Minimizing Stack and Communication Memory Usage in Real-time
Embedded Applications

HAIBO ZENG, McGill University
MARCO DI NATALE, Scuola Superiore S. Anna
QI ZHU, University of California at Riverside

In the development of real-time embedded applications, especially those on systems-on-chip, an efficient use
of RAM memory is as important as the efficient scheduling of the computation resources. The protection of
communication and state variables accessed by concurrent tasks must provide for real-time schedulability
guarantees while using the least amount of memory. Several schemes, including preemption thresholds,
have been developed to improve schedulability and save stack space by selectively disabling preemption.
However, the design synthesis problem is still open. We target the efficient assignment of the scheduling
parameters to minimize memory usage for systems of practical interest, including designs that are compliant
with automotive standards. We propose algorithms that are either proven to be optimal, or shown to improve
on randomized optimization methods like simulated annealing.

Categories and Subject Descriptors: C.3 [Computer Systems Organization]: Special-Purpose and
Application-based Systems — Real-Time and Embedded Systems

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Preemption threshold scheduling, stack requirement, data synchroniza-
tion mechanism, memory usage

ACM Reference Format:

Zeng, H., Di Natale, M., and Zhu, Q. 2012. Minimizing Stack and Communication Memory Usage in Real-
time Embedded Applications. ACM Trans. Embedd. Comput. Syst. 9, 4, Article 39 (March 2012), 26 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

Many real-time embedded systems, including automotive controls [Kopetz et al. 2007],
are today developed as systems-on-chip. Because of the mass production and the cost
constraints of such systems, they are typically characterized by tight time constraints,
extremely high utilization, limited computation resources, and limited availability of
memory. In most systems-on-chip and also, in general, in embedded systems, avail-
ability of RAM is a major constraint because of the hardware fabrication technology.
Today, the space required to manufacture a RAM cell is 10 to 25 times that of a ROM
cell, thus availability of both types of memory is typically inversely proportional with
the same ratio.

This work is supported by the Natural Sciences and Engineering Research Council of Canada, under grant
RGPIN 418741-12.

Author’s addresses: H. Zeng, Department of Electrical and Computer Engineering, McGill University; M. Di
Natale, ReTiS Lab, Scuola Superiore S. Anna; Q. Zhu, Department of Electrical Engineering, University of
California at Riverside.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2012 ACM 1539-9087/2012/03-ART39 $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2012.

39:2 H. Zeng et al.

In this paper, we target at minimizing the use of RAM memory with the selection of
task scheduling policies (impacting the use of stack space), and mechanisms to protect
communication and state variables. We discuss the case of fixed-priority scheduling
and several mechanisms for limiting preemption, including preemption thresholds and
non-preemptive groups. These choices are driven by practical concerns. In many sys-
tems, and especially in the automotive market, where interchange of components and
integration across the supply chain is a major requirement, compliance with stan-
dards is mandatory. In the automotive domain, the standard that applies to operating
systems is AUTOSAR [The AUTOSAR consortium] that has conformance classes for
fixed-priority scheduling and time-triggered scheduling but not for dynamic-priority
scheduling (such as Earliest Deadline First). Also, AUTOSAR supports the concept of
Internal Resources, which allows the definition of non-preemptive groups and, to some
degree, of a preemption threshold mechanism. In practice, an application-level imple-
mentation only requires an API call to change the task priority at runtime, which is
available in most RTOSes.

In this work, we follow the AUTOSAR standard to describe the functional and com-
munication architectures of the system. However, applicability of our results is not
limited to AUTOSAR systems, but includes most systems according to a Model-Based
design flow, such as those based on popular tools like Simulink [Mathworks] [Di Na-
tale et al. 2010], and also several instances of manual code development.

1.1. AUTOSAR

The AUTOSAR development partnership has been created to develop an open industry
standard for automotive software architectures and a common software infrastructure.
The current version of the standard includes a reference architecture that supports a
design model and process based on components, decoupling functional models from the
supporting hardware and software services.

In AUTOSAR, the functional architecture is a collection of Software Components co-
operating through their interfaces. The conceptual framework providing support for
components communications is called Virtual Functional Bus (VFB). Software Com-
ponent interfaces are defined as a set of ports for data-oriented or service-oriented
communication. These communications occur over the VFB. The definition of abstract
components and the VFB nicely separates functionality from the physical architecture.
The two are bound later in a process supported by tools for automatic code generation,
where the actual VFB implementation depends on the placement of the components in
the physical architecture. These tools take as input the HW platform description and
placement constraints defined by the user and produce the task implementation, the
placement of tasks on the ECUs, and the communication and synchronization layers.
The generated codes include the Basic Software (the operating system and the device
drivers) and the Run-Time Environment (RTE) which realizes communication (both
inter- and intra-task as well as intra- and inter-ECU, Electronic Control Unit) and
event generation, forwarding, and dispatching.

As shown on the left hand side of Figure 2, the behavior of each AUTOSAR com-
ponent is represented by a set of runnables, software functions that can be executed
in response to events generated by the RTE, such as timer activations (for periodic
runnables), and data writes on ports or other application signals. Runnables are also
called function blocks such as in Simulink [Mathworks]. Runnables may need to use
and update state variables for their computations. This often requires exclusive access
to such state variables. In addition, (data) interactions among components occur when
runnables write into and read from interface ports. The reading and writing code is
automatically generated by the AUTOSAR tools.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2012.

Minimizing Stack and Communication Memory Usage in Real-time Embedded Applications 39:3

A mapping relation is defined between runnables (atomic schedulable units) and
tasks, meaning that the runnable code is executed in the context of the task. Runnables
from different components may be mapped into the same task, but their ordering rela-
tions (for example, resulting from a sequence of calls) must be preserved. Although one
of the main objectives of AUTOSAR is to cope with complex distributed architectures
and the placement of SW components on the ECUs of a distributed system, in this pa-
per, we only deal with timing issues at the local level, that is, for components mapped
into tasks executing on the same ECU. In the end, the mapping of runnables into
tasks is defined as in the right-hand side of Figure 2. When communicating runnables
are mapped into different tasks that can possibly preempt each other, the shared re-
sources (denoted as ¢; in the figure) implementing the communication ports and state
variables need to be suitably protected to ensure data consistency. For the example
in Figure 2, ¢, is a state variable communicated between two runnables (runnables
11 and 14) that are mapped to the same task (thus no preemption is possible), while
the other resources may require additional mechanism to guarantee an atomic access
to them (see Section 6). The figure shows one example in which the system model is
a graph (possibly with cycles) of runnables communicating asynchronously over state
variables and intercomponent ports (the graph edges). The execution of runnables in-
side each tasks is necessarily sequential. Models that include order of execution con-
straints (and flow preservation constraints) can be handled by adding runnables-to-
task mapping constraints ([Di Natale and Zeng 2012]).

SW component 1 SW component 2 SW component 3 10ms Tasks

‘ runnablell‘ runnablelz‘ runnablel3| runnable14| Task 1

20 ms
[runnable2y/ [rufinable22 | Task 2

runnable11
runnable21 ‘)@
-- EI runnable31
runnable12
runnable13
runnable33

& & : 851 : € T T ‘ runnable31 ‘ runnable32 ‘ runnable33 ‘ Task 3

e oo ITTTIITIIC L ao o

The mapping of runnables into tasks, the configuration of the task model, and the
selection of the mechanisms for the communication over ports (protecting against data
inconsistency and possibly flow semantics violation [Ferrari et al. 2009]) all have a
large impact on the performance of the system. In this paper, we target at the design
synthesis problem to select the assignment of these design variables such that the
system is schedulable and the memory usage is minimized.

The paper is organized as follows. In Section 2, we describe the system model, the
related work, and our contributions. In Section 3, we summarize the conditions for sys-
tem schedulability. The algorithm for minimizing the stack usage for our task model is
presented in Section 4. In Section 5, we propose algorithms for the optimal assignment
of parameters for the functional model. Section 6 extends the results to the considera-
tion of memory usage for shared resources and, finally, Section 7 concludes the paper.

2. SYSTEM MODEL

The system model consists of the functional model and the task model. In the func-
tional model (also denoted as F), the i-th runnable is denoted as p;. In this work, we
restrict to runnables that are activated in response to periodic timer events. There-
fore, each runnable p; is associated with a period 6; and characterized by a worst-case

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2012.

394 H. Zeng et al.

Table |. Notations for runnables and tasks

Name Notation | WCET | Period | Deadline | Stack | Priority | Threshold
Runnables Pi Yi Qi 5-; ag; - i
Tasks Tj ¢y t; d; 84 pj Yj

execution time (WCET) ~;, a worst-case stack requirement o; (in bytes), and a dead-
line 0;. Also, each runnable may be associated with a preemption threshold 7; (its
meaning is explained later). Runnables may communicate asynchronously by means
of port variables (shared buffers) in a directed (possibly cyclic) communication graph
(in agreement with AUTOSAR). In this section, we do not consider the optimization
of the communication mechanisms, but only the impact of preemption thresholds on
the runnables scheduling. The communication model and the optimization of resource
sharing mechanisms are formally defined and evaluated in Section 6.

The implementation of runnables into tasks generates the task model 7 =
{r1,...,n1}. Each task 7; has a priority p; (the higher the number, the higher the pri-
ority) and a period ¢;. 7; is also characterized by a WCET c;, a deadline d; equal to its
period, stack space usage s;, and a preemption threshold y;.

