et al’s [Heller et al. 2005] lazy set is an example: the value returned by lookup
is stored in the global heap.
Given potential and definite linearization points which depend on local state only, the

natural definition of Rets becomes

Rets(h, gs, lsf ,R) =̂
⋃

p dretp(gs, lsf (p), gs) ⊆ R ⊆
⋃

p pretp(gs, lsf (p), gs)

where dretp(gs, lsf (p)) gives the single return event for operation p, when it has definitely
linearized. Similarly, pretp(lsf (p)) gives the return event for process p if it has potentially
or definitely linearized.
In [Derrick et al. 2011b] we have expressed the information computed by dretp and pretp

with the help of a status function.

— status(gs, lsf (p)) = IN (in) means that the operation has received input in and definitely
not linearized, implying dretp(lsf (p)) = pretp(lsf (p)) = ∅.

— status(gs, lsf (p)) = INOUT (in, out) is reserved for an operation that has potentially
linearized and will return out , if the linearization becomes definitive. This implies
dretp(lsf (p)) = ∅ and pretp(lsf (p)) = {ret(p, runs(pcf (p)), out)}, where runs(pcf (p))

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 Gerhard Schellhorn et al.

is the index of the running operation that can be determined from the program counter
pcf (p).

— status(gs, lsf (p)) = OUT (out) is reserved for operations that have definitely linearized,
implying dretp(lsf (p)) = pretp(lsf (p)) = {ret(p, runs(pcf (p)), out)}.

With these definitions the symmetry between all processes can be exploited to reduce the
backward simulation condition to a proof obligation that mentions the local states of two
processes only. In the following we assume lsp and lsp′ are the local state of one algorithm
before and after executing (i.e. lsf (p) and lsf ′(p) if the process is p), and lsq is the local
state of another process q .

The (main) resulting thread-local proof obligation is then

∀ gs, gs ′ : lsp, lsp, lsq .
LInv(gs, lsp) ∧ Linv(gs, lsq) ∧ D(lsp, lsq) ∧ COpp,j (gs, lsp, gs

′, lsp′)
⇒

LInv(gs ′, lsp′) ∧ LInv(gs ′, lsq) ∧ D(lsp′, lsq) ∧
LPp(abs(gs), abs(gs

′)) o
9 LPq(abs(gs

′), abs(gs ′))

This local proof obligation requires for each step COpp,j of an algorithm one has to prove
a commuting diagram with up to two linearization points for just the two processes p and
q considered. The component LPp(abs(gs), abs(gs

′)) in the obligation depends on changes
of the status function. It abbreviates

— skip (i.e. no operation, abs(gs) and abs(gs ′) must be equal), when process p does not
linearize, indicated by the status of p being unchanged status(gs, lsp) = status(gs ′, lsp′).

—AOpp,i(in, abs(gs), abs(gs
′), out), if p potentially or definitely linearizes, observed by a

status change from IN (in) to INOUT (in, out) or OUT (out).

Again i is the index of the operation that process p runs currently. Of course,
LPq(abs(gs

′), abs(gs ′)) is defined in the same way, but is based on status changes from
status(gs, lsq) to status(gs ′, lsq).
The history is completely absent from the local proof obligation, since the input values

of pending invokes (these are needed as inputs for HBOp∗) are now available via the status
function. Note that when the step of p linearizes another operation q , then the linearization
step of q must be one that does not change the abstract abs(gs ′) (the state is used twice in
LPq). This allows to instantiate HBOp∗ in the global proof obligation with the sequence of
all processes q that are linearized by the step.
The global invariant Inv(gs, lsf) has been specialized to

Inv(gs, lsf) =̂ ∀ p : P • (LInv(gs, lsf (p)) ∧ ∀ q : P • q 6= p ⇒ D(lsf (p), lsf (q)))

using a local invariant LInv(gs, ls) that mentions one local state only, and a disjointness
property D(lsp, lsq). The latter are needed to express disjointness properties of local states
(our queue example needs that two enqueue processes p and q never enqueue at the same
position, i.e. kf (p) 6= kf (q) as a disjointness property).

The derivation of the local proof obligation above (and variants, see e.g. [Travkin et al.
2012; Tofan et al. 2014]) could easily be mechanized (the effort being a few days of work).
They are sufficient for many case studies, which exhibit a certain symmetry between the
processes.

