arXiv:1205.1098v1 [csMS] 5May 2012

Reliable Generation of High-Performance
Matrix Algebra

Geoffrey Belter,! Elizabeth Jessup,! Thomas Nelson," Boyana Norris,} and Jeremy G. Siek'
TDepartment of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309
Email: [belter,Thomas.Nelson,Jeremy.Siek] @Colorado.EDU
{Department of Computer Science, University of Colorado, Boulder, CO 80309
Email: jessup@Colorado.EDU
§Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439
Email: norris@mcs.anl.gov

Abstract—Scientific programmers often turn to vendor-tuned
Basic Linear Algebra Subprograms (BLAS) to obtain portable
high performance. However, many numerical algorithms require
several BLAS calls in sequence, and those successive calls result
in suboptimal performance. The entire sequence needs to be opti-
mized in concert. Instead of vendor-tuned BLAS, a programmer
could start with source code in Fortran or C (e.g., based on
the Netlib BLAS) and use a state-of-the-art optimizing compiler.
However, our experiments show that optimizing compilers often
attain only one-quarter the performance of hand-optimized code.
In this paper we present a domain-specific compiler for matrix
algebra, the Build to Order BLAS (BTO), that reliably achieves
high performance using a scalable search algorithm for choosing
the best combination of loop fusion, array contraction, and
multithreading for data parallelism. The BTO compiler generates
code that is between 16% slower and 39% faster than hand-
optimized code.

I. INTRODUCTION

Traditionally, scientific programmers have used linear alge-
bra libraries such as the Basic Linear Algebra Subprograms
(BLAS) [14} 15} 23] and the Linear Algebra PACKage (LA-
PACK) [3] to perform their linear algebra calculations. A
programmer links an application to vendor-tuned or autotuned
implementations of these libraries to achieve efficient, portable
applications. For programs that rely on kernels with high
computational intensity, such as matrix-matrix multiply, this
approach can achieve near optimal performance [35]]. How-
ever, memory bandwidth, not computational capacity, limits
the performance of many scientific applications [3]], with data
movement expected to dominate the costs in the foreseeable
future [2].

Because each BLAS performs a single mathematical op-
eration, such as matrix-vector multiplication, a tuned BLAS
library has a limited scope within which to optimize memory
traffic. Moreover, separately compiled BLAS limit the scope
of parallelization on modern parallel architectures. Each BLAS
call spawns threads and must synchronize before returning, but
much of this synchronization is unnecessary when considering
the entire sequence of matrix algebra operations. The BLAS
Technical Forum suggested several new routines that combine
sequences of routines, thereby enabling a larger scope for
optimization [8|, [18]. However, the number of useful BLAS

combinations is larger than is feasible to implement for each
new architecture.

Instead of using vendor-optimized BLAS, a scientific pro-
grammer can start with source code in Fortran or C, perhaps
based on the Netlib BLAS, and then use a state-of-the-art
optimizing compiler to tune the code for the architecture of
interest. However, our experiments with two industrial com-
pilers (Intel and Portland Group) and one research compiler
(Pluto [9]) show that, in many cases, these compilers achieve
only one-quarter of the performance of hand-optimized code
(see Section [V-B). This result is surprising because the bench-
mark programs we tested are sequences of nested loops with
affine array accesses, and the optimizations that we applied by
hand (loop fusion, array contraction, and multithreading for
data parallelism) are well established. Nevertheless, for some
benchmarks, the compilers fail to recognize that an optimiza-
tion is legal (semantics-preserving). For other benchmarks,
they miscalculate the profitability of choosing one combination
of optimizations over another combination.

These observations demonstrate that achieving reliable,
automatic generation of high-performance matrix algebra is
nontrivial. In particular, the three main challenges are (1)
recognizing whether an optimization is legal, (2) accurately
assessing the profitability of optimizations and their parame-
ters, and (3) efficiently searching a large, discontinuous space
of optimization choices and parameters. In this paper, we
present the Build to Order BLAS (BTO) compiler. It is the first
compiler that solves all three of these challenges specifically
for the domain of matrix algebra.

BTO accepts as input a sequence of matrix and vector
operations in a subset of MATLAB, together with a spec-
ification of the storage formats for the inputs and outputs,
and produces optimized kernels in C. This choice of input
language is part of our solution to the problem of determining
whether an optimization is legal. The input language makes
all data dependencies explicit, so there is no difficulty recog-
nizing whether an optimization is semantics-preserving or not.
Further, BTO uses a carefully designed internal representation
for optimization choices that rules out many illegal choices
while at the same time succinctly representing all the legal
choices. To accurately assess profitability, the BTO compiler
relies on a hybrid approach. Analytic modeling is used for

coarse-grained pruning whereas empirical timing is used to
make the ultimate decisions. To find the best combination of
optimizations within a large search space, BTO uses a genetic
algorithm whose initial population is the result of a greedy,
heuristic search.

We described earlier prototypes of BTO in several papers [5)

6, 20} 132]. In these papers, we considered only a subset of
the optimizations considered here; moreover, at the time of
their writing, we had not yet developed a search algorithm
that was scalable with respect to the number of optimizations
and their parameters. The following are the specific, technical
contributions of this paper.

1) We present an internal representation for optimization
choices that is complete (includes all legal combinations
of loop fusion, array contraction, and multithreading
for data parallelism) but that inherently rules out many
illegal combinations (Section [ITI)).

2) We present a scalable and effective search strategy: a
genetic algorithm with an initial population seeded by a
greedy search. We describe this strategy in Section
and show in Section that it produces code that
is between 16% slower and 39% faster than hand-
optimized code.

3) We compare this genetic/greedy search strategy with
several other strategies in order to reveal the rationale
behind this strategy (Section [V-D).

We discuss related work in Section [VI and conclude the

paper in Section with a brief discussion of future work.

II. BTO OVERVIEW

Figure [T] shows an example BTO input file for the BATAX
subprogram that performs the operations y + BAT Ax for
matrix A, vectors z and y, and scalar 3. The user of BTO
specifies the input types, including storage formats and a
sequence of matrix, vector, and scalar operations; but the user
does not specify how the operations are to be implemented.
That is, the user does not identify such details as the kinds of
loops or the number of threads. The BTO compiler produces
a C implementation in two broad steps. It first chooses how to
implement the operations in terms of loops, maximizing spatial
locality by traversing memory via contiguous accesses. It
then searches empirically for the combination of optimization
decisions that maximizes performance. Sections and
describe the search process.

BATAX

in:
x @ vector(column), beta : scalar,
A : matrix(row)

out:
y : vector(column)

y =beta x A’ x (A x Xx)

Fig. 1. BTO input file for the BATAX kernel.

Throughout the compilation process, BTO uses a dataflow
graph representation, illustrated in Figure [2] for the BATAX

kernel. The square boxes correspond to the input and output
matrices and vectors, and the circles correspond to the opera-
tions (operations are labeled with numbers, which are used to
identify the operations in the remainder of the paper).

) @/' > ™%

Fig. 2. Dataflow graph for y « SAT Az.

The BTO compiler uses a type system based on a container
abstraction, which describes the iteration space of matrices and
vectors. Containers may be oriented horizontally or vertically
and can be nested. We assume that moving from one element
to the next in a container is a constant-time operation and
good for spatial locality, but we place no other restrictions on
what memory layouts can be viewed as containers. The types
are defined by the following grammar, in which R designates
row, C' designates column, and S’ designates scalar.

orientations O == C|R
types T == O<I>|S

Figure 3| shows several types with a corresponding diagram
depicting the container shapes: a row container with scalar
elements (upper left), a nested container for a row-major
matrix (right), and a partitioned row container (lower left).
During the creation of the dataflow graph, each node is
assigned a type. The input and outputs are assigned types
derived from the input file specification, whereas the types
associated with intermediate results are inferred by the BTO
compiler.

r<s> (D)

C<R<S>>

R<R<S>>

Fig. 3. Vector, partitioned vector, and matrix with their corresponding types.