A mapping relation may be defined between a runnable p; and a task 7;. The map-
ping relation also defines a static scheduling (execution order) of the runnables inside
the task, meaning that the code implementing the runnable p; is executed in the con-
text of 7; in the k-th order (£ — 1 other runnables execute before it in 7;). We denote this
mapping relation as m(p;, 7;, k) = 1. The runnable with execution order % in 7; is also
labeled as p; ;. A mapping relation is only possible if the execution period of p; and ;
are such that ¢, = z - t; for some integer z. For example, in Figure 2, runnable 14 is
mapped to a task with a period (10ms) that is half of its own (20ms), thus it is executed
once every two activations of the task. The set of runnables mapped into 7; is also de-
noted as F;. Runnables do not have a priority level, but only a preemption threshold
level. The linear mapping of runnables into tasks does not mean that the communi-
cation dependencies among runnables is restricted to data pipelines (as for example
in Figure). Order of execution constraints among runnables (and a synchronous com-
munication model) are not included in the model but could be considered by using an
additional set of constraints in our mapping problem and the proposed solutions. For
an overview of the constraints that need to be enforced in a runnable to task map-
ping in order to preserve a partial order of execution among runnables please refer to
[Di Natale and Zeng 2012].

Finally, there may be cases in which a runnable is executed with multiple rates
and possibly mapped into multiple tasks. Our model can be extended to handle this
case (in a similar way as AUTOSAR does) by considering a runnable replica in the
communication and scheduling problem. The runnable internal variables need to be
considered as state variables and protected from concurrent access as in Section 6.

In preemption threshold scheduling [Wang and Saksena 1999], a task has two prior-
ity levels: a nominal priority, and a threshold priority that is assumed as soon as the
task starts execution and retained until the end of its execution. At runtime, a task is
allowed to preempt another only if its priority is higher than the threshold of the task
in execution. When the definition applies to runnable thresholds, the task executes at
its priority level, but as soon as it starts executing a runnable, its preemption thresh-
old level matches the one of the runnable, and is restored to the task nominal priority
when the runnable ends.

If the task set is derived from a functional model, then some of the task parameters
may be computed from the parameters of the runnables. For example, ¢; = ¢;o +
>k Vik» Where ¢; o is the computation time required for the task main function calling

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2012.

Minimizing Stack and Communication Memory Usage in Real-time Embedded Applications 39:5

Tipp _ Sl

iz Py _ 1 \ @ S,
p _ _

Ti pj 4 Sa(Ts) ‘@
Sa

(a) fully preemptive (b) preemption thresholds (c) preemption graph of (b)
Fig. 2. An example of preemption thresholds.

the runnables (setting up the calls to the runnable functions, forwarding data and
events to the runnables in the task and/or other tasks). Of course, this is only an
approximation of the relationship linking ¢; to the v, 1, which is in reality very complex
due to factors such as cache dependencies. Similarly, a stack equal to s; ¢ is needed to
carry the communication data shared between runnables in the same task (which is
typically much smaller than the stack space for each runnable). For the task stack size
we have s; = maxy, 0 ;. Table I summarizes the list of design parameters/variables
and their notations associated with tasks and runnables.

Figure 2 shows an example consisting of four tasks in priority order, where the end-
points of the arrow indicate the threshold priority at runtime, using fully preemptive
scheduling (case (a)), or a set of preemption thresholds in (b). For each pair of tasks 7;
and 7;, we denote 7; < 7; if 7; can preempt 7;, or p; > y;. This relation is transitive. A
preemption graph is built where each task is represented by a vertex, with the weight
equal to its stack usage. An edge is added from 7; to 7; if 7, < 7;. The maximum sys-
tem stack usage can then be computed as the highest weight path in the preemption
graph [Bohlin et al. 2008] (the maximum system stack results from the chain of pre-
emptions with maximum stack memory cost). The stack usage for the functional model
is calculated in a similar way in [Yao and Buttazzo 2010]. The preemption graph for
(b) is shown in Figure 2 (c), and the stack required for the execution of the tasks is

(@) S =51+ 52+ 53+ 54, (b)S=max{s; + s3,51 + S4,52 + 53,52 + S4}

2.1. State of the Art

The two main mechanisms for limiting preemption in a controlled way are the preemp-
tion thresholds and the non-preemptive groups. The definition of preemption thresh-
olds is first proposed in [Wang and Saksena 1999] to improve schedulability of real-
time tasks. It spans from fully-preemptive to non-preemptive scheduling, subsuming
these two extremes. A commercial implementation of the mechanism is provided in
the ThreadX kernel [W. Lamie]. Non-preemptive groups make use of a similar but
not equivalent concept (as shown in [Gai et al. 2001]). Each group is associated with
a ceiling priority equal to the highest priority among all tasks belonging to the same
group. Tasks belonging to a group execute with a preemption threshold equal to the
group ceiling. This mechanism prevents interleaved executions (in an ABAB pattern,
as opposed to fully nested) of tasks belonging to different groups and is fully supported
by the AUTOSAR/OSEK OS standard [OSEK 2006].

The worst-case response time of tasks with preemption thresholds can be computed
using the formulas in [Regehr 2002]. In [Wang and Saksena 1999; Saksena and Wang
2000], several algorithms are proposed to assign priority and preemption thresholds to
tasks to improve their schedulability. When a feasible priority assignment is defined
for tasks, an algorithm allows to compute the maximum preemption threshold for each
task. The algorithm was formally proven correct in [Chen et al. 2005]. With respect to
the task priority assignment, two algorithms are proposed. One is a branch-and-bound
algorithm, the other is a heuristic with a similar strategy as Audsley’s algorithm [Aud-

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2012.

39:6 H. Zeng et al.

sley 1991]. Starting from the lowest priority level, it selects the task to be assigned
with the current priority level based on an approximate estimate of the blocking time
limit (defined in Section 3).

Also, in [Saksena and Wang 2000] the preemption threshold assignment is followed
by a tasks to thread mapping algorithm. Two tasks mapped into the same thread
cannot preempt each other and, the mechanism partitions tasks into non-preemptive
groups (similar to the mapping of a functional model of jobs/runnables into tasks).
The stack requirement is obtained as the sum of the maximum stack requirement
for each thread/group. The proposed algorithm maps tasks into threads so that the
system is schedulable and the number of threads is minimized. Since the objective is
the minimization of the number of threads (not the stack usage), this algorithm does
not directly compares to ours.

Preemption thresholds and preemption groups are considered in [Gai et al. 2001] in
the context of multiprocessor systems, where an analogy is pointed out between the
concept of preemption threshold and the ceiling priority of a critical section protected
by the Priority Ceiling protocol. This allows an extension of the mechanism to dynamic
priority schemes (such as EDF). The analysis of the stack space requirements is today
enabled by tools such as AbsInt [AbsInt] that perform the evaluation of the worst
case stack space requirement for each function based on the analysis of the object files.

Task clusters and task barriers are introduced in [Regehr 2002] for better robust-
ness. In [Ghattas and Dean 2007] a unified framework for static and dynamic priority
scheduling with preemption thresholds is presented. The authors demonstrate that
the algorithm in [Wang and Saksena 1999] for the assignment of the highest possible
preemption thresholds after priorities are assigned to tasks is also optimal with respect
to stack usage. When scheduling offsets are known, they can be exploited to further
improve the analysis on stack usage [Hanninen et al. 2006; Bohlin et al. 2008].

In [Yao and Buttazzo 2010] a functional model is considered in which runnables
are already mapped into tasks, task priorities are given, and the objective is the as-
signment of preemption thresholds to runnables. The maximum amount of blocking
that can be tolerated by each runnable is computed and the stack use is minimized
by increasing the runnable preemption thresholds as much as possible, starting from
those belonging to the highest priority task. This algorithm is very similar to the one
in [Saksena and Wang 2000]. However, feasibility is computed assuming tasks are
preemptable, thus is unnecessarily pessimistic.

Other approaches have been proposed to limit preemption among tasks, including
Deferred Preemption Scheduling [Baruah 2005; Yao et al. 2009] and Fixed Preemp-
tion Points! [Burns 1995; Bril et al. 2009; Bertogna et al. 2011]. These approaches,
while reducing runtime overhead due to preemption and possibly improving system
schedulability [Buttazzo et al. 2013], assume that preemption can be disabled for a
predefined time interval or between selected locations inside the task code, therefore
not guaranteeing savings in stack space.

The other design variables (and none of the above work considers them) include the
mapping of runnables into tasks and the selection of the best mechanisms for the im-
plementation of the communication over ports. The reduction of the context switch
overhead is among the main drivers when defining the runnable mapping scheme pre-
sented in [Long et al. 2009]. An initial discussion of the possible data synchronization
mechanisms to protect state variables is provided in [Ferrari et al. 2009]. These op-
tions offer tradeoffs as they have different time and memory overhead, and worst-case
blocking time. [Wang et al. 2011] discusses the problem of sharing stacks for a differ-

1The terminology is sometimes used in an inconsistent way in different papers. We refer to the terms in [But-
tazzo et al. 2013].

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2012.

Minimizing Stack and Communication Memory Usage in Real-time Embedded Applications 39:7

ent setting in a component-based OS, where each component uses a dedicated stack for
error isolation, but the component may be concurrently invoked in multiple threads.

2.2. Our contributions
We identify two possible design scenarios:

— Scenario 1: hand-written code with no explicit identification of runnables. Only the
task model is available. The operating system provides support for the definition of
task-level preemption thresholds.

— Scenario 2: hand-written or model-developed code with mapping of runnables into
tasks. The operating system provides support for preemption thresholds associated
with runnables.

Our contribution is a rich set of algorithms to help in the solution of the design
synthesis problem. More specifically,

—in Section 4, we propose an improved algorithm for the task priority assignment in
scenario 1 for the minimization of stack memory.