8. RELATED WORK

This paper uses a refinement-based approach to linearizability that defines operations on
an abstract data structure that are different from the data structures used by the concrete
algorithms. Other approaches (in particular the ones based on model checking, shape anal-
ysis or reduction as discussed below) ignore the data refinement aspect. They show that

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Sound and Complete Proof Technique for Linearizability A:31

the concrete algorithms are equivalent to an abstract level that executes each algorithm
atomically as one step, thus relegating the data refinement aspect to informal arguments.
Our extension of enhancing a data type with a history and finalization parallels the

construction in [Woodcock and Davies 1996] that adds sequences of inputs and outputs to
embed Z refinement into relational refinement, or the extraction of (action) traces for I/O
automata. However, since we are in a concurrent setting, the events of a history (or the
actions of an I/O automaton) additionally have to record which process executed which
operation.
Earlier work on I/O automata already recognized that linearizability can be defined

as an instance of refinement [Lynch 1996] (the book uses the term “atomic objects” for
linearizability). Colvin, Groves et al [Doherty et al. 2004; Colvin et al. 2005] gave the
first mechanized proofs for linearizability using forward and backward simulations for I/O
automata.

Completeness results. Our work is, in essence, a completeness result showing that back-
wards simulations are all that are needed for a particular type of refinement (here one that
will give us linearizability). A number of completeness results for different refinement set-
tings exist, each defining an intermediate layer between the abstract and the concrete layer.
For data refinement, [He Jifeng et al. 1986] proves, that forward and backward simulations
are complete, using an intermediate layer, where states are sets of abstract states (powerset
construction). The completeness result for refinement in a TLA-like setting given in [Abadi
and Lamport. 1991] adds history and prophecy variables (specializing forward and backward
simulations) to an intermediate layer. A similar result for I/O automata (which is closer to
our setting) is proved in [Lynch and Vaandrager 1995], see their Theorem 5.6. The states
of the intermediate level defined in both completeness proofs record the full history of all
concrete states.
Finally, the completeness proofs of [Hesselink 2008] for the TLA setting and [Schellhorn

2008], [Schellhorn 2009] for a setting of ASMs also define intermediate layers, based on
the concrete state. Both define a deterministic intermediate layer, that stores additional
information (“eternity variables” and “choice functions”) in the initial state to predict
nondeterminism of the concrete layer.
Our completeness theorem differs from all of these completeness results, in giving a spe-

cialized intermediate level suitable for linearizability proofs. The intermediate level is closely
related to possibilities as defined in [Herlihy and Wing 1990]. The definition given there is a
rule-based definition of Poss(as,P ,R) ∈ Poss(H) where H is a concurrent history, P is the
set of pending invokes of H , that have not linearized, and R is the set of return events for
operations that have linearized. Our definition recasts the 4 rules given in [Herlihy and Wing
1990] (axioms S, I, C, R) as operations HBInit , Inv and Lin and Ret of HBDT , dropping
the redundant set P . Our intermediate level is also related to the “canonical wait-free au-
tomaton for atomic objects” from [Lynch 1996], which has states that correspond to triples
(as,P ,R) (each process is in one of the states “before LP”,“after LP” “idle”, corresponding
to being in P , in R or in none of the two). However, as this automaton lacks H , it is not
possible to avoid using both forward and backward simulations to verify linearizability.

Approaches to verifying linearizability. Since our work gives a general, applicable method
for proving linearizability, it should be contrasted with other methods of proving lineariz-
ability.
First, there is work on model checking linearizability, e.g. [Cerný et al. 2010] for checking

a specific algorithm or [Burckhardt et al. 2010] for a general strategy. These approaches
are very good at finding counter examples when linearizability is violated. However, these
methods only check short sequences of (usually two or three) operations by exploring all
possibilities of linearization points, so these approaches do not give a full proof. They also
do not yield any explanation of why a certain implementation is indeed linearizable.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 Gerhard Schellhorn et al.

