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Abstract 

We present an algorithm that restructures the state trans- 
ition graph (STG) of a sequential circuit so as to reduce 
power dissipation. The STG is modified without changing 
the behavior of the circuit, by exploiting state equivalence. 
Bather than aiming primarily at reducing the number of 
states, our algorithm redirects transitions so that the new 
destination states are equivalent to the original ones, while 
the average activity of the circuit is decreased. The impact 
on area is also estimated to increase the accuracy of the 
power analysis. The STG and all other major data struc- 
tures are stored as decision diagrams, and the algorithm 
does not enumerate explicitly the states or the transitions. 
(i.e., it is symbolic.) Therefore, it can deal with circuits 
that have millions of states. Once the STG has been re- 
structured we apply symbolic factoring algorithms, based on 
Zero-suppressed BDDs, to convert the optimized graph into 
a multilevel circuit. We derive an efficient circuit from the 
BDDs of the STG by incorporating power constraints in the 
symbolic factoring algorithms. 

1 Introduction 

The progress in productivity for VLSI designers has resul- 
ted from advances in tools (both software and hardware) 
and methodology. Among the changes that have taken place 
over the last decade it is easy to point out the widespread 
use of Hardware Description Languages (HDLs) as one of 
the most significant. HDLs allow designers to work at a 
much higher level of abstraction than gate-level netlists or 
schematics, and therefore they require synthesis systems to 
translate behavioral specifications into structure. In this pa- 
per we study such translation when the behavior is given in 
the form of a state transition graph. The algorithms we pro- 
pose in this paper are symbolic, relying on decision diagrams 
[5, 1, 121 for the manipulation of state transition graphs and 
circuits alike. We have developed a new graph restructur- 
ing algorithm that expIoits the existence of equivalent states 
to decrease power dissipation, not necessarily by collapsing 
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the equivalence classes, but by redirecting transitions in the 
graph. At the high level, we use a fairly abstract measure 
of power dissipation, namely the state bit transitions. As 
the refinement progresses, more detailed power models are 
brought into play. 

Another contribution of this paper is how the rcstruc- 
tured state transition graph is translated into a circuit. For 
this task, traditional algorithm are quite inadequate, Trans- 
lating a BDD that represents a finite state machine directly 
into a network of multiplexers (one for each BDD node) and 
then subjecting the network to algorithms like those in SIS 
[13] normally results in circuits that are both very large 
and very slow. We have extended Minato’s symbolic syn- 
thesis algorithms in two ways: Improving the general efll- 
ciency, and incorporating power consumption considerations 
in the factoring algorithm. An accurate comparison of sym- 
bolic and traditional logic synthesis algorithms must include 
the observation that for small circuits that both kind of al- 
gorithms may handle, the traditional algorithms often pro- 
duce better results. However, our work shows that the gap 
is closing. 

In this paper we have omitted the basic definitions and 
notations regarding BDDs [5], ZDDs [12], finite state ma- 
chines, Markov chains [7], and equivalent state computations 
[9] due to space constraints. The reader can consult the rcf- 
erences for more information on these topics. The rest of the 
paper is organized as follows: Section 2 presents the rcstruc- 
turing algorithms. Section 3 covers the conversion of a state 
transition graph into a circuit. In Section 4 we discuss the 
symbolic synthesis algorithms. Experimental results are re- 
ported in Section 5 and conclusions and points to directions 
of future work are presented in Section 6. 

2 Graph Restructuring 

In this section we present a transformation that affects the 
structure of the state transition graph, without changing tho 
behavior of the circuit. We illustrate here a simple example 
of such transformation. Consider the fragment of state trans- 
ition graph shown in Figure 1. The solid arrows represent the 
actual transitions between states. The shaded oval rcprcs- 
ents an equivalence class. Since states B and C are equival- 
ent, it is possible to change the graph so that the transition 
out of A goes to C (as shown by the edge with solid arrow). 

The choice between B and C can be guided by considerations 
of power, delay and area. 