(LTI
[ITTTT]
[ITTTT]

Note on the polyhedral model: The type system used
by BTO and the polyhedral model [22] share a common goal:
both describe a schedule to traverse an iteration space. Much of
BTO’s functionality can be accomplished by using polyhedral-
based tools. There are two motivations for using a domain-
specific type system as BTO does: (1) ability to seamlessly
perform additional optimizations (array contraction), and (2)
extensibility with regard to sparse matrix storage formats.

III. SEARCH SPACE

This section describes the search space and challenges with
regard to efficiently representing the space. We present a
domain specific representation that enables BTO to eliminate
many illegal points without spending any search time on them.

This section also sets up the discussion for specific search
strategies in Section

A. Description of Search Space

The optimization search space we consider here has three
dimensions: (1) loop fusion, (2) dimension or direction of data
partitioning, and (3) number of threads. Even considering only
these three dimensions, there is a combinatorial explosion of
optimization combinations that BTO considers. This search
space is sparse, first consisting of a high ratio of illegal
compared to legal programs. Within the legal programs, only
a handful achieve good performance. The search space is
also discrete because performance tends to cluster with no
continuity between clusters. Efficiently searching this space is
the goal, and doing so requires a well-designed representation.

Early versions of BTO’s representation were too specific
and therefore limited the performance. For example, they
applied heuristics such as fusing loops at every opportunity.
Experimental data show that in some cases it is best to back
off from full fusion, and the representation needs to become
more generic to accommodate that.

At the other extreme, we discovered that an overly generic
representation leads to the evaluation of an intractable number
of illegal versions. For example, we tried a string-of-digits
representation that we describe in the next subsection. With
this approach, search time was dominated by the identification
and discarding of illegal programs.

Figure [] shows a graphical representation of an overly
general search space and what area of that search space BTO
currently searches. The gray areas represent illegal programs.
This area is large and, spending time in it makes search
times intractable. This sections describes a representation that
allows BTO to spend time only on the section labeled BTO
Considered Search Space, which contains many fewer illegal
points. Finally to further improve search times, within the legal
space, BTO prunes points it deems unlikely to be unprofitable.
The rest of this section walks through the findings that led to
our current approach, as well as the representation that enables
a scalable search.

D Ilegal

Complete Search Space
Legal

s

BTO Considered
Search Space

BTO Legal
Points

BTO Pruned

Fig. 4. Representation of a typical search space showing how BTO avoids
spending time searching a large portion of illegal points.

B. Features of Search Space

In an effort to interface with existing search tools, we
initially represented every fusion and parting decision in an
easy to manipulate set of digits. For fusion we used an

adjacency matrix that created ((n — 1) *x n)/2 digits, where n
is the number of operations; partitions were represented with
2n digits, where each operation had a direction of partition
and a thread count. As an example, a three-operation program
would be represented as follows.

f’f?f’w7t’wﬂt7w?t

0 < f < max_loop_nest_depth
1 < w < 3
0 < t < max_thread_count

In the presence of one level of data partitioning and for a
matrix-vector type operation with a maximum thread count of
8, there are over 1.2 million combinations of loop fusion and
thread parallelism.

The primary advantage to this approach was that a search
tool could easily manipulate these strings of digits with no
domain knowledge. Unfortunately, search time was dominated
by discarding illegal points. Many of the illegal points were
caused by a disrespect of interaction between digits. We now
summarize two important features that this representation does
not encode.

Fusion is an equivalence relation. If an operation a is
fused with operation b and b is fused with ¢, then ¢ must
be fused with a. Consider a three-operation program and the
representation of fusion with an adjacency matrix M, where
MTa, b] shows the depth of fusion between the loop nests of
a and b. Below, we show a valid fusion choice on the left and
an invalid fusion choice on the right. Each value in the matrix
specifies fusing up to two levels of nested loops. The matrix on
the left describes fusing the outer loop of all three operations,
but only b and ¢ have the inner loop fused. The matrix on the
right indicates fusing the inner loop of a with b and b with
¢, but not a and ¢, which of course is impossible. We can
describe these constraints as forcing the relation specified in
the adjacency matrix to be an equivalence relation at every
depth.

a b c a b c

a 1 1 a 2 1

b 2 b 2
c

Fused operations must use the same number of threads.
Consider a fuse graph that specifies a fusion of operations a
and b but then a partition that specifies a use 4 threads and
b use 6 threads. Partitioning the two operations with different
thread counts guarantees that fusion of these two operations
is not possible.

Given the previous example program of three matrix-vector
operation with a maximum thread count of 8, respecting these
features will bring the possible points to consider down to a
little over 1,000, or less than one-tenth of a percent of points
to consider without respecting these features.

C. Domain Specific Representation

Designing a representation that respects the previously
discussed features requires domain knowledge. At the expense

of having to custom-build search tools, we designed a repre-
sentation to disallow, with no search time required, a large
number of illegal points.

Loop fusion is represented by fuse sets. Each operation is
given a unique identifier, and loops are represented with {}.
A single loop operation (e.g., dot product) is represented as
{ID}, where ID is a number identifying an operation node in
the dataflow graph. A two-loop operation, such as a matrix-
vector product, is represented as {{/D}}. When discussing a
specific {}, we annotate it using {;}, where ¢ describes an axis
of the iteration space. We use ¢ to describe the iteration over
rows of a matrix and j for columns of a matrix. A complete
iteration space for a matrix can be described as {;{;}} or
G-

Fusion is described by putting two operations within the {}.
For example, outer-loop fusion of two matrix-vector products
is described by {;{;1}{;2}}, and fusion including the inner
loops is described by {;{;1 2}}. This notation encodes the
equivalence relation of loop fusion, disallowing a huge number
of illegal fusion combinations.

In BTO, fuse sets are actually more general than described
in the previous paragraph. In addition to representing loops,
fuse sets can represent iterations over tiles, spawning threads
for data parallelism, or loop unrolling. We refer to increasing
the dimensionality of the iteration space in this way as
“partitioning” since it conceptually cuts a matrix or vector
into smaller parts. A matrix-vector operation of {;{;1}} can
be partitioned as {,(;{:{;j1}}} or {p(;){i{;1}}}, where the
{}s annotated with p(i) and p(j) describe the new iteration
dimension and the existing ¢ or j loop variables that the
partition affects. The search tool must specify which existing
loop is being modified and how many threads should be used.
The important point here is that we can represent any level
of nesting and describe both C loops and data parallelism. By
extending the fuse set representation to partitioning, thread
counts can be assigned to each set, eliminating the consider-
ation of points with mismatched thread counts within a fused
operation.

BTO uses this representation to enumerate or manipulate
the fuse sets and to generate the search space. This approach
allows BTO to never touch the majority of the illegal points
it encountered with more general-purpose search tools.