—in Section 5 we provide rules and algorithms for the optimal runnable threshold as-
signment and runnable execution order inside a task where the priority assignment
and the runnable-to-task mapping are given (scenario 2). Then we develop a heuristic
to find the runnable mapping and task priority assignment.

—1in Section 6, we extend the results to also consider the memory usage for data syn-
chronization mechanisms based on shared variables. We provide an algorithm for
the selection of data synchronization mechanism, and prove the applicability of the
results from Section 5.

These algorithms are either proven to be optimal, or shown (by extensive experi-
ments of more than 4000 hours CPU runtime) to be of comparable quality with respect
to simulated annealing and provide improved results over existing work.

3. SYSTEM SCHEDULABILITY

We first recall the schedulability analysis results for systems using preemption thresh-
olds or group ceilings.

3.1. Scenario 1: Task model

The worst-case response time of task 7; is computed as the largest response time in
a busy period of level p; [Wang and Saksena 1999; Regehr 2002]. Inside this busy
period, several instances of 7; may be activated, identified by an index ¢ (with ¢ =
0...q%). The length of the busy period (and the maximum index ¢*) is computed with
the formula in [Regehr 2002]. The worst-case response time of 7; is the maximum
among the response times of these instances.

Ty = max{rgq)} <d;
q

The response time of each instance is obtained by first computing its worst-case start
(9 and then its worst-case finish time f(?,

(@ 1"
s/ =Bitaat Y (1+ ||

Jj€hp(i) J

(a) (@)
FO =50 b e+ F w {ZJ)%

jeht(i) ti

time 8;

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2012.

39:8 H. Zeng et al.

Here j € hp(i) means the set of tasks with priority higher than p; and j € ht(i) means
the set of tasks with priority higher than the threshold of 7;. The response time of the
g-th instance is rgq) = fi@ —q-t;. The blocking term B; is the WCET of any task 7, that
has priority lower than p;, but cannot be preempted by 7; as p; < yx.

B; = mgx{ck} with pp < p; <yp

Overall, the impact is an increase of the response time because of possible blocking
time, and a possible reduction because of the limited preemption once the task starts.

3.2. Scenario 2: Runnables executed by tasks, threshold defined on runnables

In this case, preemption thresholds apply to runnables rather than tasks. The worst-
case computation time of tasks are computed using Equation (1).

ci = cijo+ Z Vi (1)

jipi €Fi

Even when preemption thresholds are associated with runnables and a task dynam-
ically inherits the runnable threshold, the task (and the runnables in it) can only be
blocked once, before it starts executing. The blocking time B; is therefore computed
on the first runnable of the task as the maximum execution time among those lower
priority runnables with a higher (group) preemption threshold, and mapped into a dif-
ferent task. This blocking time is inherited by all the other runnables mapped into the
same task. The start time of the k-th runnable of task 7; is

(a)
S
Sg?k) = Bi +q-c+ Cik—1 + Z (1 + \‘;JCJ)Cj (2)
j€hp(i) !
where ¢; 1 is the sum of the worst-case execution times of all runnables mapped into
7; from position 1 to & — 1 plus ¢; 0. The finish time is

(@ _ (@ 19 54
fie =80k ik + E (- |17)C; (3)
) J

jEht(i,k J

where hi(i, k) is the set of tasks that can preempt the k-th runnable of task ;.

4. STACK OPTIMIZATION FOR THE TASK MODEL

In case task priorities are given, the algorithm proposed in [Wang and Saksena 1999]
defines the maximum preemption threshold assignment for all tasks. As demonstrated
in [Ghattas and Dean 20071, this assignment minimizes preemption among tasks and
has minimum system stack usage. The remaining problem is to find an algorithm to
assign task priorities such that all tasks are schedulable and the stack usage is min-
imized. The concept of task blocking time limit is proposed in [Saksena and Wang
2000] (and later also in [Yao and Buttazzo 2010]) to assign priorities to tasks. The
blocking time limit of task 7;, denoted as h;, is defined as the maximum blocking time
that 7; can tolerate while still meeting its deadline.

Saksena et al. [Saksena and Wang 2000] propose an algorithm similar to Auds-
ley’s [Audsley 1991] for preemptive systems. Starting from the lowest priority level,
the current priority is assigned to the task with the largest blocking time limit among
the remaining tasks, or the one with the smallest reduction in interference from higher
priority tasks if the blocking time limits are negative for all tasks. However, the maxi-
mum preemption threshold of a lower priority task depends on the priority order and
preemption threshold of higher priority tasks. Since the algorithm in [Saksena and

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2012.

© TSGR W=

e A e
QO R W N O

Minimizing Stack and Communication Memory Usage in Real-time Embedded Applications 39:9

Wang 2000] (later in the paper referred to as PA-Preemptive, Priority Assignment
algorithm assuming Preemptive tasks) assigns task priorities from the lowest level,
the task blocking time limit calculation has to be based on an estimate (instead of an
exact assignment) of its preemption threshold. PA-Preemptive uses a conservative es-
timate of the blocking time limit by assuming the task can be preempted by all higher
priority tasks. Thus, the blocking time limit is determined by the set of higher priority
tasks, regardless of their relative priority order.

We developed an improved heuristic for estimating the blocking time limit, referred
to as PA-DMMPT, Priority Assignment algorithm assuming Deadline Monotonic and
Maximum Preemption Threshold (for the remaining tasks in the unassigned set) and
summarized in Algorithm 1. Given that the computation of the task blocking time limit
requires the exact priority order and preemption thresholds of higher priority tasks,
we use deadline monotonic to estimate the priority order of higher priority tasks (line
5), and the maximum preemption threshold of these tasks are then found (for the
estimated priority assignment) with the algorithm in [Wang and Saksena 1999] (line
6). Based on this improved estimate of the blocking time limit, starting from the lowest
priority level, the task with the maximum blocking time limit (or the smallest lateness)
among the ones in the unassigned set is selected at each step.

ALGORITHM 1: PA-DMMPT for Task Priority Assignment

Input: Task set 7.
Output: Priority assignment for tasks in 7.
Unassigned = T;
for each priority level p=1to |T| do
for each task 7; in Unassigned do
assume p; = p;
assume deadline monotonic priorities for the set Unassigned\{r;};
assign maximum preemption threshold to Unassigned;
calculate blocking time limit A; for 7;
if T S di then
| ai=hi
else
| ai=di—ri
end
end
select 7; from Unassigned with the largest a;;
Pi =p;
Unassigned = Unassigned \{;};
end

The complexity of finding the maximum preemption threshold assignment (line 6 of
Algorithm 1) is O(n? - F(n)) [Ghattas and Dean 2007], where n is the number of tasks
in the system, and the function F(n) is the complexity to check the schedulability (or
compute the blocking time limit) of a task.? It is easy to see that Algorithm 1 makes
O(n?) calls to line 6, thus the complexity of this algorithm is O(n* - F(n)).

The task blocking time limit can be calculated by binary search until a given preci-
sion is achieved (as proposed in [Saksena and Wang 2000]). A more elegant way is to
use the method based on the formulation of feasibility regions in [Zeng and Di Natale

2The complexity of schedulability analysis is only known to be pseudo-polynomial, see e.g. [Chen et al. 2005].

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2012.

39:10 H. Zeng et al.

2013]. Task 7; is feasible if for each instance ¢ = 0- - - ¢* in the busy period, there exists
a pair of points s, f € [¢ - t;,q - t; + d;] such that

s> Bi+q-cit+ Y, (1+ {SJ)CJ

, , t;
j€hp(i) (4)
f= Bit(@+ei+ Y, [ﬂcﬁ > (1+L§S_J)cj
jent(i) ' jehnt(i) J

where hnt(i) = {j : pi < p; < yi} = hp(2)\ht(i) is the complement of ht(i) with respect
to hp(i).

The set of candidate pairs of start and finish times for the ¢-th instance of 7; can be
found as 77, S and F(?

I9 = {(s,f):s€ 89, fe FD > s}
S = {mt; :m e Nt jehp(i),m-t; €lq-tiq-ti +d]}U{q-t: + di}
FO = {mt; :m e N*,j € ht(i),m-t; € [q-ti,q-t; + di]} U{g - t; + di}.

We define the execution requests from the tasks with higher or equal priority on the
right-hand sides of (4) by

s
S0 (s) =q-ci+ Z Lﬁ-‘ ¢
jehp(i) 'Y

2=+t ¥ Lo 3 2]

JERL(3)

The schedulability condition of 7; can be rewritten as

Vg=0---¢*,3(s, f) € Ii((n such that 5)
s>B;+3(s) and f>B;+®9(s, f)

Thus, the blocking time limit hz(.‘I) of the ¢-th instance of task 7; in the busy period is

h? = max {min(s — 29 (s) — ¢, f — (s,)} 6)
(s.f)ET?

where ¢ is a small number. The blocking time limit h; of 7; itself is

_ : (@)
s q:(rJI-l}le*“” hl)
The number of instances ¢*** in the busy period in Equation (7) is conservatively com-
puted using the upper bound h%" (e.g. the laxity between the deadline and response
time assuming no blocking time).
Once the blocking time limits of the higher priority tasks are calculated, the maxi-
mum preemption threshold of 7; is

y; = max{p; : Vpi, € (pi,pj],ci < hi} (8

In the experiments, we compare these heuristics with the optimal results obtained
from exhaustive search for application sets with a small number of tasks and the re-
sults of simulated annealing for larger application sets. Although these algorithms are
developed for schedulability alone, they perform very well for the problem of finding
the minimal stack usage among the feasible solutions.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2012.

