
HAL Id: ensl-00862910
https://ens-lyon.hal.science/ensl-00862910v1

Preprint submitted on 17 Sep 2013 (v1), last revised 24 Sep 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the error of Computing ab + cd using Cornea,
Harrison and Tang’s method

Jean-Michel Muller

To cite this version:
Jean-Michel Muller. On the error of Computing ab + cd using Cornea, Harrison and Tang’s method.
2013. �ensl-00862910v1�

https://ens-lyon.hal.science/ensl-00862910v1
https://hal.archives-ouvertes.fr

On the error of Computing ab + cd using Cornea,

Harrison and Tang’s method

Jean-Michel Muller

September 2013

Abstract

In their book Scientific Computing on The Itanium [1], Cornea, Harri-
son and Tang introduce an accurate algorithm for evaluating expressions
of the form ab+ cd in binary floating-point arithmetic, assuming an FMA
instruction is available. They show that if p is the precision of the floating-
point (FP) format and if u = 2−p, the relative error of the result is of order
u. We improve their proof to show that the relative error is bounded by
2u+7u2+6u3. Furthermore, by building an example for which the relative
error is asymptotically (as p → ∞ or, equivalently, as u → 0) equivalent
to 2u, we show that our error bound is asymptotically optimal.

1 Introduction and notation

1.1 Computing ab + cd

Expressions of the form ab + cd, where a, b, c, d are floating-point numbers
arise naturally in many numerical computations. Typical examples are complex
multiplication and division; discriminant of quadratic equations; cross-products
and 2D determinants. The naive way of computing ab + cd may lead to very
inaccurate results, due to catastrophic cancellations. Several algorithms have
been introduced, to overcome this problem. An algorithm attributed to Kahan
by Higham [2, p. 65] can be used when an FMA (fused multiply-add) instruction
is available.

Algorithm 1 Kahan’s algorithm for computing x = ab+cd with fused multiply-
adds. RN(t) means t rounded to the nearest FP number.

ŵ ← RN(cd)
e← RN(cd− ŵ) // this operation is exact: e = cd− ŵ.

f̂ ← RN(ab + ŵ)

x̂← RN(f̂ + e)
return x̂

1

Jeannerod, Louvet and Muller [4] show that in radix-β floating-point arith-
metic, the relative error of Kahan’s algorithm is bounded by 2u, where u =
1

2
β1−p is the unit roundoff.

Another algorithm, that also uses an FMA instruction, was introduced by
Cornea, Harrison and Tang in their book Scientific Computing on The Ita-
nium [1]. Cornea et al’s algorithm is

Algorithm 2 Cornea, Harrison and Tang’s algorithm for computing x = ab+cd
with fused multiply-adds.

p1 ← RN(ab)
e1 ← ab− p1 // exact with an FMA
p2 ← RN(cd)
e2 ← cd− p2 // exact with an FMA
p← RN(p1 + p2)
e← RN(e1 + e2)
s← RN(p + e)
return s

Cornea, Harrison and Tang provide a quick error analysis to show that the
relative error of their algorithm is of the order of u. At the time of the publica-
tion of their algorithm, the bound on Kahan’s algorithm was not known, which
made their algorithm a very attractive choice, although it requires slightly more
computation than Kahan’s algorithm. Now, to compare these two algorithms,
we need to evaluate the largest possible relative error of Cornea et al’s algorithm
more accurately. This is the purpose of this paper.

1.2 Some notation and assumtions

Throughout the paper, we assume a binary floating-point system of precision
p ≥ 2, with unbounded exponent range (that is, our results will apply to real-life
computations provided that no underflow or overflow occurs). In such a system,
a floating-point number is a number x that can be expressed in the form

x = Mx · 2
ex−p+1,

where Mx and ex are integers, and 2p−1 ≤ |Mx| ≤ 2p − 1. We denote u = 2−p.
If t is a nonzero real number, with 2k ≤ t < 2k+1, we define ulp(t) as 2k−p+1.

We assume that an FMA instruction is available. The FMA evaluates ex-
pressions of the form ab+c with one rounding error only and since it is required
by the 2008 revision of the IEEE 754 standard [3], one can expect that it will
soon belong to the instruction set of most general-purpose processors. In the
following we assume that the rounding mode is round to nearest even, and we
denote RN the rounding function, so that the result returned when computing
FMA(a, b, c) is RN(ab + c).