D. Discarding Remaining Illegal Points

Recall Figure {4 where the representation applied by BTO
reduces the search space to the area labeled BTO Considered
Search Space. In this search space, a significant number of
illegal points remain. Identifying them as early as possible is
key to a fast search. This section describes how BTO discards
the remaining illegal points. Figure[2]shows the dataflow graph
for the BATAX operation y < BAT Az first described in
Section [[I} Figure [5|shows each operation in BATAX numbered
according to its corresponding number in the dataflow graph.
Let us assume for simplicity that subgraphs are fixed. Thus,
although the scaling by S could be located differently in the
graph, in this example it cannot.

BTO performs type inference on the initial dataflow graph to
check whether the input program makes sense, assigning types

t0 = A x X 1
t1 =A %10 2
y =t1 * beta 3

Fig. 5. Operation listing for y < SAT Az.

to all operations in the process. As BTO considers different
optimization choices, it incrementally updates the types to
determine quickly whether an optimization choice results in
incompatible types.

In particular, illegal data dependency chains can be created
with the fuse set representation and therefore must be checked
against the data flow graph for correctness. The following is
a partial list of the possible fuse sets for the running example.

a: {1} H{2}}{{3}}
b: {{1H{2}H{3}}
c: {{12}}{{3}}
d: {3} H{2}}
e: {{1H2}{3}}
f {{123}}

Fuse set d says to fuse operations 1 and 3. However,
referring to the dataflow graph in Figure 2] one can see that
there is a data dependency (operation 2) between 1 and 3.

A more subtle data dependency is caused by reduction
operations. Figure [6] shows the pseudocode for the example.
Examination of the outer loops (lines 1 and 4) show that the
iterations are compatible and are legal to fuse. Looking at the
inner loops (lines 2 and 5) we see compatible loops and assume
fusion is possible. However, on line 3, tO[i] is the destination
of an accumulation and is not available for use until the inner
loop is complete. The next operation consumes this result and
so the inner loops cannot be fused.

for i in1toM
for jin1toN
to[i] +=A[i,j] = x[j]
for i in1toM
for jin 1to N
t1[j] +=Ali,j] = tO[i]
for j in 1to N
ylil =t1[j] * beta

[Ny N S O R

Fig. 6. Pseudocode for unfused operations as shown in Figure 3]

The introduction of loops, the type inference, and the le-
gality of partition introduction are all based on the underlying
type system employed by BTO. This system is described in
detail in previous papers [3]]. Briefly, a set of rules describes
legal linear algebra operations based on the types involved
in the operation. Certain rules cause a reduction, so an
examination of the types involved in an operation provides
the loop nests and flags any loops as performing a reduction.
In order to catch the reduction data dependency, data flow
analysis is combined with the result of examining the type to
determine that results are the destination of a reduction and
that fusion cannot occur.

The legality of every partitioning must also be checked for
each operation. In the absence of fusion, doing so is simply of
a matter of checking the type of each operand and the result

of a given operation. The challenge is in identifying the set of
partitions for each operation such that fusion remains possible.
The first operation of the BATAX example, t0 = A X x, can
be partitioned in the following ways.

(1) to(p) = Alp,:) x x oo}
(2) t0+= A(:,p) x z(p) {1}

Here we show the slicing of the matrix using the colon notation
for a complete iteration and p for a subblock on which to
operate in parallel (borrowing notation from MATLAB). On
the right is the representation as a fuse set. Partitioning (1) cuts
the rows of A and vector ¢0 while the second cuts the columns
of A and the vector x. Partitioning (2) leads to a reduction at
the parallel level, so 0 is not available for use until after a
join. The second operation of the example, t1 = A x t0 can
be partitioned in the following ways.

(3) tl(p) = A(p,:) x 10 iy lili2}}}
(4) tl4+= A(:,p) x t0(p) {o ti{s2H}H}

The question is how to partition operations 1 and 2 so that
they can achieve fusion. Data dependence analysis says that
the partition of operation 1, which introduces a reduction, will
cause fusion to fail, so operation 1 must be partitioned by
using method (1) thus limiting the options for operation 2. The
matrix A is shared so, to achieve fusion after partitioning, A
needs to be accessed the same way in both partition loops.
From partitioning (1) we see that A is accessed as A(p,:).
Because operation 2 accesses the transpose of A, we must
select partitioning (4), accessing A as A(:,p). By examining
the {} notation we similarly observe that the partitions intro-
duced in (1) and (4) both generate {,(;}. In large fuse sets,
the likelihood of finding a correct set of operation partitions
randomly is small.

BTO uses a similar approach to that used in the BATAX
example. At the start of a search, BTO enumerates the possible
ways of partitioning for each individual operation. Then, when
given a set of operations to fuse in the presence of partitioning,
a list of operation partitionings that will allow fusion is found
efficiently by comparing the shared data structures in the
operation (e.g., the matrix A in BATAX). This list may consist
of zero to many combinations that work for a fuse set, but
all will be legal. This approach quickly rules out the illegal
combinations, leaving only the legal points to consider.

E. Discarding Unprofitable Points

We again refer back to Figure] this time considering
the BTO Legal Points, a small section labeled BTO Pruned
represents legal points that typically exhibit poor performance.
BTO uses a handful of heuristics to prune these poorly
performing points. The first heuristic is to perform fusion only
on operations that share an operand. For example, if one loop
writes to a temporary matrix and another loop reads from the
temporary, then fusing the two loops reduces memory traffic.
Similarly, if two loops read from the same matrix, then fusion
is likely to be profitable. On the other hand, fusing loops that
do not share an operand is unlikely to reduce memory traffic.

The next heuristic is that array contraction is always applied
to temporary data structures in the presence of fusion. Again,
reducing memory traffic almost always improves performance.

The second two heuristics eliminate points without having
to spend any time on those that are unprofitable. The array
contraction is always performed while the contiguous traversal
is encoded in the type system exploited by BTO.

IV. GENETIC/GREEDY SEARCH STRATEGY

This section describes the BTO search strategy based on a
genetic algorithm whose initial population is determined by a
greedy search that tries to maximally fuse loops. We refer to
this search strategy as MFGA, for Maximal Fusion followed
by Genetic Algorithm. Section [V| explores why this search is
used, and the value of heuristics and alternatives.

We explain MFGA using the i < SAT Az BATAX example
from the previous section. Genetic algorithms are a broad cat-
egory of global optimization techniques inspired by biological
evolution [25]. In genetic algorithms, each code version is
called an organism. A genetic algorithm uses a population
of organisms. At each generation, the worst organisms are
removed from the population and are replaced with newly
generated organisms.

A. Max Fuse

The search begins with a greedy Max-Fuse (MF) heuristic:
we attempt to fuse as many of the loops as possible to the
greatest depth possible, subject to the constraints described in
Section The MF search starts from unfused but partitioned
versions of the kernel in which the axis of partitioning has
not yet been decided. Continuing with the BATAX example
from the previous section, the following represents the unfused
partitioned kernel. The X, Y, and Z are unknowns determined
during the MF search.

IxLGUU 2 H {3

To fuse the X and Y iterations, we need X = Y, so we
proceed with the fusion and constrain ourselves to X =Y.

{x LU Hx G2 H {30
= {x{i{UHi{;2 Hz{;3}}

At this point, X has to be p(i) because the alternative, p(j),
would mean that the necessary results from operation 1 would
not be available for operation 2. Next, we can also fuse the ¢
iteration of operations 1 and 2.

(oo GUH2 H2 {3}
= Lo i 1H2H Hz {33}

Because of the reduction in the matrix-vector product (opera-
tion 1), the j iteration of operations 1 and 2 cannot be fused.

