
I-- - - -- ,* >-..: LL-e,.li;.uA.ta~xL-IL’i i__L.-i----

I

I

A Symbolic Algorithm for Low Power Sequential Synthesis *

Balakrishna Kumthekar In-Ho Moon Fabio Somenzi

University of Colorado
Dept. of Electrical and Computer Engineering

Boulder, CO 80309

Abstract

We present an algorithm that restructures the state trans-
ition graph (STG) of a sequential circuit so as to reduce
power dissipation. The STG is modified without changing
the behavior of the circuit, by exploiting state equivalence.
Bather than aiming primarily at reducing the number of
states, our algorithm redirects transitions so that the new
destination states are equivalent to the original ones, while
the average activity of the circuit is decreased. The impact
on area is also estimated to increase the accuracy of the
power analysis. The STG and all other major data struc-
tures are stored as decision diagrams, and the algorithm
does not enumerate explicitly the states or the transitions.
(i.e., it is symbolic.) Therefore, it can deal with circuits
that have millions of states. Once the STG has been re-
structured we apply symbolic factoring algorithms, based on
Zero-suppressed BDDs, to convert the optimized graph into
a multilevel circuit. We derive an efficient circuit from the
BDDs of the STG by incorporating power constraints in the
symbolic factoring algorithms.

1 Introduction

The progress in productivity for VLSI designers has resul-
ted from advances in tools (both software and hardware)
and methodology. Among the changes that have taken place
over the last decade it is easy to point out the widespread
use of Hardware Description Languages (HDLs) as one of
the most significant. HDLs allow designers to work at a
much higher level of abstraction than gate-level netlists or
schematics, and therefore they require synthesis systems to
translate behavioral specifications into structure. In this pa-
per we study such translation when the behavior is given in
the form of a state transition graph. The algorithms we pro-
pose in this paper are symbolic, relying on decision diagrams
[5, 1, 121 for the manipulation of state transition graphs and
circuits alike. We have developed a new graph restructur-
ing algorithm that expIoits the existence of equivalent states
to decrease power dissipation, not necessarily by collapsing

‘Work supported by NSF/DARPA grant MIP-94-22268
nnd SRC contract 95-DJ-560.

Permission to make digital/hard copy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or dis-
tributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission
of ACM, lnc To copy otherwise, to republish, to post on servers or to redistxib-
ute to lists, requires prior specific permission and/or a fee.
01997 ACM 0-89791-903-3/97/OS..%SO

the equivalence classes, but by redirecting transitions in the
graph. At the high level, we use a fairly abstract measure
of power dissipation, namely the state bit transitions. As
the refinement progresses, more detailed power models are
brought into play.

Another contribution of this paper is how the rcstruc-
tured state transition graph is translated into a circuit. For
this task, traditional algorithm are quite inadequate, Trans-
lating a BDD that represents a finite state machine directly
into a network of multiplexers (one for each BDD node) and
then subjecting the network to algorithms like those in SIS
[13] normally results in circuits that are both very large
and very slow. We have extended Minato’s symbolic syn-
thesis algorithms in two ways: Improving the general efll-
ciency, and incorporating power consumption considerations
in the factoring algorithm. An accurate comparison of sym-
bolic and traditional logic synthesis algorithms must include
the observation that for small circuits that both kind of al-
gorithms may handle, the traditional algorithms often pro-
duce better results. However, our work shows that the gap
is closing.

In this paper we have omitted the basic definitions and
notations regarding BDDs [5], ZDDs [12], finite state ma-
chines, Markov chains [7], and equivalent state computations
[9] due to space constraints. The reader can consult the rcf-
erences for more information on these topics. The rest of the
paper is organized as follows: Section 2 presents the rcstruc-
turing algorithms. Section 3 covers the conversion of a state
transition graph into a circuit. In Section 4 we discuss the
symbolic synthesis algorithms. Experimental results are re-
ported in Section 5 and conclusions and points to directions
of future work are presented in Section 6.

2 Graph Restructuring

In this section we present a transformation that affects the
structure of the state transition graph, without changing tho
behavior of the circuit. We illustrate here a simple example
of such transformation. Consider the fragment of state trans-
ition graph shown in Figure 1. The solid arrows represent the
actual transitions between states. The shaded oval rcprcs-
ents an equivalence class. Since states B and C are equival-
ent, it is possible to change the graph so that the transition
out of A goes to C (as shown by the edge with solid arrow).

The choice between B and C can be guided by considerations
of power, delay and area.

