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Abstract. Separation logic is an expressive logic for reasoning about
heap structures in programs. This paper presents a semi-decision proce-
dure for deciding unsatisfiability of formulas in a fragment of separation
logic that includes predicates describing points-to assertions (x 7→ y),
acyclic-list-segment assertions(ls(x, y)), logical-and, logical-or, separat-
ing conjunction, and septraction (the DeMorgan-dual of separating im-
plication). The fragment that we consider allows negation at leaves, and
includes formulas that lie outside other separation-logic fragments con-
sidered in the literature.
The semi-decision procedure is designed using concepts from abstract

interpretation. The procedure uses an abstract domain of shape graphs
to represent a set of heap structures, and computes an abstraction that
over-approximates the set of satisfying models of a given formula. If the
over-approximation is empty, then the formula is unsatisfiable.
We have implemented the method, and evaluated it on a set of formulas

taken from the literature. The implementation is able to establish the
unsatisfiability of formulas that cannot be handled by other existing
approaches.

1 Introduction

Separation logic [29] is an expressive logic for reasoning about heap-allocated
data structures in programs. It provides a mechanism for concisely describing
program states by explicitly localizing facts that hold in separate regions of the
heap. In particular, a “separating conjunction” (ϕ1 ∗ ϕ2) asserts that the heap
can be split into two disjoint regions (“heaplets”) in which ϕ1 and ϕ2 hold,
respectively [29]. A “septraction” (ϕ1 −⊛ ϕ2) asserts that a heaplet h can be
extended by a disjoint heaplet h1 in which ϕ1 holds, to create a heaplet h1 ∪ h
in which ϕ2 holds [34]. The −⊛ operator is sometimes called existential magic
wand, because it is the DeMorgan-dual of the magic-wand operator “−∗” (also
called separating implication); i.e., ϕ1 −⊛ ϕ2 iff ¬(ϕ1 −∗ ¬ϕ2).

The use of separation logic in manual, semi-automated, and automated ver-
ification tools is a burgeoning field [3, 12, 24, 13, 17]. Most of these incorporate
some form of automated reasoning for separation logic, but only limited frag-
ments of separation logic are typically handled.

This paper presents a semi-decision procedure for deciding the unsatisfiability
of formulas in a fragment of separation logic that includes predicates describing



points-to assertions (x 7→ y), acyclic-list-segment assertions (ls(x, y)), empty-
heap assertions (emp), and their negations; separating conjunction; septraction;
logical-and; and logical-or. The fragment considered only allows negation at the
leaves of a formula (§2.1), but still contains formulas that lie outside of previously
considered fragments [2, 27, 26, 22, 19]. The semi-decision procedure can prove
validity of implications of the form

ψ⇒(ϕi ∧
∧

j

ψj −∗ ϕj), (1)

where ϕi and ϕj are formulas that contain only ∧, ∨, and positive or negative
occurrences of emp, points-to, or ls assertions; and ψ and ψj are arbitrary
formulas in the logic fragment defined in §2.1. Consequently, we believe that ours
is the first procedure that can prove the validity of formulas that contain both
ls and the magic-wand operator −∗. Furthermore, the semi-decision procedure
is able to prove unsatisfiability of interesting classes of formulas that are outside
of previously considered fragments, including (i) formulas that use conjunctions
of separating-conjunctions with ls, such as

(ls(a1, a2) ∗ ls(a2, a3)) ∧ (¬emp ∗ ¬emp) ∧ (a1 7→ e1 ∗ true) ∧ e1 = nil,

and (ii) formulas that contain both ls and septraction (−⊛), such as

(a3 7→ a4−⊛ ls(a1, a4)) ∧ (a3 = a4 ∨ ¬ls(a1, a3)).

The former are useful for describing overlapped data structures; the latter are
useful in dealing with interference effects when using rely/guarantee reasoning
to verify programs with fine-grained concurrency [34, 7].

The key insight behind our approach is that the semi-decision procedure
is designed using concepts from abstract interpretation [10]. Given a formula
ϕ, the semi-decision procedure sets up an appropriate abstract domain that is
tailored for representing information about the meanings of subformulas of ϕ.
In particular, it uses an abstract domain of shape graphs [30] to represent a set
of heap structures. The proof calculus that we present computes an abstraction
that over-approximates the set of satisfying models of the given formula. If the
over-approximation is empty, then the formula is unsatisfiable. If the formula is
satisfiable, then the procedure reports a set of abstract models.

This use of abstract domains to prove unsatisfiability places our work
squarely in a recent line of research on using abstract values drawn from an
abstract domain as a way to represent knowledge in implementations of decision
procedures [14, 33, 32, 15, 16] (a technique we call “Satisfiability Modulo Abstrac-
tion”). Our work is the first to apply this idea to a fragment of separation logic.

The nature of our semi-decision procedure is thus much different from other
decision procedures for fragments of separation logic that we are aware of. Most
previous decision procedures are proof-theoretic. In some sense, our method
is model-theoretic: it uses explicitly instantiated sets of 3-valued structures to
represent overapproximations of the models of subformulas.

Contributions. The contributions of the paper include the following:
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– We show how a canonical-abstraction domain can be used to overapproxi-
mate the set of heaps that satisfy a separation-logic formula (§2).

– We present rules for calculating the overapproximation of a separation-logic
formula for a fragment of separation logic that consists of separating con-
junction, septraction, logical-and, and logical-or (§4).

– The semi-decision procedure is parameterized by a shape abstraction, and
can be instantiated to handle (positive or negative) literals for points-to or
acyclic-list-segment assertions—and hence can prove the validity of implica-
tions of the kind shown in formula (1) (§4).

§3 illustrates the key concepts used in the semi-decision procedure. We evaluated
our approach on a set of formulas taken from the literature (§5). To the best
of our knowledge, the implementation is able to establish the unsatisfiability of
formulas that cannot be handled by other existing approaches.

2 Separation Logic and Canonical Abstraction

In this section, we provide background on separation logic and introduce
the separation-logic fragment considered in the paper. We then show how a
canonical-abstraction domain can be used to approximate the set of models that
satisfy a separation-logic formula.

2.1 Syntax and Semantics of Separation Logic

Formulas in our fragment of separation logic (SL) are defined as follows:

ϕ ::= ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ ∗ ϕ | ϕ−⊛ ϕ | atom | ¬atom
atom ::= true | emp | x = y | x 7→ y | ls(x, y)

The set of literals, denoted by lits, is the union of the positive and negative
atoms of SL.

