
Intent Fuzzer: Crafting Intents of Death

Raimondas Sasnauskas
University of Utah

Salt Lake City, UT, USA
rsas@cs.utah.edu

John Regehr
University of Utah

Salt Lake City, UT, USA
regehr@cs.utah.edu

ABSTRACT
We present a fuzzing framework for Intents: the core IPC mech-
anism for intra- and inter-app communication in Android. Since
intents lie at a trust boundary between apps, their correctness is
important and thorough testing is warranted. The key challenge is
to balance the tension between generating intents that applications
expect, permitting deep penetration into application logic, and gen-
erating intents that trigger interesting bugs that have not been previ-
ously uncovered. Our work strikes this balance using a novel com-
bination of static analysis and random test-case generation. Our
intent fuzzer crashed dozens of Google core and top Google Play
apps, resulting in app restarts or even in a complete OS reboot.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—testing
tools

General Terms
Experimentation, Reliability, Security

Keywords
Android IPC, fuzz testing, random testing, static analysis

1. INTRODUCTION
The ever-growing popularity of Android and its market share for

mobile smartphones constantly attract new developers and busi-
nesses that target the huge user base. At the same time, sensitive
data stored on devices induces attackers to search for new ways to
compromise the system and steal data. In particular, the presence
of malware apps [9] indicates the existence of a global market for
users’ private data.

A major focus of Android security research is analyzing apps for
malicious behavior. The ubiquitous risk of privacy leaks demands
rigorous techniques to early detect both intended and unintended
exposure of users’ private data, such as location, contacts, and pho-
tos, to third parties. Additionally, the variety of sensors and new

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WODA ’14, July 22, 2014, San Jose, CA, USA
Copyright 2014 ACM 978-1-4503-2934-7/14/07 ...$15.00.

input sources (NFC, QR codes, Bluetooth LE, camera, etc.) on
modern phones increase the number of trust boundaries between
the unprivileged inputs and the OS causing new security risks [10].

In this paper, we focus on Intents: the message-based IPC in
Android. In our initial analyses, we observed that many Android
apps export their components to unprivileged apps in the system,
i.e., any app can explicitly trigger the exported component’s exe-
cution via an intent (see Table 1). Consequently, we argue that the
processing of intent’s structured data at the app’s trust boundary
represents a security risk that has to be carefully addressed.

Generating highly structured inputs that get high code coverage
for arbitrary closed-source apps in Android is an open engineering
challenge. Particularly, the complexity of the Android OS makes
it difficult to directly apply the well-established techniques such as
concolic/symbolic execution. Conversely, we propose a runtime-
efficient combination of static analysis and random fuzzing to dy-
namically exercise both open- and closed-source Android apps. We
argue that this testing combination represents a good trade-off be-
tween soundness and runtime efficiency, while being effective in
finding distinct crash bugs in numerous Android apps.

The remainder of this paper is structured as follows. Section 2
provides background information on Android’s components and
IPC. Section 3 describes our intent fuzzer techniques. We present
the preliminary implementation and results in Sections 4 and 5, dis-
cuss the related work in Section 6, and conclude in Section 7.

2. ANDROID’S COMPONENTS AND IPC
Every Android app is composed of a set of components that en-

capsulate the app’s logic. There are four types of components:
Activities (a single UI screen), Services (background operations
without UI), Content Providers (data query and modification), and
Broadcast Receivers (response to system-wide broadcasts). Each
component can be started explicitly by the system, hence, there are
multiple entry points to the app’s execution.

Table 1: Exported components of top Google Play free apps

App Activities Services Providers Receivers
Facebook 8.0 12 4 4 14
Pandora 4.5 4 0 1 5
Instagram 5.1 3 0 0 0
FB Msg. 2.2 3 0 0 3
Snapchat 4.1 1 0 0 0
Netflix 2.1 2 0 0 1
Candy CS 1.29 1 0 0 3
Kik Msg. 7.1 3 0 1 2
eBay 2.5 6 1 1 4
WhatsApp 2.11 11 2 0 4

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

WODA+PERTEA’14, July 22, 2014, San Jose, CA, USA
Copyright 2014 ACM 978-1-4503-2934-7/14/07...$15.00
http://dx.doi.org/10.1145/2632168.2632169

1

Ac#vi#es	

APP	

Trust	

boundary	

Services	

Content	
 Providers	

Broadcast	
 Receivers	

Figure 1: Android app’s exported components

The declaration of the components and their capabilities resides
in the app’s manifest file AndroidManifest.xml. For example,
next to the Java package name, the declaration may specify the
component’s requested permissions to access Android’s protected
API and permissions that other apps require to interact with the
app’s components. After the installation of the app, the declaration
of the components cannot be changed during runtime.