Next, we consider whether the p(¢) iteration can be fused
with Z. The p(i) iteration requires a reduction before the final
vector scaling of operation 3, so 3 must reside in its own
thread. Finally, there is only one axis of iteration in operation
3, so Z must be p(j). Therefore, the MF search produces the

following organism: {,;){i{;1}{;2}} } {p; {3} }-

B. Generation of Initial Population by Mutation

The initial population for the genetic algorithm is created
by applying random mutation to the Max-Fuse point. Each
mutation performs one of the following four changes: (1) add
or remove fusion level, (2) add or remove partition level, (3)
change the partition axis, or (4) change the number of threads.
Mutations are constrained to the set of legal organisms;
for example, attempting to add a mutation to the already
maximally fused point from our previous example will fail,
resulting in no change. However, mutations might randomly
remove the partition from operation 3:

o L2 Hen 3 = Lo LiliLHG2H HG3)

The Random search described in Section consists of
repeatedly applying random mutations to the organism without
any further search.

C. Selection and Crossover

After the initial generation of organisms (and for every
following generation), we compile and test every organism
and record its runtime, which is the value the search tries to
minimize. We then select 2N of the fittest organisms to be
parents for the next generation, where the population size N
can be user specified, but defaults to 20.

a) Parent Selection Method: The population evolves via
tournament selection [25]: k£ random organisms are chosen
to be potential parents, and the potential parent with the
best fitness becomes an actual parent. This process balances
hill climbing with exploration, allowing less fit organisms to
sometimes become parents, and thus helping the algorithm
escape locally optimal solutions that are not globally optimal.
Larger values of k cause the algorithm to converge more
quickly on a solution, while smaller values of k converge
more slowly but increases exploration. BTO uses £ = 2 to
favor exploration.

b) Crossover: Crossover is a function that takes two
parent organisms and randomly chooses features of the two
parents to create a child organism. The key strength of
genetic algorithms is that crossover can sometimes combine
the strengths of two versions. Our crossover function generates
the child recursively from the two parents, making fusion
decisions at each level and making sure those decisions remain
valid for inner levels.

Our crossover function uses the type-based representation
of each expression as described in Section [II] and performs
crossover by comparing the two types. Continuing with the
y + BAT Az example, consider the following two organisms
A and B.

A {pa a2 H;3)
B {piy Lili U Hpw ledi2 Hoo) 1531}

Parent A partitions and partly fuses operations 1 and 2 but does
not partition operation 3. Parent B has all partitions turned on
but has not fused operations 1 and 2.

Crossover chooses which parent to emulate for each op-
eration, working from the outermost fuse level inwards. Each
step constrains the possibilities for the other operations. In our

example, crossover might choose parent A for the outermost
level of operation 1, meaning 1 and 2 exist in the same thread
(also using Parent A’s partitioning axis p(i) and thread number
data). It then might choose Parent B for the next level, iteration
1. This mechanism forces operation 1 and 2 not to be fused,
resulting in {;{;1}}{;{;2}}. Then the crossover moves to
operation 3 and the process continues. If B is chosen, the
final child becomes {,;){i{; 1} }Hi{;2}} Hp) 153}

The tournament selection process is repeated N times,
creating a new generation of organisms. Fitness values are
cached. If crossover ever produces an organism that was
already tested in a previous generation, the old value is used
to save search time.

D. Search for Number of Threads

BTO uses a fixed number of threads to execute all of the
data-parallel partitions in a kernel. We refer to this as the
global thread number heuristic. An alternative is to allow
different numbers of threads for each partition, which we refer
to as the exhaustive thread search. In Section|[V-D3] we present
data that show that the exhaustive approach takes much more
time but does not lead to significantly better results.

BTO includes the search for the best number of threads in
the MFGA algorithm. The initial number is set to the number
of cores in the target computer architecture. The mutation
function either increments or decrements the thread number
of 2. The crossover function simply picks the thread number
from one of the parents. After the genetic algorithm completes,
MFGA performs an additional search for the best number of
threads by testing the performance when using thread counts
between 2 and the number of cores, incrementing by 2.

V. RESULTS

We begin this section with a comparison of the performance
of BTO-generated routines and several state-of-the-art tools
and libraries that perform similar sets of optimizations, as
well as hand-optimized code. The BTO compiler generates
code that is between 16% slower and 39% faster than hand-
optimized code. The other automated tools and libraries
achieve comparable performance to BTO and hand-optimized
code for only a few of the kernels. For the smaller kernels in
which we can exhaustively enumerate all possible combina-
tions of optimizations, we show that the MFGA search method
finds a routine that performs within 2% of the best found in
the exhaustive search. We present empirical data that motivates
our choice of the MFGA search strategy, comparing MFGA to
several alternative strategies and analyzing the orthogonality
of fusion choices versus number of threads.

A. Test Environment and Kernels

The results in this section rely on the kernels shown in Table
Some of these kernels respond well to loop fusion and data
parallelism while others do not. Some of these kernels are in
the updated BLAS [8] but have not been adopted by vendor-
tuned BLAS libraries. These kernels also represent various
uses of the BLAS. For example, the DGEMV kernel maps

/I g=Axp
dgemv('N’,A_nrows,A_ncols,1.0,A,lda,p,1,0.0,q,1);
/I s=A"xr
dgemv('T’,A_nrows,A_ncols,1.0,A,lda,r,1,0.0,s,1);

Fig. 7. Example sequence of BLAS calls that implement BICGK.

directly to a BLAS call while others are equivalent to multiple
BLAS calls. As an example, Listing [/| shows the sequence of
BLAS calls that implement the BICGK kernel.

TABLE 1
KERNEL SPECIFICATIONS.
Kernel Operation
Z 4 w— Qv
AXPYDOT
o B zTu
VADD T w4y+z
WAXPBY w < axr + By
ATAX y «— AT Ax
g+ Ap
BICGK
cG s+ ATr
DGEMV z + oAz + By
T
DGEMVT v fATY + 2
w — adAx
B+ A+ ulv? + uzvg
GEMVER z <« BBTy + 2
w < aBz
GESUMMV y < aAz + Bz

The computers used for testing include recent AMD and
Intel multicore architectures which we describe in Table

TABLE II
SPECIFICATIONS OF THE TEST MACHINES.
Processor Cores | Speed L1 L2 L3
(GHz) (KB) (KB) (MB)
Intel Westmere 24 2.66 12 x 32 12x256 | 2x 12
AMD Phenom II X6 6 3.3 6 x 64 6 x 512 1x6
AMD Interlagos 64 2.2 64 x 16 | 16 x 2048 8x 8

B. Comparison to Similar Tools

We begin by placing BTO performance results in context
by comparing them with several state-of-the-art tools and
libraries. BTO performs loop fusion and array contraction and
makes use of data parallelism. BTO relies on the native com-
piler for loop unrolling and vectorization. The two compilers
used to gather this data are the Intel C Compiler (ICC) [19]
and the PGI C Compiler (PGCC) [27]. With the exception of
the explicitly labeled PGCC results, all kernels are compiled
using ICC. Both ICC and PGCC unroll loops and vectorize.
They also identify and exploit data parallelism and perform
loop fusion.

We begin with a detailed comparison of BTO and five other
approaches for generating high performance code on the Intel
Westmere. We then give a brief summary of similar results on
the AMD Phenom and Interlagos.

