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Pattern-based verification checks the correctness of program executions that follow a given pattern, a regular
expression over the alphabet of program transitions of the form w∗

1 . . . w∗
n. For multithreaded programs, the

alphabet of the pattern is given by the reads and writes to the shared storage. We study the complexity
of pattern-based verification for multithreaded programs with shared counters and finite variables. While
unrestricted verification is undecidable for abstracted multithreaded programs with recursive procedures
and PSPACE-complete for abstracted multithreaded while-programs (even without counters), we show that
pattern-based verification is NP-complete for both classes, even in the presence of counters. We then conduct
a multiparameter analysis to study the complexity of the problem on its three natural parameters (number
of threads+counters+variables, maximal size of a thread, size of the pattern) and on two parameters related
to thread structure (maximal number of procedures per thread and longest simple path of procedure calls).
We present an algorithm that for a fixed number of threads, counters, variables, and pattern size solves the
verification problem in stO(lsp+�log(pr+1)�) time, where st is the maximal size of a thread, pr is the maximal
number of procedures per thread, and lsp is the longest simple path of procedure calls.
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1. INTRODUCTION

The analysis and verification of multithreaded programs is one of the most active re-
search areas in software model checking. This is due, on the one hand, to the increasing
relevance of multicore architectures and, on the other hand, to the difficulty of conceiv-
ing, reasoning about, and debugging concurrent software. Automated analysis tools
must cope with the very intractable nature of the analysis problems. Multithreaded
programs with possibly recursive procedures communicating through global variables
are Turing powerful even for programs having only two threads and three variables,
all of them Boolean. If communication takes place through message passing, the pro-
grams are Turing powerful even after applying the usual program analysis abstraction
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that replaces all conditions in alternative constructs and loops by nondeterminism (see
Ramalingam [2000] for more details).

Context bounding, proposed by Qadeer and Rehof [2005], is the most successful pro-
posal to date for overcoming untractability. It restricts the problem further by exploring
only those computations with a bounded, fixed number of contexts. A context is a seg-
ment of the computation during which only one thread accesses the global variables; a
context switch takes place when the identity of this thread changes. Reachability of a
program point in a program with d Boolean variables by a computation with at most
k context switches (the context-bounded reachability problem) is NP-complete when k
is given in unary and can be checked by means of an algorithm polynomial in the size
of the program and exponential both in k and d [Qadeer and Rehof 2005; Lal et al.
2008; Lal and Reps 2009]. Hague and Lin [2012] extend the approach to the case of
recursive multithreaded programs with bounded-reversal counters. Context bounding
has been implemented in several model checkers, like CHESS, ZING, KISS, jMoped,
and others [Andrews et al. 2004; Qadeer and Wu 2004; Musuvathi and Qadeer 2007;
Suwimonteerabuth et al. 2008; Lal and Reps 2009; La Torre et al. 2009], and experi-
ments with these tools have provided evidence that many concurrency errors manifest
themselves in computations with few context switches.

While context bounding has been very successful, it also has important limitations;
it restricts the number of communication events between threads. While a thread can
perform arbitrarily many reads and writes to the global variables during a context,
these writes are not observed by the other threads, and so only the values of the
variables immediately before the context switch amount to a communication. So in a
computation with k context switches, threads communicate at most k times.

In this article, we study a technique, pattern-based verification, that allows one to
check executions with an arbitrary number of communication events. The starting point
is Kahlon’s important observation [Kahlon 2009b] that the theory of bounded languages
developed in the mid-1960s by Ginsburg and Spanier [Ginsburg 1966] can be applied to
the verification problem. Kahlon uses the theory to prove decidability of safety analysis
for the particular case of multithreaded programs, all of whose executions conform to
a pattern, a regular expression of the form w∗

1 . . . w∗
n over the alphabet of program

instructions. Observe that the executions of such a program can be arbitrarily long.
Kahlon leaves the complexity of the safety analysis aside.

In pattern-based verification, we consider general multithreaded programs and use
patterns to specify classes of potential executions of the program. It can be automati-
cally verified whether the executions of the program that conform to the pattern satisfy
the property of interest. Long et al. [2012] use it as a component of a CEGAR loop. In
their approach, single counterexamples are automatically generalized to patterns, and
pattern-based verification is used to exclude potentially infinite families of counterex-
amples in one single step.

In this article, we develop the theory of pattern-based verification for multithreaded
procedural programs. Previous work by Ganty et al. [2012] has shown that pattern-
based verification is strictly more expressive than context bounding.1 Here we focus
on the complexity analysis. Like Hague and Lin, we consider multithreaded programs
with procedures and counters. We reduce the reachability problem for those executions
captured by a pattern to a language-theoretic problem called Cooperation Modulo a
Pattern, or CMP for short: checking nonemptiness of the asynchronous product of a
given set of context-free languages and a given pattern. By putting together classical

1This is achieved by exhibiting a family of two-thread programs, parameterized by a number n, such that
reachability analysis for a fixed pattern proves reachability of a program point for all n, but such that the
number of context switches needed to reach the program point goes to infinity when n grows.
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results by Ginsburg and Spanier [Ginsburg 1966] and more recent results by Verma
et al. [2005], we first show that CMP is NP-complete. In the second and main part of the
article, we conduct a multiparameter analysis of CMP. The size of an instance of CMP is
a function of five parameters: number of threads, number of counters, number of shared
variables (for reasons that will be made clearer, those three parameters will be grouped
into a single parameter), maximal size of a thread, and size of the pattern. For every
subset of parameters, we determine the complexity of CMP when the parameters in the
subset (and no others) have a fixed value. At first sight, the results look disappointing:
in all interesting cases, the problem is NP-hard. But then we refine the analysis by
taking into account the structure of the threads. For this, we introduce two further
parameters: the maximal number of procedures per thread, denoted by pr, and the
longest simple path in the call graph (a path is simple if it visits each node at most
once), denoted by lsp. (In particular, for nonrecursive programs, where the call graph
is acyclic, lsp is equal to the depth of the call graph. Notice that, while a thread can
easily have thousands of instructions and hundreds of procedures, lsp is typically much
smaller.) We show that for a fixed number of threads, counters, shared variables, and
pattern size, the verification problem can be solved in stO(lsp+�log(pr+1)�) time, where st is
the maximal size of a thread.

The article is organized as follows. Section 2 presents our program model and the
reduction of a reachability problem to an equivalent instance of the CMP problem.
Section 3 introduces the parameters of the problems, while Section 4 shows that CMP
is NP-complete. Sections 5 and 6 contain a detailed complexity analysis of CMP. The
NP-hard cases are covered by means of reductions from different NP-complete problems
in Section 5. Our main result, the stO(lsp+�log(pr+1)�) algorithm mentioned earlier, is pre-
sented in Section 6. Finally, Section 7 contains conclusions and discusses related work.

2. PROGRAM MODEL AND FORMAL MODEL

2.1. Program Model

We model a sequential program by a system of flow graphs, a nonempty set of flow
graphs containing one flow graph for each procedure. Each system of flow graphs has an
initial flow graph corresponding to the main procedure. Nodes of a flow graph correspond
to control points of the program, and edges to sequential statements. A sequential
statement is either a condition (a Boolean expression), an assignment, or a procedure
call. Each flow graph has a distinguished initial node and a distinguished final node.
All nodes are reachable from the initial node and have a path to the final node.

A multithreaded program is a tuple of systems of flow graphs, one for each pro-
gram thread. Dynamic thread creation is not allowed. Threads communicate through
shared global variables. Variables either have a finite range or are counters: in this
case, they range over the natural numbers and have therefore an infinite range, but
threads can only access them through the commands c++ and c--, and assume(c==0),
assume(c!=0).

Figure 1 shows a program with three threads, each of them containing only one flow
graph. Threads A and B have procedure calls. More precisely, A and B have recursive
calls. The two threads cooperate using recursion and shared variable x in order to
decrement the counter val. The third thread completes its execution whenever val
reaches zero.

2.2. Formal Model

We model a multithreaded program as a set of context-free grammars such that the
terminating executions of the program correspond to the asynchronous product of
the languages of the grammars. Although we recall basic notions, we assume the
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Fig. 1. In the C-like program, _H_ stands for a constant and * stands for nondeterministic choice.

reader is familiar with the basics of language theory, including regular and context-
free languages (see, e.g., Hopcroft and Ullman [1979]). The rest of the section is devoted
to precisely define our model.

The asynchronous product. An alphabet � is a finite nonempty set of symbols. Given
two languages L1 ⊆ �∗

1 and L2 ⊆ �∗
2, their asynchronous product, denoted L1 ‖ L2,

is the language L over the alphabet � = �1 ∪ �2 such that w ∈ L if and only if the
projections of w to �1 and �2 belong to L1 and L2, respectively. 2 Since asynchronous
product is associative, we write L1 ‖ · · · ‖ Ln or ‖n

i=1 Li. The asynchronous product has
two important special cases: if �1 ∩ �2 = ∅, then L1 ‖ L2 is equal to the shuffle of L1
and L2; if �1 = �2, then L1 ‖ L2 = L1 ∩ L2.

Context-free and regular languages. A context-free grammar is a tuple G = (X , �,
P, S) where X is a finite nonempty set of variables,3 � is an alphabet, P ⊆ X × (� ∪X )∗
is a finite set of productions (the production (X, w) may also be noted X → w), and
S ∈ X is the axiom. Given two strings u, v ∈ (� ∪ X )∗, we write u ⇒ v if there exists a
production (X, w) ∈ P and some words y, z ∈ (�∪X )∗ such that u = yXz and v = ywz. We
use ⇒∗ to denote the reflexive transitive closure of ⇒. Let X ∈ X , and we call X ⇒∗ α
an X-derivation if α ∈ �∗ and we call it a partial X-derivation whenever α /∈ �∗. We
simply say (partial) derivation for a (partial) S-derivation. The language of a grammar
is the set L(G) = {w ∈ �∗ | S ⇒∗ w}. A language L is context free if L = L(G) for some
context-free grammar G. A context-free grammar is regular if each production is in
X × (� ·X ∪X ∪ {ε}). A language L is regular if L = L(G) for some regular grammar G.

Multithreaded programs. Let P be a multithreaded program with (pairwise disjoint)
sets T , V, C of threads, global variables, and counters, respectively. We show how to

2Observe that the L1 ‖ L2 depends on L1, L2 and also their underlying alphabet �1 and �2.
3We sometimes say nonterminals to avoid ambiguities with the program variables.
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assign to P a set of context-free grammars, one per element in T ∪ V ∪ C, such that
the asynchronous product of their associated languages corresponds to the terminating
executions of P.

For the sake of simplicity, we present the translation for the case in which V contains
only one variable x (from a theoretical point of view, all variables can be easily encoded
into one). We also assume w.l.o.g that upon termination all counters have value 0.

Each grammar is defined over a subalphabet of �, the alphabet of actions, which we
define next:

(1) (t, r, v, x), (t, w, v, x), meaning that thread t reads variable x and gets value v or sets
the value of x to v;

(2) (t,+, c), (t,−, c), meaning that thread t increases/decreases counter c;
(3) (t,=0, c), (t, =0, c), meaning that thread t observes that the current value of counter

c is zero or nonzero, respectively.

The actions of thread t, denoted by �t, are those having t as the first component. The
actions on store s (i.e., global variable or counter), denoted �s, are those having s as their
last component. Observe that distinct threads t, t′ have disjoint alphabets �t and �t′ .
Distinct stores s, s′ also have disjoint alphabets �s and �s′ ; however, �t and �s, where
t is a thread and s is a store, may intersect. Observe that � = ⋃

t∈T �t ∪ ⋃
s∈V ∪C �s.