The semantics of SL is defined with respect to memory “statelets”, which
consist of a store and a heaplet. A store is a function from variables to values;
a heaplet is a finite function from locations to locations. Let Loc and Var be
disjoint countably infinite sets, neither of which contain nil.

Val
def

= Loc ⊎ {nil} Store
def

= Var→ Val

Heaplet
def

= Loc⇀fin Val Statelet
def

= Store×Heaplet

Loc represents heap-node addresses. The domain of h, dom(h), represents the
set of addresses of cells in the heaplet. Two heaplets h1, h2 are disjoint, denoted
by h1#h2, if dom(h1) ∩ dom(h2) = ∅. Given two disjoint heaplets h1 and h2,
h1 ·h2 denotes their disjoint union h1 ⊎h2. A statelet is denoted by a pair (s, h).

Satisfaction of an SL formula ϕ with respect to statelet (s, h) is defined in

Fig. 1. [[ϕ]] denotes the set of statelets that satisfy ϕ: [[ϕ]]
def

= {(s, h) | (s, h) |= ϕ}.

2.2 2-Valued Logical Structures

We model full states—not statelets—by 2-valued logical structures. A logical
structure provides an interpretation of a vocabulary Voc = {eq, p1, . . . , pn} of
predicate symbols (with given arities). Vock denotes the set of k-ary symbols.
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(s, h) |= ϕ1 ∧ ϕ2 iff (s, h) |= ϕ1 and (s, h) |= ϕ2

(s, h) |= ϕ1 ∨ ϕ2 iff (s, h) |= ϕ1 or (s, h) |= ϕ2

(s, h) |= ϕ1 ∗ ϕ2 iff ∃h1, h2. h1#h2 and h1 · h2 = h and (s, h1) |= ϕ1 and (s, h2) |= ϕ2

(s, h) |= ϕ1 −⊛ ϕ2 iff ∃h1. h1#h and (s, h1) |= ϕ1 and (s, h1 · h) |= ϕ2

(s, h) |= ¬atom iff (s, h) 6|= atom

(s, h) |= true iff true

(s, h) |= emp iff dom(h) = ∅
(s, h) |= x = y iff s(x) = s(y)
(s, h) |= x 7→ y iff dom(h) = {s(x)} and h(s(x)) = s(y)
(s, h) |= ls(x, y) iff if s(x) = s(y) then dom(h) = ∅,

else there is a nonempty acyclic path from s(x) to s(y) in h,

and this path contains all heap cells in h

Fig. 1: Satisfaction of an SL formula ϕ with respect to statelet (s, h).

Predicate Intended Meaning

eq(v1, v2) Do v1 and v2 denote the same memory cell?
q(v) Does pointer variable q point to memory cell v?
n(v1, v2) Does the n-field of v1 point to v2?

Fig. 2: Core predicates used when representing states made up of acyclic linked lists.

Definition 1. A 2-valued logical structure S over Voc is a pair S = 〈U, ι〉,
where U is the set of individuals, and ι is the interpretation. Let B = {0, 1}
be the domain of truth values. For p ∈ Voci, ι(p) : U

i → B. We assume that
eq ∈ Voc2 is the identity relation: (i) for all u ∈ U , ι(eq)(u, u) = 1, and (ii) for
all u1, u2 ∈ U such that u1 and u2 are distinct individuals, ι(eq)(u1, u2) = 0.

The set of 2-valued logical structures over Voc is denoted by 2-STRUCT[Voc].

A concrete state is modeled by a 2-valued logical structure over a fixed vocab-
ulary C of core predicates. Core predicates are part of the underlying semantics
of the linked structures that make up the states of interest. Fig. 2 lists the core
predicates that are used when representing states made up of acyclic linked lists.

Without loss of generality, vocabularies exclude constant and function sym-
bols. Constant symbols can be encoded via unary predicates, and n-ary functions
via n+1-ary predicates. In both cases, we need integrity rules—i.e., global con-
straints that restrict the set of structures considered to the ones that we intend.
For instance, we use a subset of the unary predicates, denoted by PVar ⊆ Voc1,
to encode pointer variables (i.e., x ∈ PVar encodes program variable x), and
binary predicate n ∈ Voc2 to encode list-node linkages. In essence, the following
integrity rules restrict each x ∈ PVar to serve as a (possibly undefined) constant,
and restrict relation n to encode a partial function:

for each x ∈ PVar, ∀v1, v2 : x(v1) ∧ x(v2)⇒ eq(v1, v2)

∀v1, v2, v3 : n(v3, v1) ∧ n(v3, v2)⇒ eq(v1, v2)
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2.3 Connecting 2-Valued Logical Structures and SL Statelets

We use unary domain predicates, typically denoted by d, d′, d1, . . . , dk ∈ Voc1, to
pick out regions of the heap that are of interest in the state that a logical struc-
ture models. The connection between 2-valued logical structures and SL statelets
is formalized by means of the operation S|(d,·), which performs a projection of
structure S with respect to a domain predicate d:

S|(d,·)
def

= (s, h), where s =

(

{(p, u) | p ∈ PVarS , u ∈ US , and p(u)}
∪ {(q, nil) | q ∈ PVarS and ¬∃v : q(v)}

)

(2)

and h = {(u1, u2) | u1, u2 ∈ U
S , d(u1), and n(u1, u2)}. (3)

The subscript “(d, ·)” serves as a reminder that in Eqn. (3), only u1 needs to be
in the region defined by d. We lift the projection operation to apply to a set SS

of 2-valued logical structures as follows: SS|(d,·)
def

= {S|(d,·) | S ∈ SS}.

2.4 Representing Sets of SL Statelets using Canonical Abstraction

In the framework of Sagiv et al. [30] for logic-based abstract-interpretation, 3-
valued logical structures provide a way to overapproximate possibly infinite sets
of 2-valued structures in a finite way that can be represented in a computer.
The application of Eqns. (2) and (3) to 3-valued structures means that the
abstract-interpretation machinery developed by Sagiv et al. provides a finite
way to overapproximate a possibly infinite set of SL statelets.

In 3-valued logic, a third truth value, denoted by 1/2, represents uncertainty.

The set T
def

= B∪ {1/2} of 3-valued truth values is partially ordered “l ⊏ 1/2 for
l ∈ B”. The values 0 and 1 are definite values; 1/2 is an indefinite value.