The activation of components is triggered by intents: messaging
objects that specify an action to be performed. Intents can be ei-
ther explicit, targeting one specific component, or implicit, merely
declaring a desired action (e.g., open a web page) without specify-
ing which component should perform the work. Subsequently, the
Android system finds the appropriate component for intent delivery.
Intents embody the IPC in Android and are heavily used for both
intra- and inter-app communication. Still, the primary use-cases of
intents are starting an activity, service, or sending a message to the
broadcast receivers.

There are two mechanisms in Android that control the access to
the app’s components from other apps. First, each component may
specify its exported attribute in the manifest file. If set to false
(default value), only the components within the same app are al-
lowed to access the component. Otherwise, the component can be
started from other apps via intents. Additionally, exported compo-
nents are usually advertised using intent filters to specify the type of
implicit intents they are capable to receive. Consequently, the pres-
ence of an intent filter in the manifest file automatically exposes
the corresponding component to other apps in the system. Second,
each component may specify the permissions the other apps must
posses to allow the access to it.

Regardless the permissions, any exported components of an app
denote the trust boundary for external data and actions (cf. Fig-
ure 1). As an example, the ComposeActivityEmail activity from
Google’s Email app is exported allowing access from any unprivi-
leged system process in the system (cf. Figure 3). Additionally, the
presence of an intent filter specifies which actions the component
is able to perform on the expected data scheme.

3. FUZZER DESIGN
This section presents the design of the intent fuzzer and details

on its core components. We describe the interplay between the
static and dynamic analysis and discuss the features of the proposed
technique.

The overview of the intent fuzzer is depicted in Figure 2. For
each target app, the fuzzing workflow consists of five steps: (1)
component extraction to identify the exported components and their
actions, (2) static analysis to obtain the structure of the expected in-

tents, (3) intent generation to create well-formed intents that trigger
the actions, and (4) data fuzzing to randomly fuzz the intent data.

3.1 Component Extraction
As each of the app’s components is described in the manifest

file and cannot be altered after installation, it is straightforward to
parse this information using e.g., Android SDK. Consequently, we
collect the names and intent filters of all exported components. This
data allows us to create explicit intents for the fuzzing phase that
activate the components and match the advertised actions. Further-
more, the remaining fields in the intent filters may provide addi-
tional information about the structure of expected intents (e.g., data
MIME type).

3.2 Static Analysis
The manifest information from the previous step describes the

trust boundary between the components. However, this informa-
tion doesn’t provide any details about the structure of the intents
that is processed during the execution of the advertised actions.
For example, the android.intent.action.SENDTO action of the
Email app’s activity (cf. Figure 3) suggests that the action starts an
UI to send an email, but there are no further details about the intent
structure (e.g., e-mail subject, body, to-field, etc.). Although the
Android SDK provides standard extra fields that can be used inside
intents, we noticed that their usage is scarce in real-world apps.

In addition to the action and data expressed as an URI, any fur-
ther information (extras) addressed to the component is stored in
a Bundle. A bundle object is a mapping from string values to
various data types that implement the Parcelable interface used in
Android’s IPC. For each such data type, Android’s SDK provides
methods to put (e.g., putLong(String key, long value)) and
get (e.g., getLong(String key)) the extended data from the bun-
dle object. The actual transmission of intents between the apps is
implemented in the Binder kernel module that contains an efficient
data copying using memory page flipping.

To automatically extract the extended information accessed by a
component, our idea is to employ path-insensitive, inter-procedural
CFG analysis. Starting from each component’s entry point (e.g.,
onCreate-method for activities), we statically traverse the Dalvik
bytecode collecting all calls to the intent objects’ getter methods
including calls to their bundle objects. The majority of the calls
use a specific string key to extract the extra data from the intents
whereas the data type itself is encoded in the name of the method.
As each of the permitted method calls is documented in the SDK,
we are able to uncover the complete superset structure of the intents
that are processed inside the components. For example, our static
analysis of the ComposeActivityEmail activity of the Email app
returns the following results in JSON format where the different
string keys denote several calls to the same getter method:

<ac$vity	

	
 	
 	
 	
 android:name="com.android.email.ac$vity.ComposeAc$vityEmail”	
 …>	

	
 	
 	
 	
 <intent-­‐filter>	

	
 	
 	
 	
 	
 	
 	
 	
 <ac$on	
 android:name="android.intent.ac$on.VIEW"	
 />	

	
 	
 	
 	
 	
 	
 	
 	
 <ac$on	
 android:name="android.intent.ac$on.SENDTO"	
 />	

	
 	
 	
 	
 	
 	
 	
 	
 <data	
 android:scheme="mailto"	
 />	

	
 	
 	
 	
 	
 	
 	
 	
 <category	
 android:name="android.intent.category.DEFAULT"	
 />	

	
 	
 	
 	
 	
 	
 	
 	
 <category	
 android:name="android.intent.category.BROWSABLE"	
 />	

	
 	
 	
 	
 </intent-­‐filter>	

	
 	
 	
 	
 …	

</ac$vity>	

Figure 3: An exemplary activity from Google’s Email app

2

APP	

Intent	

Genera+on	

1	

2	

Component	

Extrac+on	

Sta+c	
 Analysis	

Data	

Fuzzing	

Empty	

Intents	
 3	
 4	
 Intent	

Execu+on	

Fuzzed	

Intents	

Sta$c	
 Dynamic	

Figure 2: Intent fuzzer overview

"com.android.email.activity.ComposeActivityEmail":
{
"getBundle": ["compose_state"],
"getInt": ["action"],
"getParcelable": ["account", "extraMessage",
"in-reference-to-message", "extra-values",
"android.intent.extra.STREAM"],

"getParcelableArrayList": ["attachmentPreviews",
"android.intent.extra.STREAM"],

"getCharSequence": ["quotedText",
"android.intent.extra.TEXT"],

"getIntExtra": ["action"],
"getParcelableExtra": ["original-draft-message",
"in-reference-to-message",
"in-reference-to-message-uri",
"extra-notification-folder", "extra-values"],

"getParcelableArrayListExtra":
["attachmentPreviews"],

"getBooleanExtra": ["notification", "fromemail"],
"getAction": [],
"getData": [],
"getExtras": [],
"get": ["account"],
"getStringExtra": ["account", "selectedAccount",
"android.intent.extra.SUBJECT"],

"getBoolean": ["showCc", "showBcc",
"respondedInline"],

"getStringArrayExtra":
["android.intent.extra.EMAIL",
"android.intent.extra.CC",
"android.intent.extra.BCC"],

"getSerializable": ["attachments"],
"getString": ["replyFromAccount",
"fromAccountString"]

}

Compared to an intent without any extras that merely starts a
component, the information returned from the static analysis is ex-
tremely valuable, especially for larger apps with lots of functional-
ity.

In addition to the intent structure analysis, we collect all string
constants during the component’s CFG traversal. The idea of string
collection is to use them as a seed from random string generation
and mutation in the data fuzzing step.

3.3 Intent Generation
Given the information about the exported components and the

structure of the intents they can be triggered with, the next step
is to generate a set of empty intents a component is expecting to
receive. For each intent action and data type (if any), we create an
explicit intent object by specifying the component’s name. Such a
valid but “empty” intent ensures that the component gets activated
during fuzzing reaching the code handling the specified action.

Afterwards, the dynamic analysis takes over entering a loop: For
each valid intent, the information from the static analysis is used
to fill the intent’s structure with random data using the correspond-
ing setter methods. Specifically, for each getter method, the cor-

responding setter method is called injecting some random data de-
pending on the type. For example, for the getInt("action")

call on a bundle object, the fuzzer calls putInt("action", ran-

dom_int)with the same key and some random integer value updat-
ing intent’s bundle object. The map-like superset structure of extras
generated during the static analysis step turns out to be advanta-
geous: even if the target component doesn’t access one particular
extra field during its execution, the unused entry doesn’t influence
the execution.

3.4 Data Fuzzing
To create random data for data types ranging from primitive types

to objects, we employ the generative approach of QuickCheck [4].
This works well for primitives (e.g., int, long, char, String) and
their composites (e.g., lists, arrays). For example, to generate a
random value for the getIntegerArrayList-call, we implement
a combined generator:

static ArrayList<Integer> fuzzIntegerArrayList() {
return
(ArrayList<Integer>)lists(integers()).next();

}

Similarly, for strings generation we seed the generator with the
strings collected from the static analysis step. We thereby increase
the chances to explore more branches of the code where the condi-
tional is based on string comparison with the string constant from
the intent.