We define {Gx}x∈T ∪V∪C to be the set of grammars associated to P. The set contains a
grammar Gt over �t for every thread t ∈ T , and a grammar Gs over �s for every store
s ∈ V ∪ C.

Let Ft be the system of flow graphs of thread t. The grammar Gt has a nonterminal
for each node of Ft. The axiom of Gt is given by the initial node of the initial flow graph
of Ft. The set of productions contains a special production Zt → ε for the final node
Zt of t, plus productions corresponding to the edges of Ft. We define the productions
associated to an edge X

�→ Y .
We consider first the case in which � corresponds to a condition or an assignment on

global variable x. For each condition x==c, the grammar Gt has a production

X → (t, r, c, x) Y,

and for every assignment x=f(x) and every value v productions

X → (t, r, v, x) (t, w, f (v), x) Y.

The cases in which � manipulates a counter or calls a procedure are encoded as
follows:

—if � is c++, c--, assume(c==0), or assume(c!=0), then Gt has a production

X → (t,+, c) Y, X → (t,−, c) Y, X → (t,=0, c) Y, or X → (t, =0, c) Y ; (1)

—if � = call P, then Gt has a production

X → P0 Y, (2)

where P0 is the initial node of procedure P. Gt has no other productions.

Given a global variable x, the associated grammar Gx has a nonterminal Xv for each
possible value v of x, and productions

Xv → (t, r, v, x) Xv, Xv → (t, w, v′, x) Xv′ , Xv → ε (3)

for every thread t and values v, v′.
Finally, we give the grammar Gc for a counter c. A counter can be easily encoded as

a pushdown automaton with one stack symbol (and a bottom of stack symbol), which
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in turn can be translated into a context-free grammar. The grammar Gc is the result
of this process, but for completeness we describe it in full. Gc has three nonterminals:
the axiom S0 and two further nonterminals 1 and #. If the initial value of the counter
is v0, then Gc has a production S0 → 1v0# (if v0 is large we can also use a more compact
encoding in which, loosely speaking, Gc encodes v0 in binary).

Further, Gc contains the following productions for every thread t:

# → (t,=0, c) # # → (t,+, c) 1 # # → ε, (4)

1 → (t, =0, c) 1 1 → (t,+, c) 1 1 1 → (t,−, c) (5)

Program executions as an asynchronous product of languages. Given the set
{Gx}x∈T ∪V∪C of grammars associated to P, we define L(P), the set of terminating ex-
ecutions of P, as the language

‖t∈T L(Gt) ‖x∈V L(Gx) ‖c∈C L(Gc).

It is easy to see that L(P) contains the words w ∈ �∗ satisfying the following property:
for every thread t, the projection of w onto �t is a word of L(Gt); and for every store s,
the projection of w onto �s is a word of L(Gs).

The total size of the grammars is polynomial in the size of the program (if the initial
values of the counters are described using the compact encoding) but exponential in the
size D of the finite domain of the global variable (where we assume that D is written
in binary).

Example 2.1. Figure 1 shows a multithreaded program in a C-like language. To ease
the presentation, let us assume that _H_ is equal to 8. The program has three threads,
A, B, and C. Threads A and B consist of a single recursive procedure and thread C consists
of a single assume statement. The program has a counter val initialized to 8 and one
global variable x whose initial value is 0. The terminating executions of the program
are those in which all threads reach their z line (i.e., za, zb, or zc). The program has
terminating executions, but even the shortest ones are relatively long:

(B, w, 1, x)

((A, r, 1, x)(A, w, 0, x)(B, w, 1, x))7

(A, r, 1, x)(A, w, 0, x)(A, r, 0, x)(A, w, 1, x)(A,−, val)

((B, w, 0, x)(A, r, 0, x)(A, w, 1, x)(A,−, val))7

(C,= 0, val).

In particular, observe that the execution has 30 context switches (i.e., alternations
between symbols of �A, �B, or �C).

Programs with more than one global variable. We have assumed that the multi-
threaded program P has only one variable x. From a theoretical point of view, since
variables have finite domains, all variables can be easily encoded into one. However,
from a practical point of view, it is convenient to remove this assumption. This can be
achieved at the price of a slightly more complicated translation into grammars, which
we now sketch.

We assume for simplicity that all global variables have the same finite range of
values. Each global variable x ∈ V now comes with a lock that ensures exclusive
access to x when evaluating a condition or performing an assignment. Every access to
x requires acquiring the lock.

For each thread t ∈ T and variable x ∈ V , we add to the alphabet of actions � new
symbols (t, l, x), (t, u, x), meaning that thread t locks/unlocks variable x. The alphabet
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�t of the thread t is thus extended with a pair of lock/unlock symbols for each variable
x ∈ V .

Next, we revisit the productions of Gt arising from conditions and assignments.
To simplify the presentation, assume that conditions (assignments) are of the form
x == f(y) and x=f(y), respectively, where x, y are global variables and f is some
function. For a condition x == f(y), the grammar Gt includes productions

X → (t, l, x)(t, l, y) (t, r, vy, y)(t, r, f (vy), x) (t, u, y)(t, u, x) Y (6)

for every value vy: first the thread acquires locks on x and y, then it checks the condition
x==f(y), and then it unlocks x and y. The case of an assignment is similar: just sub-
stitute (t, w, f (vy), x) for (t, r, f (vy), x). The productions modeling counter manipulation
and procedure calls remain the same.

Finally, we modify the definition of the grammars Gx for each global variable x ∈ V .
The grammar Gx has a nonterminal Xv for each possible value v of x, and productions

Xv → (t, l, x)X ′
v, X ′

v → (t, u, x)Xv, X ′
v → (t, r, v, x)X ′

v, X ′
v → (t, w, v′, x)X ′

v′ (7)

for every thread t and values v, v′. This ensures that a thread can only read or write a
variable after acquiring a lock.

Pattern-based verification. Pattern-based verification only explores the executions of
a multithreaded program conforming to what we call in this article patterns. Patterns
are regular expressions of the form w∗

1w
∗
2 . . . w∗

n, where n ≥ 1 and for every i, 1 ≤ i ≤ n,
wi is a nonempty word over the alphabet � of the actions of the program [Kahlon 2009b;
Ganty et al. 2012; Long et al. 2012].4

We study the pattern verification problem, defined as follows:

Definition 2.2 (Pattern Verification).
Instance: A program P, a pattern p.

Question: Is some word of L( p) an execution of P? (Formally, L(P) ‖ L( p)
?
= ∅.)

Consider for instance the terminating execution of Ex. 2.1 and the pattern

p = (B, w, 1, x)∗

((A, r, 1, x)(A, w, 0, x)(B, w, 1, x))∗

((A, r, 1, x)(A, w, 0, x)(A, r, 0, x)(A, w, 1, x)(A,−, val))∗

((B, w, 0, x)(A, r, 0, x)(A, w, 1, x)(A,−, val))∗

(C,= 0, val)∗

obtained by leaving unspecified the number of times that each segment must occur (i.e.,
exponents are replaced by Kleene stars). Loosely speaking, this pattern corresponds
to the potential executions of the program in which the recursive calls to A and B are
interleaved. By solving the pattern verification problem, we can automatically check
whether the program has executions of this form. Moreover, the verification algorithm
returns (an encoding of) all the tuples of numbers such that, after replacing the Kleene
stars by them, we obtain a real execution of the program. Finally, observe that the
same pattern can be used for any value of _H_.

4In the literature, patterns are also called bounded expressions and languages included in some bounded
expressions are called bounded languages.
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Fig. 2. Binary tree for the fixed-parameter analysis.

3. OUTLOOK AND PARAMETERS

In the rest of the article, we analyze the complexity of the pattern verification problem
in the size of the input (defined later) and then conduct a more detailed multiparameter
analysis.

In Section 4, we prove that the problem is in NP and also show that it is NP-complete.
In Section 5, we analyze the impact on the complexity of the five natural parameters
of the problem:

—Number of threads, denoted by t.
—Number of global variables, denoted by v.
—Number of counters, denoted by c.
—Maximal size of a thread, denoted by st.

The size of a thread is the number of transitions of all its flow graphs put together.
We define the size of a thread ti by sti, and for a program with threads 〈t1, . . . , tt〉, we
let st = maxt

i=1 sti.
—Size of the pattern, denoted by pa.

The size of a pattern p= w∗
1 . . . w∗

n denoted | p| is given by
∑n

i=1 |wi|, where |w| is the
length of w. Observe that pa ≥ n ≥ 1.

We study the complexity when a subset of those parameters has a fixed value. How-
ever, since each thread, variable, and counter contributes one grammar, the parameters
t, v, and c can be summarized into one: d := t + v + c. We thus study the complexity
when a subset of d, st, and pa has a fixed value. There are eight possible cases, cor-
responding to fixing the parameters of one of the eight subsets. We determine the
complexity for seven cases—we leave the (not very interesting) case in which d and
st are fixed, but pa is not, open. For these seven cases, we show that the problem
stays NP-complete unless both st and pa are fixed, in which case it becomes trivial (be-
cause, loosely speaking, there are only a fixed number of different instances). Figure 2
summarizes these results; a parameter wearing a hat reads as a fixed value parameter.

Since these results are not very discriminating (i.e., we get no nontrivial polynomial
or subexponential cases), in Section 6 we refine the analysis by taking into account the
structure of the threads. For this we define two new parameters:

—Maximal number of procedures in a thread, denoted by pr.
For a program with threads 〈t1, . . . , tt〉, we define pr = maxt

i=1 pri, where pri denotes
the number of procedures of thread ti. Observe that in every case pr ≥ 1.

—Maximal length of simple paths in the call graph of a thread, denoted by lsp.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 9, Publication date: August 2014.



Pattern-Based Verification for Multithreaded Programs 9:9

The call graph of a thread is defined as usual: the graph has a node for each procedure
and an edge from procedure P1 to procedure P2 if the flow graph of P1 contains a call to
P2. A path of the call graph is simple if it visits each node at most once. For a program
with threads 〈t1, . . . , tt〉, we denote by lspi the length (defined as the number of nodes)
of the longest simple path in the call graph of Ti and define lsp = maxt

i=1 lspi.

Observe that pr ≥ lsp ≥ 1. We show in Theorem 6.12 that for fixed d and pa, the pattern
verification problem can be solved in time stO(lsp+�log(pr+1)�), that is, in subexponential
time in the size of the threads. Observe that, even though in practice the maximal
number of procedures of a thread can be large, lsp is usually small. In the particular
case of nonrecursive programs, lsp is the maximal call depth.

Finally, notice that the previous list of parameters does not contain the size D (written
in binary) of the data domain. The complexity is exponential in D, and it is easy to
show that this exponential blowup is unavoidable. For this reason, we assume the data
domain has fixed size.

3.1. Parameters: From the Program Model to the Formal Model

The translation of a program into a collection of context-free grammars allows us to for-
mulate the pattern verification problem and their associated parameters in language-
theoretic terms.

The grammars G1, . . . , Gd derived from a multithreaded program can all be put in
program normal form, if necessary, with a constant increase in the number of variables
and productions.

A grammar G = (X , �,P, S) is in program normal form if every variable appears in
some production, and productions are of the form X → w, where w ∈ {ε}∪ (� ×X )∪X 2.
So the pattern verification problem reduces to the following language-theoretic
problem:

Definition 3.1 (Cooperation Modulo a Pattern (CMP)).
Instance: Context-free grammars G1, . . . , Gd in program normal form, and a pattern
pover � (the union of the alphabets of all the Gis).
Question: Is ‖d

i=1 L(Gi) ‖ L( p) = ∅ ?