Definition 2. A 3-valued logical structure S = 〈U, ι〉 is almost identical to
a 2-valued structure, except that ι maps each p ∈ Voci to a 3-valued function
ι(p) : U i → T. In addition, (i) for all u ∈ U , ι(eq)(u, u) ⊒ 1, and (ii) for all
u1, u2 ∈ U such that u1 and u2 are distinct individuals, ι(eq)(u1, u2) = 0. (An
individual u for which ι(eq)(u, u) = 1/2 is called a summary individual.)

The set of 3-valued logical structures over Voc is denoted by 3-STRUCT[Voc].
Note that 2-STRUCT[Voc] ( 3-STRUCT[Voc].

As we will see below, a summary individual may represent more than one
individual from certain 2-valued structures.

A 3-valued structure can be depicted as a directed graph with individuals
as graph nodes (see Fig. 3). A summary individual is depicted with a double-
ruled border. A unary predicate p ∈ PVar is represented in the graph by having
an arrow from the predicate name p to all nodes of individuals u for which
ι(p)(u) ⊒ 1. An arrow between two nodes indicates that a binary predicate holds
for the corresponding pair of individuals. A predicate value of 1/2 is indicated by
a dotted arrow, a value of 1 by a solid arrow, and a value of 0 by the absence of
an arrow. A unary predicate p ∈ (Voc1−PVar) is listed, with its value, inside the
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node of each individual u for which ι(p)(u) ⊒ 1. A nullary predicate is displayed
in a rectangular box.

To define a suitable abstraction of 2-valued logical structures, we start with
the notion of structure embedding [30]:

Definition 3. Given S = 〈U, ι〉 and S′ = 〈U ′, ι′〉, two 3-valued structures over
the same vocabulary Voc, and f : U → U ′, a surjective function, f embeds S
in S′, denoted by S ⊑f S′, if for all p ∈ Voc and u1, . . . , uk ∈ U ,

ι(p)(u1, . . . , uk) ⊑ ι
′(p)(f(u1), . . . , f(uk))

If, in addition,

ι′(p)(u′1, . . . , u
′
k) =

⊔

u1,...,uk∈U,s.t.f(ui)=u′

i
,1≤i≤k

ι(p)(u1, . . . , uk)

then S′ is the tight embedding of S with respect to f , denoted by
S′ = f(S). (Note that we overload f to also mean the mapping on structures
f : 3-STRUCT[Voc]→ 3-STRUCT[Voc] induced by f : U → U ′.)

Intuitively, f(S) is obtained by merging individuals of S and by defining the
valuation of predicates accordingly (in the most precise way). The relation ⊑id,
which will be denoted by ⊑, is the natural information order between structures
that share the same universe. One has S ⊑f S′ ⇔ f(S) ⊑id S′.

However, embedding alone is not enough. The challenge for representing and
manipulating sets of 2-valued structures is that the universe of a structure is of
a priori unbounded size. Consequently, we need a method that, for a 2-valued
structure 〈U, ι〉 ∈ 2-STRUCT[Voc], abstracts U to an abstract universe U ♯ of
bounded size. Intuitively, the solution involves (i) identifying an a priori bounded
number of abstract individuals U ♯, (ii) defining a surjective function f : U → U ♯,
and (ii) performing a tight embedding of S with respect to f . Given U ♯ and f ,
we can define the following Galois connection:

℘(2-STRUCT[Voc]) −−−→←−−−
αf

γf

3-STRUCT[Voc]

αf (X) =
⊔

S∈X f(S) γf (S
♯) = {S | S ⊑f S♯}

In this abstraction, sets of valuations for predicate symbols ι : Voc →
(
⋃

k U
k → B

)

are abstracted with a single abstract valuation ι : Voc →
(
⋃

k(U
♯)k → T

)

.
The idea behind canonical abstraction [30, §4.3] is to choose a subset A ⊆

Voc1 of abstraction predicates, and to define an equivalence relation ≃AS on U
that is parameterized by the logical structure S = 〈U, ι〉 ∈ 2-STRUCT[Voc] to
be abstracted:

u1 ≃AS u2 ⇔ ∀p ∈ A : ι(p)(u1) = ι(p)(u2).

This equivalence relation defines the surjective function fS
A
: U → (U/ ≃AS ),

which maps an individual to its equivalence class. We thus have the Galois
connection

℘(2-STRUCT[Voc]) −−−→←−−−α
γ

℘(3-STRUCT[Voc])

α(X) = {fS
A
(S) | S ∈ X} γ(Y ) = {S | S♯ ∈ Y ∧ S ⊑f S♯},
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where fS
A
in the definition of α denotes the tight-embedding function for logical

structures induced by the node-embedding function fS
A
: U → (U/ ≃AS ). The

abstraction function α is referred to as canonical abstraction. Note that there is
an upper bound on the size of each structure 〈U ♯, ι♯〉 ∈ 3-STRUCT[Voc] that is
in the image of α: |U ♯| ≤ 2|A|—and thus the power-set of the image of α is a
finite sublattice of ℘(3-STRUCT[Voc]).

For technical reasons, it turns out to be convenient to work with 3-valued
structures other than the ones in the image of α; however, we still want to restrict
ourselves to a finite sublattice of ℘(3-STRUCT[Voc]). With this motivation, we
make the following definition:

Definition 4. A 3-valued structure 〈U ♯, ι♯〉 ∈ 3-STRUCT[Voc] is bounded

(with respect to abstraction predicates A) if for every u1, u2 ∈ U ♯, where u1 6= u2,
there exists an abstraction predicate symbol p ∈ A ⊆ Voc1 such that ι♯(p)(u1) = 0
and ι♯(p)(u2) = 1, or ι♯(p)(u1) = 1 and ι♯(p)(u2) = 0. B-STRUCT[Voc,A] de-
notes the set of such structures.

Defn. 4 also imposes an upper bound on the size of a structure 〈U ♯, ι♯〉 ∈
B-STRUCT[Voc,A]—again, |U ♯| ≤ 2|A|—and thus ℘(B-STRUCT[Voc,A])
is a finite sublattice of ℘(3-STRUCT[Voc]). It defines the abstract do-
main that we use, the abstract domain whose elements are subsets of
B-STRUCT[Voc,A], which will be denoted by A[Voc,A]. (For brevity, we call
such a domain a “canonical-abstraction domain”, and denote it by A when
Voc and A are understood.) The Galois connection we work with is thus

℘(2-STRUCT[Voc]) −−−→←−−−α
γ

℘(B-STRUCT[Voc,A]) = A[Voc,A]

α(X) = {fS
A
(S) | S ∈ X} γ(Y ) = {S | S♯ ∈ Y ∧ S ⊑f S♯}.