Work on full proofs has analyzed several classes of increasing complexity, where figuring
out simulations (in particular thread-local ones, that exploit the symmetry of all processes
executing the same operations) becomes increasingly difficult.
The simplest standard class of algorithms can be verified in a refinement context with

an abstraction function, and all linearization points can be fixed to be specific instructions
of the code of an algorithm (often atomic compare-and-swap (CAS) instructions are candi-
dates). A variety of approaches for verifying such algorithms have been developed: [Groves
and Colvin 2007] uses I/O refinement and interactive proofs with PVS, [Vafeiadis 2007]
executes abstract operations as “ghost-code” at the linearization point, arguing informally
that linearizability is implied. Proof obligations for linearizability have also been verified
using shape analysis [Amit et al. 2007].
Our own work in [Derrick et al. 2011a] gave step-local forward simulation conditions

for this standard case. Conditions were optimized for the case where reasoning about any
number of processes can be reduced to thread-local reasoning about one process and its
environment abstracted to one other process. It mechanized proofs that these are indeed
sufficient to prove linearizability.
A second, slightly more difficult class are algorithms where the linearization point is non-

deterministically one of several instructions, the Michael-Scott queue ([Michael and Scott
1996]) being a typical example. [Doherty et al. 2004] has given a solution using backward
and forward simulation, Vafeiadis [Vafeiadis 2007] uses a prophecy variable as additional
ghost code. Our work here shows that backward simulation alone is sufficient.
A third, even more difficult class are algorithms that use observer operations that do

not modify the abstract data structure. Such algorithms often have no definite linearization
point in the code. Instead steps of other processes linearize. The standard example for
this class is Heller et al’s “lazy” implementation of sets [Heller et al. 2005]. There, the
contains operation that checks for membership in the set has no definitive linearization
point. Based on the idea that linearization of such operations can happen at any time
during its execution, [Vafeiadis 2010] develops the currently most advanced automated
proof strategy for linearizability in the Cave tool.
As an alternative approach, Lipton’s reduction [Lipton 1975] can be used to verify exam-

ples of the first three classes. Manual proofs for the first two classes are ([Groves and Colvin
2009], [Groves 2008], [Jonsson 2012]), the only mechanized work we are aware of is [Elmas
et al. 2010], which proves an example of the third class.
Our work in [Derrick et al. 2011b] gives thread-local, step-local conditions for this class,

and verifies Heller et al’s lazy set. Mechanized proofs that these conditions can be derived
from the general theory given here are available on the Web too [KIV 2010]. In [Travkin
et al. 2012] the example of [Elmas et al. 2010] has been verified with these proof obligations
too.
All these three classes, where mechanized proofs have been attempted, had an abstraction

function, so different possibilities for one concrete state could only differ in the possible
linearization points that have been executed (our set R of return events). However, the
Herlihy-Wing queue is just the simplest example that falls outside of these classes. We have
chosen it here since it is easy to explain, not because it is practically relevant. Other example
include atomic snapshot registers [Afek et al. 1993] and the multiset given in [Elmas et al.
2010], when a delete operation is added. We could recently verify this example using an
embedding of the backward simulation technique into RGITL [Schellhorn et al. 2014] (a
publication is currently in preparation).
One of the most important, practically relevant examples is the elimination queue [Moir

et al. 2005], which to our knowledge is currently the most efficient lock-free queue imple-
mentation. This example has some striking similarities to the case study considered here.
Verifying this case study is future work, however it seems clear that it can be verified using
the same proof strategy as shown here.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Sound and Complete Proof Technique for Linearizability A:33

For this most complex class only pencil-and-paper approaches existed before our work, so
our proof of the Herlihy-Wing queue is the first that mechanizes such a proof (and even a full
proof, not just the verification of proof obligations justified on paper) for this algorithm. Our
proof is step-local in considering stepwise simulation. Recent work in [Henzinger et al. 2013]
has verified proof obligations for the linearizability of the Herlihy-Wing queue automatically.
However the proof obligations given are specific for queues, and the algorithm verified has
to be transformed heavily before verification.
Even for simpler classes many proof approaches so far have resorted to global arguments

about the past, either informally e.g. [Heller et al. 2005], [Michael and Scott 1996], [Vafeiadis
et al. 2006], using explicit traces [O’Hearn et al. 2010] or with temporal past operators [Fu
et al. 2010].
Herlihy and Wing’s own proof in [Herlihy and Wing 1990] also uses such global arguments:

first, it adds a global, auxiliary variable to the code. The abstraction relation based on
this variable is not a simulation. Therefore they have to use global, queue-specific lemmas
(Lemmas 11 and 12) about normalized derivations to ensure that it is possible to switch
from one (q ,R) to another (q ′,R′) in the middle of the proof.