The size of a grammar in program normal form is the number of its productions. No-
tice that since every node of each procedure of the multithreaded program is reachable,
the size of a grammar in program normal form is at least the number of variables.

We map the parameters of the pattern verification problem to parameters of CMP.
The number of threads, counters, and variables (d) is equal to the number of grammars;
the maximal size of a thread (st) is equal to the maximal size (as defined earlier) of the
corresponding grammars in program normal form; and the size of the pattern (pa) is
mapped to itself. We now describe the formal parameters corresponding to the maximal
number of procedures in a thread (pr) and to the maximal length of simple paths in
the call graph of a thread (lsp).

The translation from program threads to grammars “forgets” the procedure struc-
ture, but this obstacle can be easily overcome. Recall that each procedure has one single
initial node. We further assume that every procedure can be invoked through a chain
of calls from the main procedure (procedures that cannot be called at all can be easily
detected and removed). Under this assumption, the initial nodes of the procedures of
a thread ti correspond to the procedure variables of its corresponding grammar, say,
Gi = (Xi, �ti ,Pi, Si), defined as follows: a variable X is a procedure variable if X = Si
(corresponding to the initial node of the main procedure), or if Gi has a production
of the form Y → XZ (these productions come from procedure calls, and X is the ini-
tial node of the callee). The number of procedures of a thread is then equal to the
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number of procedure variables in its associated grammar. The call graph of a gram-
mar Gi corresponding to the thread is defined as follows: the nodes are the procedure
variables, and there is an edge from X to Y if X ⇒∗ vYw for some v,w ∈ (� ∪Xi)∗. It is
easy to see that lspi is equal to the length of the longest simple path in the call graph
of Gi.

4. NP-COMPLETENESS OF CMP

In this section, we prove the decidability5 of CMP. We further prove that it is NP-
complete in the size of the input, defined as the sum of the sizes of the grammars and
the pattern.

4.1. CMP Is NP-Hard

We show6 that CMP is NP-hard even for regular grammars and fixed pattern p = a∗.
From a programming point of view, this means that the verification problem is already
NP-hard for multithreaded procedureless programs, and the simplest pattern (actually,
in this case the pattern plays no active role; we include it because the formal definition
of CMP requires a pattern).

THEOREM 4.1. The following problem is NP-hard:
Instance: Regular grammars G1, . . . , Gd in program normal form over alphabet {a}.
Question: Is ‖d

i=1 L(Gi) ‖ L( p) = ∅ for the pattern p= a∗ ?

PROOF. We first observe that since the alphabets of G1, . . . , Gd and pare given by {a},
the asynchronous product (‖) behaves exactly like language intersection (∩). Hence, in
order to ease understanding, the proof uses ∩ instead of ‖. The proof is by reduction
from 3-CNF-SAT. Let � be a propositional formula with d variables and m clauses
c1, . . . , cm. We define for each clause ci a regular grammar Gi over the alphabet {a}
such that

⋂m
i=1 L(Gi) = ∅ if and only if � is satisfiable. Clearly, we then also have that⋂m

i=1 L(Gci ) ∩ L( p) = ∅ holds for p= a∗ if and only if � is satisfiable.
We need some preliminaries. We first assign to each variable v of � a prime number

nv, written in binary. We sketch how to compute these numbers in polynomial time. It
is well known that the ith prime number pi satisfies pi < i ln i + i ln ln i (this is an easy
consequence of the Prime Number Theorem describing the asymptotic distribution
of prime numbers). So we can compute d primes by applying a primality test (an
algorithm to decide whether a given number is a prime) to all numbers between 1 and
d ln d + d ln ln d. This procedure requires to test O(d ln d) numbers written in binary,
each of them of size O(log(d ln d)) = O(log d), in polynomial time in d. To achieve this, we
can use any primality test that, given a number in binary with x bits, decides whether
it is a prime in O(2x) time. So it even suffices to take the most primitive primality test:
divide by all numbers between 2 and 2x−1, and check if any of these divisions has rest
0.

We also need the preliminary notion of a number being a witness of the truth of
a clause. Given a clause c and a variable v, we say that a number 0 ≤ k is a (c, v)-
witness if v appears positively in c and k ≡ 0 mod nv or v appears negatively in c and
k ≡ 0 mod nv. Further, k is a c-witness if it is a (c, x)-witness, a (c, y)-witness, or a
(c, z)-witness where x, y, and z are the three variables occurring in c. For instance, if
c = x ∨ ¬y ∨ z and nx = 2, ny = 3, nz = 5, then k is a c-witness if k ≡ 0 mod 2, or
k ≡ 0 mod 3, or k ≡ 0 mod 5, that is, if k = 3, 9, 21, 27. Given an assignment φ to the
variables of �, let nφ be the product of the numbers of the variables set to true by φ. We

5The decidability of CMP when all the alphabets of all the languages coincide was originally proved by
Ginsburg [1966]. Although our result is more general, its proof is largely inspired by the proof of Ginsburg.
6The proof is due to Mikołaj Bojańczyk.
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claim that φ satisfies c if and only if nφ is a c-witness. For this, assume that φ satisfies
c. Then φ sets some variable x appearing positively in c to true or some variable y
appearing negatively in c to false. In the first case, by definition of nφ , we have nφ ≡ 0
mod nx, and so nφ is a (c, x)-witness; in the second case, we have nφ ≡ ny, and so nφ

is a (c, y)-witness. For the other direction of the claim, assume that nφ is a c-witness.
Then nφ is a (c, x)-witness for some variable x of c. By the definition of (c, x)-witness,
there are two cases: either nφ ≡ 0 mod nx and x appears positively in c, or nφ ≡ 0
mod nx and x appears negatively in c. In the first case, the assignment φ sets x to true,
and so, since x appears positively in c, the assignment satisfies c. The second case is
symmetric. This concludes the proof of the claim.

We are now ready to describe the reduction from 3-CNF-SAT. For each clause c let nc
be the product of the primes of the three variables occurring in c. We define a grammar
Gc in program normal form over the alphabet {a}. The grammar Gc has the numbers
0, 1, 2, . . . , nc −1 as grammar variables; 0 as axiom; productions k → a (k⊕c 1) for every
0 ≤ k ≤ nc − 1, where ⊕c is addition modulo nc; and a further production k → ε for each
c-witness k ≤ nc − 1. Clearly, we have L(Gc) = {ak | k is a c-witness}. By the previous
claim, an assignment φ satisfies c if and only if nφ is a c-witness, and so φ satisfies c if
and only if anφ ∈ L(Gc). So

⋂m
i=1 L(Gci ) = ∅ if and only if there is an assignment nφ that

satisfies all clauses c1, . . . , cm of �, that is, if and only if � is satisfiable.

4.2. CMP Is in NP

We show that CMP is in NP. The direct approach would be to show that if ‖d
i=1 L(Gi) ‖

L( p) = ∅, then there is a witness w ∈‖d
i=1 L(Gi) ‖ L( p) of polynomial length. However,

it is easy to construct instances of size k for which the shortest witness is the word a2k

(see also Theorem 5.2). So we proceed differently, in two steps: first, we polynomially
reduce CMP to a problem about Parikh images of context-free grammars, and then we
show that this problem is in NP.

We recall some basic notions about multisets.
Multisets. A multiset m : � → N maps each symbol of � to a natural number. M[�]

denotes the set of all multisets over �. The empty multiset is denoted ∅. The size of
a multiset m is |m| = ∑

σ∈� m(σ ). Given two multisets m, m′ ∈ M[�], and we define
m ⊕ m′ ∈ M[�] as the multiset satisfying (m ⊕ m′)(a) = m(a) + m′(a) for every a ∈ �.
Given m ∈ M[�] and c ∈ N, we define c ·m as the multiset satisfying (c ·m)(a) = c ·m(a)
for every a ∈ �. By fixing a linear order on �, every multiset m can be seen as a vector
of N

k where k = |�|, and vice versa.
Parikh image. The Parikh image of a word w ∈ �∗ is the multiset 
(w) : � → N

that assigns to each a ∈ � the number of occurrences of a in w. The Parikh image of a
language L defined over alphabet �, denoted by 
(L), is the set of Parikh images of its
words. Given �′ ⊆ �, we further define 
�′(L) as the projection of 
(L) onto �′.

We prove that CMP can be reduced to the following problem:

Definition 4.2 (Nondisjointness of Parikh Images (nDPK)).
Instance: Context-free grammars G1, . . . , Gd in program normal form over a common
alphabet � and a subalphabet �′ ⊆ �.
Question: Is

⋂d
i=1 
�′ (L(Gi)) = ∅ ?

We proceed with the following reduction step.

LEMMA 4.3. Given a CMP problem instance, that is, context-free grammars G1, . . . , Gd
and a pattern p = w∗

1 . . . w∗
n over alphabet � (the union of all the alphabet of Gis), we

can effectively construct an alphabet �̃ disjoint from � and context-free grammars

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 9, Publication date: August 2014.



9:12 J. Javier et al.

G′
1, . . . , G′

d each over alphabet � ∪ �̃ such that

‖d
i=1L(Gi) ‖ L( p) = ∅ iff

⋂d
i=1
�̃(L(G′

i)) = ∅.

PROOF. Define (i) �̃ = {a1, . . . , an} to be an alphabet disjoint from �, (ii) p̃ to be the
pattern over � ∪ �̃ given by (a1w1)∗ . . . (anwn)∗, and (iii) Li to be L(Gi). We claim that⋂d

i=1 
�̃

(
Li ‖ L( p̃)

) = ∅ if and only if ‖d
i=1 Li ‖ L( p) = ∅.

Let w ∈‖d
i=1 Li ‖ L( p). Because � (the alphabet of L( p)) is the union of all the

alphabets of Lis and the definition of ‖, we find that ‖d
i=1 Li ‖ L( p) = ⋂d

i=1(Li ‖ L( p)),
and hence that w ∈ Li ‖ L( p) for each 1 ≤ i ≤ d. Further, the definition of pshows that
there exist t1, . . . , tn ∈ N such that w = w

t1
1 . . . wtn

n . Next, since � and �̃ are disjoint, the
definition of ‖ and that of p̃show that (a1w1)t1 . . . (anwn)tn ∈ Li ‖ L( p̃) for every 1 ≤ i ≤ d.
For the same reason and by definition of 
, we further find that (t1, . . . , tn) ∈ 
�̃(Li ‖
L( p̃)) for every 1 ≤ i ≤ d, and hence that (t1, . . . , tn) ∈ ⋂d

i=1 
�̃(Li ‖ L( p̃)), and we are
done.

For the other implication, let (t1, . . . , tn) be a vector of
⋂d

i=1 
�̃

(
Li ‖ L( p̃)

)
. Thus, the

definition of p̃and its alphabet �∪�̃ shows that (a1w1)t1 . . . (anwn)tn ∈ Li ‖ L( p̃) for every
1 ≤ i ≤ d. Next, �̃ ∩ � = ∅ and the definition of p show that w

t1
1 . . . wtn

n ∈ Li ‖ L( p) for
every 1 ≤ i ≤ d, and so finally we have w

t1
1 . . . wtn

n ∈‖d
i=1 Li ‖ L( p) by definition of ‖ and

because p is defined over � (the union of the alphabets of all the Gis). This concludes
the proof of the claim.