The first approaches are using ICC and PGCC, which repre-
sent the best commercial compilers. The third approach is us-
ing Pluto [9]], a source-to-source translator capable of perform-
ing loop fusion and identifying data parallelism. The fourth

approach is using Intel’s Math Kernel Library (MKL) [19]
which is a vendor-tuned BLAS implementation targeting Intel
CPUs. The fifth is a hand-tuned implementation (applying loop
fusion, array contraction, and data parallelism) created by an
expert in performance tuning who works in the performance
library group at Apple, Inc. The input for ICC, PGCC and
Pluto is a translation of the BLAS calls to C loops. The
compiler flags used with ICC were “-O3 -mkl -fno-alias” and
the flags for PGCC were “-O4 -fast -Mipa=fast -Mconcur -
Mbvect=fuse -Msafeptr” (“-Msafeptr” not used on Interlagos).
Data parallelism is exploited by ICC, PGCC, Pluto, and MKL
by using OpenMP [12]. BTO and the hand-tuned versions use
Pthreads [26].

Figure [§] shows the speedup relative to ICC on the y-axis
for several linear algebra kernels. (ICC performance is 1.) On
the left are the three vector-vector kernels, and on the right
are the six matrix-vector kernels, all from Table

PGCC tends to do slightly better than ICC, with speedups
ranging from 1.1 to 1.5 times faster. Examining the output of
PGCC shows that all but GESUMMYV and GEMVER were
parallelized. However, PGCC’s ability to perform loop fusion
was mixed; it fused the appropriate loops in AXPYDOT,
VADD, and WAXPBY but complained of a “complex flow
graph” on the remaining kernels and only achieved limited
fusion.

The MKL BLAS outperforms ICC by factors ranging from
1.4 to 4.2. The calls to BLAS routines prevent loop fusion,
so significant speedups, such as those observed in AXPYDOT
and GESUMMY, can instead be attributed to parallelism and
well tuned vector implementations of the individual opera-
tions. We were unable to determine why the BLAS perform
so well for AXPYDOT. Surprisingly, the BLAS DGEMYV does
not perform as well as Pluto and BTO. Given the lack of fusion
potential in this kernel, we speculate that differences in the
parallel implementations are the cause.

The Pluto results show speedups ranging from 0.7 to 5.7
times faster than ICC. The worst-performing kernels are AX-
PYDOT, ATAX, and DGEMVT. These three kernels represent
the only cases where Pluto did not introduce data parallelism.
For the remaining two vector-vector kernels, VADD and
WAXPBY, Pluto created the best-performing result, slightly
better than the BTO and hand-tuned versions. Inspection shows
that the only difference between Pluto, hand-tuned, and BTO
in these cases was the use of OpenMP for Pluto and Pthreads
for hand-tuned and BTO. The fusion was otherwise identical
and the difference in thread count had little effect. For the
matrix-vector operations, if we enabled fusion but not paral-
lelization with Pluto’s flags, then Pluto matched BTO with re-
spect to fusion. However, with both fusion and parallelization
enabled, Pluto sometimes misses fusion and/or parallelization
opportunities. For example BICGK was parallelized but not
fused. The GEMVER results depend on the loop ordering in
the input file. For GEMVER, Pluto performed either complete
fusion with no parallelism or incomplete fusion with paral-
lelism; the latter provided the best performance and is shown
in Figure [§]

The hand-tuned implementation is intended as a sanity
check. For the vector-vector operations, the hand-tuned version

TABLE III
PERFORMANCE DATA FOR AMD PHENOM. BLAS NUMBERS FROM
AMD’s ACML. SPEEDUPS RELATIVE TO UNFUSED LOOPS COMPILED
WITH PGCC (PGCC PERFORMANCE IS 1 AND NOT SHOWN). BEST
PERFORMING VERSION IN BOLD.

Kernel BLAS | Pluto | HAND | BTO
AXPYDOT 0.97 1.81 1.58 1.86
VADD 0.84 1.33 1.50 1.83
WAXPBY 0.79 1.40 1.68 1.91
ATAX 1.27 0.69 2.92 2.92
BICGK 1.27 0.80 2.80 2.84
DGEMV 1.67 0.71 1.85 1.89
DGEMVT 1.67 0.71 1.85 1.89
GEMVER 1.04 1.61 2.61 2.34
GESUMMYV 1.63 0.63 1.74 1.75

is within a few percent of the best implementation. Typically
the fusion in both the hand tuned and the best tool based
version are identical with the primary difference being either
thread count or what appears to be a difference between
Pthreads and OpenMP performance. In the case of the matrix-
vector operations, the hand-tuned version is the best for all
but DGEMV and GESUMMYV, where it is equal to the best.

The BTO performance results show speedups ranging from
3.2 to 6.9 times faster than ICC. For the vector-vector oper-
ations, the performance is similar to the hand-tuned version
in all cases. Inspection shows that for AXPYDOT, BTO was
slightly faster than the hand-tuned version because BTO did
not fuse the inner loop while the hand-tuned version did.
BTO performed slightly worse than hand-tuned on WAXPBY
because of a difference in thread count. Similarly, the per-
formance of the matrix-vector operations is close but slightly
lower than that of the hand-tuned version. BTO fused the same
as hand-tuned for BICGK, GEMVER and DGEMVT with
the only difference being in thread count. For ATAX, both
BTO and hand-tuned fused the same and selected the same
number of threads, but BTO was slightly slower because of
where it zeroed out a data structure. In the hand-tuned version
the zeroing occurred in the threads, while in BTO’s case it
occurred in the main thread.

Similar results on AMD Phenom and AMD Interlagos are
shown in Table and Table respectively. The Pluto-
generated code for the matrix-vector operations tended to
perform worse than that produced for the other methods
evaluated. On this computer, achieving full fusion while
maintaining parallelism is of great importance. As previously
discussed, Pluto tended to achieve fusion or parallelism but
struggled with the combination. These results demonstrate the
difficulty of portable high-performance code generation even
under autotuning scenarios.

Summary: Compared with the best alternative approach
for a given kernel, BTO performance ranges from 16% slower
to 39% faster. Excluding hand-written comparison points, BTO
performs between 14% worse and 229% better. Pluto, ICC,
PGCC, and BLAS all achieve near-best performance for only
a few points; however, BTO’s performance is most consistent
across kernels and computers. Excluding the hand-optimized
results, BTO finds the best version for 7 of 9 kernels on the
Intel Westmere, all 9 kernels on the AMD Phenom, and 7 of

TABLE IV
PERFORMANCE DATA FOR AMD INTERLAGOS. BLAS NUMBERS FROM
AMD’s ACML. SPEEDUPS RELATIVE TO UNFUSED LOOPS COMPILED
WITH PGCC (PGCC PERFORMANCE IS 1 AND NOT SHOWN). BEST
PERFORMING VERSION IN BOLD.

Kernel BLAS | Pluto | HAND | BTO
AXPYDOT 0.82 1.60 1.73 1.61
VADD 0.43 1.05 1.14 1.15
WAXPBY 0.34 1.06 1.16 1.11
ATAX 2.49 0.43 4.09 4.28
BICGK 2.35 1.60 3.03 4.22
DGEMV 245 0.89 1.66 2.07
DGEMVT 243 0.43 4.08 4.03
GEMVER 1.70 2.00 4.15 4.05
GESUMMYV 2.36 0.37 1.65 2.03

9 kernels on the AMD Interlagos. Surprisingly, on the AMD
Phenom, BTO surpassed the hand-optimized code for 7 of the
9 kernels and tied for one kernel.