Minimizing Stack and Communication Memory Usage in Real-time Embedded Applications 39:11

4.1. Experimental Results

For task priority assignment, we implemented the heuristic in [Saksena and Wang
2000] (PA-Preemptive), its improvement in Algorithm 1 (PA-DMMPT), the deadline
monotonic assignment, and a simulated annealing solution. For all algorithms, once
the priorities are assigned, the maximum preemption threshold assignment [Wang
and Saksena 1999] is computed.

The simulated annealing algorithm requires the definition of a transition func-
tion for computing new solutions and an evaluation function to estimate the
cost/performance of the solutions. A pair of adjacent tasks with priority p; and p;11
is randomly selected and their priorities are swapped. After the swap, the maximum
preemption thresholds are assigned. Any swap of two tasks with adjacent p; and p;
will not change the maximum preemption threshold of tasks with priority higher than
pi+1. The initial solution is the Deadline Monotonic priority assignment.

We apply these algorithms to 13200 randomly generated cases having a number of
tasks between 5 and 70. The task stack usage is uniformly distributed between 128
and 2048 bytes. After finding a solution for the task priority and preemption threshold
assignment, the system stack usage is computed with as in the example in Figure 2.
As the simulated annealing algorithm is quite slow, we are only able to run it for 3200
systems with no more than 20 tasks.

For all random systems, PA-DMMPT always returns a solution that is feasible,
with no larger stack space than PA-Preemptive or the deadline monotonic policy. PA-
Preemptive returns a priority assignment which is unfeasible in 28 cases. In 453 other
cases, it returns a solution with a larger stack space than PA-DMMPT, where the max-
imum difference is 86.7%. The average difference amortized over all 13200 cases is only
0.8%. The deadline monotonic policy has similar results: it is unfeasible in 28 cases,
and in 321 cases the corresponding solution has a larger stack space requirement. The
average and maximum differences are 0.6% and 86.7% respectively.

In all the 3200 systems in which simulated annealing was able to compute a so-
lution in reasonable time, PA-DMMPT computed the same results as simulated an-
nealing. As expected, all the heuristic algorithms have a much shorter execution time.
For instance, when the number of tasks is 20, each of the heuristics takes less than
one second, while the simulated annealing algorithm takes 40 minutes on average. Fi-
nally, for 1000 test cases with 5 to 9 tasks, we use exhaustive search to find the optimal
solution. In all cases, both PA-DMMPT and simulated annealing return the optimal so-
lution. Although this does not provide guarantees for the cases with more than 9 tasks,
it shows the (expected) good performance of simulated annealing and PA-DMMPT -
and to some degree of the other two heuristics.

Overall, the results demonstrate that for the first scenario (the task model), the
three heuristics that are designed for schedulability also perform very well in terms of
stack usage. Intuitively, an algorithm that eases schedulability also allows for higher
thresholds, less preemptability, and hence less stack usage. Also, the heuristic PA-
DMMPT always generates the same or better results than the other two algorithms
(deadline monotonic and PA-Preemptive). In the following, we leverage this result to
develop algorithms for systems developed from a functional model (scenario 2).

5. STACK OPTIMIZATION FOR FUNCTIONAL MODELS

In this section, we consider the problem of stack space minimization for systems de-
veloped starting from a functional model and where preemption thresholds can be
associated with runnables. As demonstrated in [Yao and Buttazzo 2010], assuming
runnables as the atomic scheduable units (instead of tasks) can reduce the system
stack usage, because provides a finer granularity for the definition of code sections

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2012.

39:12 H. Zeng et al.

with limited preemption, thus enabling more opportunities to share stack space; and
has the advantage of only allowing preemption at runnable boundaries where the stack
usage is relatively low (no functional code is executed between two runnables). How-
ever, the analysis in [Yao and Buttazzo 2010] has two important limitations. First, the
system schedulability is checked assuming tasks are preemptable (and the runnable
execution order inside a task is irrelevant), which introduces unnecessary pessimism.
Second, it assumes the runnable to task mapping and task priority assignment are
given.

We address the limitations of [Yao and Buttazzo 2010] and tackle the design problem
in steps. First, we formally prove that, similar to the task model, a maximum preemp-
tion threshold assignment exists and is optimal in terms of minimizing system stack
usage. Then, we leverage a more accurate schedulability analysis, and provide rules
and optimal algorithms for the assignment of runnable thresholds and the runnable
execution order inside a task, assuming the runnable to task mapping and the task
priority assignment are given (as in [Yao and Buttazzo 2010]). Finally, we develop an
efficient heuristic to find the runnable mapping and task priority assignment, with
results comparable to (or slightly better than) simulated annealing.

5.1. Optimality of Maximum Preemption Threshold

The maximum preemption threshold 7*** of p, mapped into 7, is the highest priority
level p; such that all tasks with priority between p, and p; have a blocking time limit
no smaller than ; (its worst case execution time).

max

ni ™ = max{p; : Vpr. € (pr,pjl, 7 < hi} 9)
In [Yao and Buttazzo 2010], the blocking time limit computation is performed at
the task level with the conservative assumption that the task is fully preemptive. In
this case, the order of execution of the runnables inside a task is irrelevant. Instead,
additional information on runnables and their preemption threshold can be used to
improve the computation of the blocking time limit. We denote the blocking time limit
of the k-th runnable p; of task 7; as f, ;. §; x can be computed in a similar way as in
the case of task model.
Bix= min B9 where 8 = max {min(s — 29 (s) —¢,f — @9 (s,)} (10)
q=0---g*ub 7 ’ s, feT'® ’ ’

S
Ez(':]k)(s) = q¢i +Cigp-1+ Z {t-‘ Cj
jenp(i) '
S
‘I’f;,q;?,(s, f)=qci+cip—1+ ik + Z Hr‘ ¢+ Z {t-‘ ¢
jeht(ik) ' jehnt(ik) ' 7
Here ht(i, k) = {j : pj > nix}, hnt(i, k) = hp(i) \ ht(4, k). The blocking time limit of task
7; 1s the minimum among those of the runnables mapped into it
hi = mkin /qu,k (11)

and

A set of properties (with a proof sketch) apply to the blocking time limit and maxi-
mum preemption threshold in relation to runnable execution order.
— Property 1 (Monotonicity of ;; with respect to the execution order of
runnable p; ;; in the task): Since Equ) (s) and CIDEQ,E (s, f) are monotonically increasing
with ¢; 1, 8; 1 is monotonically decreasing with ¢; ;1. Thus the blocking time limit

of a runnable decreases if we put more runnables ahead of it in the execution order,
and vice versa.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2012.

Minimizing Stack and Communication Memory Usage in Real-time Embedded Applications 39:13

— Property 2 (Monotonicity of 5; ; with respect to the preemption threshold
i k)% <I>7(qk) (s, f) is monotonically increasing with ht(i, k), the set of tasks that can pre-
empt p; . The higher 7, j, the smaller ht(i, k) and (I)Z(.?k) (s, f) are. §; x is non-increasing

with respect to @E?,g (s, f), hence the proof.

—Property 3 (Independency of the maximum 7;; from runnables with the
same or lower priority): by Equation (9), the maximum preemption threshold of
a runnable is independent from the execution order and preemption threshold of
runnables mapped to the same task or with lower priority.

We now prove the existence of a feasible preemption threshold assignment for all
runnables that is larger than (dominates) any other feasible assignment. The lemma
is an extension of the theorem in [Chen et al. 2005] applied to the task model, but
proved in a different (and simpler) way by using the concept of blocking time limit.

LEMMA 5.1. Given the runnable to task mapping, the runnable execution order, and
the task priority assignment, there exists a valid preemption threshold assignment n™*
that is component-wise greater than any other valid preemption threshold assignment
1: Vpis i < 0

PROOF. By induction. The theorem is trivially true for systems with only one task.

Suppose it is possible to find such a maximum preemption assignment for a system
with n tasks. Consider a system with (n + 1) tasks, where 7,1 is the lowest priority
task. Because of Property 3, the preemption thresholds of the runnables belonging
to the n higher priority tasks are independent from the thresholds assigned to the
runnables of 7,,,;. According to our induction hypothesis, such maximum threshold
assignment for the n highest priority tasks exists. By Property 2, it is also the one that
maximizes the blocking time limit for the runnables mapped to the n highest priority
tasks. By Equations (11) and (9), the thresholds of the runnables in 7, ; are therefore
also maximized, thus achieving maximum preemption threshold assignment for the
task set with (n + 1) tasks. O

n™#* should be computed starting from the highest priority task down to the lowest
priority one, as proposed in [Saksena and Wang 2000; Yao and Buttazzo 2010]. The
existence of n™?* also demonstrates its optimality of stack usage, as it minimizes the
possible preemptions among runnables.

THEOREM 5.2. Among all the legal preemption threshold, n™** has the smallest
total stack requirement.

The theorem can be proved in exactly the way as in [Ghattas and Dean 2007] (for
the task model). We omit the proof here.

5.2. Optimal Execution Order Assignment

Next, we include the assignment of the runnables execution order inside the tasks
among the design variables, but runnable mapping and task priority assignment are
still assumed to be given.

We propose an algorithm for the assignment of an execution order to runnables
based on the blocking time limit, as in Algorithm 2. The assignment starts from the
highest priority task down to the lowest priority one. Within each task 7;, the set As-
signed (Unassigned) contains the set of runnables F; mapped to 7; that has (has not)
been assigned an execution order. Starting from the highest execution order |F;| (the
last runnable in the task), the algorithm assign the current execution order to the
runnable with the largest blocking time limit among those in Unassigned. If the block-

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2012.

© W TG W N

I vl v
S U R W N = O

39:14 H. Zeng et al.

ing time limit of the selected runnable is negative, then the task set is unschedulable.
Otherwise, the algorithm returns a valid execution order.