Let us consider the language Li ‖ L( p̃). Observe that the language Li is context free,
while L( p̃) is a regular. Since context-free languages are closed under asynchronous
product with regular languages [Hopcroft and Ullman 1979], Li ‖ L( p̃) is context free.
Moreover, since the constructions proving closure under these operations are effective,
we conclude the lemma’s proof by defining G′

i to be the grammar over � ∪ �̃ such that
L(G′

i) = Li ‖ L( p̃).

For the complexity analysis in Section 6, we need a careful analysis of the relation
between Gi and G′

i. In particular, we need to determine the relation not only between
their sizes but also between their maximal number of procedure variables and their
length of the longest simple path in the call graph.

LEMMA 4.4. Given p = w∗
1 . . . w∗

n over alphabet � and a grammar G in program
normal form over some alphabet included in �, we can compute in polynomial time a
grammar G f in program normal form over alphabet � ∪ �̃ such that �̃ = {a1, . . . , an} is
disjoint from � and:

—L(G f ) = L(G) ‖ L( p̃) where p̃= (a1w1)∗ . . . (anwn)∗;
—Let st and st f be the size of G and G f , respectively. Similarly let pr and pr f be the

number of procedure variables in G and G f . Finally, let lsp and lsp f be the length
of the longest simple path in the call graph of G and G f . Then st f ∈ O(pa3 · st),
pr f ∈ O(pa2 · pr), and lsp f ∈ O(pa2 · lsp), where pa is the size of p.

PROOF. We sketch the construction of G f . A detailed proof is given in Appendix A.1.
Let G p̃ be a regular grammar with O(pa) variables such that L(G p̃) = L( p̃) (this
grammar clearly exists). The variables of G f are triples [Q1 XQ2], where X is a variable
of G and Q1, Q2 are variables of G p̃ such that Q2 is reachable from Q1. The productions
are chosen to satisfy that [Q1 XQ2] ⇒∗ w holds in G f if and only if (1) X ⇒∗ u holds in
G, where u results from w by deleting all symbols from �̃, and (2) Q1 ⇒∗ w Q2 in G p̃.

The construction is similar to the triple construction used to transform a pushdown
automaton into an equivalent context-free grammar.
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Let us start with st f , the size of G f , which is defined as the number of productions in
G f . Each production of G f is defined from a production of G and up to three variables
of Gp. Therefore, we find that st f is at most O(pa3 · st).

For pr f , the number of procedure variables in G f , observe that in the previous
construction, each variable X of G yields O(pa2) variables [Q1 XQ2] in G f , and that
[Q1 XQ2] is a procedure variable in G f only if X is a procedure variable in G. Therefore,
pr f is at most O(pa2 · pr).

For lsp f , the length of the longest simple path in the call graph of G f , observe that,
by the previous construction, if we project a path [Q1 X1Q′

1] . . . [QnXnQ′
n] of the call graph

of G f onto the variables of G (i.e., onto X1 X2 . . . Xn), we obtain a path of the call graph
of G. Therefore, lsp f is at most O(pa2 · lsp).

4.2.1. nDPK is in NP. Using Lemma 4.3, we can show that CMP is decidable. The central
proof arguments are (a) given a context-free language, its Parikh image is an effectively
computable semilinear set [Parikh 1966], and (b) emptiness of the intersection of semi-
linear sets is decidable [Ginsburg 1966]. For our NP-completeness result, we need
further results [von zur Gathen and Sieveking 1978; Verma et al. 2005] showing that
semilinear sets are exactly the sets definable by (existential) Presburger formulas, and
that satisfiability of existential Presburger formulas is NP-complete. We briefly recall
these notions.

Given k ≥ 1, c ∈ N
k, and P = {p1, . . . , pm} ⊆ N

k, we denote by L(c; P) the subset of N
k

defined as follows:

L(c; P) = {m ∈ N
k | ∃λ1, . . . , λm ∈ N : m = c ⊕ (λ1 · p1) ⊕ · · · ⊕ (λm · pm)}.

A set S ⊆ N
k is linear if S = L(c; P) for some c ∈ N

k and some finite P ⊆ N
k. A semilinear

set is a finite union of linear sets.
Existential Presburger formulas φ are defined by the following grammar and inter-

preted over natural numbers:

t ::= 0 | 1 | x | t1 + t2 φ ::= t1 = t2 | t1 > t2 | φ1 ∧ φ2 | φ1 ∨ φ2 | ∃x.φ1.

Given an existential Presburger formula φ, we denote by �φ� the set of valuations of
the free variables of φ that make φ true; φ is satisfiable if and only if �φ� is nonempty.
Satisfiability of existential Presburger formulas is an NP-complete problem (see, e.g.,
von zur Gathen and Sieveking [1978]).

A set S ⊆ N
k is (existential) Presburger definable if S = �φ� for some (existential)

Presburger formula φ. It is well known that a set is Presburger definable if and only if
it is existential Presburger definable if and only if it is semilinear.

We use the following result by Verma et al. [2005, Theorem 4]: given a context-
free grammar G over �, one can compute in linear time an existential Presburger
formula φG such that �φG� = 
(L(G)). We briefly sketch the proof for future reference.
Let G = (X , �,P, S). A result of Esparza [1997] characterizes 
(L(G)) as the set of
all multisets m ∈ M[P] that are the solution of a certain system of linear equations.
Intuitively, the system of equations falls into two parts: (1) Flow equations about the
production and consumption pattern of productions. The occurrence of a production
produces and consumes variables (e.g., X → YaZ consumes one instance of X and
produces one instance of Y and Z). Flow equations capture the constraint that each
variable must be produced and consumed an equal number of times. (2) Connectivity
equations. The flow equations allow one to produce variables “out of nowhere,” as long
as they are consumed again. The connectivity equations capture that a production
with head X can only fire if there is a chain of productions connecting the axiom of
the grammar to X, such that every production in the path fires. Then, Verma et al.
[2005, Theorem 4] show that this set of multisets is Presburger definable by explicitly
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constructing an existential Presburger formula in linear time in the size of G. We refer
the reader to the corresponding publications [Verma et al. 2005; Esparza 1997] for
more details.

THEOREM 4.5. CMP is in NP.

PROOF. Following Lemmas 4.3 and 4.4, it suffices to show that nDPK is in NP. Let
G1, . . . , Gd be an instance of nDPK, and let φGi be the existential Presburger formula
of Verma et al. [2005, Theorem 4] defining 
(L(Gi)). We assume that for each i, j,
1 ≤ i < j ≤ d, we have that φGi and φGj share no variable. We further assume variables
of the form x(i)

aj
that counts the number of occurrences of aj ∈ �̃ in 
(L(Gi)). Let

� = φG1 ∧ · · · ∧ φGd ∧ x(1)
a1

= · · · = x(d)
a1

∧ x(1)
an

= · · · = x(d)
an

.

We have that � is satisfiable if and only if
⋂d

i=1 
�̃(L(Gi)) = ∅. Since existential for-
mulas are closed under conjunction, � is an existential Presburger formula. Since
satisfiability of existential Presburger formulas is NP-complete (see, e.g., von zur
Gathen and Sieveking [1978]), the result follows.

5. A MULTIPARAMETER ANALYSIS

We determine the complexity of CMP for instances in which the value of one or more
of the three parameters d (number of grammars), st (maximal size of a grammar), and
pa (size of the pattern) are fixed, that is, bounded by a fixed constant not part of the
input. Since each parameter can be fixed or not, there are in principle eight possible
cases. We use p̂ to denote that a parameter p is fixed and p to denote that it is not
fixed. So, for instance, the case in which d is fixed but st and pa are not is denoted by
CMP(d̂, st, pa).

Figure 2 shows our seven complexity results as a full binary tree, where at each node
we choose between fixing a parameter or not. Leaves are labeled either with the upper
bound “Trivial” (meaning that the problem has only finitely many instances, which
can be tabled), with the lower bound “NP-hard” (recall that even if no parameter is
fixed, the problem is in NP), or with “Open,” which has the expected meaning. Since
we are mostly interested in the dependency of the complexity when st, d, or both grow,
we leave out the open case. The path leading to Theorem 5.2 indicates that if st is not
fixed, then CMP is NP-hard, even if d and pa are fixed. It follows that the problems
associated with all the other leaves of the left subtree are NP-hard too. In the right
subtree, Theorem 5.3 proves that if st is fixed but neither d nor pa is fixed, then CMP is
NP-hard, which does not give information about the other leaves. Sections 5.1 and 5.2
consider the cases in which st is arbitrary and fixed, respectively.

5.1. Threads of Arbitrary Size

We assume that st is not fixed. We show that CMP remains NP-complete even for two
grammars and fixed pattern a∗, that is, that CMP(st, d̂, p̂a) is NP-complete. The proof
is by reduction from the 0-1 Knapsack problem.

Definition 5.1 (0-1 Knapsack Problem).
Instance: (1) A set of objects {o1, . . . , om} and their associated weights {w1, . . . , wm},
which are positive integers given in binary. (2) A positive integer W given in binary.
Question: Is there a subset S ⊆ {o1, . . . , om} such that the weight of S is equal to W?

THEOREM 5.2. The following problem is NP-hard:
Instance: Two context-free grammars G1, G2 in program normal form with alphabet
{a}.
Question: Is L(G1) ‖ L(G2) ‖ L( p) = ∅ for pattern p= a∗ ?
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PROOF. Let us first observe that since the alphabets of G1, G2, and p are given
by {a}, the asynchronous product (‖) behaves exactly like language intersection (∩).
Hence, to ease the reader understanding, the proof uses ∩ instead of ‖. The proof is
by reduction from the 0–1 Knapsack problem: let {o1, . . . , om}, {w1, . . . , wm}, W be an
instance of the 0-1 Knapsack problem, and b be the maximal number of bits needed
to encode any of the integers {w1, . . . , wm, W}. Define G to be the grammar over unary
alphabet {a} with productions given by the union of the sets (8) through (13) shown
later. Intuitively, a derivation of G nondeterministically selects a subset of objects as
follows. The object oi is selected by applying the production Si → S(b)

i (8) and is omitted
by applying Si → Si+1 (9). If oi has been selected, then the derivation outputs awi

through the variable S(b)
i using the productions in (10) and (11) and then comes back

to Si+1 using production (12). Formally, we have S(b)
i ⇒∗ awi Si+1. Indeed, observe that

wi = ∑b
j=0 jth bit of wi ×2 j , and the productions of (10)–(11) follow the binary encoding

of wi: if the jth bit is 0, then the derivation moves to the next bit, and if it is 1, then the
grammar outputs a2 j

through Aj . The productions of (13) make use of a well-known
encoding to ensure {w | Ak ⇒∗ w} = {a2k} for every 0 ≤ k ≤ b. Finally, the axiom of G
is S1. {

Si → S(b)
i | 1 ≤ i ≤ m

}
(8)

{Si → Si+1 | 1 ≤ i ≤ m− 1} ∪ {Sm → ε} (9){
S(k)

i → Ak S(k−1)
i | 1 ≤ i ≤ m∧ 1 ≤ k ≤ b ∧ bit k of wi is 1

}
(10){

S(k)
i → S(k−1)

i | 1 ≤ i ≤ m∧ 1 ≤ k ≤ b ∧ bit k of wi is 0
}

(11){
S(0)

i → Si+1 | 1 ≤ i ≤ m− 1
} ∪ {

S(0)
m → ε

}
(12)

{Ak → Ak−1 Ak−1 | 1 ≤ k ≤ b} ∪ {A0 → aZ} ∪ {Z → ε} (13)

We now turn to W and define the grammar GW by{
W (k) → Ak W (k−1) | 1 ≤ k ≤ b ∧ bit k of W is 1

}
(14)

{
W (k) → W (k−1) | 1 ≤ k ≤ b ∧ bit k of W is 0

} ∪ {
W (0) → ε

}
, (15)

where W (b) is the axiom. From the reasoning earlier, we find that L(G) = {aW }.
Clearly, G and GW can be computed in polynomial time and are in program normal

form. Moreover, it is easily seen that L(G) ∩ L(GW ) ∩ L( p) = ∅ if and only if there is a
subset S ⊆ {o1, . . . , om} such that the weight of S is W .