To accomplish the restructuring transformation described 
in Figure 1, we first add and then remove edges, in such a 
way that the behavior of the machine is not affected, Suppose 
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Example The priority function &p(z, y, z), called relat- 
ive proximity is defined as: 

Figure 1: A fragment of state transition graph with equival- 
ent states. 

we are given a deterministic STG with transition relation T. 
For every state sr, if there etists a transition to state Sj, 

then we add edges to every state Sk equivalent to s, under 
the same input conditions. These new edges are called ghost 
edges. The resulting STG is no longer deterministic, but 
is clearly indistinguishable from the original one in terms of 
behavior. The transition relation of the resultant STG can 
be computed by the following simple formula: 

Given a cost criterion that the edges need to satisfy, it is 
possible to choose an appropriate priority function. Once a 
priority function II is chosen, the following formula computes 
a right-unique edge relation, i.e., an edge relation in which 
there is at most one edge out of node encoded by E and which 
satisfies the cost criterion. 

T*(x, w, Y) = 3zE(y, 2) A T(x, w, 2) (1) 

where E(z, y) is the equivalence relation of the original FSM 
computed by the algorithm of [9]. 

We call T” the augmented STG. Given an augmented 
STG we partition the synthesis problem into two phases: 
In the fist phase we derive a new STG, which we call the 
reduced STG by removing undesirable edges from the aug- 
mented STG. In the second phase we synthesize a sequential 
circuit from the reduced STG. The second phase is the sub- 
ject of Section 3. In the remainder of this section we describe 
the first phase, for which we propose and contrast several 
heuristic algorithms. 

Tn(x, w, Y) = T=(x, w, Y) A 3P(x, to,%) A II(x,z, y) (4) 

In the above formula, the edge relation is denoted by TO(x, w, y). 
The term TO(x, 20, Z) A II(x, z, y) computes a triplet (x, y, Z) 
(w is not involved in the computation as we choose an edge 
from a set of possible edges with identical labels). This 
triplet indicates that between the edges (z, y) and (x, z), the 
edge (2, z) is preferable to (x, y). After abstracting the nodes 
encoded by z, the result under the complement returns the 
edges not of highest priority (including edges that are not 
in the graph). The complement and the intersection fklly 
return the edges of highest priority. 

In the following sections we shall describe heuristics which 
embody different priority functions to reduce the average bit 
changes per state transition and the area of the final imple- 
mentation. 

2.1 Priority Functions 2.2 Hamming Distance Heuristic 

As we can see from Figure 1 the problem is of selecting an 
edge which satisfies a cost function, from a possible choice 
of equivalent edges. Our purpose is to solve this problem 
for very large graphs whose size is beyond the possibility of 
traditional explicit algorithms. Hence, we need to avoid ex- 
plicit enumeration of edges and make the selection in a single 
step. For this purpose we make use of priority functions [s] 
to select an edge according to a cost function. 

In this section we describe an algorithm that uses the Ham- 
ming distance as the basis to select edges from the augmen- 
ted STG. The Hamming distance HD(x, y) between a set 
of variables z and y is defined below. 

HD(x, y) = 2 Ix; - yi1 
iso 

Definition 1 A priority function is a function II : IV!” t+ 
(0, 1). The input to iT is a tripret of nodes (x, y, z). The 
first argument is the bias; the remaining two arguments are 
the nodes to be compared. For every choice of bias x, II se- 
lects a total order of V and returns 1 if the second argument 
precedes the third in that ordering. 

HD(x, y) is represented by an ADD. The leaf values belong 
to the set (0, 1, . . . , 72 - 1). 

In simple terms, II(x, y, Z) = 1 if y is a better choice than z, 
given 2. 

We try to select a destination state such that the number 
of bit changes per state transition is minimized. By doing 
this, besides minimizing the toggling of the latches, we pos- 
sibly reduce the switching activity in the combinational logic 
that implements the next state and output functions. 

In order to select a destination state, such that the num- 
ber of bit transitions from source to destination is minimized, 
we make use of the following function. It is defined as: 

1 ifllx-YII < lb-zll; 
ITRdx, yt’) = { 0: o&entise (2) 

where IIu - bll is defined as 

nRP(Z, y,z) = 1 if y is closer to z than z. This priority 
function will be used to build other priority functions in the 
following. 

