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Figure 1: Our tool creates custom jigsaw puzzles that are aesthetically interesting and challenging to assemble. Taking as input a user-defined
curve that describes the general shape of a piece edge, our method optimizes for puzzle cuts that follow the main color lines of the image,
subject to interlocking, intersection, and minimum width constraints. The resulting puzzle is physically realizable; it can be fabricated by
current laser cutters and assembled and disassembled multiple times. Original image courtesy of Flickr user outdoorPDK.

Abstract

Designing aesthetically pleasing and challenging jigsaw puzzles
is considered an art that requires considerable skill and expertise.
We propose a tool that allows novice users to create customized
jigsaw puzzles based on the image content and a user-defined curve.
A popular design choice among puzzle makers, called color line
cutting, is to cut the puzzle along the main contours in an image,
making the puzzle both aesthetically interesting and challenging to
solve. At the same time, the puzzle maker has to make sure that
puzzle pieces interlock so that they do not disassemble easily.

Our method automatically optimizes for puzzle cuts that follow the
main contours in the image and match the user-defined curve. We
handle the tradeoft between color line cutting and interlocking, and
we introduce a linear formulation for the interlocking constraint.
‘We propose a novel method for eliminating self-intersections and
ensuring a minimum width in our output curves. Our method satis-
fies these necessary fabrication constraints in order to make valid
puzzles that can be easily realized with present-day laser cutters.

CR Categories: 1.3.3 [Picture/Image Generation]: Line and curve
generation—; [.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling

Keywords: jigsaw puzzles, aesthetics, fabrication, interlocking
constraint, self intersection elimination in planar curves, minimum
width enforcement

1 Introduction

We propose a tool that, according to the user’s design choices, au-
tomatically creates a jigsaw puzzle based on the image content. By
cutting the puzzle pieces along the image’s high contrast edges, or

color lines, we generate aesthetically pleasing and challenging puz-
zles. This technique, called color line cutting, is a common practice
among professional scroll saw puzzle makers as it makes the puzzle
more interesting and increases the value of the puzzle [Armstrong
1997]. As an aesthetic choice, the designer can cut along important
color contours to highlight salient objects in the resulting puzzle
pattern. However, existing techniques are manual while our opti-
mization framework aligns the cuts to the colors lines automatically.
Additionally, cutting along color boundaries eliminates local con-
trast making it harder for the assembler to find neighboring pieces;
thus, it adds a level of difficulty to the puzzle. Figure 1 shows a
jigsaw puzzle created by our algorithm whose pieces align with
the contours of the mountain to create an aesthetically interesting
composition.

Jigsaw puzzles have been played with since 1760 when John Spils-
bury created the first jigsaw puzzle out of a map of Europe for the pur-
pose of teaching children geography [McAdam 2014] (Figure 2(a)).
Since then, jigsaw puzzles have become popular for recreation, and
a market for custom jigsaw puzzles now exists. Taking advantage
of the recreational allure of puzzles, some companies make cus-
tomized puzzles as corporate gifts to advertise their business. People
often want to create custom jigsaw puzzles from personal photos
to create personalized memorabilia or to commemorate a special
occasion such as a wedding. Custom puzzles are often designed
independent of the image content or are artist-designed by hand.
Ravensburger, a major manufacturer, uses the die-cutting method to
make their standard jigsaw puzzle shapes. According to hand-drawn
templates, experts bend metal sheets which are then used to punch
out puzzles like a cookie cutter [Ravensburger AG 2008]. Scroll
saw puzzle makers rely on their expertise to manually carve out
individual pieces by twisting and turning the wood around a thin
blade. Figure 2(b) shows an example of a puzzle hand-cut with a
scroll saw. Some puzzle makers use laser cutters or water jet cutters
to cut their puzzles but still rely on artistic skills to design the cuts.
We create puzzles based on the underlying image without the need
of an expert’s skills.