We will frequently use the following property:

2

for any real number t,

|RN(t)− t| ≤ 1

2
ulp(t) ≤ u|t|,

and
|RN(t)− t| ≤ u|RN(t)|.

2 Preliminary properties of Algorithm 2

Remark 2.1. If ab = −cd then ab+cd = 0 is exactly computed by the algorithm.

Remark 2.2. Let cd be the product of two binary floating-point numbers of
precision p. Define p2 = RN(cd) and e2 = cd− p2. We have:

• either e2 is a multiple of 2−p+1ulp(p2) (which implies that it fits in p− 2
bits);

• or |cd| ≤ (2p − 2 + 2−p)ulp(p2).

Proof. Since c and d are two precision-p binary floating-point numbers, one has

c = Mc2
ec−p+1 and d = Md2

ed−p+1,

where Mc, Md, ec, and ed are integers, with 2p−1 ≤ |Mc|, |Md| ≤ 2p − 1. The
number cd is a multiple of 2ec+ed−2p+2, hence p2 = RN(cd) and e2 = cd − p2

are multiple of 2ec+ed−2p+2 too.

• if p2 < 2ec+ed+1 then ulp(p2) ≤ 2ec+ed−p+1, so that (since ulp(p2) is a
power of 2) e2 is a multiple of 2−p+1ulp(p2);

• if p2 ≥ 2ec+ed+1 then ulp(p2) = 2ec+ed−p+2, therefore

|cd| = |McMd|·2
ec+ed−2p+2 ≤ (2p−1)2·2ec+ed−2p+2 = (2p−2+2−p)ulp(p2).

Remark 2.3. Denote u = 2−p. We have,

• p1 + e1 = ab, |e1| ≤ u · |p1|, and |e1| ≤ u · |ab|;

• p2 + e2 = cd, |e2| ≤ u · |p2|, and |e2| ≤ u · |cd|;

• p = (p1 + p2) · (1 + ǫ1), with |ǫ1| ≤ u;

• e = (e1 + e2) · (1 + ǫ2), with |ǫ2| ≤ u.

We have,
p + e = (ab + cd)(1 + ǫ1) + γ,

with
γ = (e1 + e2) · (ǫ2 − ǫ1),

which implies
|γ| = 2u2 · (|ab|+ |cd|) .

3

3 Discussion on the various cases that occur in

Algorithm 2

3.1 If ab and cd have the same sign

In that case, |γ| ≤ 2u2 · |ab + cd|, so that the final relative error is bounded by
2u + 3u2 + 2u3.

3.2 If ab and cd have different signs

Without loss of generality, we assume |ab| ≥ |cd|, ab > 0 and cd < 0 (notice
that if ab = 0 or cd = 0 the analysis becomes straightforward).

3.2.1 If |cd| ≤ 1

2
ab

In that case,

|ab + cd| ≥
1

3
(|ab|+ |cd|) ,

so that |γ| ≤ 6u2 · |ab+cd|, which implies that the final relative error is bounded
by 2u + 7u2 + 6u3.

3.2.2 If |cd| > 1

2
ab

In that case, since function t→ RN(t) is an increasing function, we easily find

1

2
p1 ≤ |p2| ≤ p1.

Applying Sterbenz Lemma, we find that p = p1 + p2 exactly, so that ǫ1 = 0,
which gives

p + e = ab + cd + γ,

with
γ = (e2 + e1)ǫ2,

which implies
|γ| ≤ u2 · (|ab|+ |cd|) .

1. if |ab + cd| ≥ u · (|ab|+ |cd|) , then |γ| ≤ u · |ab + cd|, so that the final
relative error is bounded by 2u + u2.

2. if |ab + cd| < u · (|ab|+ |cd|) and p1 and p2 have the same floating-

point exponent e. In that case, we have,

• |e1| ≤ (1/2)ulp(p1) = 2e−p,

• |e2| ≤ (1/2)ulp(p2) = 2e−p,

• e1 and e2 are multiple of 2e−2p+1,

4

Hence, e1 + e2 is a multiple of 2e−2p+1, say e1 + e2 = K · 2e−2p+1, k ∈ Z,
that satisfies

∣

∣K · 2e−2p+1
∣

∣ ≤ 2e−p+1,

i.e., |K| ≤ 2p. This implies that e1 +e2 is a floating-point number. Hence,
e = RN(e1+e2) = e1+e2, so that ǫ2 = 0. As a consequence, p+e = ab+cd
exactly, and the final relative error is bounded by u.