However, many components process complete objects received
via intents (e.g., getParcelable-call) that are tedious to generate
manually. For each new object type, a new combined generator has
to be implemented. Nevertheless, since the classes implementing
the Parcelable interface have well-defined methods to pack and un-
pack their object data before transmission, the static analysis can
be extended to automatically extract these method calls as well. As
a result, an automated generation of random objects becomes fea-
sible using QuickCheck’s combined generators.

3.5 Intent Execution
Lastly, each new instance of an intent with fuzzed data is explic-

itly sent to the target component for execution. Upon delivery, the
component is first restarted and does not depend on previous exe-
cutions. During intent execution, we monitor both code coverage
(open-source apps only) and crashes.

4. FUZZER IMPLEMENTATION
The prototype of our intent fuzzer is implemented as an exten-

sion to Android’s GUI fuzzer Monkey [5]. The fuzzer can target
either an emulator or a real device. For emulators, we experiment
with both ARM and x86 targets on the most recent Android ver-
sion (Android 4.4). For performance reasons, our primary target
remains to be the KVM-enabled x86 emulator image. The perfor-

3

mance gain using x86 compared to ARM emulation is remarkable
allowing us to inject intents at a faster rate. However, many popular
apps contain ARM native libraries and thus cannot boot on x86 or
don’t work properly.

For off-line static analysis of the app’s APK file, we modified
FlowDroid [1], a static taint analysis tool for Android that is based
on the Soot [6] Java analysis framework. Instead of tracking taints,
we instruct FlowDroid to track the information that reveals the
structure of the intents processed by the exported components. To
this end, we track the calls to all getter methods of the Intent and
Bundle classes. The analysis dumps the results to a JSON file that
is subsequently uploaded to the SD card on the running device. For
each app, the static analysis is required only once.

During initialization, the fuzzer first parses the target app for
exported components creating a set of valid intents. Second, it
looks for static analysis information (if any) on the SD card and
then starts generating fuzzed intents using the QuickCheck frame-
work for Java [11]. We implemented the generation of primitive
and composite Bundle types including URIs, but currently there is
no support for Parcelable objects.

Finally, fuzzed intents are sent to the target app using Android’s
SDK and their processing is monitored for crashes and achieved
coverage. To measure coverage, we first instrument the apps us-
ing Emma [7]. Second, we periodically dump the coverage data
at runtime to the SD card. However, Emma requires the source
code of the app and thus we cannot monitor the coverage of the
closed-source apps where only the Dalvik bytecode is available.
To parallelize testing, we created a scripted infrastructure that dis-
tributes the emulator instances among the available CPUs, runs the
fuzzing campaign limited by number of fuzzed intents, and collects
the error logs.

We treat error logs to be identical if the error message and the
location of the failure are identical. To avoid false positives, we
validate all crashes on a non-rooted physical device (e.g., Nexus 7)
by injecting the corresponding intent using the "adb shell am"

command line tool that runs as an unprivileged user on the device.
Herewith, we validate that the crashes can be repeated from any
unprivileged app in the system.

5. RESULTS
Table 2 provides details on the static analysis runtime per app.

Except of WhatsApp, the analysis runtime stays below one minute.
WhatsApp’s components contain significantly more strings than
other apps whose extraction results in a longer analysis time. Note
that all apps are analyzed only once before fuzzing.

Initially, we enabled context-, object-, and flow-sensitivity in
FlowDroid, but our analyses didn’t scale for real-world apps. In
particular, for intent processing analysis we require to hold all the
explored paths in memory. To this end, FlowDroid runs out of
memory for larger apps even on a 120GB machine. In addition,
to soundly track an intent object and its subobjects we must use a
sufficient access path length in FlowDroid. However, larger val-
ues (e.g., 3) make the analysis more expensive and didn’t scale in
our experiments. Disabling these features and using CFG parsing
instead over-approximates the results (e.g., we see getter methods
from intent objects that are not directly related to the incoming in-
tents), but this additional information doesn’t falsify the fuzzed in-
tents.