To create a valid puzzle that is physically realizable and playable,
we ensure that the puzzle cuts satisfy the fabrication constraints of
current laser cutters and that the pieces are robust enough to handle
multiple assembly and disassembly. To this end, we formulate an
interlocking constraint, and we present a method for eliminating
self-intersections and ensuring a minimum width (to prevent narrow
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Figure 2: The first jigsaw and a scroll saw cut puzzle. John Spils-
bury is credited with making the first jigsaw puzzle (a) out of a map
of Europe. Puzzle maker Charles Hamm hand-cut this puzzle (b)
with a scroll saw. Image (a) courtesy of (©) British Library Board.
Maps 188.v.12. Image (b) courtesy of Charles Hamm.

sections). Interlocking pieces do not separate easily, so interlocking
is a desirable quality in making sure the completed puzzle holds
together as a single unit. However, color line cutting often sacrifices
the interlocking ability of the pieces as image contours are not often
interlocking. To handle the tradeoff between color line cutting and
interlocking, we let some pieces in the puzzle be interlocking while
letting others follow color lines as long as those that follow color
lines are indirectly interlocked to the rest of the puzzle. Additionally,
we devise a linear formulation of the interlocking constraint which
we can easily enforce during the puzzle cut optimization. After
optimization, we apply a post-processing step to enforce the self-
intersection and minimum width constraints. In order to keep as
much of the optimized curve as possible, we only change the curve
locally as necessary to remove self-intersections or widen a narrow
part. These constraints allow us to design puzzles that we can
fabricate with a laser cutter.

Contributions. We summarize our contributions as follows:

e Our method produces puzzles that follow color lines to produce
aesthetically interesting puzzles based on image content.

e We propose a tool for generating and rendering images as
custom jigsaw puzzles which are realizable through fabrication
and can handle multiple assembly and disassembly.

e Our method handles the tradeoff between color line cutting
and interlocking. We propose a novel interlocking constraint
and introduce a linear formulation of the constraint to easily
incorporate it into the optimization.

e We present a robust method for eliminating self-intersections
and ensuring a minimum width in our output pieces’ curves.

2 Related Work

Design and fabrication tools. Do-it-yourself design and fabrica-
tion tools are becoming more and more popular. There are tools
for designing your own plank-based furniture [Umetani et al. 2012],
garments [Umetani et al. 2011], shadow art sculptures [Mitra and
Pauly 2009], plush toys [Mori and Igarashi 2007], beadwork mod-
els [Igarashi et al. 2012], and paper pop-ups [Li et al. 2011; lizuka
et al. 2011]. With these tools, the user can design their desired ob-
ject, and the system will figure out how to satisfy all the appropriate
constraints. All of these methods aim to achieve user goals while
handling necessary constraints. These systems need to satisfy fabri-
cation constraints in order to produce stable and durable furniture or
pop-up books that can close flat. Along the same lines, we present a

tool for users to design jigsaw puzzles, and our method ensures that
interlocking, intersection, and minimum size constraints are met.

Puzzle creation. Several design tools for creating puzzles exist.
Methods for creating different types of 3D puzzles include those of
Lo et al. [2009] who create 3D polyomino puzzles, Xin et al. [2011]
who create Burr puzzles, and Song et al. [2012] who create recursive
interlocking puzzles. Related to jigsaw puzzle creation is the creation
of image mosaics [Kim and Pellacini 2002] where the goal is to pack
a set of arbitrarily-shaped image tiles into an arbitrarily-shaped
container image. Instead of arranging image tiles to line up with the
container image boundaries, we want to arrange puzzle pieces to
align with the image contours. Also similar to our problem is image
guided fracture [Mould 2005] which can generate a crack pattern
that follows text from a binary image. Although their approach
aligns cell boundaries to the image content, their modified Voronoi
construction does not produce convex cells necessary for enforcing
our puzzle constraints. Companies offering custom puzzles services
and online custom puzzle making websites exist, but these services
and tools either only provide a set of limited puzzle patterns or
require an artist’s manual labor. Even Mathematica has a post about
how to create jigsaw puzzles [Mathematica StackExchange 2013],
and Photoshop has a jigsaw puzzle texture file that can be layered
on top of an image, but these approaches do not take into account
the image. Companies such as Liberty Puzzles, Wentworth Wooden
Puzzles, and Artifact Puzzles sell laser-cut wooden puzzles, but
these companies have artists help with the design. A company called
Nervous System creates jigsaw puzzles automatically using a crystal
growth simulation method yielding pieces with a characteristically
wiggly shape. The extent to which puzzle creating tools are available
in the marketplace enforces the already existing demand for tools
such as ours. In contrast to these existing tools, with our method we
determine the puzzle cuts based on the underlying image.