9. CONCLUSIONS

In this paper, we have presented a sound and complete proof technique for linearizability
of concurrent data structures. We have exemplified our technique on the Herlihy and Wing
queue which is one of the most complex examples of a linearizable algorithm. Except for
pen-and-paper proofs no-one has treated this example before, in particular none of the
partially or fully automatic approaches to proving linearizability. Both the linearizability
proof for the queue and the general soundness and completeness proof for our technique
have been mechanized within an interactive prover.
The proof strategy given here is complete, but still not optimal in terms of reduction of

proof effort: in particular, we have to encode the algorithms as operations, and just like
in Owicki-Gries style proofs we require specific assertions for every particular value of the
program counter. Rely-Guarantee reasoning [Jones 1983] can help to reduce the number
of necessary assertions and we have already developed an alternative approach based on
Temporal Logic that used Relys and Guarantees. That approach can currently handle the
standard class of algorithms for linearizability, though it has advantages for proving the
liveness property of lock-freedom [Tofan et al. 2010] and has been used to verify the hard
case-study of Hazard pointers [Tofan et al. 2011]. Integrating both approaches remains
future work.
Our approach is also not fully optimal for heap-based algorithms, where the use of con-

current versions of separation logic with ownership (e.g. RGSep [Vafeiadis 2010] or HLRG
[Fu et al. 2010]) helps to avoid disjointness predicates between (private) portions of the
heap, and gives heap-local reasoning.
Finally, there is a recent trend to generalize linearizability to general refinement of con-

current objects [Filipovic et al. 2010], [Turon and Wand 2011], where the abstract level
is not required to execute atomic abstract operations, or where the return values of op-
erations are references, not values. We have not yet studied these theoretically interesting
generalizations, since they are not needed for our examples. This – as well as techniques for
optimizing our approach with respect to proof effort – is left for future work.

REFERENCES

Abadi, M. and Lamport., L. 1991. The existence of refinement mappings. Theoretical Computer Science 2,
253–284.

Abrial, J.-R. and Cansell, D. 2005. Formal Construction of a Non-blocking Concurrent Queue Algorithm
(a Case Study in Atomicity). Journal of Universal Computer Science 11, 5, 744–770.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 Gerhard Schellhorn et al.

Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., and Shavit, N. 1993. Atomic snapshots of
shared memory. J. ACM 40, 4, 873–890.

Amit, D., Rinetzky, N., Reps, T. W., Sagiv, M., and Yahav, E. 2007. Comparison under abstraction for
verifying linearizability. In CAV. 477–490.

Banach, R. and Schellhorn, G. 2010. Atomic Actions, and their Refinements to Isolated Protocols.
FAC 22(1), 33–61.

Burckhardt, S., C.Dern, Musuvathi, M., and Tan, R. 2010. Line-up: a complete and automatic lineariz-
ability checker. In Proceedings of PLDI. ACM, 330–340.

Calcagno, C., Parkinson, M., and Vafeiadis, V. 2007. Modular safety checking for fine-grained concur-
rency. In SAS 2007. LNCS Series, vol. 4634. Springer, 233–238.

Cerný, P., Radhakrishna, A., Zufferey, D., Chaudhuri, S., and R.Alur. 2010. Model checking of
linearizability of concurrent list implementations. In CAV. LNCS 4144, 465–479.

Colvin, R., Doherty, S., and Groves, L. 2005. Verifying concurrent data structures by simulation.
ENTCS 137, 93–110.

Colvin, R. and Groves, L. 2005. Formal verification of an array-based nonblocking queue. In ICECCS.
IEEE Computer Society, 507–516.

Colvin, R., Groves, L., Luchangco, V., and Moir, M. 2006. Formal verification of a lazy concurrent
list-based set. In CAV. LNCS 4144 Series, vol. 4144. Springer, 475–488.

de Roever, W. and Engelhardt, K. 1998. Data Refinement: Model-Oriented Proof Methods and their
Comparison. Cambridge Tracts in Theoretical Computer Science Series, vol. 47. Cambridge University
Press.