ALGORITHM 2: Optimal Algorithm for Runnable Execution Order and Threshold Assignment

Input: Task set with predefined priority and runnable mapping.
Output: Assignment of execution order and threshold to each runnable.

for each 7; from highest priority to lowest priority do
Unassigned = F;, Assigned = 0,
for k = |F;| to 1 do
for each runnable p; € Unassigned do
1; = maximum preemption threshold as in Equation (9);
B; = blocking time limit of p; assuming m(p;, 7, k) = 1;
end
select p; from Unassigned with the largest 3;;
map p; as the k-th runnable of 7; (m(p;, 7:, k) = 1);
if 8; < 0 then
| RETURN unschedulable;
end
Unassigned = Unassigned \{p;}, Assigned = Assigned | J{p;};
end
h; = blocking time limit of 7; as in Equation (11);
end

The complexity of Algorithm 2 is analyzed in a similar way as Algorithm 1. Assuming
that the blocking time limit of a runnable (line 6 in the algorithm) is computed with
complexity F(m) where m is the number of runnables in the system. For each task
7; containing m; runnables, it requires O(m?) calls to line 6 to find a total order of
runnable execution. Thus, the complexity of Algorithm 2 is O(>", m? - F(m)) = O(m? -
F(m)) (note that m =, m;).

We now demonstrate that the runnable order generated by Algorithm 2 is optimal
with respect to system schedulability and stack space usage. We first provide a lemma.

LEMMA 5.3. Algorithm 2 maximizes the task blocking time limit h; among all the
possible runnable execution orders.

PROOF. We assume that in the execution order assignment O returned from Al-
gorithm 2, the task blocking time h; = 3; of runnable p;,. We prove that any other
execution order O’ has a task blocking time h, < h;. We denote the set of runnables
with a smaller execution order than p; in O as R; (the set of such runnables in O’ is
denoted as R;).

Case 1: R; C R/. In this case, by Property 1, 8; < 8;, and h} < 3} < f; = h;.

Case 2: R; ¢ R/. In this case, there exists at least one runnable in R; that does
not belong to R’. Let p;, be the runnable in R; with the largest execution order in
O'. Thus, R; \ {px} € R} In addition, p; has a smaller execution order in O’ than py,
therefore p; € R, and

R\ {ox} (J{pi} € RS (12)

Let ! denotes the execution order of p; in O. Algorithm 2 (line 8) should guarantee
that if we select p;, from R, [J{p,} as the [-th runnable (thus the set of runnables with
a smaller execution order than p; is R; \ {pr} U{p;}), its blocking time limit should
be no larger than j3;. Therefore, by Equation (12) and Property 1, it is 3, < ;, and
hi < B <Bj=hi. O

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2012.

Minimizing Stack and Communication Memory Usage in Real-time Embedded Applications 39:15

Table II. An example of three runnables

Assignment Assignment
pi | 0i | v i | pi | M| 0 Ti | pi | M| O
p1 | 4 10 |3 3 10 T | 3 3 10
p2 |10 [25 [[== | 2 2 25 Ty | 2 2 25
ps | B 50 [| 3 | 1 1 50 T | 2 3 25

R
R

Ul W O

N Lol OO

THEOREM 5.4. Algorithm 2 is optimal for system schedulability. In addition, it
returns the execution order with the smallest total stack requirement.

PROOF. The optimality of schedulability follows directly from Lemma 5.3: if there
exists a solution such that h; > 0 (the system is schedulable), then Algorithm 2 will
find it. From Lemma 5.3, Algorithm 2 maximizes the task blocking time limits. The op-
timality of the stack space requirement follows from a reasoning similar to Lemma 5.1
and Theorem 5.2. O

5.3. Runnable to Task Mapping and Priority Assignment

Finally, we include the mapping of runnables to tasks and the task priority assignment
in the set of design variables. As a starting point, we assume that each runnable is
executed by a dedicated task, and Algorithm 1 is used to find a close to optimal priority
assignment. However, mapping multiple runnables into the same task provides an
additional opportunity for avoiding preemption and saving stack space.

Consider an example with three runnables with WCETs and periods p; = (3,10),
p2 = (10,25), and p3 = (5,50), as in Table II. The only feasible solution with a one to
one mapping of runnables to tasks is Assignment 1 on the left, in which p3 must be
scheduled with preemption as its execution time is larger than the blocking time limit
of po. If we map p2 and p3 to the same task (Assignment 2, on the right), the blocking
time limit of p, is no longer a limiting factor in deciding the maximum preemption
threshold of ps. This allows to further disable preemption between p; and ps.

On the other hand, the task period (and its deadline) must be an integer divisor of
the runnable period, therefore, a task implementing multiple runnables must have a
period equal to the greatest common divisor of all its runnables. This can result in a
tighter deadline for some runnables and possibly make the system unschedulable.

Based on the above observation, we propose an algorithm that works by iterative
refinement. A one-to-one runnable to task assignment is the initial solution. Priorities
are assigned to tasks using Algorithm 1. Then, the algorithm verifies if there are op-
portunities for further improvement by merging tasks and reordering the execution of
runnables in the merged tasks using Algorithm 2 (optimal for the execution order and
preemption threshold assignment).

First, we provide a result guaranteeing that task merging is always beneficial when
two tasks have adjacent priority levels and equal period.

THEOREM 5.5. Consider a task set T in which two tasks ; and 7,11 have adjacent
priority p;+1 = p;11 and equal periods t; = t; 1. If the runnables in 7; are moved to 7; 1,
the maximum preemption threshold n'™®* of the new task configuration is component
wise no smaller than 7™,

PROOF. We only provide a proof sketch. By Property 3, the maximum preemption
threshold of runnables with priority higher than p;,; and those originally in 7, re-
main the same, so are their blocking time limits.

For the runnables originally in 7;, suppose the blocking time limit before the merge
is h; = f; 1. By Equation (9), their maximum preemption threshold does not decrease

in the new mapping. In addition, since Vs, Vi, quk)(s) > (I)z(i)u(s’ s) > Ev(I?l) (s), it must be

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2012.

o =

© XIS T AW

11
12
13
14
15
16
17
18
19
20

39:16 H. Zeng et al.

hi < hiy1. Hence, the blocking time limit of 7/ , is no smaller than 7;, and the maximum
preemption threshold for runnables with priority lower than p;,; also increases or
remains the same. O

ALGORITHM 3: Algorithm for Runnable Mapping and Task Priority Assignment

Input: Set of runnables.
Output: Runnable to task mapping and task priority assignment.
Create one task for each runnable;
Find an initial priority assignment to tasks using Algorithm 1, modified by merging adjacent
tasks with the same period (Theorem 5.5);
for each task T; from lowest priority do
s™" = current system stack usage, ;™" = —1;
for each task 7; other than 7; do
temporarily move all runnables in 7; to 7;;
temporarily update p; to ged(ps, p;);
assign order and threshold to runnables in 7; (Algorithm 2);
s; = system stack usage for new temporary configuration;
if s™" > 5; then
‘ Smm = s, jmln —],
end
undo temporary remapping
end
if ™" £ —1 then
map all runnables in 7; to 7min;
update p min to ged(pi, pjmin);
assign order and threshold to runnables in 7; (Algorithm 2);
end
end

-

We propose a greedy algorithm to find the runnable mapping and task priority as-
signment, shown in Algorithm 3. First, an initial mapping of runnables to tasks and
a priority assignment is defined by using Algorithm 1 with a slight change on line 5:
a single task implements all runnables with the same period (Theorem 5.5), and Al-
gorithm 2 is used to define the runnable execution order and threshold. Next, further
task merging opportunities are explored. Starting from the lowest priority task, the
runnables belonging to each task 7; are tentatively moved to a different task 7; (with
lower or higher priority) to see whether the new mapping can reduce the stack space
requirement. When evaluating a merge, the period must be updated to the greatest
common divisor of the original tasks and the priority is that of 7;. Algorithm 2 is ap-
plied to find the optimal runnable execution order in the new mapping. This step is
a greedy local search. After trying all such possible merge, the runnables in 7; are
remapped to the task (if any) that provides the maximum stack space reduction.

Algorithm 3 makes at most O(m?) calls to line 8 (Algorithm 2), for which the com-
plexity is O(m? - F(m)). Hence, the complexity of Algorithm 3 is O(m* - F(m)).

5.4. Experimental Results

We first evaluate the benefit of using a more accurate evaluation of the blocking time
limit and the optimal runnable execution order on the required stack space (as com-
pared to [Yao and Buttazzo 2010]). The periods of the runnables are randomly drawn

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2012.

Minimizing Stack and Communication Memory Usage in Real-time Embedded Applications 39:17

1450

1400

1350

1300

-
N
a
=)

1200

Average Stack Usage

11000 a ,
-
1050+ a 4
-3
1000 L = 2 i
e a .
9504 DM-Preemptive —— |

DM-Optimal - - --
Algorithm 3‘ @

900 I I I I I I I
50 55 60 65 70 75 80 85 90 95 100
System Utilization (%)

Fig. 3. Average system stack at different system utilization when the number of runnables = 50.

from the set {5, 10, 20, 40, 50, 100, 200, 400, 500, 1000}. The runnable stack usage is uni-
formly distributed between 80 and 512 bytes. The stack usage required by each task
for its local variables, and active in between the execution of its runnables is 80 bytes.