Interlocking and self intersection constraints. Finding interlock-
ing solutions and eliminating self intersections in planar curves
are problems that have been studied previously. Schwartzburg and
Pauly [2013] generate 3D models from interlocking planar pieces.
The 3D puzzles of Xin et al. [2011] and Song et al. [2012] also create
interlocking assemblies. For jigsaw puzzles, we use a 2D notion of
interlocking. Pekerman et al. [2008] propose a method for detection
and eliminating self intersections in curves and surfaces. Our prob-
lem only requires self intersection removal for planar curves, and we
take inspiration from Pekerman et al.’s swapping algorithm. Instead
of solving for a new curve after each self intersection removal as
they do, we adopt a simple reversal method based on reversing the
order of points along the curve. This allows us to fix the intersection
locally and keep as much of the original curve as possible.

3 Graphical User Interface and User Curve

We present a graphical user interface in which the user can specify
the number of pieces in the puzzle, draw a sample user curve, and
choose the amount of interlocking in the puzzle. The user curve will
define the general shape of the puzzle curves. We obtain the user’s
sample curve by fitting a cubic B-spline (with a uniform knot vector)
to sample points along the path drawn by the user. We assume the
user curve is an open curve that does not self-intersect. Users can
also choose the amount of interlocking in the puzzle by specifying
the minimum number of neighbors with which a piece should be
interlocking. The user specifies the number of pieces, draws a sample
curve, and chooses the degree of interlocking, and the algorithm
designs a customized puzzle based on the user’s selected image. The
tool outputs a vector graphic of the puzzle cuts which can be sent to
a laser cutter.
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Figure 3: Graph creation. We create a Voronoi graph (blue) over
the image using superpixel centers (red in (a)) as the Voronoi seeds.
The superpixels result (a) yields regions whose boundaries follow
color lines in the image. The Voronoi graph represents the puzzle
cuts while its weak dual (red in (b)) represents the puzzle pieces. We
adjust the graph in (c) by moving the blue vertex to its new location
(red) on its closest color line (black). Restricting the vertex to the
polygon (green) created by its neighbors preserves cell convexity.
Original image courtesy of Flickr user blmiers2.

4 Method

Our method consists of three steps. First, we roughly place puzzle
pieces according to color regions in the image. We represent the puz-
zle with a graph whose edges correspond to the puzzle cuts. Then,
we solve for the puzzle cuts along each graph edge to determine
the puzzle piece shape. For each edge, we optimize for a curve that
matches the user’s sample curve and follows color lines while satis-
fying intersection, minimum piece size, and interlocking constraints.
Finally, we remove any self-intersections and modify the curve to
obey minimum width constraints during a post-processing step. The
result is a puzzle design that is built upon the user’s design choices
and that satisfies the necessary constraints for making a valid puzzle.

4.1 Puzzle Piece Placement

We roughly position the n puzzle pieces desired by the user ac-
cording to the color regions in the image with the goal of aligning
the pieces to color boundaries. First, we segment the image into n
color regions using Achanta et al.’s [2012] superpixels method (with
a compactness of 30). Superpixels group pixels into Voronoi-like
regions that align with color boundaries as in Figure 3(a). Using
superpixels allows us to find separations between color regions in
the image even when no specific edge exists. For example, the Van
Gogh and Seurat paintings in Figure 14 do not have explicit edges
separating the stars from the sky or the man from the background,
respectively. A standard edge detector may give us too many edges,
such as those surrounding each paint stroke, whereas superpixels
give us the edges between color regions at a slightly higher semantic
level. Then, using the superpixel centers as seed points, we create
a Voronoi graph G = (V, £) whose cells approximately follow the
color edges in the image. Each Voronoi cell represents a puzzle
piece, and the edges £ of the graph represent the puzzle cuts that sep-
arate pieces. The weak dual, or Delaunay triangulation constrained
to the image borders, of this graph will then represent the puzzle
pieces and their neighbors as shown in red in Figure 3(b).