3. if |ab + cd| < u · (|ab|+ |cd|) and p1 and p2 do not have the same

floating-point exponent. In such a case, 1

2
p1 ≤ |p2| ≤ p1 implies that

the exponent of p2 is the exponent of p1 minus one, so that ulp(p2) =
1

2
ulp(p1).

Remark 3.1. Notice that we necessarily have (p1+p2) ≤ 4ulp(p2): p1 and
p2 are obviously multiples of ulp(p2), and if we had (p1 + p2) ≤ 4ulp(p2),
that would imply

|ab+cd| = |p1+p2+e1+e2| ≥ 5ulp(p2)−ulp(p2)−
1

2
ulp(e2) = 7/2ulp(p2),

whereas

|ab|+ |cd| < 2pulp(p1) + 2pulp(p2) = 3 · 2pulp(p2),

so that
|ab|+ |cd|

|ab + cd|
≤

6

7
· 2p =

6

7u
,

which contradicts the assumption |ab + cd| < u · (|ab|+ |cd|).

The fact that p1 and p2 do not have the same floating-point exponent (so that
there is a power of 2 between them), and that (p1 + p2) ≤ 4ulp(p2) implies that
there remain only a very few cases to examine. Define ep1

as the floating-point
exponent of p1:

• either p1 is the floating-point number immediately above 2ep1 . In such a
case −p2 is either 2ep1 − ulp(p2) or 2ep1 − 2ulp(p2);

• or p1 = 2ep1 . In such a case, p2 = 2ep1 − i · ulp(p2), with i = 1, 2, 3, or 4.

We can even reduce further the number of cases to be considered:

• First, one can apply Remark 2.2. If e2 is a multiple of 2−p+1ulp(p2), then
e1 + e2 is a multiple of 2−p+1ulp(p2), say e1 + e2 = K · 2−p+1 · ulp(p2).
Since |e1 + e2| ≤

1

2
(ulp(p1) + ulp(p2)) = 3

2
ulp(p2), we deduce that |K| ≤

3·2p−2 < 2p. This shows that e1+e2 is a precision-p floating-point number.
Hence, e = RN(e1 + e2) = e1 + e2, so that ǫ2 = 0. As a consequence,
p + e = ab + cd exactly, and the final relative error is bounded by u.
Now, Remark 2.2 tells us that If e2 is no a multiple of 2−p+1ulp(p2), then
|cd| ≤ (2p − 2 + 2−p)ulp(p2), so that |p2| = |RN(cd)| ≤ 2ep1 − 2ulp(p2).
Hence the case p2 = 2ep1 − ulp(p2) need not be considered.

5

• If p1 = 2ep1 , then, since p1 = RN(ab), 2ep1 − 1

4
ulp(p1) ≤ ab ≤ 2ep1 +

1

2
ulp(p1). However the case ab ≤ 2ep1 is easily dealt with: in that case,

we have |e1| ≤
1

2
ulp(p2), so that it is very similar to a case already met:

e1 + e2 is a floating-point number. Hence, e = RN(e1 + e2) = e1 + e2,
so that ǫ2 = 0. As a consequence, p + e = ab + cd exactly, and the final
relative error is bounded by u.

Therefore, we only need to consider two cases:

• Case 1 p1 is the floating-point number immediately above 2ep1 , and 2ep1−
2ulp(p2). When reasoning on the consequences of Remark 2.2, we have
seen that we can further assume that |cd| ≤ (2p − 2 + 2−p)ulp(p2) =
2ep1 − (2−2−p)ulp(p2). This case is exemplified by Figure 1. In that case,

|ab + cd| > (3− 2−p)ulp(p2),

and

|ab|+|cd| <

(

2p−1 +
3

2

)

ulp(p1)+(2p+1−2+2−p)ulp(p2) = (2p+1+1+2−p)ulp(p2),

so that

γ < u2 2p+1 + 1 + 2−p

3− 2−p
· |ab + cd|.

Elementary manipulations show that as soon as u = 2−p is less than 1/2
(i.e., p ≥ 1, which always holds), the ratio

2p+1 + 1 + 2−p

3− 2−p
=

2

3u
+

5

9
+

14u

27
+

14u2

81
+ · · ·

is less than
2

3u
+ 1.