Derrick, J. and Boiten, E. 2001. Refinement in Z and Object-Z: Foundations and Advanced Applications.
Springer. http://www.cs.kent.ac.uk/pubs/2001/1200.

Derrick, J., Boiten, E. A., Bowman, H., and Steen, M. 1997. Weak refinement in z. In ZUM, J. P.
Bowen, M. G. Hinchey, and D. Till, Eds. Lecture Notes in Computer Science Series, vol. 1212. Springer,
369–388.

Derrick, J., Schellhorn, G., and Wehrheim, H. 2008. Mechanizing a correctness proof for a lock-free
concurrent stack. In FMOODS 2008. LNCS Series, vol. 5051. Springer, 78–95.

Derrick, J., Schellhorn, G., and Wehrheim, H. 2011a. Mechanically verified proof obligations for lin-
earizability. ACM Trans. Program. Lang. Syst. 33, 1, 4.

Derrick, J., Schellhorn, G., and Wehrheim, H. 2011b. Verifying linearisabilty with potential linearisa-
tion points. In Proc. Formal Methods (FM). Springer LNCS 6664, 323–337.

Doherty, S., Groves, L., Luchangco, V., and Moir, M. 2004. Formal verification of a practical lock-free
queue algorithm. In FORTE 2004. LNCS Series, vol. 3235. 97–114.

Doherty, S. and Moir, M. 2009. Nonblocking algorithms and backward simulation. In DISC, I. Keidar,
Ed. Lecture Notes in Computer Science Series, vol. 5805. Springer, 274–288.

Elmas, T., Qadeer, S., Sezgin, A., Subasi, O., and Tasiran, S. 2010. Simplifying linearizability proofs
with reduction and abstraction. In TACAS. Springer LNCS 6015, 296–311.

Filipovic, I., O’Hearn, P. W., Rinetzky, N., and Yang, H. 2010. Abstraction for concurrent objects.
Theoretical Computer Science 411, 51-52, 4379 – 4398.

Fu, M., Y. Li, Y., Feng, X., Shao, Z., and Zhang, Y. 2010. Reasoning about optimistic concurrency using
a program logic for history. In CONCUR. Springer LNCS 6269, 388–402.

Groves, L. 2008. Trace-based derivation of a lock-free queue algorithm. ENTCS 201, 69–98.

Groves, L. and Colvin, R. 2007. Derivation of a scalable lock-free stack algorithm. ENTCS 187, 55–74.

Groves, L. and Colvin, R. 2009. Trace-based derivation of a scalable lock-free stack algorithm. Formal
Aspects of Computing (FAC) 21, 1–2, 187–223.

He Jifeng, Hoare, C. A. R., and Sanders, J. W. 1986. Data refinement refined. In Proc. ESOP 86,
B. Robinet and R. Wilhelm, Eds. LNCS Series, vol. 213. Springer-Verlag, 187–196.

Heller, S., Herlihy, M., Luchangco, V., Moir, M., III, W. N. S., and Shavit, N. 2005. A lazy concurrent
list-based set algorithm. In OPODIS 2005. LNCS 3974. 305–309.

Henzinger, T., Sezgin, A., and Vafeiadis, V. 2013. Aspect-oriented linearizability proofs. In CONCUR
2013: Proc. of Int. Conference on Concurrency Theory. Springer-Verlag, Berlin, Heidelberg, 242–256.

Herlihy, M. and Wing, J. M. 1990. Linearizability: A correctness condition for concurrent objects. ACM
TOPLAS 12, 3, 463–492.

Hesselink, W. H. 2007. A criterion for atomicity revisited. Acta Inf. 44, 2, 123–151.

Hesselink, W. H. 2008. Universal extensions to simulate specifications. Information and Computation 206,
106–128.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Sound and Complete Proof Technique for Linearizability A:35

Jones, C. B. 1983. Specification and design of (parallel) programs. In Proceedings of IFIP’83. North-
Holland, 321–332.

Jonsson, B. 2012. Using refinement calculus techniques to prove linearizability. Formal Aspects of Com-
puting 24, 4-6, 537–554.