1, H(x’ ” z, = { 0, 
if HD(x, y) < HD(x,z); 
otherwise. (f-9 
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H(z, y, Z) is not a priority function: For distinct encod- 
ings Z, y, and z, HD(z, y) can be equal to HD(z, z); hence 
the application of H in Equation (4), does not guarantee a 
right-unique edge relation and the resultant STG will still 
be nondeterministic. To break the tie, we use the relative 
proximity function defined in Equation (2). The resultant 
priority function II&Z, y, z) is defined as: 

h+, Y, z) = H(X, Y, z) v (+(X:, 2, Y) A nRP(? Y,z)) (7) 

The new edge relation, called the reduced STG is com- 
puted by substituting IIH for II in Equation (4). It is aIso 
possible to avoid the use of a tie breaker by synthesizing dir- 
ectly from a nondeterministic STG. This approach is out- 
lined in Section 3. 

Figure 2: Example to illustrate Hamming distance heuristic. 

Example. Figure 2 shows how the priority function selects 
only those edges that reduce the number of bit transitions. 
Figure 2(a) shows the augmented STG and Figure 2(b) the 
reduced STG. The states in the shaded area are equivalent 
states, and the edges with solid arrows are the ghost edges. 
The reduced STG now has fewer bit changes per state trans- 
ition than the original STG. 

2.3 Fanin-Oriented Heuristic 

In the previous method, the potential area savings in the 
form of reduction in the number of states is not inherently 
taken into consideration. Potential area savings could occur, 
along with reduction in average bit change, in the case when 
all the incoming edges into an equivalence class get mapped 
to a single state. In this section, we propose an extension 
to the method described in Section 2.2 so as to include the 
potential area savings into the cost function. 

In this method we take into account the absolute trans- 
ition probabilities along with the Hamming distance criterion 
to make a better choice. The steady state probabilities 5X’(z) 
are computed via markovian analysis along the lines of [7]. 

The steady state probability SS(z) gives us the probability 
of occupation of the state encoded by x. 

Each edge (z, y) of the augmented STG is annotated with 
the product of &, - HD(z, y) and the absolute transition 
probability. Nb denotes the number of bits encoding a state. 
The absolute transition probability between state si and s, is 
given by the product of the probability of state occupation of 
s; and the conditional transition probability between si and 
sj. The one-step conditional transition probability P”(x, y) 
of the augmented STG is computed according to [7]. 
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This weighted augmented STG is represented hy an ADD. 
It is computed as below: 

WT=(x, y) = ?(x, y) * (Nb - HD(x:, y)) * ss(X). (8) 

Given the weighted matrix (relation) WT” (2, .IJ) we choose 
a representative state for each equivalence class such that the 
sum of weights of the edges into that state is maximum. The 
maximum value gives preference to those edges that have the 
maximum probability of being taken and would result in min- 
imum average bit change (maximum Nt, - HD(x, v)). Since 
we consider only those transitions that have the states from 
an equivalence class as the destination state, this method is 
called the far&-oriented method. 

Figure 3: Fragment of augmented STG showing the edge 
weights. 

Figure 3 shows a fragment of the augmented STG. The 
equivalent states are shown in the shaded area. As can be 
seen from the figure, the sum of the weights of the edges with 
C as the destination state is less than that of the edges with 
D as the destination. Hence the optimal choice would then 
be state D. 