As a consequence, γ ≤
(

2u
3

+ u2
)

|ab + cd|, so that the final relative error
is less than 5

3
u + 5

3
u2 + u3.

• Case 2 p1 = 2ep1 and −p2 is p1−2ulp(p2), p1−3ulp(p2), or p1−4ulp(p2).
We have seen that we can further assume |cd| ≤ 2ep1 − (2− 2−p)ulp(p2),
and ab > 2ep1 . This case is exemplified by Figure 2. In that case,

|ab + cd| > (2− 2−p)ulp(p2),

and

|ab|+ |cd| < [(2p − 1) + (2p − 2− 2−p]ulp(p2) = (2p+1 − 1 + 2−p)ulp(p2).

We deduce

γ ≤ u2 2p+1 − 1 + 2−p

2− 2−p
|ab + cd|.

6

2ep1 p1−p2

−cd is located here

ab is located here

ulp(p1) = 2ulp(p2)

Figure 1: Case p1 = 2ep1 · (1 + 2−p+1).

p1 = 2ep1−p2

If p2 is the largest possible,
−cd is located here

ab is located here

ulp(p1) = 2ulp(p2)

Figure 2: Case p1 = 2ep1 .

We easily find
2p+1 − 1 + 2−p

2− 2−p
≤

1

u
+ u,

Hence γ ≤ (u + u3)|ab + cd|, from which we deduce that the final relative
error is bounded by 2u + u2 + u3 + u4.

4 General result

The results obtained in the various cases considered in Section 3 can be sum-
marized as follows

Theorem 4.1. Provided no underflow/overflow occurs, and assuming radix-2,
precision-p floating-point arithmetic, the relative error of Cornea et al’s algo-
rithm is bounded by 2u + 7u2 + 6u3.

Now, interestingly enough, we are going to see that the bound given by
Theorem 4.1 is asymptotically optimal (as p→∞ or, equivalently, as u→ 0). To

7

show this, it suffices to consider, in radix-2, precision-p floating-point arithmetic:















a = 2p − 1,
b = 2p−3 + 1

2
,

c = 2p − 1,
d = 2p−3 + 1

4
,

for which we find:
ab + cd = 22p−2 + 2p−1 − 3

4
,

p1 = 22p−3 + 2p−2,
e1 = 2p−3 − 1

2
,

p2 = 22p−3,
e2 = 2p−3 − 1

4
,

p = 22p−2,
e = 2p−2 − 3

4
,

s = 22p−2.

The relative error |s− (ab + cd)|/|ab + cd| is equal to

2p−1 − 3

4

22p−2 + 2p−1 − 3

4

=
2u− 3u2

1 + 2u− 3u2
= 2u− 7u2 + 20u3 + · · ·

which is asymptotically equivalent to 2u. This shows that our relative error
bound is asymptotically optimal.

In the frequent case where the considered floating-point format is the bi-
nary64/double precision format of the IEEE 754 Standard, the relative error
bound provided by Theorem 4.1 is

u× 2.000000000000000777156 · · · ,

and the relative error attained with our example is

u× 1.99999999999999922284 · · ·

Conclusion

We have provided a relative error bound for Cornea, Harrison and Tang’s al-
gorithm (Algorithm 2), and we have shown that our bound is asymptotically
optimal. Since that bound is not better than the (also asymptotically optimal)
error bound for Kahan’s algorithm (Algorithm 1), it is in general preferable to
use Algorithm 1. A possible exception is when one wants to always get the
same result when computing ab + cd and cd + ab (for instance to implement
a commutative complex multiplication): in this case, the natural symmetry of
Algorithm 2 will guarantee the required property, whereas it is easy to build
examples for which Algorithm 1 does not satisfy it.

8

References

[1] M. Cornea, J. Harrison, and P. T. P. Tang. Scientific Computing on
Itanium R©-based Systems. Intel Press, Hillsboro, OR, 2002.

[2] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
Philadelphia, 1996.

[3] IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic.
IEEE Standard 754-2008, August 2008. available at http://ieeexplore.

ieee.org/servlet/opac?punumber=4610933.

[4] C.-P. Jeannerod, N. Louvet, and J.-M. Muller. Further analysis of Kahan’s
algorithm for the accurate computation of 2× 2 determinants. Mathematics
of Computation, 82, October 2013.

9