The first experiment is to check the stack usage with respect to the system utilization.
As a baseline solution for comparison, we assume a task model for [Yao and Buttazzo
2010] as follows (denoted as DM-Preemptive): for each period, one task implements
all the runnables with the same period, and its deadline is assumed to be equal to
its period. Priorities are assigned to tasks according to the deadline monotonic policy
(and the task blocking time limit is estimated assuming it is preemptive, as in [Yao and
Buttazzo 2010]). We check the use of Algorithm 2 for the optimal runnable execution
order assignment (denoted as DM-Optimal), and finally the use of Algorithm 3 for the
additional design space of runnable-to-task mapping and task priority assignment. We
set the number of runnables to n = 50, and vary the system utilization from U = 50%
to 99%. For each U, 1000 schedulable task sets are generated.

The results are shown in Figure 3. The memory required by the solutions computed
by DM-Optimal is almost the same as the memory used by DM-Preemptive, for sys-
tem utilizations lower than 90%. For very high utilization values (95% and 99%), the
schedulability analysis that considers the non-preemptability of the last runnable per-
forms significantly better. 492 out of the 2000 cases are incorrectly reported as un-
schedulable when using the pessimistic blocking time estimate from [Yao and Buttazzo
2010] (DM-Preemptive). For 484 of the remaining sets, the use of Algorithm 2 brings
an additional stack space improvement with respect to [Yao and Buttazzo 2010]. On
average, the exploration of a better runnable execution order, together with the im-
proved analysis (DM-Optimal) can find solutions with 5.1% less stack space, compared
to DM-Preemptive on the 2000 high utilization cases. On the other hand, the improve-
ment that can be obtained from the optimization of the task model in Algorithm 3 does
not depend on the system utilization. The optimized task model requires less memory
than the solution computed by using DM-Preemptive, with an average improvement of
11%-19% for each U. This confirms the benefits of exploring runnable-to-task mappings
and task priority assignments in the problem space.

In the second set of experiments, we keep the system utilization constant (U =70%
or 90%) while exploring a different number of runnables n = 10,15, --,100 in the
system (i.e. on average, the number of runnables for each possible period value is from
1 to 10). For each n, 1000 schedulable task sets are generated. We compute the stack

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2012.

39:18 H. Zeng et al.

17

16

Stack Usage Saving (%)
= I = =
= N w R
T T T T

=
o

©
=T

Utilization = 70% —+— -
Utilization = 90% -- - -

8
10 20 30 40 50 60 70 80 90 100
Number of Runnables

Fig. 4. Average stack savings of Algorithm 3 compared to DM-Preemptive vs. number of runnables.

space savings obtained using Algorithm 3 compared to DM-Preemptive, as shown in
Figure 4. With U = 90%, the savings are only slightly dependent on the number of
runnables. On the other hand, for U = 70% the stack space savings increase with
the number of runnables. The limited improvement at high utilization values can be
intuitively explained by the limited number of task mapping configurations that are
feasible when the utilization is quite high (U = 90% and higher, as also shown in
Figure 3). Similarly, the greater benefit that our mapping and priority assignment
algorithm can provide for a higher number of runnables is intuitively explained by the
consideration that the larger is the number of runnables, the higher is the number of
feasible task configurations.

To evaluate the quality of the proposed solution for the runnable mapping and task
priority assignment, we perform additional experiments. The design space is too large
to verify the optimality of the computed solutions by exhaustive search, even for a
very small number of tasks. Therefore, as a comparison to the greedy Algorithm 3, we
developed a simulated annealing solution. Two transition operators are randomly se-
lected (with equal probability): changing the mapping of a runnable, or changing the
priority of a task. The task priority change is done by swapping the priority of two ran-
domly selected tasks (and the runnables mapped inside them). When we change the
mapping of a runnable, the operator randomly selects a runnable, then it randomly
chooses one of the existing tasks or creates a new task as the new execution context
for the runnable. If an existing task is selected, its period must be an integer divisor of
the period of the runnable. In case a new task is created, it is assigned with the lowest
priority and a period equal to the runnable. After each transition, the execution order
and the preemption threshold of the runnables are calculated using the optimal Algo-
rithm 2. The initial solution is set to be DM-Optimal, i.e., to use one task implementing
all runnables with the same period and deadline monotonic priority assignment.

We use 11000 random task sets with n = 10 to 20 runnables as input to the sim-
ulated annealing algorithm. The runnable execution time is generated such that its
utilization is uniformly distributed between 0 and 100%. Algorithm 3 generates solu-
tions with comparable quality to simulated annealing: for 55 of the cases the result is
better than simulated annealing (with a maximum difference of 50.5%), for 18 of the
cases it is worse (maximum difference 35.4%), and for the remaining 10927 cases (by
far the majority), the two computed solutions have the same stack usage. The cases
in which Algorithm 3 and simulated annealing have different results are almost uni-

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2012.

Minimizing Stack and Communication Memory Usage in Real-time Embedded Applications 39:19

formly distributed with respect to the number of runnables or the processor utilization
(besides being in a very limited number), showing no significant correlation with any
of these parameters.

6. MEMORY OPTIMIZATION FOR THE FUNCTIONAL MODEL WITH COMMUNICATION
VARIABLES

In this section, we extend the design synthesis problem by considering the RAM mem-
ory required for the implementation of communication using shared variables.

6.1. System Model

The functional model F is further enriched for the consideration of shared communica-
tion variables by a Directed Graph {V,E}, where V is the set of vertices, representing
the runnables, and E the set of edges or communication links between them. Each link
communicates a set of periodic data values, implementing a (discrete time) signal ex-
changed between runnables. This model can be applied to functional models derived
from popular commercial modeling and simulation tools, such as Simulink, in which
such a graph has inputs from sampling, source, and constant blocks, representing the
signals from the controlled system or plant. At the other end of the graph, the output
signals are the result of the controllers’ computations.

A runnable p; reads from a set of input ports and writes to a set of output ports.
We denote the set of data ports accessed by p; as &;. The runnable period 6; is also
the sampling period for the signals on the input ports. The signals are processed by
the runnable and the result of the computation is a set of signal with the same rate,
produced on the output ports.

& = {e1,...,€)¢|} is the set of shared resources (in a one-to-one correspondence with
data ports). We consider the case of one-to-many communication: a shared resource ¢;
has a writer runnable, and a set of reader runnables. We denote the set of runnables
accessing ¢; as p(g;).

The execution time of runnable p; is characterized by the tuple (v;0,7v:(ck), Ver €
&) where 7, o is the total WCET of the normal execution segments, and ~;(ex) is the
WCET of the critical section accessing the input/output ports ;. The total worst case
execution time ~; of p; is

Vi = Yi0 + Z 7i(ek)

eRL€E;

As summarized in [Ferrari et al. 2009], there are three different mechanisms to
guarantee data consistency, with different timing and memory overhead, as discussed
below.

— M1: Disabling preemption among runnables by appropriately setting their preemp-
tion thresholds.

— M2: Semaphore locks with predictable blocking time, as in the Priority Ceiling Pro-
tocol (PCP) [Sha et al. 1990].

— M3: Wait free methods, as in Chen and Burns’ algorithm [Chen and Burns 1997], or
their flow preserving counterparts in [Sofronis et al. 2006] and [Wang et al. 2009].

M1: the implementation has minimum impact on the code, and we assume that their
timing and memory overhead are negligible. As discussed previously, this protection
method results in a worst case blocking time, unless the two runnables are mapped
into the same task.

M2: if a shared resource is protected by an immediate priority ceiling semaphore,
the resource is assigned a priority ceiling equal to the highest priority of any task
which may lock the resource. When a task locks the shared resource, its priority is

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2012.

39:20 H. Zeng et al.

temporarily raised to the priority ceiling of the shared resource, thus no task that share
the resource is able to execute. This allows a low priority task to defer the execution of
any task with priority lower than or equal to the priority ceiling of the shared resource.

In this case, we assume the timing overhead is negligible, and the memory overhead
is zero. However, the use of priority ceiling semaphores may introduce blocking to task
7; in the measure of the longest critical section from a lower priority task on a resource
with priority ceiling > p;.

M3: shared resources can also be protected against concurrent access by replicat-
ing the communication buffers and by leveraging information on the time instant and
order (such as priority and scheduling) of the access to the buffer. For a shared re-
source ¢;, let n/” be the number of reader tasks with priority lower than the writer.
As in [Sofronis et al. 2006; Wang et al. 2009], the readers with priority higher than the
writer always use only one buffer, each of the n*% readers with lower priority than the
writer uses one buffer in the worst case, and one buffer is reserved for the writer to
store the newest data. Thus, if there is any reader with priority higher than the writer,
then the number of additional buffers needed for the wait-free method is n; = nf + 2;
otherwise it is n; = nF® + 1. We also assume that the timing overhead associated to the
wait-free method is negligible.

In the following, we first provide an optimal algorithm for the assignment of pre-
emption thresholds to runnables and the selection of the shared variable protection
mechanisms when the runnable-to-task mapping, the priority assignment, and the or-
dering of runnables inside a task are given. Then, we leverage the algorithms for the
efficient selection of the other design variables (task priority, runnable to task map-
ping, and runnable preemption threshold) presented in Section 5, and extend them
with the consideration of the protection mechanisms for shared variables and the cor-
responding memory costs.

6.2. Memory Optimality of Maximum Threshold Assignment

In the absence of timing overhead, the blocking time limit and the maximum preemp-
tion threshold assignment for runnables and tasks are the same as in Section 5.1.
Properties 1-3 still apply, in addition, we have

— Property 4 (Independency of the maximum runnable preemption threshold
from the mechanism for the protection of the shared resources): by (9)—(11),
the runnable blocking time limit and maximum preemption threshold are indepen-
dent from the selection of mechanism to protect the shared resources.