Notice the similarities and differences with Theorem 4.1. Theorem 5.2 shows NP-
hardness using a constant number of context-free grammars over a unary alphabet;
hence, the pattern necessarily is a∗. Although the NP-result of Theorem 4.1 is also on
the unary alphabet, it uses d regular languages.

5.2. Fixed-Sized Threads

We assume that st is fixed. The most interesting case is that in which neither d nor pa
is fixed, that is, CMP(ŝt, d, pa). This corresponds to multithreaded programs in which
each thread has at most a fixed size, but the number of threads is arbitrary. We prove
that this case remains NP-complete. Actually, we prove that NP-completeness holds
even for the special case of regular grammars, which will be important for the refined
multiparameter analysis of Section 6.
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THEOREM 5.3. The following problem is NP-hard:
Instance: Regular grammars G1, . . . , Gd in program normal form of fixed size, a pattern
pover the union of all their alphabets.
Question: Is ‖d

i=1 L(Gi) ‖ L( p) = ∅?

PROOF. By reduction from 3-CNF-SAT. Let � be a propositional formula with k
variables x1, . . . , xk and d clauses c1, . . . , cd. We define for each clause ci a regular
grammar Gi such that ‖d

i=1 L(Gi) = ∅ if and only if � is satisfiable. Let ci = �i1 ∨�i2 ∨�i3 ,
where 1 ≤ i1 < i2 < i3 ≤ k and � j ∈ {xj, x j}. Define Gi as a regular grammar over
the alphabet �i = {xi1 , xi1 , xi2 , xi2 , xi3 , xi3} accepting the language consisting of all the
possible valuations of xi1 , xi2 and xi3 (in that order) making ci true. Note that this
language contains no more than eight words and so Gi is of fixed size.

We then go on proving that ‖d
i=1 L(Gi) = ∅ if and only if � is satisfiable.

First, we claim that no word of ‖d
i=1 L(Gi) contains more than one literal of the same

variable. Assume some w ∈‖d
i=1 L(Gi) contains occurrences of both xj and x j . Choose �i

such that {xj, x j} ⊆ �i, and let wi be the projection of w onto �i. Then wi also contains
occurrences of both xj and x j and, by the definition of ‖, we have wi ∈ L(Gi). But this
contradicts that wi is a valuation of the literals of ci making ci true, and the claim is
proved.

Consider now any word w ∈‖d
i=1 L(Gi). By the previous claim, w encodes an assign-

ment of �. Moreover, for every clause ci, the projection wi is a satisfying assignment of
ci. So w is a satisfying assignment of �.

Finally, we have to find a pattern p that preserves emptiness; that is, we want a
pattern p such that ‖d

i=1 L(Gi) = ∅ if and only if ‖d
i=1 L(Gi) ‖ L( p) = ∅. For this, it is

easily seen that p= x∗
1(x1)∗ · · · x∗

k(xk)∗ is such a pattern, and we are done.

In the remaining cases, at least one of d and pa is fixed as well. Consider the case in
which we fix the length pa of p. This means that the number n of words in pis fixed and
so is the length of each of them. Since st is fixed, so is each sti, which means that Gi has
a fixed number of productions. Moreover, because p has fixed size, we conclude from
the construction of Appendix A.1 that G′

i has a fixed number of productions. Observe
that fixing pa also yields that all grammars G′

i are over a common alphabet of fixed
size al. Therefore, we obtain that there is only a fixed number of possible grammars
G′

i, and hence a fixed number of possible instances of nDPK. This means that all the
instances of CMP(ŝt, d, p̂a) are mapped to a fixed finite number of instances of nDPK
in polynomial time as shown in Lemmas 4.3 and 4.4. It follows that the problem is
trivially polynomial.

We leave the case in which we fix d but not pa open. The case is not very interesting
in our setting, because if both st and d are fixed, then we only have a fixed finite number
of possible tuples of grammars. On the other hand, since the length of the pattern is
arbitrary, the reduction from CMP to nDPK maps the instances of CMP into an infinite
number of instances of nDPK, and we cannot apply the argument above.

6. A REFINED MULTIPARAMETER ANALYSIS: TAKING PROCEDURAL STRUCTURE
INTO ACCOUNT

In this section, we examine in more detail the left subtree of Figure 2 (grammars
of arbitrary size). The question is whether we can get better upper bounds for CMP
when the procedural call graph of the grammars is “simple.” We refine our analysis by
considering also the parameters lsp and pr.

We first show that if the pattern can be arbitrarily long, then fixing pr and/or lsp
does not help: CMP remains NP-complete (Theorem 6.2 in Section 6.1).
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We then proceed to prove that if the length of the pattern is fixed, then fixing pr or lsp
does help. We do so by proving that in this case, CMP can be solved in stO(lsp+�log(pr+1)�)

time. Therefore, if pr is fixed, then, since pr ≥ lsp, we get a polynomial algorithm in st.
If only lsp is fixed, then we get a stO(�log(pr+1)�) algorithm, which is subexponential in st.

This complexity result is the main result of the article, and we divide its presentation
into two parts. The case of regular grammars is considered in Section 6.2, and the
general case in Section 6.3. The case of regular grammars is proved by reduction to
the emptiness problem for bounded-reversal counter machines, which is known to be
polynomial [Gurari and Ibarra 1981]. Intuitively, bounded-reversal counter machines
are counter machines whose counters can be in “nonincreasing” or “nondecreasing”
mode and can only change mode a bounded number of times. The counter machine
guesses a sequence of words generated by the grammars and uses the counters to
check that, for each letter of the alphabet, all the words contain the same number of
occurrences of the letter. The general case is proved by reduction to the case of regular
grammars. The key of the proof is a procedure that, given a grammar G = (X , �,P, S)
in program normal form, constructs in time stO(lsp+�log(pr+1)�) a regular grammar A such
that 
(L(A)) = 
(L(G)). While the existence of A is an easy consequence of Parikh’s
theorem [Parikh 1966], the complexity bound requires one to apply a recent alternative
proof that explicitly constructs the grammar A [Esparza et al. 2011].

6.1. Arbitrary Pattern Length

The proof of our first result is by reduction from the bounded Post Correspondence
Problem [Garey and Johnson 1979].

Definition 6.1 (Bounded Post Correspondence Problem).
Instance. Two sequences a = (a1, . . . , ad) and b = (b1, . . . , bd) of words over an alphabet
� and a positive integer K ≤ d.
Question: Is there a nonempty sequence i1, . . . , ik of k ≤ K (not necessarily distinct)
integers, each between 1 and d, such that ai1ai2 . . . aik = bi1bi2 . . . bik?

THEOREM 6.2. The following problem is NP-hard:
Instance: Two context-free grammars G1, G2 in program normal form, each of them
with one procedure variable, a regular grammar R in program normal form, and a
pattern pover the union of all previous alphabets.
Question: Is L(G1) ‖ L(G2) ‖ L(R) ‖ L( p) = ∅ ?

PROOF. Let a, b, K be an instance of the bounded Post Correspondence Problem.
Assume � = {1, . . . , d} is disjoint from �. We construct the context-free grammars:

G1 = ({X}, � ∪ �, {X → ai X i | 1 ≤ i ≤ d} ∪ {X → ε}, X)
G2 = ({Y }, � ∪ �, {Y → bi Y i | 1 ≤ i ≤ d} ∪ {Y → ε}, Y ).

Define the regular grammar R over � such that L(R) = ⋃K
i=1 �i, and the pattern pover

� ∪ � such that p = (a∗
1 . . . a∗

d)K(1∗ . . . d∗)K. The language R over � coincides with the
set of nonempty sequences i1, . . . , ik of k ≤ K (not necessarily distinct) integers, each
between 1 and d. So by enforcing that a witness in L(G1) ‖ L(G2) ‖ L(R), if any, contains
no more than K occurrences of integers between 1 and d, R implements the bound K.
The pattern p is defined so as to not exclude any possible witness in L(G1) ‖ L(G2) ‖
L(R), that is, L(G1) ‖ L(G2) ‖ L(R) = ∅ if and only if L(G1) ‖ L(G2) ‖ L(R) ‖ L( p) = ∅.
Observe that, since K ≤ d, the size of p is polynomial in the size of the instance.
Notice that G1 and G2 can be easily put in program normal form: replace a production
X → ai X i by productions X → ai X ′

i, X ′
i → X X ′′

i , X ′′
i → i Z, Z → ε, where X ′

i , X ′′
i , and

Z are fresh variables. Finally, observe that X is the only procedure variable. It follows
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easily from the construction that L(G1) ‖ L(G2) ‖ L(R) ‖ L( p) = ∅ if and only if the
bounded PCP instance is positive.

Notice that in this reduction, neither the number of words in p nor their length is
fixed. By means of a more involved reduction, it is possible to show NP-hardness with
a single word only (but arbitrarily long). The proof is rather technical, and we present
it in Appendix A.2.

6.2. Fixed-Length Patterns: The Case of Regular Grammars

We prove that CMP(st, d̂, p̂a) can be solved in stO(lsp+�log(pr+1)�) time. This section consid-
ers the case in which the grammars have the simplest possible procedural structure:
grammars have a single procedure variable (the axiom). This corresponds to the case
of regular grammars, that is, the case pr = lsp = 1. So our task is to provide an stc

algorithm for some constant c or, since d and pa are fixed, a st f (d,pa) algorithm for some
function f .

As a first step, we observe that, because of the reduction from CMP to nDPK shown
in Section 4.2, it suffices to prove the following: given regular grammars A1, . . . , Ad

over a common alphabet � of size al and some subalphabet �′,
⋂d

i=1 
�′(L(Ai)) = ∅ can
be checked in time O((|A1|+ · · ·+ |Ad|)h(d,al)) for some function h (observe that instances
of CMP with fixed pa are reduced to instances of nDPK with fixed al). The proof is by
reduction to the emptiness problem for bounded-reversal counter machines, which is
known to be polynomial [Gurari and Ibarra 1981].

An m-counter machine is a tuple M = (Q, δ, q0, F), where Q is a finite nonempty set
of states, δ ⊆ Q× {1, . . . , m} × {inc, dec, skip, zero} × Q is the set of transitions, q0 is the
initial state, and F is the set of final states. A configuration of M is a tuple (q, n1, . . . , nm),
where q ∈ Q and ni ∈ N for every 1 ≤ i ≤ m. Intuitively, (q, i, op, q′) ∈ δ means that
if M is in state q and op is enabled7 w.r.t. the value of counter i, then M updates
counter i according to op and moves to state q′. Formally, given two configurations
c = (q, n1, . . . , nm) and c′ = (q′, n′

1, . . . , n′
m), we write c → c′ if there is a transition

(q, i, op, q′) ∈ δ such that one of the following holds:

—op = inc, n′
i = ni + 1, and n′

j = nj for every j ∈ {1, . . . , m}, j = i;
—op = dec, ni > 0, n′

i = ni − 1, and n′
j = nj for every j ∈ {1, . . . , m}, j = i;

—op = skip, and n′
j = nj for every j ∈ {1, . . . , m};

—op = zero, ni = 0, and n′
j = nj for every j ∈ {1, . . . , m}.