4.2 Color Lines

Color lines are high contrast edges in the image that we want our
puzzle cuts to follow. Since superpixel boundaries align with color
boundaries, we also use superpixels to determine the color lines in
the image. However, since the desired number of puzzle pieces can
vary, we apply the superpixels algorithm again but this time with
a fixed number of 200 superpixels in order to make sure there is
enough oversegmentation to obtain a precise boundary. Although
many neighboring superpixels will have neighbors of the same color,

(b) color lines (c) distance field

(a) superpixels

Figure 4: Color lines. We extract important color lines (black) from
superpixels (a). Color lines separate regions with a color difference
above a threshold. We use the distance field (c) thresholded to
a maximum distance of 20 pixels during our optimization to pull
curves towards color lines. Original image courtesy of Flickr user
blmiers2.

between pairs of dissimilar colors, the superpixel boundaries will
align with all the high contrast edges in the image. Therefore, we
extract a binary color line map from superpixel boundaries between
neighboring superpixels with a difference in average color above
a threshold of 25 in CIE LAB space. Figure 4(b) shows the color
lines extracted from the superpixel boundaries in 4(a). To produce
a guidance image for the snake-like optimization, we compute a
distance field to the color lines which will encourage curves to follow
the color lines. The distance field is thresholded at a maximum
distance d. so that only curves that are already close to a color line
will try to follow it. Figure 4(c) shows the clipped distance field
I. For the examples in the paper with approximate resolutions of
1000 x 700, we set the number of superpixels to 200 and d. =
20 pixels, but for significantly higher resolution, these parameters
should be increased.

Some Voronoi graph vertices may not exactly line up with color
lines but may be close. Since puzzle cuts go through the graph
vertices, we adjust those vertices to get puzzle cuts that follow the
color lines more closely. For each vertex in V that is less than d.
away from a color line, we project that vertex to its nearest color line
pixel as shown in Figure 3(c). Restricting the vertex to the hull of its
neighboring vertices preserves the convexity of the original Voronoi
cells, a property we rely on when establishing our linear intersection
constraints.

4.3 Puzzle Curve Optimization

Once the puzzle pieces are approximately placed to follow color
lines, we solve for the puzzle cuts that determine the pieces’ shapes.
For each edge in the graph G, we solve for a curve that closely
matches the user curve, follows color lines, and satisfies constraints.
The intersection, minimum piece size, and minimum width (be-
tween two curves) constraints are represented as linear bounds in
the optimization while the self intersection and minimum width
(between points on a single curve) constraints are enforced during a
post-processing step.

We model the optimized curve for each edge of a puzzle piece
as a cubic B-spline curve of the form Bx, where the columns of
B € R?":*2"¢ contain the cubic B-spline basis functions for the
n. control points, sampled at ns uniform parameter values along the
curve, and x € R?"¢ is a vector which specifies the locations of the
control points. Similarly, ns sample points along the B-spline for
the user curve is Bx,,, where x,, contains the control points of the
user curve.

We have two principal objectives for our optimization. First, the
optimized curve should match the user curve as closely as possible.
Since we are only concerned about matching the shape of the curve
and not the position and scale of the curve, we minimize the distance



Figure 5: Intersection, min piece size, and minimum width (be-
tween two curves) constraints. Each curve with endpoints (v1,v2)
is restricted to the shaded blue area delineated by four linear in-
tersection and minimum width constraints (blue) and two linear
minimum piece size constraints (orange).

between the first derivatives of the two curves at the ns sample point
locations. Varying the position and scale allows individual pieces
to have different forms which facilitates assembly. The second
objective is to make the optimized curve follow the color lines as
closely as possible. We solve for the optimized curve’s control points
x by minimizing the following:

minimize HB'x — B'x, H2 + A ZS: I(B:x)
i—1

ey
subjectto Ax < b.