Selecting a Representative using Priority Functions. 
Initially an arbitrary choice of a nominal representative for 
each equivalence class is made, along the lines of [9] by using 
the initial state as the reference vertex. Let the projection 
function that maps each state to its nominal representativo 
be denoted by Q(x, y). The x variables encode the nominal 
representative and the y variables encode the state. The 
weight associated with each state of an equivalence class is 
computed as follows: 

wx, Y) = 3w-% Y) * qx, Y) (9) 

W”(Z, y) can be considered as a weighted edge relation. 
The z variables encode the nominal representative and t/ the 
members of the equivalence class, The weight w = WL(x, y), 
on each edge (z, y) is the sum of all the weighted edges that 
have y as its destination state in WT”(Z, g), In other words, 
w represents the priority value for the state TV. We now select 
an optimal representative with the highest weight among the 
members of an equivalence class. To accomplish this, WC USC 

the relative proximity function defined hr Equation (2) and 
a second function Fl(x, y, Z) defined as: 

J-G, Y, 2) = 
1 

1, if lV’(~,y) > WL(x,z); 
0, otherwise. 00) 

) r-y.--‘y ,(.- ;., -- 
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The resultant priority function l&1(2, y, z) is defined simil- 
arly to l-IH(Z, y, 2): 

l-b&, Y, 2) = FI( 2, Y, 2) v (+qx:, =r Y) A a3P(X, Y, 2)). 

(11) 

The pair (x, y) of nominal and optimal representative for 
each class is computed as follows: 

fqx, Y) = @‘(x9 Y) A 3zqx,g A l-L+, 2, Y). (12) 

where, x encodes the nominal representative and y the corres- 
ponding optimal representative. The new projection function 
is then computed as follows: 

Qqx, Y) = 3zqt, Y) A R(z, x). (13) 

Once the optimal representative for each equivalence class is 
found, the original transition relation T(x, ZU, y), the output 
functions X, and the initial state So are modified using the 
new projection function as follows: 

T” (JG w, Y) = 3u,@In(x:, u) A ?‘(u, w, v) A @“(y, u&4) 

X(x, w) = 3,#?(x, u) A &(u, w)) 05) 

s*“(x) = 3u(‘Pn(x, u) A s”(u))) (16) 

2.4 Fanin-Fanout Oriented Heuristic 

A more sophisticated approach performs a less greedy selec- 
tion. For instance, in Figure 3 the choice of state D results 
in higher average bit change because of the transitions that 
emerge from state D. To choose an optimal representative 
for an equivalence class, it is sometimes beneficial to consider 
both the transitions into and from the equivalent states. We 
call such a method fanin-fanout method. 

In addition to the weighted matrix WL(x, y) as described 
in Section 2.3, we define W”(x, y) to take into consideration 
the contribution of the transitions that originate from states 
in the equivalence classes, to the average bit change. The 
process is very similar to that described in Section 2.3, except 
for WR(x, y) which is computed as follows: 

WR(x, y) = 3;FWT”(y, u) - qx, y) 07) 

The complete weight matrix W(x, y) is the average of 
WL(x, y) and W”(x, y). Equations (10) through (16) still 
hold with WL (t, y) replaced by W(z, y). 

3 Converting the State Transition Graph into 
a Circuit 

After the STG has been restructured as described in Sec- 
tion 2, a new circuit must be derived from it. Direct con- 
version of the BDD to a circuit by translating each node of 
the BDD into a multiplexer leads to a circuit that is typically 
large and slow. Optimization of such a circuit with a tool like 
SIS [13] is normally time consuming and ineffective, because 
of the poor quality of the starting point. 

We derive an efficient circuit from the BDDs of the STG 
by the symbolic techniques based on ZDDs [lo, 111, which 
we have extended to deal with low power consumption. The 
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inputs to the conversion procedure are the restructured STG, 
T“(x, w, y), the output functions, {Xl(x, w)}, and the set of 
reachable states of T”, R(x). If the circuit does not have a 
prescribed set of initial states, then R(x) = 1. 

Initially, the next state functions are extracted from T”. 
For a deterministic T”-one that associates exactly one next 
state to each combination of present state and primary inputs- 
the i-th next state function 6:(x, w) can be computed as fol- 
lows. First the lower bound is found by the following formula: 

@(x, w) = &CT’+, w> dy.1) A R(x). 