C. MFGA Compared to Exhaustive Searches

In Section we presented results showing that BTO’s
MFGA search strategy finds high-performing versions for a
range of kernels. In this section, we show how the performance
of the MFGA search strategy compares with the best version
that can be produced using exhaustive or nearly exhaustive
search strategies on Intel Westmere. These strategies require
long-running searches that can take days to complete. For the
smaller kernels, a completely exhaustive search is possible.
For larger kernels, exhaustive search was not feasible, so we
instead use a strategy that is exhaustive with respect to each
optimization, but orthogonal between optimizations. For the
largest kernels, GEMVER and DGEMYV, even the orthogonal
approach took too much time, not completing even after weeks
of running.

We compared the performance of kernels produced by
MFGA as percentage of the exhaustive search for smaller
kernels or as a percentage of the orthogonal search for larger
kernels such as DGEMVT and GESUMMV. The results show
that scalable search produces kernel performance within 1-2%
of the best performance.

D. Evaluation of Search Methods

In the previous sections, we demonstrated that BTO is capa-
ble of generating high-performance routines. In this section,
we examine the data that led to creating the MFGA search
strategy. All of the experiments in this section were performed
on the Intel Westmere.

1) Orthogonality of Fusion and Thread Search: The MFGA
strategy, for the most part, treats decisions regarding fusion
and thread count orthogonally, which significantly reduces the
size of the search space. However, before we could employ
this search method, we first had to show that it would lead to
no degradation in performance.

We define orthogonal search as first searching only the
fusion dimension, then using only the best candidate, searching
every viable thread count. We evaluated the effectiveness and

8 8
7 Q ral & HAND 7
9] &) BLAS(MKL) EJ BTO
9] 6 > 6
5 7)) PLUTO
E °
< 4 4
~
5 3 3
-
g
& 2 2
1 1 N
0 | - | | | s | H | —HH | H } —H }
AXPYDOT ATAX DGEMVT GESUMMV GEMVER
Fig. 8. Performance data for Intel Westmere. Speedups relative to unfused loops compiled with ICC (ICC performance is 1 and not shown). The left three

kernels are vector-vector while the right six are matrix-vector operations. In all cases, BTO generates code that is between 16% slower and 39% faster than
hand-optimized code and significantly faster than library and compiler-optimized versions.

search time of the orthogonal search as compared to an ex-
haustive search using the smaller kernels: ATAX, AXPYDOT,
BICGK, VADD, and WAXPBY. For all kernels, orthogonal
search found the best-performing version while taking 1-8% of
the time of exhaustive search, demonstrating that searching the
space orthogonally dramatically reduces search time without
sacrificing performance. This reduction in search time results
in part from the chosen orthogonal ordering. By searching the
fusion space first, we often dramatically reduce the number
of data-parallel loops and hence the size of the subsequent
thread-count search space.

Thus, we see that fusion and thread search can be conducted
orthogonally without a significant loss of kernel performance.

2) Fusion Search: Next we focus on fusion strategies. In
this section we analyze our choice of using a combination of
a genetic algorithm and the max-fuse heuristic.

We compare four search strategies on our most challenging
kernel, GEMVER. In particular, we test random search, our
genetic algorithm without the max-fuse heuristic, the max-
fuse heuristic by itself, and the combination of the max-fuse
heuristic with the genetic algorithm (MFGA). As described
in Section [[V] the random search strategy and the genetic
algorithm use the same mutation schemes, and thus their
comparison shows the benefit of the crossover and selection
methods.

Figure [9] shows the performance over time of each of the
search methods. (MF is a single point near 3 GFLOPS.)
Because the search is stochastic, each of the lines in the chart
is the average of two runs. MFGA finds the optimal point in
less than 10 minutes on average. Without the MF heuristic, GA
alone eventually reaches 90% of MFGA but requires over an
hour of search time. The Random search plateaus without ever
finding the optimal value. The MF heuristic by itself achieves
40% of MFGA.

In conclusion, a combination of GA and MF is the best
strategy for the fusion portion of the search.

3) Thread Search: Using the MFGA heuristic described
in the previous section, we explore several possible thread
search strategies, including the global thread number and the
exhaustive strategies discussed in Section The baseline
test is the MFGA search with number of threads set equal

9
8l
7t
— MFGA

36l GA
o
9 -- Random
G5l = Max Fuse
[
(v
s
£
£
&3

2f

. T
1F -
1
0 ! L L L L
0 1000 2000 3000 4000 5000
total search time (s)
Fig. 9. GEMVER performance over time for different search strategies on

Intel Westmere. MFGA finds the best version more quickly and consistently
than either search individually.

to the number of cores (24 for these experiments), which we
refer to as the const strategy. Recall that the global strategy
starts with MFGA and then searches over a single parameter
for all loop nests for the number of threads. Recall that the
exhaustive search replaces the single thread parameter with
the full space of possible thread counts, i.e., considering the
number of threads for each loop nest individually.

The results for seven kernels are in Figure[I0] The top chart
shows the final performance of the best version found in each
case.

Searching over the thread space improves the final perfor-
mance compared with using a constant number of threads
(e.g., equal to the number of cores), with negligible difference
in kernel performance between the global thread count (fixed
count for all threads) and fully exhaustive approaches (varying
thread counts for different operations). The bottom chart in
Figure [I0] shows the total search cost of the different thread
search approaches, demonstrating that global thread search
improves scalability without sacrificing performance.

0.07 T T
0.06f [exhaustive|]
- 0.05F E&A4 global
‘uE’,O.(M, [const

S 0.03f
=3
= 0.02F

0.011
0.00 K T |8 W W N
KTR (eYDOT gICC oMY (el oo poP pxe®

e

SOEX

<4
[
K
)‘4
O‘4

X

———

700 . .
[exhaustive|]
EXA global

600]
© 500 1
[
£ 400} 1
=
3001 1
© 200 ,
g

100 1

oL KXz KX [&] —r —T

NG R X\"‘DOT BICG* eMY DGEM\JTGES\)N\M\‘ NI\ N

Fig. 10. Best runtime (top) and search time (bottom) for exhaustive and
global searches. A constant thread number (e.g., equal to the number of cores)
cannot achieve the runtime performance of either global or exhaustive thread
search. Searching over a global thread count results in a much shorter search
time without significantly worsening kernel performance.

VI. RELATED WORK

We describe the relationship between our contributions in
this paper and related work in four areas of the literature:
loop restructuring compilers, search strategies for autotuning,
partitioning matrix computations, and empirical search.

Loop Fusion and Parallelization: Megiddo and Sarkar
[24] study the problem of deciding which loops to fuse in a
context where parallelization choices have already been made
(such as an OpenMP program). They model this problem as
a weighted graph whose nodes are loops and whose edges
are labeled with the runtime cost savings resulting from loop
fusion. Because the parallelization choices are fixed prior
to the fusion choices, their approach sometimes misses the
optimal combination of parallelization and fusion decisions.

Darte and Huard [13], on the other hand, study the space
of all fusion decisions followed by parallelization decisions.
Pouchet et al. [28]] take a similar approach, they use a orthogo-
nal approach that exhaustively searches over fusion decisions,
then uses the polyhedral model with analytic models to make
tiling and parallelization decisions. These approaches roughly
correspond to the orthogonal search technique described in
Section

Bondhugula et al. [9] employs the heuristic of maximally
fusing loops. Loop fusion is generally beneficial, but too much
can be detrimental as it can put too much pressure on registers
and cache [21]].

Bondhugula et al. [10] develop an analytic model for
predicting the profitability of fusion and parallelization and
show speedups relative to other heuristics such as always fuse
and never fuse. However, they do not validate their model
against the entire search space as we do where possible here.