B’ is a matrix that defines the tangent curve. The matrix B’ €
R?™s*2ne g defined as B’ = +TD where the columns of T €
R2"s*2(ne=1) contain the quadratic B-spline basis functions, the
matrix D € R2(me=DX2ne rakes the differences between adjacent
control points, and A is the knot spacing between the uniformly
sampled parameter values. I is the clipped distance field to the color
lines. B; € R?*?™¢ contains the rows in the B-spline basis function
matrix B corresponding to the ith sample point. A is a weight on
the color lines term. The color lines term is modeled using active
contours [Kass et al. 1988], guided by I, to pull the curve towards the
color lines. Minimizing an energy function of these two objectives
does not guarantee a valid curve, so we impose constraints on the
curve in the form of linear constraints Ax < b as described in
Sections 4.3.1 and 4.3.2 and a post-processing step described in
Section 4.5.

4.3.1 Intersection and Minimum Piece Size Constraint

When optimizing for a curve, we need to make sure adjoining puzzle
cuts do not intersect and are separated by at least a minimum width
of w units'. We do this by restricting each cut to lie within the blue
shaded area in Figure 5. We construct this area by partitioning each
convex cell by connecting each vertex to the piece center. We offset
these lines inwards by < to make sure a curve does not come within
w of a neighboring curve. To prevent the curves from chiseling out
large portions of a puzzle piece and ensuring that each piece has a
minimum area of at least a units, we do not allow the curves to enter
the orange similar polygon with area a centered at the cell center.

Each curve must start and end at the endpoints (g1, g2) and is re-
stricted to the area (shaded in blue) formed by the six linear bounds
in Ax < b. After the optimized curve is checked by the self-
intersection and minimum width process, the curve is extended to

'When laser cutting our puzzles, we calibrate physical measurement (in
millimeters) to pixel size, allowing us to specify widths in both units.
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Figure 6: Interlocking curves. Interlocking curves (a) have unit
normals that span more than 180° in their Gauss maps (b). The
magenta point on the curve prevents the bottom piece from moving in
the direction of the normal and thus prevents the piece from sliding
downwards. Curves that are not interlocking (c) do not have normals
that span at least 180° in their Gauss maps (d).

(v1, v2) and smoothed. We do not optimize edges shorter than 4w
because the curve bounds will not be valid, and we set their output
polylines to (v1,v2). These linear constraints, while conservative,
make each curve independent of each other making it possible to
process them in parallel.

4.3.2 Interlocking Constraint

We define a curve as interlocking if the two pieces it joins are not
able to slide apart once put together. Figure 6 shows examples of
interlocking and non-interlocking curves.

The interlocking constraint necessitates that the piece cannot move
tangentially to any point on the curve. For this to be true, the angular
span of unit normals in the Gauss map of interlocking curves must
be strictly greater than 180° degrees, whereas the angular span of
normals of non-interlocking curves is not [do Carmo 1976]. This
span could be calculated by integrating curvature and removing
overlapping angular spans. However, this is a highly nonlinear
operation and difficult to enforce as a constraint to our optimization.
Instead, we enforce that the Gauss map of the optimized curve
should have a similar topology to that of the user curve. Specifically,
we find the axis crossings of the first derivative of the user curve and
aim to have similar axis crossings in the optimized curve. The user

7

Figure 7: Linear interlocking constraint. We find the axis cross-
ings (red) in the first derivative of the user curve and find sample
points bounding the axis crossings. We constrain the corresponding
points in the optimized curve to their respective quadrants.
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Figure 8: Make curve interlocking. We make the original non-
interlocking curve (blue) interlocking (red) by stretching its tangen-
tial angles (c) so that its first derivative (b) can meet the required
span of 180° + .

curve is rotated until at least one axis is crossed in both its positive
and negative directions. In Figure 7 we find sample points bounding
the axis crossings (red). We constrain the corresponding points in
the optimized curve to stay within the same quadrants as the sample
points, and we add these linear constraints to Ax < b. This is a
reasonable assumption since matching the resultant curve to the user
curve is also one of our goals.