A run of M is a sequence c0 → c1 → · · · → cn such that c0 = (q0, 0, . . . , 0). Moreover,
the previous run is accepting if the state of cn is given by (qf , 0, . . . , 0) where qf ∈ F.

A run is k-bounded-reversal if every counter alternates at most k times from a non-
increasing mode to a nondecreasing mode (or vice versa).

THEOREM 6.3 (BY GURARI AND IBARRA [1981]). Let m and r be fixed positive integers.
Given an m-counter machine M, the problem of deciding whether M has an r-bounded-
reversal accepting run can be solved in polynomial time.

The following proposition reduces nDPK for regular grammars to the emptiness
problem for bounded-reversal counter machines.

PROPOSITION 6.4. Let A1, . . . , Ad be regular grammars over common alphabet � and
subalphabet �′ ⊆ �. There is a counter machine M of size O(|A1| + · · · + |Ad|) with

7inc and skip are enabled in every state, while dec and zero are not.
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2 · |�′| counters such that
⋂d

i=1 
�′(L(Ai)) = ∅ if and only if M has a d-bounded-reversal
accepting run.

PROOF. The construction is simple, and we only sketch the details. M will operate on
two sets of counters, C1 and C2, where Ci = {cia | a ∈ �′} for i = 1, 2.

Assume Ai = (Qi, �, δi, q0i) for each 1 ≤ i ≤ d; we first construct a regular grammar
A over alphabet � with variables

⋃d
i=1 Qi, axiom q01, and production rules obtained by

replacing in
⋃n

i=1 δi productions q → ε where q ∈ Qi and 1 ≤ i < d with q → q0i+1. It
is routine to check that L(A) = L(A1) · . . . · L(Ad). For simplicity, assume d is even (the
case where d is odd is similar). Hence, we define the counter machine M from A (which
is now seen as an automaton) as follows. Replace

—each production q → aq′ of δ1 by a transition that increases c1a if a ∈ �′ else skip;
—each production q → aq′ of δd by a transition that decreases c1a if a ∈ �′ else skip;
—each production q → q′ of δi, where 1 ≤ i ≤ d, by a transition skip;
—each production q → aq′ of δi, where 1 < i < d and i even, by a sequence of two

transitions, the first decreasing c1a and the second increasing c2a if a ∈ �′ else skip;
—each production q → aq′ of δi, where 1 < i < d and i odd, by a sequence of two

transitions, the first decreasing c2a and the second increasing c1a if a ∈ �′ else skip;
—each production q → q′ where q ∈ Qi and q′ ∈ Qi+1 with 1 < i < d and i even by a

sequence of |�′| transitions checking that c1a equals to 0 for each a ∈ �′;
—each production q → q′ where q ∈ Qi and q′ ∈ Qi+1 with 1 < i < d and i odd by a

sequence of |�′| transitions checking that c2a equals to 0 for each a ∈ �′.

From Proposition 6.4 and Theorem 6.3, it follows that:

COROLLARY 6.5. Let A1, . . . , Ad be regular grammars over common alphabet � and
subalphabet �′ ⊆ �. Assume d and al, the size of �, are fixed. Then nDPK, which is the
problem of deciding

⋂d
i=1 
�′ (L(Ai)) = ∅, can be solved in polynomial time.

6.3. Fixed-Length Patterns: The Case of Context-Free Grammars

We show that CMP(st, d̂, p̂a) can be solved in stO(lsp+�log(pr+1)�) for context-free grammars
in program normal form.

Before proceeding, the following notation is called for. Given two languages L1 and
L2 over �, we write L1 =
 L2 (resp. L1 ⊆
 L2) to denote that 
(L1) is equal to (resp.
included in) 
(L2). Also, given w,w′ ∈ �∗, we abbreviate {w} =
 {w′} to w =
 w′.

Let G1, . . . , Gd and p be an instance of CMP(st, d̂, p̂a), and let G′
1, . . . , G′

d be the
instance of nDPK obtained as a result of the reduction of Section 4.2. Observe that since
pa is fixed, G′

1, . . . , G′
d share the common alphabet � ∪ �̃ of fixed size. Furthermore,

following Lemma 4.4 and since pa is fixed, we find that st′ ∈ O(st), lsp′ ∈ O(lsp), and
pr′ ∈ O(pr). Therefore, it suffices to show that

⋂d
i=1 
�̃(L(G′

i)) = ∅ can be decided
in st′O(lsp′+�log(pr′+1)�) time. We proceed by reduction to the regular case of Section 6.2.
We compute for each G′

i a regular grammar (or nondeterministic automaton) Ai in
time st′i

O(lsp′
i+�log(pr′

i+1)�) such that L(Ai) =
 L(G′
i). It then suffices to apply the result of

Corollary 6.5 for regular grammars.
So we are left with the following problem: given a grammar G = (X , �,P, S) in

program normal form, construct in time stO(lsp+�log(pr+1)�) a regular grammar A such
that L(A) =
 L(G). For this we proceed as follows. Let K = lsp+�log(pr+1)�. We define
a family of regular grammars Ak

G = (Qk
G, �, δk

G, q0) such that Ak
G can be computed in

time stO(k) and prove that L(AK
G) =
 L(G).
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Fig. 3. A parse tree of A1 → A1 A2|a, A2 → bA2aA2|cA1, where A1 is the axiom.

Definition 6.6. The regular grammar AG = (QG, �, δG, q0) is defined as follows:

—QG is the set of all multisets m ∈ M[X ] and the axiom q0 is the multiset 
(S);
—δG = {∅ → ε}∪δ′

G, where δ′
G contains a production m → α ·m′ if and only if P contains

a production X → αβ, such that α ∈ �∗, β ∈ X ∗, and m′ ⊕ 
(X) = m ⊕ 
(β).

For every k ≥ 1, the grammar Ak
G = (Qk

G, �, δk
G, q0) is the restriction of Ato the multisets

m ∈ M[X ] containing at most k elements.

Observe that |Qk
G| = O(|X |k) and |δk

G| ≤ |Qk
G|2 · |�|. Therefore, Ak

G can indeed be
computed in time stO(k).

We have to prove L(AK
G) =
 L(G). It was shown in Esparza et al. [2011,

Proposition 2.1] that L(Ak
G) ⊆
 L(G) holds for every k ≥ 1, and moreover that the

equality L(Ak
G) =
 L(G) holds for k = |X | + 1. However, this is not good enough for our

purposes, because |X | can be arbitrarily larger than K. So we have to strengthen this
result. Since L(AK

G) ⊆
 L(G), it suffices to prove L(G) ⊆
 L(AK
G). In Section 6.3.1, we

show that this L(G) ⊆
 L(AK
G) is implied by a condition on the dimension of the parse

trees of G, a notion taken from Esparza et al. [2011]. In Section 6.3.2, we prove that
this condition holds.

6.3.1. A Technique for Proving L (G) ⊆� L (AK
G). We first introduce some definitions about

parse trees. A labeled tree (t, λ) consists of a finite tree t and a labeling function λ, which
maps each node of t onto some label taken from a finite set. A labeled tree is a parse tree
for G = (X , �,P, S) if it satisfies the following properties: (1) the axiom labels the root,
nodes with children are labeled by variables, leaves are labeled by an element of �∪{ε},
and nodes labeled by ε are the only child of their parent; and (2) every node n with
children {n1, . . . , nk} where k ≥ 1 is such that (λ(n), λ(n1) . . . λ(nk)) ∈ P. In the sequel,
we mean parse tree when we write tree. Because it is convenient, we identify nodes
and the subtrees of which they are root. The yield of tree t is denoted �(t) and is given
by the concatenation from left to right of the labels of the leaves of t. Every derivation
S ⇒∗ w can be parsed into a tree t such that �(t) = w. We extend the definition of yield
to sets of trees as follows: let T be a set of trees of G; then �(T ) = {�(t) | t ∈ T } ⊆ L(G).
Figure 3 shows the tree of the derivation A1 ⇒ A1 A2 ⇒ aA2 ⇒ acA1 ⇒ aca.

Let t be a tree for a grammar G. A child of t is called proper if its root is not a leaf, that
is, if it is labeled with a variable. The dimension d(t) of a tree t is inductively defined
as follows. If t has no proper children, then d(t) = 0. Otherwise, let t1, t2, . . . , tr be the
proper children of t sorted such that d(t1) ≥ d(t2) ≥ · · · ≥ d(tr). Then

d(t) =
{

d(t1) if r = 1 or d(t1) > d(t2)

d(t1) + 1 if d(t1) = d(t2)
.
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Fig. 4. A decomposition t1, t2 such that t = t1 · t2 is the parse tree of Figure 3.

The set of trees of G of dimension k is denoted by T (k), and the set of all trees is
denoted by T . It is routine to check that �(T ) = L(G).

Our technique is based on “tree surgery” of a tree t: intuitively, surgery cuts a “piece”
out from a subtree of t and “inserts” it into another subtree. The description of the
procedure requires some notations.

We write t = t1 · t2 to denote that t1 is a tree, except that exactly one leaf � is labeled
by a variable, say, A, instead of a terminal; that the tree t2 is a tree with root A; and
that the tree t is obtained from t1 and t2 by replacing the leaf � of t1 by the tree t2.
Figure 4 shows an example.

Finally, say that two trees t, t′ are equivalent if (1) the label of their root coincides
and (2) the two multisets given by the labels of all the nodes of t and t′ coincide. Note
that if t and t′ are equivalent, then �(t) =
 �(t′).

The results of Esparza et al. [2011] link the dimension of trees to the languages of
the regular grammars Ak

G: their result implies that, for any G in program normal form,
�(T (i)) ⊆
 L(Ak+1

G ) holds for every 0 ≤ i ≤ k. Applying this result, we immediately
obtain:

PROPOSITION 6.7. If �(T ) ⊆


⋃k
i=0 �(T (i)) for some k ≥ 0, then L(Ak+1

G ) =
 L(G).

PROOF. If �(T ) ⊆


⋃k
i=0 �(T (i)), then, by Esparza et al. [2011, Lemmas 2.2 and 2.4],

we have �(T ) ⊆
 L(Ak+1
G ), and hence L(G) ⊆
 L(Ak+1

G ) and finally L(Ak+1
G ) =
 L(G)

since L(Ak
G) ⊆
 L(G) for every k ≥ 1 by Esparza et al. [2011, Proposition 2.1].

This proposition yields a technique for proving L(G) ⊆
 L(Ak+1
G ): show that for every

tree t there is another tree t′ of dimension at most k such that �(t) =
 �(t′). Therefore,
L(G) ⊆
 L(AK

G) holds if �(T ) ⊆


⋃K−1
i=0 �(T (i)).

6.3.2. Proving �(T ) ⊆�

⋃K−1
i=0 �(T (i)). We start with a lemma showing that when the

dimension of a tree is “high enough,” then there exists a path from the root to a leaf
where the same procedure variable repeats.

LEMMA 6.8. If a tree t of G is such that d(t) ≥ lsp, then there is a path from the root
to a leaf in which two distinct nodes na and nb are such that λ(na) = λ(nb) = Z for some
procedure variable Z.

PROOF. The definition of dimension and d(t) ≥ lsp show there must exist a path
π = n0n1 . . . ns in t such that n0 is the root of t and ns has two children n� and nr (in
the left-to-right order) such that d(n�) = d(nr) = lsp − 1. Now by repeating the previous
reasoning (taking n� as the root), one can build a path π ′ from n0 (the root of t) to a leaf
along which there exist lsp + 1 nodes {n0, ni1 , . . . , nilsp} such that each of them is labeled
by a procedure variable. Finally, we necessarily have two distinct nodes na and nb along
π ′ such that λ(na) = λ(nb) = Z and Z is a procedure variable.