We ran our intent fuzzer against all exported Android core apps
and a number top Google Play apps (e.g., Facebook, Twitter, eBay,
Amazon, etc.). For the majority of the apps, at least one of the
exported components crashes with the NullPointerException

when the data or other fields of the intent object are null. For exam-

ple, the Email app can be crashed by starting the FolderPicker-
Activity component without any extras using the following com-
mand issued from the host:

$ adb shell am start -n
com.android.email/.provider.FolderPickerActivity

In this example, the component accesses a field of a null-object,
i.e., it does not check if the object retrieved from the intent is null.
After a crash, the affected component is automatically restarted by
the system. However, in case of an Android core service, such
a crash leads to a reboot of the device representing a local DoS.
For example, the following command triggers an uncaught an-
droid.util.SuperNotCalledException in the main Android
service leading to a system reboot:

$ adb shell am start -n
android/com.android.internal.app.ChooserActivity

These findings validate the reports of earlier studies [12] that
the exception handling code of many apps remains to be poor. All
tests were performed on a x86 Android 4.4 emulator image. We
verified the failures on real devices and reported them to Android
developers at Google.

In addition to the large number of null-input crashes, we ob-
served that the injection of extra intent fields hits more paths in the
code compared to intents that merely trigger the component’s ac-
tion. For example, the eBay app crashes with an ArrayIndexOut-

OfBoundsException when processing the following intent that
contains a combination of three extra fields automatically gener-
ated by the fuzzer:

$ adb shell am start -a android.intent.action.SEARCH
-n
com.ebay.mobile/com.ebay.motors.QuickSearchHandler
-e query not%20set --el
com.ebay.mobile.Perspective.searchSandboxCategoryId
-4611270473092182423 -e intent_extra_data_key
user.sell

Leaving out one or two of the three extra fields results in an
NullPointerException, but the array access violation is trig-
gered only with a combination of the three fields. Thus, the fuzzer
covers more code resulting in higher chances to uncover interesting
corner-case bugs in deeper execution paths.

Since the intent processing code constitutes merely a small part
of the whole app, the overall coverage is expected to be low. For
example, we injected 100 fuzzed intents into the Email app and
measured the coverage. Compared to the null intent fuzzer [2] (no
data, no extra fields, valid intents only), our intent fuzzer increased
the coverage from 8% to 9%. Still, this 1% increase constitutes
an additional coverage of 15 classes, 166 methods, 3843 blocks,
and 801 lines of code. In this work, the primary goal of coverage
analysis in open-source apps is to get feedback about the code loca-
tions where the fuzzer performs poorly in terms of structured data
generation.

6. RELATED WORK
In this section, we relate our fuzzing approach to research efforts

that target the inter-component communication in Android. There-
fore, we leave out any Android work that addresses other attack
vectors and their countermeasures such as malware detection, ker-
nel fuzzing, permission analyses, etc.

In a study of Android application security [8], Enck at al. iden-
tified the existence of unprotected broadcast receivers vulnerable
to intent injection attacks and discussed potential exploitation tech-
niques. ComDroid [3] by Chin et al. is one of the first Android

4

static analysis tools that automatically detects application commu-
nication vulnerabilities. In their paper, the authors first catego-
rized the intent-based attack surfaces such as unauthorized intent
receipt (e.g., activity hijacking) and intent spoofing (e.g., mali-
cious broadcast injection). Second, they implemented static anal-
ysis of apps augmented with limited inter-procedural analysis to
track the properties of intent objects (whether an intent object has
been made explicit, whether it has action, whether it has any flags
set, and whether it has any extra data). Subsequently, ComDroid
issues a warning if a potential vulnerability is detected. In con-
trast to ComDroid, our intent fuzzer generates concrete intent ob-
jects that lead to application crashes or potential vulnerabilities.
Moreover, by leveraging the features of FlowDroid (e.g., by using
the component life-cycle aware inter-procedural analysis), we pen-
etrate deeper into the application revealing more information on the
structure of the processed intents.

Our work was inspired by the null Intent fuzzer [2]—an unprivi-
leged app that injects valid intents with the blank data field to other
apps’ exported components. Similarly, the authors of an empirical
study of the robustness on inter-component communication [12] by
Maji et al. extended this basic intent fuzzer in numerous ways and
come closest to our work. For each target app, their fuzzer creates a
set of valid and semi-valid intents with object fields selectively left
blank. Additionally, they added standard extra data fields from the
Android documentation to the intents expecting the apps to process
them. The evaluation results show a large amount of crashes that
mostly relate to NullPointerExceptions indicating poor excep-
tion handling code. Our experiments validate that this is till the
case in Android 4.4 representing a source of potential local DoS
attacks. One major advantage of our approach is that instead of
adding random extras to the intents we are able to construct the ex-
pected intent structure allowing us to explore more execution paths.
Also, unlike using purely random data, the generative approach of
QuickCheck allows us to automatically create composite objects
and seed the random generation process with data values collected
statically (e.g., strings).