Similarly the upper bound is given by the formula: 

(18) 

Syn(x, w) = hf”(x, w) + R(z)‘. (19) 

If T” is nondeterministic, it is still possible to extract the 
next state functions from it, though the result is not unique. 
To do so, one solves the boolean equation T”(x, w, y) = 1 for 
the y variables to find the most general solution [4]. Then 
one extracts a particular solution by assigning appropriate 
values to the parameters in the general solution [6]. This 
approach can be used in the case of the Hamming distance 
heuristic (Section 2.2). The fanin and fanin-fanout methods 
produce a deterministic STG; hence, we do not need this 
more general approach. 

4 Symbolic Factorization using ZDDs 

The factorization procedure inputs BDDs of the next states 
and output functions and don’t cares. We use Minato’s ISOP 
f&redundant Sum Of Products) algorithm [lo] to extract a 
ZDD from the BDD to represent an h-redundant cover of the 
function. 

4.1 Finding Good Divisors 

The quality of factorization depends on the ability to find 
good divisors. There are several ways to find a divisor for 
a function to be factored. We have four methods to get 
divisors: least occurrence divisor, most occurrence divisor, 
level-0 kernel divisor, and random divisor. Least occurrence 
divisor finds a literal that occurs least frequently in a func- 
tion, among those that occur more than once. Most occur- 
rence divisor finds a literal which occurs most frequently in 
a function. Once the literal is chosen, we divide the function 
by the literal to get a quotient, and we recur on the quotient. 
Level-O kernel divisor is slightly different from most occur- 
rence divisor in that we make the quotient cube-free before 
we recur. A random divisor can be found quickly by tracing 
through a ZDD graph. As soon as we find a ZDD node that 
has two or more predecessors, we simply use the literal of 
this node as a divisor, and we recur. This can be done by 
depth first search. When a node is visited on a ZDD graph, 
if the node is already marked, we stop and return this node 
as a divisor. Otherwise, we mark the node and recur. In 
Figure 4, we visit the nodes a-d-e-f-b-d. Since the node d is 
already marked, d is chosen as a divisor. 

When we have a tie, we try to find a better divisor by 
considering how many output functions contain this variable 
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Figure 4: An example of a ZDD cover. 

and what the input probability is. If the transition probab- 
ility of an input is known, the input with highest transition 
probability is chosen. This would ensure that an high activ- 
ity input will be closer to the output and hence reduce the 
switching activity in the combinational part. 

Among the factoring methods, no one is consistently su- 
perior to the others. Therefore, our program offers all of 
them as options. 

4.2 Maximizing Sharing 

The more nodes we share, the fewer literals we get. In order 
to maximize sharing of common nodes, we do the following. 

First, we order the output functions according to the size 
of their supports. We factor the functions with the smallest 
support first. 

Second, we use algebraic re-substitution [3]. After we 
divide a function by a divisor, division of de remainder by 
the complement of the divisor is attempted. 

Third, we keep all divisors, quotients, and remainders 
that are already generated by previous divisions in a list, 
sorted by the size of their support. Whenever we find a 
divisor for a function, we extract a divisor from the function 
itself, and another divisor from the list. We then use the one 
with more literals. 

Fourth, we use the complement of each divisor. If the 
complement of a divisor can divide another function, we can 
increase sharing of nodes. Whenever we put divisors and 
quotients in the divisor list, we insert their complements as 
well. 

Fifth, we use kernel-by-kernel division. After we finish 
factoring all output functions, we have a lot of level-O kernels 
that cannot be factored further. However, there is still a 
chances to share nodes. A level-O kernel may be divided by 
another level-0 kernel, and a cube of a kernel may divide other 
level-0 kernels. This post-processing is very important to 
reduce the number of literals in factorization. As an example, 
consider the following two level-O kernels. 

F = a+bcd 

G = b’+c’+ d’ 

Even though both F and G cannot be factored further, F 

can be divided by the complement of G. Therefore, we can 
save two literals by letting F = a + G’. 