By Property 4, the selection of the mechanisms to protect shared variables does not
affect the existence of n™**, thus Lemma 5.1 and Theorem 5.2 still hold.

After the assignment of the maximum preemption threshold n™**, a subset of the
shared resources is protected because of the threshold configuration (M1), which comes
with no memory overhead. For the remaining subset, it is necessary to use either
semaphore locks (M2) or wait-free methods (M3). To minimize memory usage, lock-
based methods (M2) are always preferable. However, the critical sections protected by
semaphore locks may introduce additional blocking time to higher priority tasks and
lead to system unfeasibility.

For the critical section in p; accessing ¢, its maximum priority ceiling \;(¢y) is de-
fined as the highest priority ceiling it can get without causing system unfeasibility.
Ai(ex) is the highest priority level p; such that all the tasks with priority between p;
and p; have a blocking time limit no shorter than ~;(ex) (the duration of the critical
section).

Xi(er) = max{p; € [pi, p™*(ex)] : Vo, € (pi>p5],7i(ex) < he} (13)

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2012.

-
LTI R - RV R VU U

L
®W I TR W N

Minimizing Stack and Communication Memory Usage in Real-time Embedded Applications 39:21

where p™®*(g;) denotes the highest priority among the runnables accessing ¢;. The
concept of maximum priority ceiling is similar to maximum preemption threshold, as it
defines the highest priority level at runtime during the execution of the code. However,
it is defined over the critical section code instead of the entire runnable.

If shared resource ¢, can be protected by semaphore locks, it is necessary that all
the critical sections accessing it have a maximum priority ceiling equal to p™2*(ey).

ex 1s lock-protected = Vp; € p(er), \i(ex) = p™**(ex) (14)

We now prove that n™** also provides the largest maximum priority ceiling of all
critical sections, thus maximizing the opportunity to use lock-based methods.

THEOREM 6.1. Among all the legal preemption threshold assignments, n™** allows
for the highest priority ceiling to any critical section.

PrOOF. It directly follows the facts that »™** maximizes the blocking time limits of
all the tasks at the same time, and by (13) the maximum priority ceiling of a critical
section is monotonically increasing with respect to the blocking time limit of higher
priority tasks. 0O

ALGORITHM 4: Optimal Algorithm for Preemption Threshold Assignment and Selection of
Data Synchronization Mechanisms

Input: Task set with predefined runnable mapping and priority assignment.
Output: Runnable preemption threshold assignment and selection of data synchronization
mechanisms.
for each 7; from highest priority to lowest priority do
for each p;, do
\ 7;,, = maximum preemption threshold as in (9);
end
h; = maximum blocking time limit as in (11);
end
or each resource ¢;, do
if 3p; € p(er) with n; < p™**(e1) then
for each runnable p; € p(ei) do
| Ai(ex) = maximum priority ceiling as in (13);
end
if Vp; € p(ek), Ni(er) = p™**(er) then
| use M2 to protect ey;
else
| use M3 to protect ey;
end
end
end

=y

Theorems 5.2 and 6.1 together provide the memory optimality of the maximum pre-
emption threshold assignment, considering both the stack space requirement and com-
munication buffer usage.

Algorithm 4 is an optimal procedure to minimize the memory usage given the
runnable mapping, priority assignment, and runnable execution order inside tasks.
First, the maximum preemption threshold assignment is calculated starting from the
highest priority task to the lowest priority one (lines 1-6). Then, for each resource not
protected by preemption thresholds, it checks the possibility of using locks by calculat-
ing the maximum priority ceiling for each critical section, and comparing it with the

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2012.

39:22 H. Zeng et al.

highest priority level among the runnables accessing the resource. If there is a critical
section with a priority ceiling lower than the computed bound, a wait-free method (M3)
must be used with the additional memory cost. Otherwise, a lock-based protection (M2)
is selected with no additional memory cost.

6.3. Extension of Algorithm 3

The optimization algorithm that considers the selection of the protection mechanisms
is a simple merger of Algorithm 4 with the previous algorithm for the optimal as-
signment of priorities and runnable mappings (Algorithm 3). This is because the con-
sideration of data synchronization mechanisms does not affect the runnable and task
blocking time limit calculation and the maximum preemption threshold (retaining the
optimality of Algorithm 2). The result of the merger is a procedure in which Algo-
rithm 4 is called inside the main body of Algorithm 3 when the initial task model is
defined (after line 2): between lines 8 and 9 to set the communication protection mech-
anisms (using Algorithm 4) before the memory usage of the new candidate solutions
are evaluated, and finally after line 18 to update the definition of the protection mech-
anisms for each new generated solution. As demonstrated in the experimental section,
this algorithm produces results similar to those computed by simulated annealing, but
in a much shorter time.

Algorithm 4 contains two loops, the first (lines 1-6) is the calculation of the maximum
runnable preemption thresholds with a complexity of O(m?-F(m)); the second is to find
the protection mechanism for each resource, with complexity O(r - m?), where r is the
number of shared resources in the system, as line 10 requires at most m checks after
the runnable preemption threshold is computed. Hence, the complexity of Algorithm 4
is O(m? - (F(m) +r)), and the extension of Algorithm 3 to consider the selection of the
protection mechanisms has complexity O(m* - (F(m) +7)).

6.4. Experimental Results

6.4.1. Random Systems. We first generate random systems in which the periods of the
runnables are generated in the same way as in Section 5. For communication among
runnables, we consider three schemes: light, medium, and heavy. The runnable stack
usage is randomly distributed between one to three times of the total size of its com-
munication variables.

In the light communication scheme, the output of a runnable is shared with 1 to 3
other runnables, with a probability p of 50%, 40%, and 10% respectively. The size of
the output is randomly selected from 1 (with probability p = 30%), 4 (p = 30%), 24
(p = 20%) and 128 (p = 20%) bytes.

In the medium communication scheme, the output of a runnable is shared with 1
to 4 readers, with a probably p of 20%, 30%, 30%, and 20% respectively. The size of
the output is randomly selected from 1 (with probability p = 10%), 4 (p = 30%), 24
(p = 30%), 128 (p = 20%), and 256 (p = 10%) bytes.

In the heavy communication scheme, the output of a runnable is shared by 1-5 other
runnables, with a probably p of 10%, 20%, 30%, 30%, and 10% respectively. The size
of the output is randomly selected from 1 (with probability p = 10%), 4 (p = 20%), 24
(p = 20%), 48 (p = 10%), 128 (p = 20%), 256 (p = 10%), and 512 (p = 10%) bytes.

The first experiment is performed to analyze the possible benefit of finding the op-
timal combination of data synchronization mechanisms using Algorithm 4 (that is,
without optimizing the runnable-to-task mapping and the priority assignment). We
use two metrics for comparison: one is the optimal memory usage, normalized with
respect to a baseline configuration in which all resources are protected by wait-free
methods (M3); the other is on system schedulability, measured by the percentage of
systems for which our method find a feasible task and communication model config-

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2012.

Minimizing Stack and Communication Memory Usage in Real-time Embedded Applications 39:23

17 T T T T T T T T T 18

=
o
o

- IB
[214
c 8
S =2 -8
E 16 - B :% I
= © 12 - x.
= k=]
K]
2155 1210 o x
£ o
) S
2 2
g 15r 45 8 T X
‘s ° o
£ %6 - -
1< g .
S5 1E o -
. £, o
S .
O o X
14 A } 1 n ‘
iR S Light Scheme —+— 2 | P - Light Scheme —— |
Medium Scheme -- -~ LT e R Medium Scheme - - »--
. Heavy Scheme --e-- “tlees x Heavy Scheme --e--
135 0 f .
50 55 60 65 70 75 80 85 90 95 100 50 55 60 65 70 75 80 85 90 95 100
Utilization (%) Utilization (%)
(a) (b)

Fig. 5. (a) Memory usage normalized to the requirement that all resources are protected by wait-free meth-
ods; (b) Percentage of unschedulable systems if all resources are protected by semaphore locks.

uration, but would not be schedulable if all resources were protected by semaphore
locks (M2). The results for systems with 50 runnables are shown in Figure 5. On aver-
age, Algorithm 4 saves about 85% of the memory compared to the one with wait-free
methods only, with a slight decrease at higher utilization values (when there are less
opportunities for using lock-based methods). Similarly, when utilization increases, our
optimization method can leverage the selection of wait-free mechanisms to avoid block-
ing times and improve schedulability. This results in a significant fraction of systems
(up to 18% for very high utilization values) that would not be schedulable if only lock-
based methods are used but are feasible using Algorithm 4.

The second experiment is to evaluate the quality of the proposed solution for the
runnable mapping and task priority assignment when considering communication
buffers. For each of the communication scheme, we randomly generate 5500 systems
with 10 to 20 runnables, and use the modified Algorithm 3 (Section 6.3) to find the
best possible runnable mapping, priority and execution order assignment. As a com-
parison, we develop a simulated annealing algorithm similar to the one described in
Section 5.4 but extended for the consideration of communication variables: after each
transition (changing the mapping of a runnable, or changing the priority of a task),
the execution order and the preemption threshold of the runnables are computed us-
ing the optimal Algorithm 2, then Algorithm 4 is applied to optimize the maximum
preemption threshold and selection of data synchronization mechanisms.

In general, Algorithm 3 has comparable quality to simulated annealing. In the light
communication scheme, for 21 (or 0.38%) of the cases the result is better than sim-
ulated annealing, for 19 (or 0.35%) of the cases it is worse, and for the remaining
the two have the same memory usage. In the medium communication scheme, the
result is better than simulated annealing in 22 of the cases, and worse in 17 cases.
In the heavy communication scheme, it is better in 21 cases and worse in 10 cases.
Of course, Algorithm 3 runs much faster than simulated annealing. As shown in Fig-
ure 6, the runtime of Algorithm 3 is typically four magnitudes smaller than simulated
annealing. Simulated annealing becomes impractical for large systems (expected to
be more than 12 hours on average for n = 40), while Algorithm 3 is still viable for a
number of runnables larger than 100 (about 126 seconds for n = 100).