Make User Curve Interlocking. To formulate the interlocking
constraint, we assume that the user curve is already interlocking. If
the user curve is not initially interlocking, we make it so by forcing
its tangential angles to span 180° + ¢, where ¢ = 0.001. From
the user curve’s first derivative, we obtain a continuous function of
the curve’s tangential angles centered on 0°, scale it to the required
angular span (Figure 8(c)), recalculate the first derivative from the
scaled tangential angles (Figure 8(b)), and solve for a new curve that
has this first derivative (Figure 8(a)).

4.4 Indirect Interlocking

Sometimes puzzle designers sacrifice the interlocking ability of a
single piece in order to follow an important color line that is not
interlocking. With indirect interlocking, we can still make sure that
the puzzle as a whole is interlocking. As long as every piece is con-
nected in a single graph, then the puzzle is indirectly interlocking.
We determine which edges should remain interlocking and which
edges are free of this requirement by computing the minimum span-
ning tree M of the weak dual graph D (red in Figure 3(b)). Each
edge in D connects neighboring puzzle pieces and corresponds to a
pair of superpixels. Edges in the minimum spanning tree represent
connections between pieces that need to be interlocking in order for
the entire puzzle to be connected. We bias the interlocking to occur
between the pieces with the lowest contrast. We assign higher edge
weights to edges that align with important color lines. Edge weights
are calculated as the difference in average color in CIE LAB space
between two neighboring superpixel regions, normalized over all
edges. The minimum spanning tree guarantees that each node has at
least one neighbor, but for added stability the user can increase the

Figure 9: Fixing self intersections. A self intersection occurs in
this simple loop curve between segments (p;, pi+1) and (pj, pj+1)-
We fix the self intersection by replacing the intersecting segments
with new segments (pi, p;) and (pi+1,Pj+1) (blue). We then reverse
the order of points in the loop. The modified segments (blue) are
subdivided and smoothed using Laplacian smoothing to get the
smooth output (red).

minimum required degree per node, thereby increasing the amount
of interlocking but possibly at the expense of following color lines
(Figure 13). To create a minimum graph with a degree higher than
one, we go through the vertices in D in order of descending impor-
tance (where importance is a vertex’s highest edge weight) and add
the edges necessary to fulfill the minimum degree requirement. The
additional edges are added from lowest to highest weight until either
the degree requirement is met or all neighbors of the piece have been
added. Since it is hard to solve for an interlocking curve that also
obeys the minimum width on short edges, we remove edges that are
less than a small fixed percentage of the image size before we create
the minimum graph.

We achieve indirect interlocking by enforcing interlocking con-
straints during optimization only on edges in M. While this en-
sures a connected surface, the optimized curve may not obey the
minimum width constraint, and when it is post-processed to satisfy
the minimum width, it may then violate the interlocking constraint.
If this happens, we reduce the weight A on the color lines term
in Equation 1. Normally, A is set to the importance value of the
edge. If there are still edges in M that cannot fulfill the interlocking
constraint after A becomes 0, we recalculate the minimum graph
without these edges and re-optimize for the modified edges.

4.5 Post-Processing
4.5.1 Self Intersection Constraint

As a post-processing step, we make sure that the curves generated
by our algorithm do not self-intersect. However, since we have
optimized the curve according to an objective function, we devise a
technique to fix self-intersections that modifies the rest of the curve
as little as possible.

For efficiency, we first represent our curve as piecewise linear. We
then detect self-intersections using line segment intersection. In
Figure 9, line segment (p;, p;+1) intersects with segment (p;, pj+1)-
To fix the intersection, we eliminate the intersecting segments and
instead join p; to p; and p;+1 to p;41. We then change the topology
of the curve by reversing the sequence of points between p; and p; 4 1.
In order to have a smooth curve, we apply Laplacian smoothing in
the local region around the fixed self-intersection.