3 Overview

In this section, we illustrate the concepts that we use in the semi-decision proce-
dure using a formula that is unsatisfiable over acyclic linked lists: x 7→ y ∗y 7→ x.
App. A illustrates the procedure using a formula that is satisfiable over acyclic
linked lists: x 7→ y −⊛ ls(x, z).

Consider ϕ
def

= x 7→ y ∗ y 7→ x. We want to compute A ∈ A such that
γ(A)|(d,·) ⊇ [[ϕ]]. The key to handling the ∗ operator is to introduce two new
domain predicates d1 and d2, which are used to demarcate the heaplets that

must satisfy ϕ1
def

= x 7→ y and ϕ2
def

= y 7→ x, respectively. We have designed A so
that there exist A1, A2 ∈ A such that γ(A1)|(d1,·) = [[x 7→ y]] and γ(A2)|(d2,·) =
[[y 7→ x]], respectively. Tab. 1 describes the abstraction predicates we use. A1 and
A2 each consist of a single 3-valued structure, shown in Fig. 3(b) and Fig. 3(c),
respectively. Furthermore, to satisfy ϕ1∗ϕ2, d1 and d2 are required to be disjoint
regions whose union is d. A also contains an abstract value, which we will call D,
that represents this disjointness constraint exactly. D consists of four 3-valued
structures. Fig. 3(a) shows the “most general” of them: it represents two disjoint
regions, d1 and d2, that partition the d region (where each of d1 and d2 contain
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x y

d,d1,¬d2 d,¬d1, d2

¬d,¬d1,¬d2

r[n,x]

¬r[n,y]

next[n,y]
d1

x y

¬d1

¬is_eq[x,y]()

¬r[n,x]

r[n,y]
next[n,x]
d2

x y

¬d2

¬is_eq[x,y]()

(a) (b) (c)

x y

d,d1,¬d2
d,¬d1, d2

¬d,¬d1,¬d2

r[n,x]

¬r[n,y]

next[n,y]

¬is_eq[x,y]()

x y

d,d1,¬d2 d,¬d1, d2

¬d,¬d1,¬d2

r[n,x]

¬r[n,y]

next[n,y]

¬r[n,x]

r[n,y]
next[n,x]

¬is_eq[x,y]()

x y

d,d1,¬d2 d,¬d1, d2

¬d,¬d1,¬d2

r[n,x]

¬r[n,y]

next[n,y]

¬r[n,x]

r[n,y]
next[n,x]

¬is_eq[x,y]()

(d) (e) (f)

Fig. 3: Structures that arise in the meet operation used to analyze x 7→ y ∗ y 7→ x.

at least one cell). The summary individual labeled ¬d,¬d1,¬d2 in Fig. 3(a)
represents a region that is disjoint from d. (See also Fig. 6.)

Note that here and throughout the paper, for brevity the figures only show
predicates that are relevant to the issue under discussion.

Meet for a Canonical-Abstraction Domain. To impose a necessary con-
dition for x 7→ y ∗ y 7→ x to be satisfiable, we take the meet of D, A1, and
A2: [[x 7→ y ∗ y 7→ x]] ⊆ D ⊓ A1 ⊓ A2. Figs. 3(d), (e), and (f) show some of the
structures that arise in D ⊓ A1 ⊓ A2.

The meet operation in A is defined in terms of the greatest-lower-bound
operation induced by the approximation order in the lattice B-STRUCT[Voc,A].
Arnold et al. [1] show that in general this operation is NP-complete; however,
they define an algorithm based on graph matching that typically performs well
in practice [20, §8.3]. To understand some of the subtleties of meet, consider
Fig. 3(d), which shows one of the structures in D⊓A1 (i.e., Fig. 3(a)⊓Fig. 3(b)).

– From the standpoint of Fig. 3(b), meet caused the summary individual la-
beled “¬d1” to be split into two summary individuals: “¬d,¬d1,¬d2” and
“d,¬d1, d2”.
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– From the standpoint of Fig. 3(a), meet caused the summary individual la-
beled “d, d1,¬d2” to (i) become a non-summary individual, (ii) acquire the
value 1 for x, r[n, x], and next[n, y], and (iii) acquire the value 0 for y and
r[n, y].

Fig. 3(e) shows one of the structures in (D⊓A1)⊓A2, i.e., Fig. 3(d)⊓Fig. 3(c),
which causes further (formerly indefinite) elements to acquire definite values.

Arnold et al. develop a graph-theoretic notion of the possible correspondences
among individuals in the bounded structures that are arguments to meet, and
structure the meet algorithm around the set of possible correspondences [1, §4.2].

Improving Precision Using Semantic-Reduction Operators. Fig. 3(e)
still contains a great deal of indefinite information because the meet operation
does not take into account the integrity constraints on structures. For instance,
for the structures that we use to represent states and SL statelets, we use a
unary predicate next[n, y], which holds for individuals whose n-link points to
the individual that is pointed to by y. This predicate has an associated integrity
constraint

∀v1, v2.next [n, y](v1) ∧ y(v2)⇒n(v1, v2). (4)

In particular, in Fig. 3(e) the individual pointed to by x has next [n, y] = 1;
however, the edge to the individual pointed to by y has the value 1/2.

To improve the precision of the (graph-theoretic) meet, the semi-decision
procedure makes use of semantic-reduction operators. The notion of semantic
reduction was introduced by Cousot and Cousot [11]. Semantic-reduction op-
erators are useful when an abstract domain is a lattice that has multiple ele-
ments that represent the same set of states. A semantic reduction operator ρ
maps an abstract-domain element A to ρ(A) such that (i) ρ(A) ⊑ A, and (ii)
γ(ρ(A)) = γ(A). In other words, ρ maps A to an element that is lower in the
lattice—and hence a “better” representation of γ(A) in A—while preserving the
meaning. In our case, the semantic-reduction operations that we use convert a
set of 3-valued structures XS into a “better” set of 3-valued structures XS ′ that
describe the same set of 2-valued structures.

A semantic-reduction operator can have two effects:
1. In some structure S ∈ XS, some tuple p(u) with indefinite value 1/2 may be

changed to have a definite value (0 or 1).
2. It may be determined that some structure S ∈ XS is infeasible: i.e., γ(S) = ∅.