For URI data fuzzing, the authors of DroidFuzzer [13] focus on
activities that process MIME data (e.g., “video/*”) passed via an
URI. For each MIME data type an activity expects, the tool con-
tinuously injects intents with abnormal data generated from a nor-
mal data seed using mutation. The processing of such data can
lead to app crashes at both Java and native library level. Fuzzing
URI-linked data with explicit MIME types is orthogonal to our ap-
proach. Conversely, we fuzz the URI string itself as any other field
of the intent object or its extras.

Table 2: Static analysis runtime results

App File size (MB) Runtime (s)
Facebook 8.0 16.4 20.6
Pandora 4.5 6.4 14.2
Instagram 5.1 8.8 16.7
Facebook Messenger 2.2 5.6 10.1
Snapchat 4.1 7.7 15.3
Netflix 2.1 11.9 4.4
Candy Crush Saga 1.29 39.6 4.5
Kik Messenger 7.1 12.2 17.3
eBay 2.5 10.0 18.6
WhatsApp 2.11 14.5 428.9

7. FUTURE WORK
The key research challenge of this work remains to penetrate

deep into application logic and uncover interesting bugs. To this
end, we strive for runtime efficient methods accepting soundness
and precision loss. We believe that adding automated fuzzing of
Parcelable objects is one of the major steps to reach our research
goal. These objects are frequently exchanged between apps neces-
sitating thorough testing of the related object handling code.

Some apps process specific data (e.g., images, audio) from in-
tents in their native libraries. Since crashes in native code are po-
tentially exploitable, we plan to complement our work with data
fuzzing techniques that go beyond the generation of fuzzed Java
objects and primitive data types.

8. ACKNOWLEDGMENTS
We thank Scotty Bauer for his comments and technical assis-

tance with the Android experiments. This research is being sup-
ported by the NSF grant CCF-1218026.

9. REFERENCES
[1] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric

Bodden, Alexander Bartel, Jacques Klein, Yves Le Traon,
Damien Octeau, and Patrick McDaniel. FlowDroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. To appear at PLDI, 2014.

[2] Jesse Burns. Intent fuzzer, 2009.
https://www.isecpartners.com/tools/

mobile-security/intent-fuzzer.aspx.
[3] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and

David Wagner. Analyzing inter-application communication
in Android. In Proc. MobiSys, pages 239–252, 2011.

[4] Koen Claessen and John Hughes. QuickCheck: a lightweight
tool for random testing of Haskell programs. In Proc. ICFP,
pages 268–279, 2000.

[5] Android Developers. Monkey tool, 2014. https:
//developer.android.com/tools/help/monkey.html.

[6] Soot Developers. Soot: a Java optimization framework,
2014. http://www.sable.mcgill.ca/soot/.

[7] EMMA Developers. EMMA: a free Java code coverage tool,
2014. http://emma.sourceforge.net/.

[8] William Enck, Damien Octeau, Patrick McDaniel, and
Swarat Chaudhuri. A study of android application security.
In Proc. USENIX Security, pages 21–21, 2011.

[9] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve
Hanna, and David Wagner. A survey of mobile malware in
the wild. In Proc. 1st ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, pages 3–14,
2011.

[10] MWR InfoSecurity. Android NFC vulnerability, 2012.
https://labs.mwrinfosecurity.com/blog/2012/09/

19/mobile-pwn2own-at-eusecwest-2012/.
[11] Thomas Jung. QuickCheck for Java, 2014.

https://bitbucket.org/blob79/quickcheck.
[12] Amiya Kumar Maji, Fahad A. Arshad, Saurabh Bagchi, and

Jan S. Rellermeyer. An empirical study of the robustness of
inter-component communication in Android. In Proc. DSN,
pages 1–12, 2012.

[13] Hui Ye, Shaoyin Cheng, Lanbo Zhang, and Fan Jiang.
Droidfuzzer: Fuzzing the android apps with intent-filter tag.
In Proc. MoMM, pages 68–74, 2013.

5