Search for Autotuning: Vuduc et al. [34] study the
optimization space of applying register tiling, loop unrolling,
software pipelining, and software prefetching to matrix multi-
plication. They show that this search space is difficult (a very

small number of combinations achieve good performance), and
present a statistical method for determining when a search has
found a point that is close enough to the best.

Balaprakash et al. [4] study the effectiveness of several
search algorithms (random search, genetic algorithms, Nelder-
Mead simplex) to find the best combination of optimization
decisions from among loop unrolling, scalar replacement, loop
parallelization, vectorization, and register tilling as imple-
mented in the Orio autotuning framework [17]]. They conclude
that the modified Nelder-Mead method is effective for their
search problem.

Chen et al. [11]] develop a framework for empirical search
over many loop optimizations such as permutation, tiling,
unroll-and-jam, data copying, and fusion. They employ an or-
thogonal search strategy, first searching over unrolling factors,
then tiling sizes, and so on. Tiwari et al. [33]] describe an
autotuning framework that combines ActiveHarmony’s parallel
search backend with the CHIiLL transformation framework.

Looptool [29] and AutoLoopTune [30] support loop fusion,
unroll-and-jam and array contraction. AutoLoopTune also
supports tiling. POET [37]] also supports a number of loop
transformations.

Partitioning Matrix Computations: The approach to parti-
tioning matrix computations described in this paper is inspired
by the notion of a blocked matrix view in the Matrix Template
Library [31]. Several researchers have subsequently proposed
similar abstractions, such as the hierarchically tiled arrays of
Almasi et al. [1] and the support for matrix partitioning in
FLAME [16].

Search with Empirical Evaluation: Bilmes et al. [7] and
Whaley and Dongarra [35] autotune matrix multiplication
using empirical evaluation to determine the profitability of
optimizations. Zhao et al. [38] use exhaustive search and
empirical testing to select the best combination of loop fusion
decisions. Yi and Qasem [36] apply empirical search to
determine the profitability of optimizations for register reuse,
SSE vectorization, strength reduction, loop unrolling, and
prefetching. Their framework is parameterized with respect to
the search algorithm and includes numerous search strategies.

VII. CONCLUSIONS AND FUTURE WORK

For many problems in high-performance computing, the
best solutions require extensive testing and tuning. We present
an empirical autotuning approach for dense matrix algebra that
is reliable and scalable. Our tool considers loop fusion, array
contraction, and shared memory parallelism.

Our experiments have shown that the BTO autotuning sys-
tem outperforms standard optimizing compilers and a vendor-
optimized BLAS library in most cases, and our results are
competitive with hand-tuned code. We also describe how we
developed our search strategies and tested the usefulness of
each part of the search.

Two big expansions of functionality are planned: distributed
memory support and extension of matrix formats to include
triangular, banded, and sparse. These extensions will improve
the usefulness of BTO, while also providing an important
stress test for the scalability of the search algorithms and code
generation.

(1]

(2]

(3]

(4]

[5

—_

[6

—_

[7

[—

[8

—_—

(9]

[10]

REFERENCES

Gheorghe Almasi, Luiz De Rose, Jose Moreira, and
David Padua. Programming for locality and parallelism
with hierarchically tiled arrays. In The 16th International
Workshop on Languages and Compilers for Parallel
Computing, pages 162—-176, College Station, TX, 2003.
S. Amarasinghe, D. Campbell, W. Carlson, A. Chien,
W. Dally, E. Elnohazy, M. Hall, R. Harrison, W. Har-
rod, K. Hill, et al. Exascale software study: Software
challenges in extreme scale systems. DARPA IPTO, Air
Force Research Labs, Tech. Rep, 2009.

W. K. Anderson, W. D. Gropp, D. K. Kaushik, D. E.
Keyes, and B. F. Smith. Achieving high sustained
performance in an unstructured mesh CFD application. In
Proceedings of the 1999 ACM/IEEE Conference on Su-
percomputing (CDROM), Supercomputing ’99, Portland,
Oregon, 1999. ACM.

P. Balaprakash, S. Wild, and P. Hovland. Can search al-
gorithms save large-scale automatic performance tuning?
Procedia CS, 4:2136-2145, 2011.

Geoffrey Belter, E. R. Jessup, Ian Karlin, and Jeremy G.
Siek. Automating the generation of composed linear
algebra kernels. In SC ’09: Proceedings of the Con-
ference on High Performance Computing Networking,
Storage and Analysis, pages 1-12, New York, 2009.
ACM. ISBN 978-1-60558-744-8. doi: http://doi.acm.
org/10.1145/1654059.1654119.

Geoffrey Belter, Jeremy G. Siek, Ian Karlin, and E. R.
Jessup. Automatic generation of tiled and parallel linear
algebra routines. In Fifth International Workshop on
Automatic Performance Tuning (iWAPT 2010), pages 1—
15, Berkeley, CA, June 2010.

Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim
Demmel. Optimizing matrix multiply using PHiPAC: A
portable, high-performance, ANSI C coding methodol-
ogy. In ICS ’97: Proceedings of the 11th International
Conference on Supercomputing, pages 340-347, New
York, 1997. ACM Press. ISBN 0-89791-902-5. doi:
http://doi.acm.org/10.1145/263580.263662.

L. Susan Blackford, James Demmel, Jack Dongarra, Iain
Duff, Sven Hammarling, Greg Henry, Michael Heroux,
Linda Kaufman, Andrew Lumsdaine, Antoine Petitet,
Roldan Pozo, Karin Remington, and R. Clint Whaley.
An updated set of Basic Linear Algebra Subprograms
(BLAS). ACM Transactions on Mathematical Software,
28(2):135-151, June 2002.

U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sa-
dayappan. Pluto: A practical and fully automatic poly-
hedral program optimization system. In Proceedings of
the ACM SIGPLAN 2008 Conference on Programming
Language Design and Implementation (PLDI 08), pages
101-113, Tucson, AZ, June 2008.

Uday Bondhugula, Oktay Gunluk, Sanjeeb Dash, and
Lakshminarayanan Renganarayanan. A model for fusion
and code motion in an automatic parallelizing compiler.
In Proceedings of the 19th International Conference
on Parallel Architectures and Compilation Techniques,

(11]

(12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

[22]

(23]

PACT ’10, pages 343-352, New York, 2010. ACM.

C. Chen, J. Chame, and M. Hall. CHIiLL: A framework
for composing high-level loop transformations. Tech-
nical Report 08-897, Department of Computer Science,
University of Southern California, 2008.

Leonardo Dagum and Ramesh Menon. Openmp: An
industry-standard API for shared-memory programming.
IEEE Comput. Sci. Eng., 5(1):46-55, January 1998. ISSN
1070-9924. doi: 10.1109/99.660313. URL http://dx.doi.
org/10.1109/99.660313|

Alain Darte and Guillaume Huard. Loop shifting for
loop parallelization. Technical Report 2000-22, Ecole
Normale Superieure de Lyon, May 2000.

Jack J. Dongarra, Jeremy De Croz, Sven Hammarling,
and Richard J. Hanson. An extended set of FORTRAN
Basic Linear Algebra Subprograms. ACM Transactions
on Mathematical Software, 14(1):1-17, March 1988.
Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling,
and ITain Duff. A set of level 3 Basic Linear Algebra
Subprograms. ACM Transactions on Mathematical Soft-
ware, 16(1):1-17, March 1990.

John A. Gunnels, Fred G. Gustavson, Greg M. Henry,
and Robert A. van de Geijn. FLAME: Formal linear
algebra methods environment. ACM Trans. Math. Softw.,
27(4):422-455, 2001.