In this case, S is removed from XS.
The effect of a precision improvement from a type-1 effect can cause a type-2
effect to occur. For instance, let u1 and u2 be the individuals pointed to by x
and y, respectively, in Fig. 3(e).
– Fig. 3(f) is Fig. 3(e) after integrity constraint (4) has triggered a type-1

change that improves the value of n(u1, u2) from 1/2 to 1.
– A type-2 rule can then determine that the structure shown in Fig. 3(f) is

infeasible. In particular, the predicate r[n, x](v) means that individual v is
reachable from the individual pointed to by x along n-links. The semantic-
reduction rule would find that the values x(u1) = 1, n(u1, u2) = 1, and
r[n, x](u2) = 0 represent an irreconcilable inconsistency in Fig. 3(f): the first
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ℓ ∈ lits, d 
 Aℓ

(ℓ)
ϕ1, d 
 A1 ϕ2, d 
 A2

ϕ1 ∧ ϕ2, d 
 A1 ⊓A2

(∧)

ϕ1, d 
 S1 ϕ2, d 
 A2

ϕ1 ∨ ϕ2, d 
 A1 ⊔A2

(∨)
ϕ1, d1 
 A1 ϕ2, d2 
 A2

ϕ1 ∗ ϕ2, d 
 ([d = d1 · d2]
♯ ⊓A1 ⊓A2) 

d
(∗)

ϕ1, d1 
 A1 ϕ2, d2 
 A2

ϕ1 −⊛ ϕ2, d 
 ([d2 = d · d1]
♯ ⊓A1 ⊓ A2) 

d
(−⊛)

Fig. 4: Rules for computing an abstract value that overapproximates the meaning of a

formula in SL.
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Fig. 5: The abstract value for ls(x, y) ∈ atom in the canonical-abstraction domain.
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Fig. 6: The abstract value for [di = dj · dk]
♯ in the canonical-abstraction domain.

two predicate values mean that u2 is reachable from the individual pointed
to by x along n-links, which contradicts r[n, x](u2) = 0.

The operation that applies type-1 and type-2 rules until no more changes are
possible is called coerce (because it coerces XS to a better representation XS ′).
Sagiv et al. [30, §6.4] and Bogudlov et al. [5, 4] discuss algorithms for coerce.
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Predicate Intended Meaning

is eq [x, y]() Are x and y equal?
next [n, y](v) The target of the n-edge from v is pointed to by y

t[n](v1, v2) Is v2 reachable via zero or more n-edges from v1?
r[n, y](v) ∃v1.y(v1) ∧ t[n](v1, v)
d(v) Is v in heap domain d?
link [d, n, y](v) The target of the n-edge from v is either in d or is pointed to by y

Table 1: Voc consists of the predicates shown above, together with the ones in Fig. 2.

All unary predicates are abstraction predicates; that is, A = Voc1.

4 Proof System for Separation Logic

This section describes how we compute A ∈ A[Voc,A] such that A overapprox-
imates the satisfying models of ϕ ∈ SL. The vocabulary Voc and abstraction
predicates A are listed in Tab. 1.

The semi-decision procedure works with judgments of the form “ϕ, d 
 A”,
where d is a domain predicate. The invariant maintained by the semi-decision
procedure is that, whenever it establishes a judgment ϕ, d 
 A, A ∈ A overap-
proximates ϕ in the following sense: γ(A)|(d,·) ⊇ [[ϕ]]. Fig. 4 lists the rules used
for calculating ϕ, d 
 A for ϕ ∈ SL.

For each literal ℓ ∈ lits, there is an abstract value Aℓ ∈ A such that
γ(Aℓ)|(d,·) = [[ℓ]]. These Aℓ values are used in the (ℓ)-rule of Fig. 4. Fig. 5 shows
the abstract value Als used for ls(x, y). Als consists of three structures:

– Fig. 5(a) represents the empty list from x to y. That is, x = y and region d
is empty.

– Fig. 5(b) represents a singleton list from x to y. That is, x 6= y and x 6= nil,
and for all individuals v in d, v is reachable from x and link [d, n, y](v) is
true. (See line 6 of Tab. 1.)

– Fig. 5(c) represents acyclic linked lists of length two or more from x to y.

Fig. 5(b) is the single structure in Ax 7→y. The abstract values for atoms x = y,
true, and emp are straightforward. We see that it is possible to represent the
positive literals true, emp, x = y, x 7→ y, and ls(x, y) precisely in A; that is,
we have γAl|(d,·) = [[l]]. Furthermore, because the canonical-abstraction domain
A is closed under negation [21, 36], we are able to represent the negative literals
x 6= y, ¬true, ¬emp, ¬ls(x, y), and ¬x 7→ y precisely in A, as well.

The rest of the rules in Fig. 4 can be derived by reinterpreting the concrete
logical operators using an appropriate abstract operator. In particular, logical-
and is reinterpreted as meet, and logical-or is reinterpreted as join. Consequently,
the (∧)-rule and (∨)-rule are straightforward. The (∧)-rule and (∨)-rule are
justified by the following observation: if γ(A1)|(d,·) ⊇ [[ϕ1]] and γ(A2)|(d,·) ⊇ [[ϕ2]],
then γ(A1 ⊓ A2)|(d,·) ⊇ [[ϕ1 ∧ ϕ2]] and γ(A1 ⊔ A2)|(d,·) ⊇ [[ϕ1 ∨ ϕ2]].

For a given structure A = 〈U, ι〉 and unary domain predicate di, we use the
phrase “individuals in di” to mean the set of individuals {u ∈ U | ι(di)(u) = 1}.
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The (∗)-rule computes A ∈ A such that γ(A)|(d,·) ⊇ [[ϕ1 ∗ ϕ2]]. The handling
of separating conjunction ϕ1 ∗ ϕ2 is based on the following insights:
– The domain predicates d1 and d2 are used to capture the heaplets h1 and
h2 that satisfy ϕ1 and ϕ2, respectively. That is,

γ(A1)|(d1,·) ⊇ [[ϕ1]] and γ(A2)|(d2,·) ⊇ [[ϕ2]]. (5)

– [d = d1 · d2]♯ ∈ A is used to express the constraint that the individuals in
d1 are disjoint from d2, and that the individuals in d are the disjoint union
of the individuals in d1 and d2. With only a slight abuse of notation, the
meaning of [d = d1 · d2]♯ can be expressed as follows:

γ([d = d1 · d2]
♯)|(d,·) ⊇ {(s, h, h1, h2) | h1#h2 and h1 · h2 = h}. (6)

Fig. 6 shows the four structures in the abstract value [di = dj · dk]♯, where
di, dj , and dk are domain predicates.