4.5.2 Minimum Width Constraint
Even if a puzzle piece boundary is not self-intersecting, if it is too

thin in some areas, part of the puzzle piece can break off. Thus we
introduce a minimum width constraint on the curve. This ensures
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Figure 10: Removing self-intersections and ensuring a minimum width. (1) Fix intersections in the input curve (blue). (2) Fix intersections
in the positive offset (green). (3) Offset back in the negative direction, and fix intersections (none in this case). (4) Fix intersections in the
negative offset (green). (5) Offset back in the positive direction, and fix intersections (none in this case) to get the output curve (pink). Our
method only changes the curve locally where the constraints are violated, keeping as much of the input curve (gray) as possible.

that any point on a curve must be at least the minimum width w
away from any other point on the curve along its normal. We convert
the minimum width problem into a self-intersection problem of the
curve’s offsets. An offset from a curve is defined as the set of points
traced by the normal vector of length equivalent to the offset distance.
If a curve’s offsets at distances + 3 away do not self-intersect, then
the curve satisfies the minimum width constraint. In general, the
positive and negative offsets also cannot intersect each other. This
could happen if the curve swirls back onto itself and terminates in
the middle of the swirl. However, this will not happen in our case
because our linear bounds will not allow the curve to swirl around
an endpoint. The positive and negative offsets o of curve f at offset
distance of 3 are defined as

o:fi%n @)

where n contains the unit normals to the curve, calculated as unit
tangent vectors rotated 90°.

After optimizing each curve, we apply the following six step method
for eliminating self-intersections and ensuring a minimum width
in planar curves. Figure 10 shows the result of this process. For
stability we apply a smoothing after each operation on the modified
segments.

1. Fix self-intersections of the optimized curve according to Sec-
tion 4.5.1.

2. Take the positive offset of the fixed curve. Trim local intersec-
tions. Fix self-intersections in the positive offset.

3. Offset back in the negative direction. Trim local intersections.
Fix self-intersections in the offset back.

4. Take the negative offset of the curve from (3). Trim local
intersections. Fix self-intersections in the negative offset.

5. Offset back. Trim local intersections. Fix self-intersections in
the offset back.

6. Iterate steps (1) to (5) using the curve from (5) in place of the
optimized curve until there are no intersections in the curve or
its offsets.

There are two types of self-intersections in offset curves: local
and global. Local intersections occur when the offset distance is

larger than the radius of curvature of the original curve, while global
intersections occur when two points on the curve are closer than
the minimum width [Maekawa 1999]. For local intersections, we
trim the curve at the point of intersection. For global intersections,
we do not want to trim away the curve because that could mean
trimming away a significant portion of the curve that was optimized
to follow color lines and match the user curve. In this case, we fix
these intersections by removing the self-intersections in the offset
curve.

A self-intersection occurs when the curve C is equivalent at two
different parameter values such that C'(u) = C(v). In order to
eliminate all self-intersections in one traversal of the curve, we
process the self-intersections using a priority queue ordered by the
second curve parameter v. This also guarantees that the resulting
curve is a single connected curve that does not split into two parts.
Experimentally we found that 10 iterations were enough to fix most
curves. However, for short curves particularly, it is possible that we
reach no valid solution. In this case, we set that curve to the edge
endpoints (v1, v2). Figure 11 shows the result of enforcing the self
intersection and minimum width constraints on example curves. Our
method preserves as much of the optimized curve as possible by
only changing the curve locally where necessary.

5 Results

We designed several jigsaw puzzles with our tool. Figure 12 shows
how the user curve allows the user to customize the style of the cut
influencing the overall appearance of the puzzle. The user can draw
or select a curve that matches the image aesthetics. For example, the
user can draw a jagged shape for the cat puzzle to emphasize the
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Figure 11: Example curves with self-intersections removed
and narrow parts widened. Our robust method eliminates self-
intersections (first and second) and widens parts that are too narrow
(third). The original curves (gray) are fixed locally in the offending
regions, leaving the rest of the curve unmodified.