Albert Hartono, Boyana Norris, and Ponnuswamy Sa-
dayappan. Annotation-based empirical performance tun-
ing using Orio. In IPDPS ’09: Proceedings of the 2009
IEEE International Symposium on Parallel & Distributed
Processing, pages 1-11, Washington, DC, 2009. IEEE
Computer Society. ISBN 978-1-4244-3751-1. doi: http:
//dx.doi.org/10.1109/IPDPS.2009.5161004. URL http:
/fwww.mcs.anl.gov/uploads/cels/papers/P1556.pdf. Also
available as Preprint ANL/MCS-P1556-1008.

Gary W. Howell, James W. Demmel, Charles T. Fulton,
Sven Hammarling, and Karen Marmol. Cache efficient
bidiagonalization using BLAS 2.5 operators. ACM Trans.
Math. Softw., 34:14:1-14:33, May 2008.

Intel. Intel Composer. http://software.intel.com/en-us/
articles/intel-compilers, April 2012.

Ian Karlin, Elizabeth Jessup, Geoffrey Belter, and
Jeremy G. Siek. Parallel memory prediction for fused
linear algebra kernels. SIGMETRICS Perform. Eval.
Rev., 38:43-49, March 2011. ISSN 0163-5999. doi:
http://doi.acm.org/10.1145/1964218.1964226. URL http:
//doi.acm.org/10.1145/1964218.1964226.

Ian Karlin, Elizabeth Jessup, and Erik Silkensen. Model-
ing the memory and performance impacts of loop fusion.
Journal of Computational Science, In press, 2011. ISSN
1877-7503. doi: DOI:10.1016/j.jocs.2011.03.002.
Richard M. Karp, Raymond E. Miller, and Shmuel
Winograd. The organization of computations for uniform
recurrence equations. J. ACM, 14(3):563-590, July 1967.
ISSN 0004-5411. doi: 10.1145/321406.321418. URL
http://doi.acm.org/10.1145/321406.321418.

C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T.
Krogh. Basic Linear Algebra Subprograms for Fortran
usage. ACM Transactions on Mathematical Software, 5

http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1109/99.660313
http://www.mcs.anl.gov/uploads/cels/papers/P1556.pdf
http://www.mcs.anl.gov/uploads/cels/papers/P1556.pdf
http://software.intel.com/en-us/articles/intel-compilers
http://software.intel.com/en-us/articles/intel-compilers
http://doi.acm.org/10.1145/1964218.1964226
http://doi.acm.org/10.1145/1964218.1964226
http://doi.acm.org/10.1145/321406.321418

(3):308-323, September 1979.

[24] Nimrod Megiddo and Vivek Sarkar. Optimal weighted
loop fusion for parallel programs. In Proceedings of the
Ninth Annual ACM Symposium on Parallel Algorithms
and Architectures, SPAA *97, pages 282-291, New York,
1997. ACM.

[25] M. Mitchell. An introduction to genetic algorithms. The
MIT Press, 1998. ISBN 0262631857.

[26] Frank Mueller. Pthreads library interface.
report, Florida State University, 1999.

[27] Portland Group. Portland group compiler. http://www.
pgroup.com, April 2012.

[28] Louis-Noél Pouchet, Uday Bondhugula, Cédric Bas-

toul, Albert Cohen, J. Ramanujam, and P. Sadayappan.

Combined iterative and model-driven optimization in an

automatic parallelization framework. In Proceedings of

the 2010 ACM/IEEE International Conference for High

Performance Computing, Networking, Storage and Anal-

ysis, SC 10, pages 1-11, Washington, DC, November

2010. IEEE Computer Society.

Apan Qasem, Guohua Jin, and John Mellor-Crummey.

Improving performance with integrated program trans-

formations. Technical Report TR03-419, Department of

Computer Science, Rice University, October 2003.

Apan Qasem, Ken Kennedy, and John Mellor-Crummey.

Automatic tuning of whole applications using direct

search and a performance-based transformation system.

The Journal of Supercomputing: Special Issue on Com-

puter Science Research Supporting High-Performance

Applications, 36(9):183-196, May 2006.

Jeremy G. Siek. A modern framework for portable high

performance numerical linear algebra. Master’s thesis,

University of Notre Dame, 1999.

Jeremy G. Siek, Ian Karlin, and E. R. Jessup. Build

to order linear algebra kernels. In Workshop on Per-

formance Optimization for High-Level Languages and

Libraries (POHLL 2008), pages 1-8, Miami, FL, April

2008.

Ananta Tiwari, Chun Chen, Jacqueline Chame, Mary

Hall, and Jeffrey K. Hollingsworth. A scalable autotuning

framework for compiler optimization. In Proceedings

of the 23rd IEEE International Parallel & Distributed

Processing Symposium, Rome, Italy, May 2009.

Richard Vuduc, James W. Demmel, and Jeff A. Bilmes.

Statistical models for empirical search-based perfor-

mance tuning. International Journal of High Perfor-

mance Computing Applications, 18(1):65-94, 2004. doi:

10.1177/1094342004041293. URL http://hpc.sagepub.

com/content/18/1/65.abstract.

R. Clint Whaley and Jack J. Dongarra. Automatically

tuned linear algebra software. In Supercomputing ’98:

Proceedings of the 1998 ACM/IEEE conference on Su-

percomputing (CDROM), pages 1-27, Washington, DC,

1998. IEEE Computer Society. ISBN 0-89791-984-X.

Qing Yi and Apan Qasem. Exploring the optimization

space of dense linear algebra kernels. In Languages and

Compilers for Parallel Computing: 21th International

Workshop, LCPC 2008, Edmonton, Canada, July 31 -

Technical

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

August 2, 2008, Revised Selected Papers, pages 343-355,
Berlin, 2008. Springer-Verlag. ISBN 978-3-540-89739-2.
doi: http://dx.doi.org/10.1007/978-3-540-89740-8_24.
Qing Yi, Keith Seymour, Haihang You, Richard Vuduc,
and Dan Quinlan. POET: Parameterized optimizations
for empirical tuning. In Proceedings of the Parallel
and Distributed Processing Symposium, 2007, pages 1—
8, Long Beach, CA, March 2007. IEEE. doi: 10.1109/
IPDPS.2007.370637.

Y. Zhao, Q. Yi, K. Kennedy, D. Quinlan, and R. Vuduc.
Parameterizing loop fusion for automated empirical tun-
ing. Technical Report UCRL-TR-217808, Center for
Applied Scientific Computing, Lawrence Livermore Na-
tional Laboratory, December 2005.

http://www.pgroup.com
http://www.pgroup.com
http://hpc.sagepub.com/content/18/1/65.abstract
http://hpc.sagepub.com/content/18/1/65.abstract

	I Introduction
	II BTO Overview
	III Search Space
	III-A Description of Search Space
	III-B Features of Search Space
	III-C Domain Specific Representation
	III-D Discarding Remaining Illegal Points
	III-E Discarding Unprofitable Points

	IV Genetic/Greedy Search Strategy
	IV-A Max Fuse
	IV-B Generation of Initial Population by Mutation
	IV-C Selection and Crossover
	IV-D Search for Number of Threads

	V Results
	V-A Test Environment and Kernels
	V-B Comparison to Similar Tools
	V-C MFGA Compared to Exhaustive Searches
	V-D Evaluation of Search Methods
	V-D1 Orthogonality of Fusion and Thread Search
	V-D2 Fusion Search
	V-D3 Thread Search

	VI Related Work
	VII Conclusions and Future Work