KIV 2010. Web presentation of linearizability theory and the lazy set algorithm.
http://www.informatik.uni-augsburg.de/swt/projects/possibilities.html.

KIV 2011. Web presentation of KIV proofs for this paper. http://www.informatik.uni-
augsburg.de/swt/projects/Herlihy-Wing-queue.html.

Lipton, R. J. 1975. Reduction: a method of proving properties of parallel programs. Commun. ACM 18, 12,
717–721.

Lynch, N. 1996. Distributed Algorithms. Morgan Kaufmann Publishers.

Lynch, N. and Vaandrager, F. 1995. Forward and Backward Simulations – Part I: Untimed systems.
Information and Computation 121(2), 214–233.

Michael, M. M. and Scott, M. L. 1996. Simple, fast, and practical non-blocking and blocking concurrent
queue algorithms. In Proc. 15th ACM Symp. on Principles of Distributed Computing. 267–275.

Moir, M., Nussbaum, D., Shalev, O., and Shavit, N. 2005. Using elimination to implement scalable and
lock-free fifo queues. In SPAA. ACM, 253–262.

O’Hearn, P. W., Rinetzky, N., Vechev, M. T., Yahav, E., and Yorsh, G. 2010. Verifying linearizabil-
ity with hindsight. In 29th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing (PODC). 85–94.

Reif, W., Schellhorn, G., Stenzel, K., and Balser, M. 1998. Structured specifications and interactive
proofs with KIV. In Automated Deduction—A Basis for Applications. Vol. II. Kluwer, Chapter 1:
Interactive Theorem Proving, 13 – 39.

Schellhorn, G. 2008. Completeness of ASM Refinement. Electron. Notes Theor. Comput. Sci. 214, 25–49.

Schellhorn, G. 2009. Completeness of Fair ASM Refinement. Science of Computer Programming, Else-
vier 76, issue 9, 756 – 773.

Schellhorn, G., Tofan, B., Ernst, G., Pfähler, J., and Reif, W. 2014. RGITL: A temporal logic frame-
work for compositional reasoning about interleaved programs. Annals of Mathematics and Artificial
Intelligence (AMAI), 1 – 44.

Schellhorn, G., Wehrheim, H., and Derrick, J. 2012. How to prove algorithms linearisable. In CAV,
P. Madhusudan and S. A. Seshia, Eds. Lecture Notes in Computer Science Series, vol. 7358. Springer,
243–259.

Tofan, B., Bäumler, S., Schellhorn, G., and Reif, W. 2010. Temporal logic verification of lock-freedom.
In Proc. MPC 2010. Springer LNCS 6120. 377–396.

Tofan, B., Schellhorn, G., and Reif, W. 2011. Formal verification of a lock-free stack with hazard
pointers. In Proc. ICTAC. Springer LNCS 6916.

Tofan, B., Travkin, O., Schellhorn, G., and Wehrheim, H. 2014. Two approaches for proving lineariz-
ability of multiset. Science of Computer Programming Journal, Elsevier , to appear.

Travkin, O., Wehrheim, H., and Schellhorn, G. 2012. Proving linearizability of multiset with local proof
obligations. In Proceedings of the 12th International Workshop on Automated Verification of Critical
Systems (AVoCS), G. Lüttgen and S. Merz, Eds. Vol. 53. ECEASST.

Treiber, R. K. 1986. System programming: Coping with parallelism. Tech. Rep. RJ 5118, IBM Almaden
Research Center.

Turon, A. and Wand, M. 2011. A separation logic for refining concurrent objects. In POPL. Vol. 46. ACM,
247–258.

Vafeiadis, V. 2007. Modular fine-grained concurrency verification. Ph.D. thesis, University of Cambridge.

Vafeiadis, V. 2010. Automatically proving linearisability. In CAV. Vol. LNCS 6174. Springer, 450–464.

Vafeiadis, V., Herlihy, M., Hoare, T., and Shapiro, M. 2006. Proving correctness of highly-concurrent
linearisable objects. In PPoPP ’06. ACM, 129–136.

Woodcock, J. C. P. and Davies, J. 1996. Using Z: Specification, Refinement, and Proof. Prentice Hall.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