– (·) d denotes the structure that results from setting the abstraction predi-
cates to 1/2 for all individuals not in d, and setting all domain predicates
other than d to 1/2. In effect, this operation blurs the distinction between
individuals in d1 and d2, and serves as an abstract method for quantifier
elimination.

Using Eqns. (5) and (6) in the definition of ϕ1 ∗ ϕ2, we have

[[ϕ1 ∗ ϕ2]]

= {(s, h) | ∃h1, h2. h1#h2 and h1 · h2 = h and (s, h1) |= ϕ1 and (s, h2) |= ϕ2}

⊆ ([d = d1 · d2]
♯ ⊓ A1 ⊓ A2) 

d

The handling of septraction in the (−⊛)-rule is similar to the handling of sep-
arating conjunction in the (∗)-rule, except for the condition that h2 = h · h1.
This requirement is easily handled by using [d2 = d · d1]♯. App. A illustrates the
application of the (−⊛)-rule.

Theorem 1. The rules in Fig. 4 are sound; that is, if the rules in Fig. 4 say
that ϕ, d 
 A, then γ(A)|(d,·) ⊇ [[ϕ]]. ⊓⊔

The proof follows from the fact that each of the abstract operators is sound.

5 Experimental Evaluation

This section presents the results of our experiments to evaluate the costs and
benefits of our approach. The experiments were designed to shed light on the
following questions:
1. How costly is the semi-decision procedure (in terms of time)?
2. How often is the semi-decision procedure able to determine that a formula

is unsatisfiable?
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Formula Characteristics

Formula emp x = y x 7→ y ls(x, y) ϕ ∧ ϕ ϕ ∨ ϕ ϕ ∗ ϕ ϕ−⊛ ϕ Full

Group + − + − + − + − Corpus

Group 1 1 5 8 8 13 1 19 10 22 4 12 10 23
Group 2 64 22 0 0 22 22 22 22 64 0 64 0 64
Group 3 512 218 0 0 218 218 218 218 512 0 512 512 512

Total 577 245 8 8 253 241 259 250 598 4 588 522 599

Table 2: Number of formulas that contain each of the SL operators in the three groups

of formulas used in the experiments. The columns labeled “+” and “−” indicate the

number of atoms occurring as positive and negative literals, respectively.

3. For unsatisfiable formulas that are beyond the capabilities of other existing
tools, is the semi-decision procedure actually able to determine that the
formulas are unsatisfiable?

Setup. The semi-decision procedure is written in OCaml; it compiles a formula
to a proof DAG, expressed as an equation system. The abstract-value manipula-
tions in the proof rules of Fig. 4 are performed using ITVLA, a modified version
of TVLA [23] that was implemented for performing interprocedural shape analy-
sis [20, §8]. ITVLA (i) replaces TVLA’s notion of an intraprocedural control-flow
graph by the more general notion of equation system, in which transfer functions
may depend on more than one argument, and (ii) supports a more general lan-
guage in which to specify equation systems. In particular, the ITVLA language
supports explicit use of the meet operator [1] for a canonical-abstraction domain.
Experiments were run on a single core of a 2-processor, 4-core-per-processor 2.27
GHz Xeon computer running Red Hat Linux 6.5.

Test Suite. Our test suite consists of three groups of unsatisfiable formulas:
– Group 1, shown in Tab. 3, was chosen to evaluate our procedure on a wide

spectrum of formulas.
– Group 2 was created by replacing the Boolean variables a and b in the

template T1
def

= ¬a∧ emp∧ (a ∗ b) with the 8 literals lits of SL; that is, true,
emp, x 7→ y, ls(x, y), and their negations. Five of the 64 instantiations of
template T1 are shown in Tab. 4.

– Group 3 was created by replacing the Boolean variables a, b, and c in the

template T2
def

= emp ∧ a ∧ (b ∗ (c−⊛ (emp ∧ ¬a))) with the 8 literals lits of
SL. Five of the 512 instantiations of template T2 are shown in Tab. 5.

Templates T1 and T2 are based on work by Hou et al. [19] on Boolean separation
logic. Templates T1 and T2 are listed as formulas 15 and 19, respectively, in [19,
Tab. 2]. In total, there were 599 formulas in our test suite. Tab. 2 summarizes
the characteristics of the corpus based on the occurrences of the SL operators.

Though not shown in this section, we also evaluated our procedure on a set of
satisfiable formulas. The procedure reports a set of abstract models when given
a satisfiable formula. The time taken to compute these abstract models is similar
to that for proving formulas unsatisfiable.
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Formula Unsat Time

(1) a1 7→ a2 ∧ ¬ls(a1, a2) X 1.74

(2) a1 7→ a2 ∗ a2 7→ a1 X 1.70

(3) ¬emp ∧ (ls(a1, a2) ∗ ls(a2, a1)) X 2.00

(4) a1 6= a2 ∧ (ls(a1, a2) ∗ ls(a2, a1)) X 1.97

(5) (ls(a1, a2) ∗ ls(a2, a3)) ∧ ¬ls(a1, a3) X 4.46

(6) ls(a1, a2) ∧ emp ∧ a1 6= a2 X 1.34

(7) (a1 7→ a2 ∗ true) ∧ (a2 7→ a3 ∗ true) ∧ (true ∗ a3 7→ a1) X 4.25

(8) (a1 7→ a2 −⊛ true) ∧ (a1 7→ a2 ∗ true) X 2.43

(9) (ls(a1, a2) ∗ ¬ls(a2, a3)) ∧ ls(a1, a3) X 22.2

(10) ls(a1, a2) ∧ ls(a1, a3) ∧ ¬emp ∧ a2 6= a3 X 1.91

(11) (ls(a1, a2) ∗ true ∗ a3 7→ a4) ∧ (true ∗ (ls(a2, a1) ∧ a2 6= a1)) X 32.9

(12) (a1 7→ a2 ∗ ls(e1, e2))∧ (a2 7→ a3 ∗ ¬emp)∧ (a3 7→ a1 ∗ ¬a5 7→ a6 ∗ true) X 39.8

(13) (¬emp ∗ ¬emp)∧ (a1 = nil∨ a1 7→ e1∨ ((a1 7→ e1∧ e1 = nil) ∗ true))∧
ls(a1, a2)