5 Experimental Results 

All the algorithms that we have described in this paper have 
been implemented in VIS [2]. From our experiments we have 
observed that neither of the previously described restruc- 
turing algorithms, viz., Hamming distance based heuristic, 
fanin, andfanin-fanoutmethods was consistently better than 
the others. So, the results that we have reported here corres- 
pond to the best run among the three restructuring options. 
In Table 2 we report the results of the restructuring process, 
The algorithms were run on many ISCAS ‘89 benchmarks, 
The experiments were conducted on an UltraSparc 167MHz 
with 192MB of memory. To get an estimate of the power dis- 
sipated we have used the power estimator in SIS [13] package. 
No further optimizations are performed in SIS after symbolic 
synthesis. Library delay model was used for all the experi- 
ments. The circuits were mapped with the map -AFG -n 1 
command using the lib2 and lib%Jatch standard libraries. 
Since performance is an important factor, we have mapped 
the circuits to reduce delay, rather than area. 

- 
Circuit 

xor8 
xor16 
Ssym 

v@ 
alu4 
apex1 
apex2 
apex3 
apex4 
apex5 
~432 

- 

yg 
28 
60 

117 
102 

1148 
2521 
253 

2221 
3473 
1185 
1510 

.to 
Time 

0.3 
0.7 
1.8 
1.7 

64.5 
209.6 
29.5 

158.2 
462.4 
58.7 

692.3 

- 

83 
97 

1319 
2863 

- 

2132 
3509 
1206 

- 

IS 
Time 

38.3 
- 

29.8 
33.9 

3751.6 
10945.1 

- 

1926.6 
1345.9 
156.9 

- 

28 
60 
76 
93 

1375 
1784 
336 

1687 
1979 
1070 
2454 

‘8 

Time 

0.02 
2,37 
0414 
0*40 
5.26 
7872 
3,oo 

11.92 
21.93 
3.90 

36.62 

Table 1: Results of symbolic factorization. 

In Table 2 column Equiu states the number of equival- 
ence classes. The average bit changes are shown in column 
ABC. From the experiments it can be seen that most of the 
circuits have many equivalent states. Circuits tic, s9&, a641 
show substantial decreases in the average bit change after rc- 
structuring. Though there is no substantial decrease.in the 
average bit change for other circuits, the power dissipation, 
nevertheless decreases. This is due in part to a decrease 
in area. In some cases like 3832, s149.$, 9386 and 3510, 
even though restructuring did not decrease the average bit 
change, restructuring did produce reduced STGs with fewer 
states resulting in lower power dissipation and lower area, 
In the case of 3298 the area as well as the power increased 
after restructuring. This is due in part to the failure of the 
factoring heuristics on this specific example. The time taken 
to complete the restructuring and the symbolic synthesis pro- 
cess for all the examples is very small. The time reported 
is the time taken in CPU seconds for the symbolic synthesis 
of original circuits, restructuring and the synthesis of the rc- 
duced FSMs. 

The results show that our symbolic synthesis approach 
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Table 2: Symbolic restructuring and synthesis. 

is quite effective in most cases. Refinement of the synthesis 

process is still under development and we hope to have even 
better results soon. 

The results of our symbolic factorization are shown in 
Table 1. The results reported in this table are for combina- 
tional synthesis. The results of Minato and MIS come from 
[ll]. Those experiments were run on SPARCstation 2. Even 
assuming a conservative factor of 10 between the speed of 
the two computers, our implementation is faster, especially 
on the larger examples. In terms of literals, we get mostly 
better results than both Minato and MIS. There is still some 
room for improvement. The strategy for choosing divisors is 
straightforward and we use only the algebraic division and 
sequential factorization for multiple output functions. If we 
adapt a backtracking strategy, boolean division, and simul- 
taneous factorization in our algorithm, we may get better 
results. 

6 Conclusions 

In this paper we have presented algorithms for the restructur- 
ing of state transition graphs without changing the behavior 
of the circuit. Prom experimental results we have found that 
the restructuring works well for circuits with large number of 
equivalent states. Currently, we are in the process of synthes- 
izing circuits described in Verilog. Behavioral descriptions 
often have large redundancies. We plan to integrate restruc- 
turing algorithms with symbolic re-encoding of sequential 
circuits to take advantage of these redundancies. With these 
two methodologies in place we hope the synthesis process to 
improve further. 
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