We need a further property of the dimension of a tree:
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LEMMA 6.9. Let t be a tree such that d(t) ≥ a + b for some positive integers a and b.
Then t has at least 2a disjoint subtrees of dimension at least b (where two subtrees of t
are disjoint if their sets of nodes are disjoint).

PROOF. We say that t is (a, b)-good if there is a set of 2a pairwise disjoint subtrees of t
of dimension at least b and call such set an (a, b)-witness of t. We proceed by induction
on the number of nonleaf nodes of t. If t has only one nonleaf node, then it has no
proper child, and hence d(t) = 0, which implies a = b = 0, and so the singleton set {t}
is an (0, 0)-witness of t. If t has more than one nonleaf node, then by the definition of
dimension, there are two cases:

—t has two children t1, t2 such that d(t1) = d(t2) = d(t) − 1. Since the height of t1 and t2
is smaller than the height of t, we can apply the induction hypothesis, and so t1 and
t2 are both (a − 1, b)-good. Let S1, S2 be (a − 1, b)-witnesses of t1 and t2. Since t1 and
t2 are disjoint, the elements of S1 ∪ S2 are pairwise disjoint, and hence S1 ∪ S2 is an
(a, b)-witness of t.

—t has an only child t′ such that d(t) = d(t′). In this case, by induction hypothesis, t′ is
(a, b)-good. Let S′ be an (a, b)-witness of t′. Then, S′ is also an (a, b)-witness of t, and
so t is (a, b)-good.

Given a tree t, the position of a node is the word of {0, 1}∗ inductively defined as
follows: the position of the root is the empty word; if the node at position w has two
children, then the positions of its left and right children are w0 and w1, respectively;
if the node at position w has one child, then the position of its child is w1.

The following theorem is the key to our result:

THEOREM 6.10. Let G be a context-free grammar in program normal form. Define
K = lsp + �log(pr + 1)�. Then �(T ) ⊆


⋃K−1
i=0 �(T (i)).

PROOF. We need to prove that for every tree t ∈ T , there exists a tree t′ such that
�(t) =
 �(t′) and d(t′) ≤ K − 1. It suffices—to prove the result—to show that for every
tree t, there exists an equivalent tree t′ such that d(t′) ≤ K − 1.

Assume d(t) ≥ K. Let a = �log(pr + 1)� and b = lsp. We conclude from d(t) ≥ K that
d(t) ≥ a + b, and hence, by Lemma 6.9, that t has at least pr + 1 disjoint subtrees of
dimension at least lsp.

Next, Lemma 6.8 shows that a tree of dimension at least lsp contains a path that
visits two nodes labeled by the same procedure variable. We call this variable a repeat.

The procedure is as follows:

While t has at least pr + 1 disjoint subtrees of dimension at least lsp, do:

—Pick two disjoint subtrees t1, t2 of t of dimension at least lsp containing a re-
peat of the same procedure variable Z. W.l.o.g. assume that the position of t1 is
lexicographically smaller than the position of t2.
(Such trees exist by the earlier discussion and the pigeonhole principle, because
the number of procedure variables is pr.)

—Factor t1 and t2 into ta
1 · (tb

1 · tc
1) and ta

2 · (tb
2 · tc

2), respectively, such that, for i = 1, 2,
the trees tb

i and tc
i have their root labeled by Z.

—Let t′
1 = ta

1 · tc
1 and t′

2 = ta
2 · (tb

2 · (tb
1 · tc

2)).
—Simultaneously substitute t′

1 for t1 and t′
2 for t2 in t. Call the result t′.

—t := t′.

It is easy to see that since tb
1 , tc

1, and tc
2 are labeled by Z, both t′

1 and t′
2 are parse trees

of G. Moreover, t and t′ are equivalent.
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If the procedure terminates, then we are done, because it can only terminate with
a tree t having at most pr disjoint subtrees of dimension at least lsp, and therefore,
by Lemma 6.9, we have d(t) ≤ K − 1. To prove termination, we first define a preorder
on trees. Let #(t, w) denote the number of nodes of the subtree of t rooted at position
w (if t does not have a node at position w, then #(t, w) = 0). We write t ≺ t′ if the
lexicographically smallest position w such that #(t, w) = #(t′, w) satisfies #(t, w) <
#(t′, w). To show that ≺ is a preorder, observe first that t ≺ t′ implies t′ ≺ t. For
transitivity, assume t ≺ t′ ≺ t′′. Then there exist lexicographically smallest positions
w,w′ such that #(t, w) < #(t′, w) and #(t′, w′) < #(t′′, w′); if w is lexicographically smaller
than or equal to w′, then #(t, w) < #(t′, w) = #(t′′, w) and #(t, w′′) = #(t′, w′′) = #(t′′, w′′)
for every w′′ lexicographically smaller than w; if w′ is lexicographically smaller than
w, then #(t, w′) = #(t′, w′) < #(t′′, w′) and #(t, w′′) = #(t′, w′′) = #(t′′, w′′) for every w′′
lexicographically smaller than w′. In both cases we have t ≺ t′′.

Next, we show that, in the previous procedure, t ≺ t′. It follows from the equivalence
of t and t′ that t′ has as many nodes as t, and hence that the procedure terminates since
the number of trees with a fixed number of nodes is finite. Therefore, let us show t ≺ t′.
Since t1 and t2 are disjoint, they have a least common ancestor u. Moreover, since t1’s
position is lexicographically smaller than t2, we have the following: u has two proper
children, its left child u1 is an ancestor of t1, and its right child u2 is an ancestor of t2.
Let w1 be the position of u1. Observe that we necessarily have that w1 ends with 0.
Then we have #(t, w1) < #(t′, w1) (because tb

1 is a subtree of u1), and #(t, w) = #(t′, w)
for any position w lexicographically smaller than w1 (because the subtrees at these
positions contain either both t1 and t2 as subtrees or none of them, and so tree surgery
does not change their number of nodes). So t ≺ t′.

Collecting these results, we get:

THEOREM 6.11. Let G be a context-free grammar in program normal form and let
K = lsp + �log(pr + 1)�. We have L(AK

G) =
 L(G). Moreover, AK
G can be constructed in

stO(K) time.

PROOF. Theorem 6.10 and Proposition 6.7 show that L(G) =
 L(AK
G).

The runtime follows immediately from the fact that the number of variables of the
regular grammar AK

G of Definition 6.6 for a context-free grammar G with n variables is
O(nK).

Finally, putting together the results of Theorem 6.11 and Corollary 6.5, we obtain
that:

THEOREM 6.12. Let G1, . . . , Gd be context-free grammars in program normal form
over a common alphabet � of size al and a subalphabet �′ ⊆ �. Assume d and al are
fixed. Then nDPK, which is the problem of deciding

⋂d
i=1 
(L(Gi)) = ∅, can be solved in

stO(lsp+�log(pr+1)�) time.

7. CONCLUSIONS

We have studied the complexity of pattern-based verification, an approach to the ver-
ification of multithreaded programs with counters essentially introduced by Kahlon
[2009b]. The approach checks whether the program has executions conforming to a
pattern, a regular expression of the form w∗

1 . . . w∗
n over an alphabet of reads and writes

to a global store. The pattern can be supplied by the programmer or be constructed
by an automatic tool. The latter has been implemented by Long et al. [2012] in their
CEGAR-based model checker, where pattern-based verification is used to exclude possi-
bly infinite families of counterexamples. We have shown that pattern-based verification
can be applied to programs with unbounded counters.
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We have reduced the pattern-based verification problem to CMP, the problem of de-
ciding whether the asynchronous product of a given set of context-free languages and a
pattern is nonempty. Revisiting and putting together classical results by Ginsburg and
Spanier [Ginsburg 1966] about bounded context-free languages, the characterization
of the Parikh images of context-free languages given by Esparza [1997], the encoding of
this characterization into existential Presburger arithmetic presented by Verma et al.
[2005], and the fact that existential Presburger arithmetic reduces to solving a system
of linear Diophantine equations (well known to be in NP [von zur Gathen and Sieveking
1978]), we have shown that CMP is in NP.

We have conducted a multiparameter analysis of CMP on the number of grammars,
the maximal size of a grammar, and the size of the pattern. By requiring the value of
a parameter to be fixed or not, we get eight cases. We have shown that all except one
are either trivially polynomial or still NP-hard. Then we conducted a more detailed
analysis of the case CMP(d̂, st, p̂a), that is, the case where the number of grammars
d and the size of the pattern pa is fixed but not the maximal size st of a grammar.
By taking the structure of grammars into account (through parameters lsp and pr),
we gave an stO(lsp+�log(pr+1)�) time algorithm, which is the main technical contribution
of the article. The result relies on a novel constructive proof of Parikh’s theorem and
results about the emptiness problem for bounded-reversal counter machines [Gurari
and Ibarra 1981]. It follows that (1) by fixing lsp, we obtain a subexponential time
algorithm for CMP(d̂, st, p̂a), and (2) by fixing pr (hence lsp is fixed as well), we obtain
a polynomial time algorithm for CMP(d̂, st, p̂a).

Related work. The automatic verification of safety properties for multithreaded pro-
grams with possibly recursive procedures has been intensively studied in lpast years.
The program is usually modeled as a set of pushdown systems communicating by some
means. Several special cases with restricted communication have been proved decid-
able, including communication through locks satisfying certain conditions, linearly
ordered multipushdown systems, and systems with acyclic communication structure
(also satisfying some additional conditions) [Kahlon et al. 2005; Kahlon and Gupta
2007; Kahlon 2009a, 2009b; Atig et al. 2008, 2008; Hague 2011]. In all these papers,
variables are assumed to have a finite range. More recently, Hague and Lin [2012]
have considered multithreaded programs with reversal-bounded counters. A detailed
comparison of reversal-bounded and pattern-based verification is left for future work.

Several recent papers study the automatic verification of parametric programs with
an arbitrary number of threads [Kaiser et al. 2010; Hague 2011] and with dynamic
creation of threads [Bouajjani et al. 2005; Atig et al. 2011], two features that we have not
considered in this article. From a complexity point of view, pattern-based verification
lies together with context bounding and communication through locks at the lower
end of the spectrum. Other approaches require exponential time but do not belong to
NP (or this is not known) or are superexponential. The only other case we know of a
problem with polynomial complexity in the size of the program is the verification of
single-index properties (close to local reachability) in systems communicating through
locks [Kahlon et al. 2005].

APPENDIX

A.1. Construction of the Grammar Gf

Let p̃ = (a1w1)∗ . . . (anwn)∗ and let aiwi = b(i)
1 . . . b(i)

ji for every 1 ≤ i ≤ n. Let G p̃ =
(X p̃, �, δ p̃, Q

(1)
1 ) be the regular grammar where

X p̃ = {
Q(s)

r | 1 ≤ s ≤ n ∧ 1 ≤ r ≤ js
}
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δ p̃ = {
Q

(s)
i → b(s)

i Q
(s)
i+1 | 1 ≤ s ≤ n ∧ 1 ≤ i < js

}
∪ {

Q
(s)
js → b(s)

js Q
(s′)
1 | 1 ≤ s ≤ s′ ≤ n

}
∪ {

Q
(s)
1 → ε | 1 ≤ s ≤ n

}
.

It is routine to check that {w | Q
(i)
1 ⇒∗ w for some 1 ≤ i ≤ n} = L( p̃).