X 2.34

(14) ((ls(a1, a2) ∧ a1 6= a2) ∗ (ls(a2, a3) ∧ a2 6= a3)) ∧ ((ls(a4, a1) ∧ a4 6=
a1) ∗ a1 7→ e1 ∗ true)

X 10.8

(15) (ls(a1, a2) −⊛ ls(a1, a2)) ∧ ¬emp X 1.92

(16) (a3 7→ a4 −⊛ ls(a1, a4)) ∧ (a3 = a4 ∨ ¬ls(a1, a3)) X 2.76

(17) ((a2 7→ a3 −⊛ ls(a2, a4)) −⊛ ls(a1, a4)) ∧ ¬ls(a1, a3) X 4.60

(18) ((a2 7→ a3 −⊛ ls(a2, a4)) −⊛ ls(a3, a1)) ∧ a2 = a4 X 4.02

(19) (a1 7→ a2−⊛ls(a1, a3))∧(¬ls(a2, a3)∨(true∧(a1 7→ e1∗true))∨a1 = a3) X 4.12

(20) ((ls(a1, a2) ∧ a1 6= a2) −⊛ ls(e1, e2)) ∧ e1 6= a1 ∧ e2 = a2 ∧ ¬ls(e1, a1) X 6.03

(21) a1 6= a4 ∧ (ls(a1, a4) −⊛ ls(e1, e2)) ∧ a4 = e2 ∧ ¬ls(e1, a1) X 6.92

(22) ((ls(a1, a2) ∧ a1 6= a2) −⊛ ls(e1, e2)) ∧ e2 6= a2 ∧ e1 = a1 ∧ ¬ls(a2, e2) ? 6.98

(23) ((a2 7→ a3 −⊛ ls(a2, a4)) −⊛ ls(a3, a1)) ∧ (¬ls(a4, a1) ∨ a2 = a4) ? 4.71

Table 3: Unsatisfiable formulas.

Formula Unsat Time

(1) ¬(a1 7→ a2) ∧ emp ∧ (a1 7→ a2 ∗ a3 7→ a4) X 3.65

(2) a1 7→ a2 ∧ emp ∧ (¬(a1 7→ a2) ∗ a3 7→ a4) X 5.01

(3) ¬(a1 7→ a2) ∧ emp ∧ (a1 7→ a2 ∗ ls(a3, a4)) X 6.17

(4) ls(a1, a2) ∧ emp ∧ (¬ls(a1, a2) ∗ ls(a3, a4)) X 76.2

(5) ls(a1, a2) ∧ emp ∧ (¬ls(a1, a2) ∗ ¬ls(a3, a4)) X 386

Table 4: Example instantiations of T1

def

= ¬a ∧ emp ∧ (a ∗ b), where a, b ∈ lits.

We now answer Questions 1–3 posed at the beginning of this section using
the three groups of formulas.

Group 1 Results. The running time of our procedure on the formulas listed in
Tab. 3 was often on the order of five seconds. The procedure was able to prove
unsatisfiability for all formulas, except (22) and (23). We believe that formulas
(9)–(23) are beyond the scope of existing tools. Formulas (9)–(14) demonstrate
that we can handle formulas that describe overlapping data structures, including
conjunctions of separating conjunctions. Formulas (15)–(21) demonstrate that
we can handle formulas that contain occurrences of both ls and septraction.
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Formula Unsat Time

(1) emp ∧ ls(a1, a2) ∧ (ls(a3, a4) ∗ (ls(a5, a6) −⊛ (emp ∧ ¬ls(a1, a2)))) X 9.03

(2) emp ∧ ¬emp ∧ (ls(a3, a4) ∗ (¬(a5 7→ a6) −⊛ (emp ∧ emp))) X 3.25

(3) emp ∧ a1 7→ a2 ∧ (a3 7→ a4 ∗ (a5 7→ a6 −⊛ (emp ∧ ¬(a1 7→ a2)))) X 3.57

(4) emp ∧ ls(a1, a2) ∧ (¬ls(a3, a4) ∗ (ls(a5, a6) −⊛ (emp ∧ ¬ls(a1, a2)))) X 25.3

(5) emp ∧ ls(a1, a2) ∧ (¬ls(a3, a4) ∗ (¬ls(a5, a6) −⊛ (emp ∧ ¬ls(a1, a2)))) X 25.5

Table 5: Example instantiations of T2

def

= emp ∧ a ∧ (b ∗ (c −⊛ (emp ∧ ¬a))), where

a, b, c ∈ lits.

Group 2 Results. The 64 formulas instantiated from the template T1
def

= ¬a ∧
emp ∧ (a ∗ b) took between 0.82 and 386 seconds to check, with a mean of 12.4
and a median of 1.98 seconds. Our procedure was able to prove unsatisfiability
for all 64 formulas. All instantiations of T1 that contain an occurrence of the ls

predicate are beyond the capabilities of existing tools.
The formulas that took the greatest amount of time and the second-greatest

amount of time are (5) and (4), respectively, in Tab. 4. In both cases, a large
amount of time was required because of the presence of ¬ls, which is represented
by 24 structures—a much larger number than is needed for the other literals.

Group 3 Results. The 512 formulas instantiated from the template T2
def

=
emp∧ a∧ (b ∗ (c−⊛ (emp∧¬a))), took between 0.79 and 25.5 seconds to check
using our procedure, with a mean of 2.98, and a median of 2.33 seconds. Our pro-
cedure was able to prove unsatisfiability for all 512 formulas. All instantiations
of T2 that contain an occurrence of the ls predicate are beyond the capabilities
of existing tools.

6 Related Work

The literature related to reasoning about separation logic is vast, and we men-
tion only a small portion of it in this section. Decidability results related to
first-order separation logic are discussed in [8, 6]. A fragment of separation logic
for which it is decidable to check validity of entailments was introduced in [2].
The fragment includes points-to and linked-list predicates; but no septraction,
or negations of points-to or linked-list predicates. Most approaches use a syn-
tactic proof-theoretic procedure for this fragment [2, 27]. One exception is the
approach by Cook et al. [9], which uses a more semantic approach that represents
separation-logic formulas as graphs in a particular normal form and then proves
that one formula entails another by computing a homomorphism between the
corresponding graphs. More recent approaches deal with fragments of separa-
tion logic that are incomparable to ours [26, 22, 19]; in particular, none of these
approaches handle linked lists.