Figure 12: Different user curves. These puzzles are created from different user curves. As a result, they have different characteristic piece

shapes. Original image courtesy of Flickr user Ed Yourdon.
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(a) min degree=1

(b) min degree=4
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Figure 13: Different degrees of interlocking. The user can control the amount of interlocking in the puzzle by setting the minimum degree for
each piece. A minimum degree of one results in a puzzle with minimal interlocking connections while a degree of six creates a fully interlocking
graph. The minimum graph (green) designates interlocking connections (white). Non-interlocking curves (red) are not in the minimum graph
and have more freedom to follow color lines. (Note that pieces may not satisfy the degree requirement if they do not have enough neighbors
with shared edges long enough to support an interlocking curve.) Original image courtesy of Flickr user skoeber.

angular shape of the cats ears, or the user can draw a curvy shape to
complement the swirling sky in Van Gogh’s Starry Night (both in
Figure 14). Figure 13 shows the tradeoff between color line cutting
and the amount of interlocking in the puzzle. As the minimum
degree increases from 1 to 6, edges are added to the minimum graph
(green). The non-interlocking cuts (red) along the clouds in (a)
are interlocking in (c) but no longer closely follow the outline of
the clouds. Out of the examples in the paper, we have physically
fabricated eight puzzles, and each one has been disassembled and
assembled multiple times. Figure 14 shows a variety of jigsaw
puzzles and the final laser cut puzzles created from different images
with varying number of pieces and different user curves. Our puzzle
cuts follow the contours of the arch, trace the cat’s silhouette, and
isolate the stars in Van Gogh’s Starry Night. Note that our method
finds the main color lines in the Van Gogh and Seurat paintings even
though hard edges separating these regions are not explicit. Also
note that for a given piece, it is often not clear how many neighbors
it has and along which section of the pieces boundary each neighbor
will connect. This affords the assembler a different kind of challenge
than a uniform grid-like puzzle would.

6 Limitations and Future Work

There are more design choices in puzzle making that can, in the
future, be added to our tool. First, we could add a choice of different
pattern styles. The Voronoi graph controls the overall pattern of
the puzzle pieces. By specially placing the sample points used to
generate the Voronoi graph, we can create different pattern styles.
For example, we could sample the image based on saliency to create
more puzzle pieces in salient regions. Second, we could allow

the user to draw or select a set of input curves instead of just one.
Then, we could build a basis space for the curves to allow more
variations in output curve shapes. Third, we could add whimsies
to the puzzle by setting their boundaries as hard boundaries in the
graph. Whimsies are specially shaped pieces often of objects that
match the theme of the image [Liberty Puzzles 2014]. These would
allow the users to further customize their puzzle.

7 Conclusion

We present a tool for designing customized jigsaw puzzles based on
the image content and a user curve. Our method solves for puzzle
cuts that follow color contours in the image, creating aesthetically
interesting and challenging puzzles. We laser cut eight example
puzzles to show that our puzzle designs are physically realizable
and playable. At least 15 people have played with the puzzles, and
the feedback we received was that the puzzles were interesting, very
different from traditional puzzles, fun, and challenging. The users
not only remarked that the quality of the puzzle pieces is on par
with or superior to commercially available puzzles, but they were
also very fascinated with the intricate shapes and patterns of the
puzzle pieces we could generate. By making sure the puzzle is at
least indirectly interlocking through regions of lowest contrast, we
handle the tradeoft between color line cutting and interlocking. We
enforce interlocking where necessary with our novel linear constraint.
The concept of interlocking is not just applicable to puzzles; it
can also be used in carpentry to ensure proper alignment of pieces
that will be glued together. After optimization, we eliminate self-
intersections and ensure a minimum width with a novel process that
only modifies curves locally where necessary, retaining as much of



the optimized curve as possible. Our self-intersection and minimum
width methods can also be applied to other curve processing domains
such as any kind of laser cutting, stenciling, or cutout animation.
In CAD modeling for manufacturing, the width of the physical
cutting device needs to be taken into account, necessitating also
a minimum width constraint. Our resulting jigsaw puzzles follow
color lines, match the general shape of a user-drawn curve, and
satisfy the interlocking constraint as well as the necessary fabrication
constraints.
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