6.4.2. An Automotive Case Study. The last experimental case study consists of an auto-
motive system (as described in [Di Natale et al. 2010]). The system is a fuel injection
embedded controller with 90 runnables, executed with 7 different periods (in ms): 4, 5,

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2012.

39:24 H. Zeng et al.

250
10° %9 100
x)‘
o) X
= x')(@
= x’ ™
i o« 4
g0t 110 £
° X E)
o) Lx" <
L e —
=l X 2
£ . o
o E
5 10t e 11 g
2 .- x
£ X °
g » 2
14 (X g,
<
St {01
5] %
2 P
0 Simulated Annealing ——
3 Algorithm 3 ==%--
10 . 0.01
10 20 30 40 50 60 70 80 90 100

Number of Runnables

Fig. 6. Runtimes of Simulated Annealing (axis on left) and Algorithm 3 (axis on right).

8,12, 50, 100, and 1000. The worst-case execution times of some functions (but not all
of them) are available from the car electronics supplier as part of the case study. The
others are assigned to achieve a system utilization of 94%, which is close to the values
found in real systems of this type. The function blocks are communicating through 106
links. The details of the communication graph (including the size of the communication
links) and the time parameters of the runnables (including their periods and WCETSs)
can be found in [Di Natale et al. 2010]. The runnable stack usage (not included in the
specification provided by the component supplier) is set to be 8 bytes (a constant value
representing the minimum information pushed in the stack as part of the runnable
call) plus one to three times the total size of the runnables communication data.

The case study confirms the benefit of finding the optimal combination of data syn-
chronization mechanisms using Algorithm 4. For example, when the duration of the
critical section is assumed to be between 1% and 10% of the runnable WCET, the
memory usage of the optimal solution drops to 26.5% of the baseline solution (all re-
sources use wait-free methods). At the opposite end of the implementation solutions
range, if the critical section is increased to 1%—18% of the runnables WCET, the system
becomes unschedulable when resources are all protected by semaphore locks.

7. CONCLUSIONS

In this paper, we discuss the open problems of design synthesis to minimize stack us-
age for systems with preemption threshold scheduling. We target the optimal assign-
ment of the scheduling parameters for systems scheduled according to these policies
in several cases of practical interest, including those that are compliant with auto-
motive modeling and coding standards. In particular, we evaluate the heuristics of
priority assignment for systems with task information only. For systems that the list
of runnables are available and the definition of preemption thresholds are supported
at the runnable level, we provide rules for determining the optimality of the thresh-
old assignment to runnables and the ordering of runnables inside a task where the
priority assignment and the runnable-to-task mapping are given.

REFERENCES

AbsInt. The AiT code analyzer. http:/www.absint.com.

AUDSLEY, N. 1991. Optimal priority assignment and feasibility of static priority tasks with arbitrary start
times. Tech. Rep. YCS 164, Department of Computer Science, University of York, England.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2012.

Minimizing Stack and Communication Memory Usage in Real-time Embedded Applications 39:25

BARUAH, S. 2005. The Limited-Preemption Uniprocessor Scheduling of Sporadic Task Systems. In Proc.
17th Euromicro Conference on Real-Time Systems.

BERTOGNA, M., BUTTAZZO, G., AND YAO, G. 2011. Improving Feasibility of Fixed Priority Tasks Using
Non-Preemptive Regions. In Proc. 32nd IEEE Real-Time Systems Symposium.

BOHLIN, M., HANNINEN, K., MAKI-TURJA, J., CARLSON, J., AND NOLIN, M. 2008. Bounding Shared-Stack
Usage in Systems with Offsets and Precedences. In Proc. 20th Euromicro Conference on Real-Time
Systems.

BRIL, R. J., LUKKIEN, J. J., AND VERHAEGH, W. F. 2009. Worst-case response time analysis of real-time
tasks under fixed-priority scheduling with deferred preemption. Real-Time Syst. 42, 1-3, 63-119.

BURNS, A. 1995. Advances in real-time systems. Chapter Preemptive priority-based scheduling: an appro-
priate engineering approach, 225-248.

BUTTAZZO, G., BERTOGNA, M., AND YAO, G. 2013. Limited Preemptive Scheduling for Real-Time Systems.
A Survey. IEEE Transactions on Industrial Informatics 9, 1, 3-15.

CHEN, J. AND BURNS, A. 1997. A fully asynchronous reader/write mechanism for multiprocessor real-time
systems. Tech. Rep. YCS 288, Department of Computer Science, University of York, England.

CHEN, J., HARJI, A., AND BUHR, P. 2005. Solution Space for Fixed-Priority with Preemption Threshold. In
Proc. 11th IEEE Real Time on Embedded Technology and Applications Symposium.

D1 NATALE, M., GUo, L., ZENG, H., AND SANGIOVANNI-VINCENTELLI, A. 2010. Synthesis of Multitask
Implementations of Simulink Models With Minimum Delays. IEEE Transactions on Industrial Infor-
matics 6, 4, 637-651.

D1 NATALE, M. AND ZENG, H. 2012. Efficient Implementation of AUTOSAR Components with Minimal
Memory Usage. IEEE SIES Conference.

FERRARI, A., DI NATALE, M., GENTILE, G., REGGIANI, G., AND GAI, P. 2009. Time and memory tradeoffs
in the implementation of AUTOSAR components. In Proc. Conference on Design, Automation and Test
in Europe.

GAI, P., LIPARI, G., AND NATALE, M. D. 2001. Minimizing Memory Utilization of Real-Time Task Sets in
Single and Multi-Processor Systems-on-a-Chip. In Proc. 22nd IEEE Real-Time Systems Symposium.

GHATTAS, R. AND DEAN, A. G. 2007. Preemption Threshold Scheduling: Stack Optimality, Enhancements
and Analysis. In Proc. 13th IEEE Real Time and Embedded Technology and Applications Symposium.

HANNINEN, K., MAKI-TURJA, J., BOHLIN, M., CARLSON, J., AND NOLIN, M. 2006. Determining Maximum
Stack Usage in Preemptive Shared Stack Systems. In Proc. 27th IEEE International Real-Time Systems
Symposium.

KoPETZ, H., OBERMAISSER, R., EL SALLOUM, C., AND HUBER, B. 2007. Automotive Software Develop-
ment for a Multi-Core System-on-a-Chip. In Proc. 4th International Workshop on Software Engineering
for Automotive Systems.

LoNg, R., L1, H., PENG, W., ZHANG, Y., AND ZHAO, M. 2009. An Approach to Optimize Intra-ECU Com-
munication Based on Mapping of AUTOSAR Runnable Entities. In Proc. International Conference on
Embedded Software and Systems.

Mathworks. The Mathworks Simulink and StateFlow User’s Manuals. http:/www.mathworks.com.

OSEK 2006. OSEK/VDX operating systems specification, version 2.2.3. http://www.osek-vdx.org.

REGEHR, J. 2002. Scheduling Tasks with Mixed Preemption Relations for Robustness to Timing Faults. In
Proc. 23rd IEEE Real-Time Systems Symposium.

SAKSENA, M. AND WANG, Y. 2000. Scalable real-time system design using preemption thresholds. In Proc.
21st IEEE Real-time Systems Symposium. RTSS’00.

SHA, L., RAJKUMAR, R., AND LEHOCZKY, J. P. 1990. Priority Inheritance Protocols: An Approach to Real-
Time Synchronization. IEEE Trans. Comput. 39, 9, 1175-1185.

SOFRONIS, C., TRIPAKIS, S., AND CASPI, P. 2006. A memory-optimal buffering protocol for preservation of
synchronous semantics under preemptive scheduling. In Proc. 6th ACM & IEEE International confer-
ence on Embedded software.

The AUTOSAR consortium. The AUTOSAR standard, specification version 4.0. http://www.autosar.org.

W. Lamie. Preemption-threshold. White Paper, Express Logic Inc, http://rtos.com/articles/18833.

WANG, G., DI NATALE, M., AND SANGIOVANNI-VINCENTELLI, A. 2009. Improving the Size of Communi-
cation Buffers in Synchronous Models With Time Constraints. IEEE Transactions on Industrial Infor-
matics 5, 3, 229-240.

WANG, Q., SONG, J., AND PARMER, G. 2011. Execution Stack Management for Hard Real-Time Computa-
tion in a Component-Based OS. In Proc. 32nd IEEE Real-Time Systems Symposium.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2012.

39:26 H. Zeng et al.

WANG, Y. AND SAKSENA, M. 1999. Scheduling Fixed-Priority Tasks with Preemption Threshold. In Proc.
6th International Conference on Real-Time Computing Systems and Applications.

YAO, G. AND BUTTAZZO, G. 2010. Reducing stack with intra-task threshold priorities in real-time systems.
In Proc. 10th ACM International Conference on Embedded Software.

YAo, G., BUTTAZZO, G., AND BERTOGNA, M. 2009. Bounding the Maximum Length of Non-preemptive

Regions under Fixed Priority Scheduling. In Proc. 15th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications.

ZENG, H. AND D1 NATALE, M. 2013. An Efficient Formulation of the Real-Time Feasibility Region for Design
Optimization. IEEE Transactions on Computers 62, 4, 644-661.

Received October 2012; revised XXX 201X; accepted XXX 201X

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2012.