The explicit use of abstract values drawn from an abstract domain as a way
to represent knowledge in implementations of decision procedures is a technique
that has been receiving increased attention of late [14, 33, 32, 15, 16]. As far as
we know, our work is the first to apply this idea to a fragment of separation
logic.
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Many researchers pigeonhole TVLA [23] as a system exclusively tailored for
“shape analysis”. In fact, it is actually a metasystem for (i) defining a fam-
ily of logical structures 2-STRUCT[Voc], and (ii) defining canonical-abstraction
domains whose elements represent sets of 2-STRUCT[Voc]. The ITVLA [20,
§8] variant of TVLA is a different packaging of the classes that make up the
TVLA implementation, and demonstrates better that canonical abstraction is a
general-purpose method for abstracting the structures that are a logic’s domain
of discourse.

To simplify matters, the separation-logic fragment addressed in this pa-
per does not allow one to make assertions about numeric-valued variables and
numeric-valued fields. Our approach could be extended to support such capabil-
ities using methods developed in work on abstract interpretation that combines
canonical abstraction with numeric abstractions [18, 25].

7 Conclusion and Future Work

This paper showed how to create a semi-decision procedure for a fragment of
separation logic. The fragment of separation logic that we use has empty-heap
assertions (emp), equalities (x = y), points-to assertions (x 7→ y), acyclic-list-
segment assertions (ls(x, y)), and their negations as literals; it provides the con-
nectives ∗, −⊛, ∧, and ∨. We believe that this is an interesting fragment, in that
it contains formulas for which existing approaches do not apply.

For each SL formula ϕ, the procedure performs a bottom-up evaluation of
the formula, using a particular shape-analysis interpretation; if the answer is the
empty set of 3-valued structures, then ϕ is unsatisfiable. Thus, the work reported
in the paper supports the thesis that abstract-interpretation concepts can help
in the design and implementation of decision procedures.

Moreover, if ϕ is satisfiable, then the procedure reports a set of abstract
models—i.e., a value in the canonical-abstraction domain that overapproximates
[[ϕ]]. As we have shown in other work (using a variety of other techniques, and
for a variety of other logics), a decision-procedure-like method that is prepared
to return such “residual” answers provides a way to generate sound abstract
transformers automatically [28, 35, 33, 31]. In particular, when ϕ specifies the
transition relation between the pre-state and post-state of a concrete trans-
former τ , a residuating decision procedure provides a way to create a sound
abstract transformer τ ♯ for τ , directly from a specification in logic of τ ’s con-
crete semantics. Consequently, the work reported in the paper also supports
the thesis that abstract-interpretation-based decision procedures provide much
promise for automating the construction of program-analysis tools. Using our
semi-decision procedure, we now have a way to create abstract transformers
based on canonical-abstraction domains directly from a specification of the se-
mantics of a language’s concrete transformers, written in SL.

Although TVLA and separation logic have both been applied to the prob-
lem of analyzing programs that manipulate linked data structures, there has
been only rather limited crossover of ideas between the two approaches. Our
semi-decision procedure is built on the connection between TVLA states and
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SL statelets described in §2.3, which represents the first formal connection be-
tween the two approaches. For this reason, the semi-decision procedure should
be of interest to both communities: (i) for the TVLA community, the proce-
dure illustrates a different and intriguing use for canonical-abstraction domains;
(ii) for the separation-logic community, the procedure shows how using TVLA
and canonical-abstraction domains leads to a model-theoretic approach to the
decision problem for SL that is capable of handling formulas that are beyond the
capabilities of existing tools.

We believe that the approach presented in this paper has the potential to
be extended to deal with richer fragments of separation logic—in particular,
fragments that contain both separating implication and acyclic linked-list pred-
icates.
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Fig. 7: Some of the structures that arise in the meet operation used to evaluate
x 7→ y −⊛ ls(x, z).

A A Satisfiable Formula

Consider the formula ϕ
def

= x 7→ y −⊛ ls(x, z). We want to compute A ∈ A such
that γ(A)|(d,·) ⊇ [[ϕ]]. Similar to what was done in §3 for the ∗ operator, we
introduce two new domain predicates d1 and d2, which are used to demarcate

the heaplets that must satisfy ϕ1
def

= x 7→ y and ϕ2
def

= ls(x, z). By design, there
exist A1, A2 ∈ A such that γ(A1)|(d1,·) = [[x 7→ y]] and γ(A2)|(d2,·) = [[ls(x, z)]],
respectively. A1 consists of the single 3-valued structure shown in Fig. 7(b).
Fig. 7(c) shows one of the structures in A2; it represents an acyclic linked list
from x to z whose length is greater than 1. Furthermore, to satisfy ϕ1 −⊛ ϕ2, d
and d1 are required to be disjoint regions whose union is d2. A also contains an
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abstract value, which we will call D, that represents this disjointness constraint
exactly.D consists of four 3-valued structures. Fig. 7(a) shows the “most general”
of them: it represents two disjoint regions, d and d1, that partition the d2 region
(where each of d and d1 contain at least one cell). The summary individual
labeled ¬d,¬d1,¬d2 in Fig. 7(a) represents a region that is disjoint from d2.

To impose a necessary condition for x 7→ y−⊛ls(x, z) to be satisfiable, we take
the meet of D, A1, and A2: [[x 7→ y −⊛ ls(x, z)]] ⊆ D ⊓A1 ⊓A2. Fig. 7(d) shows
one of the structures that arises in D ⊓ A1 ⊓ A2, after the semantic-reduction
operators have been applied. A few points to note about this resultant structure:
– The summary individual in region d2 present in the ls(x, z) structure in Fig.

7(c) is split in Fig. 7(d) into a singleton individual pointed to by y and a
summary individual.

– The individual pointed to by x is in regions d1 and d2, but not d.
– The individual pointed to by y is in regions d and d2, but not d1.
– The variables x and y are not equal.
– All the individuals in d are reachable from y, not reachable from z, and have

link [d, n, z] true.
Fig. 7(e) shows the structure after we have projected the heap onto the heap

region d; that is, the values of the domain predicates d1 and d2 have been set
of 1/2 on all individuals, and all the abstraction predicates have been set to
1/2 on all individuals not in d. In effect, this operation blurs the distinction
between the region that is outside d, but in d2, and the region that is outside
of d and d2. Note that the fact that x and y are not equal is preserved by the
projection operation. This projection operation, denoted by (·) d in §4, serves
as an abstract method for quantifier elimination.

Note that Fig. 7(e) represents an acyclic linked-list from y to z with x 6= y,
which is one of the models that satisfies x 7→ y −⊛ ls(x, z).
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