Given G p̃ and a grammar G = (X , �′,P, S) in program normal form where �′ ⊆ �,
our goal is to define a grammar G f = (X f , �,P f , X0) such that L(G f ) = L(G) ‖ L( p̃).

—X f = {X0} ∪ {[Q(s)
r XQ(x)

y ] | X ∈ X ∧ Q(s)
r ∈ X p̃ ∧ Q(x)

y ∈ X p̃ ∧ s ≤ x}.
—P f is the set containing for every 1 ≤ s ≤ x ≤ n a production X0 → [Q

(s)
1 SQ

(x)
1 ] and:

—for every production X → ε ∈ P, P f has a production[
Q(s)

r XQ(s)
r

] → ε; (16)

—for every production X → Y ∈ P, P f has a production[
Q(s)

r XQ(u)
v

] → [
Q(s)

r Y Q(u)
v

]
; (17)

—for every production X → γ Y ∈ P (γ ∈ �′), P f has a production[
Q(s)

r XQ(u)
v

] → γ
[

Q
(s′)
r′ Y Q(u)

v

]
if Q(s)

r → γ · Q
(s′)
r′ ∈ δ p̃; (18)

—for every production X → Z Y ∈ P, P f has a production[
Q(s)

r XQ(x)
y

] → [
Q(s)

r ZQ(u)
v

] [
Q(u)

v Y Q(x)
y

]
; (19)

—for every production Q(s)
r → b(s)

r Q(u)
v ∈ δ p̃ such that b(s)

r /∈ �′, P f has a production[
Q(s)

r XQ(x)
y

] → b(s)
r

[
Q(u)

v XQ(x)
y

]
. (20)

P f has no other production.

In what follows, we use the notation ⇒
G

, which makes explicit the underlying gram-

mar G.

LEMMA A.1. Let w ∈ �∗ and w′ be the projection of w onto �′. We have [Q(s)
r XQ(u)

v ] ⇒
G f

∗ w

if and only if Q(s)
r ⇒

G p̃

∗ w Q(u)
v and X ⇒

G
∗ w′.

PROOF. The proof for the only-if direction is by induction on the length of the
[Q(s)

r XQ
(y)
x ]-derivation of [Q(s)

r XQ
(y)
x ] ⇒∗ w.

i = 1. Then [Q(s)
r XQ(s)

r ] ⇒ ε. The definition of G f shows that X → ε ∈ P, and so X ⇒ ε.
i > 1. We do a case analysis according to the definition of G f .

—[Q(s)
r XQ(x)

y ] ⇒ [Q(s)
r Y Q(x)

y ] ⇒∗ w. It is trivially solved using the induction hypothesis.
—[Q(s)

r XQ(x)
y ] ⇒ b(s)

r [Q(u)
v Y Q(x)

y ] ⇒∗ b(s)
r w′ with b(s)

r ∈ �′. The production Q(s)
r → b(s)

r Q(u)
v ∈

δ p̃ (which exists by definition of G f ) and induction hypothesis show that Q(s)
r ⇒

b(s)
r Q(u)

v ⇒∗ b(s)
r w′ Q(x)

y . Also, the production X → b(s)
r Y ∈ P (which exists by definition

of G f ) and induction hypothesis show that X ⇒ b(s)
r Y ⇒∗ b(s)

r w′′, where w′′ is the
projection of w′ onto �′ and we are done.

—[Q(s)
r XQ(x)

y ] ⇒ [Q(s)
r ZQ(u)

v ][Q(u)
v Y Q(x)

y ] ⇒∗ w1 [Q(u)
v Y Q(x)

y ] ⇒∗ w1w2. By induction hypothesis,
we have Q(s)

r ⇒∗ w1 Q(u)
v and Z ⇒∗ w′

1, where w′
1 is the projection of w1 onto �′. Also,
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Q(u)
v ⇒∗ w2 Q(x)

y and Y ⇒∗ w2, where w′
2 is the projection of w2 onto �′. Hence, we find

that Q(s)
r ⇒∗ w1w2 Q(x)

y and X ⇒∗ w′
1w

′
2 since X → ZY ∈ P, which concludes this case

since w′
1w

′
2 is the projection of w1w2 onto �′.

—[Q(s)
r XQ(x)

y ] ⇒ b(s)
r [Q(u)

v XQ(x)
y ] ⇒∗ b(s)

r w′ with b(s)
r ∈ � \ �′. The production Q(s)

r → b(s)
r Q(u)

v ∈
δ p̃ and induction hypothesis show that Q(s)

r ⇒ b(s)
r Q(u)

v ⇒∗ b(s)
r w′ Q(x)

y . Also, since b(s)
r /∈

�′, the induction hypothesis shows that X ⇒∗ w′′, where w′′ is the projection of w′
onto �′ and we are done.

Using a similar induction on the length of Q(s)
r ⇒

G p̃

∗ w Q(u)
v , the “if” direction is easily

proved.

A.2. A Finer Analysis

We have defined the size pa of a pattern p = w∗
1 . . . w∗

n as
∑n

i=1 |wi|. We can now zoom
in and consider the size as a function of two parameters, the number n of words in
the pattern, and sw given by maxn

i=1 |wi|. Since the reduction of Theorem 6.2 requires
a pattern with an arbitrarily large number of words, we study whether CMP stays
NP-complete if on top of d and pr also n is fixed but not sw. We show that CMP remains
NP-hard by reduction of the 0-1 Knapsack problem of Definition 5.1.

Consider the reduction from 0-1 Knapsack shown in Theorem 5.2. It does not yield a
grammar with a fixed number of procedure variables because of the sets (13), (10), and
(14) of productions.

To solve this problem, we first construct a grammar G� with a fixed number pr of
procedure variables that can still be used to encode big numbers, albeit by means of a
more complicated encoding. Fix a number b ≥ 1 and an alphabet � = {a0, a1, . . . , ab} ∪
{z1, . . . , zb}, and let w = abzb · · · a1z1a0. We encode the number k ≤ 2b by the word wk.
The grammar G� = (X �, �,P�, X) has variables X � = {X} ∪ {A1, . . . , Ab} (X is the only
procedure variable), and productions P� given by the union of the sets (21) to (25):

{X → Ab} (21)
{X → zkAk−1 | 1 ≤ k ≤ b} (22)
{Ak → akXAk−1 | 1 ≤ k ≤ b} (23){

Ak → ajzj Ak | b ≥ j ∧ k ≥ 0 ∧ j > k
}

(24)
{A0 → a0}. (25)

This grammar can be put in program normal form with a constant increase in pr.
Thus, we can safely assume G# is in program normal form and has a fixed number pr
of procedure variables.

Consider the pattern p= w∗ over the same alphabet � as G#. Because the alphabets
of G# and p coincide, the asynchronous product (‖) behaves exactly like language
intersection (∩). Hence, to ease the reader understanding, the rest of the proof uses ∩
instead of ‖.

Our first lemma shows that {i | Ak ⇒∗ wi} = {2k}.

LEMMA A.2. {x | Ak ⇒∗ x} ∩ L( p) = {w2k} for every 0 ≤ k ≤ b.

PROOF. The proof is by induction on k.
k = 0. The only word that can be derived from A0 and follows p is given by

A0(⇒(24))∗abzb . . . a1z1 A0 ⇒(25) abzb . . . a1z1a0 = w20
.
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k > 0. We distinguish two cases: k < b and k = b. For k < b, consider the following
partial leftmost Ak-derivation:

Ak (⇒(24))∗ abzb . . . ak+1zk+1 Ak

⇒(23) abzb . . . ak+1zk+1akXAk−1

⇒(22) abzb . . . ak+1zk+1akzkAk−1 Ak−1

(⇒(23)⇒(22))∗ abzb · · · a1z1 A0 A0 A1 . . . Ak−1

⇒(25) abzb · · · a1z1a0 A0 A1 . . . Ak−1
= w A0 A1 . . . Ak−1.

For the case k = b, consider

Ab (⇒(23)⇒(22))∗ abzb . . . a1z1 A0 A0 A1 . . . Ab−1

⇒(25) w A0 A1 . . . Ab−1.

We only need these two partial Ak-derivations, because every leftmost derivation that
does not start like one of the two does not generate a word of L( p) either. To conclude, we
apply the induction hypothesis on A0 A1 . . . Ak−1 to show that Ak ⇒∗ w w20

w21 · · · w2k−1
,

and hence that Ak ⇒∗ w2k
since 1 + ∑k−1

i=0 2i = 2k.

Using this lemma, we can already obtain a first reduction from the 0–1 Knapsack
problem to CMP in polynomial time. If in the reduction of Theorem 5.2 the set (13)
is replaced by the set P�, we get L(G) ∩ L(GW ) ∩ L( p) = ∅ if and only if there exists
S ⊆ {o1, . . . , om} such that S’s weight is W . However, this reduction is not yet adequate
because the variables {A1, . . . , Ab} are procedure variables (see the sets (10) and (14) of
productions). To fix this problem, we need a second lemma:

LEMMA A.3.

(1) L(G�) ∩ L( p) = {w2b}.
(2)

({abzb . . . ak+1} L(G�)
) ∩ L( p) = {w2k} for all 1 ≤ k ≤ b − 1.

PROOF. (1) Any derivation of G� that generates a word of L( p) must use the
production (21) first, so that X ⇒(21) Ab. Applying Lemma A.2, we get L(G�) ∩ L( p) =
{x | Ab ⇒∗ x} ∩ L( p) = {w2b}.

(2) Any derivation of G� generating a word u such that abzb . . . ak+1u belongs to L( p)
must start with X ⇒(22) zk+1 Ak. As shown in the proof of Lemma A.2, the Ak-derivation
must continue with X ⇒(22) zk+1 Ak ⇒∗ w A0 A1 · · · Ak−1, and so finally lead to w2k

.

With the help of this lemma, we can now proceed as follows. Recall that we have
already replaced set (13) in the reduction of Theorem 5.2 by P�. Now we replace the
set (10) by{

S(k)
i → abzb · · · ak+1 X S(k−1)

i | 1 ≤ i ≤ m∧ 1 ≤ k ≤ b ∧ bit k of W is 1
}

and the set (14) by{
W (k) → abzb · · · ak+1 X W (k−1) | 1 ≤ k ≤ b ∧ bit k of W is 1

}
.

This gives two grammars G��
1 and G��

2 with S1 and W (b) as axioms, respectively. We
have:

THEOREM A.4. The following problem is NP-hard:
Instance: Two context-free grammars G1, G2 in program normal form over alphabet �,
each of them with one procedure variable, and a pattern p = w∗ consisting of a single
word w ∈ �∗.
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Question: Is L(G1) ‖ L(G2) ‖ L( p) = ∅ ?

PROOF. The proof is by reduction to 0-1 Knapsack. We construct G��
1 , G��

2 , and p as
earlier. The proof of correctness for the reduction essentially follows the one of Theorem
5.2, where the result of Lemma A.3 is used when needed (because the alphabets of
G��

1 , G��
2 , and p coincide, we can interchange ∩ and ‖). Thus, we obtain that L(G��

1 ) ‖
L(G��

2 ) ‖ L( p) = ∅ if and only if a subset of {o1, . . . , om} has weight W .
It is routine to check the following: given a 0-1 Knapsack instance (1), G��

i is com-
putable in polynomial time, (2) X is the only procedure variable of G��

i where i ∈ {1, 2},
and (3) p = w∗ is computable in polynomial time. Note that G��

i is not in program
normal form but can easily be brought into it by adding new variables and productions.
The transformation does not add any procedure variable.
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