To accomplish the restructuring transformation described
in Figure 1, we first add and then remove edges, in such a
way that the behavior of the machine is not affected, Suppose

56

I -7-*37_--- ?, ,- ---: ,_ ,h,;-;i -_ - -y-y-- -

http://crossmark.crossref.org/dialog/?doi=10.1145%2F263272.263283&domain=pdf&date_stamp=1997-08-01

Example The priority function &p(z, y, z), called relat-
ive proximity is defined as:

Figure 1: A fragment of state transition graph with equival-
ent states.

we are given a deterministic STG with transition relation T.
For every state sr, if there etists a transition to state Sj,

then we add edges to every state Sk equivalent to s, under
the same input conditions. These new edges are called ghost
edges. The resulting STG is no longer deterministic, but
is clearly indistinguishable from the original one in terms of
behavior. The transition relation of the resultant STG can
be computed by the following simple formula:

Given a cost criterion that the edges need to satisfy, it is
possible to choose an appropriate priority function. Once a
priority function II is chosen, the following formula computes
a right-unique edge relation, i.e., an edge relation in which
there is at most one edge out of node encoded by E and which
satisfies the cost criterion.

T*(x, w, Y) = 3zE(y, 2) A T(x, w, 2) (1)

where E(z, y) is the equivalence relation of the original FSM
computed by the algorithm of [9].

We call T” the augmented STG. Given an augmented
STG we partition the synthesis problem into two phases:
In the fist phase we derive a new STG, which we call the
reduced STG by removing undesirable edges from the aug-
mented STG. In the second phase we synthesize a sequential
circuit from the reduced STG. The second phase is the sub-
ject of Section 3. In the remainder of this section we describe
the first phase, for which we propose and contrast several
heuristic algorithms.

Tn(x, w, Y) = T=(x, w, Y) A 3P(x, to,%) A II(x,z, y) (4)

In the above formula, the edge relation is denoted by TO(x, w, y).
The term TO(x, 20, Z) A II(x, z, y) computes a triplet (x, y, Z)
(w is not involved in the computation as we choose an edge
from a set of possible edges with identical labels). This
triplet indicates that between the edges (z, y) and (x, z), the
edge (2, z) is preferable to (x, y). After abstracting the nodes
encoded by z, the result under the complement returns the
edges not of highest priority (including edges that are not
in the graph). The complement and the intersection fklly
return the edges of highest priority.

In the following sections we shall describe heuristics which
embody different priority functions to reduce the average bit
changes per state transition and the area of the final imple-
mentation.

2.1 Priority Functions 2.2 Hamming Distance Heuristic

As we can see from Figure 1 the problem is of selecting an
edge which satisfies a cost function, from a possible choice
of equivalent edges. Our purpose is to solve this problem
for very large graphs whose size is beyond the possibility of
traditional explicit algorithms. Hence, we need to avoid ex-
plicit enumeration of edges and make the selection in a single
step. For this purpose we make use of priority functions [s]
to select an edge according to a cost function.

In this section we describe an algorithm that uses the Ham-
ming distance as the basis to select edges from the augmen-
ted STG. The Hamming distance HD(x, y) between a set
of variables z and y is defined below.

HD(x, y) = 2 Ix; - yi1
iso

Definition 1 A priority function is a function II : IV!” t+
(0, 1). The input to iT is a tripret of nodes (x, y, z). The
first argument is the bias; the remaining two arguments are
the nodes to be compared. For every choice of bias x, II se-
lects a total order of V and returns 1 if the second argument
precedes the third in that ordering.

HD(x, y) is represented by an ADD. The leaf values belong
to the set (0, 1, . . . , 72 - 1).

In simple terms, II(x, y, Z) = 1 if y is a better choice than z,
given 2.

We try to select a destination state such that the number
of bit changes per state transition is minimized. By doing
this, besides minimizing the toggling of the latches, we pos-
sibly reduce the switching activity in the combinational logic
that implements the next state and output functions.

In order to select a destination state, such that the num-
ber of bit transitions from source to destination is minimized,
we make use of the following function. It is defined as:

1 ifllx-YII < lb-zll;
ITRdx, yt’) = { 0: o&entise (2)

where IIu - bll is defined as

nRP(Z, y,z) = 1 if y is closer to z than z. This priority
function will be used to build other priority functions in the
following.

1, H(x’ ” z, = { 0,
if HD(x, y) < HD(x,z);
otherwise. (f-9

57

-- _-__---kLL-“- ---AL-..-._--- ---. --

I

I

I

I
’ I

I

/

I

H(z, y, Z) is not a priority function: For distinct encod-
ings Z, y, and z, HD(z, y) can be equal to HD(z, z); hence
the application of H in Equation (4), does not guarantee a
right-unique edge relation and the resultant STG will still
be nondeterministic. To break the tie, we use the relative
proximity function defined in Equation (2). The resultant
priority function II&Z, y, z) is defined as:

h+, Y, z) = H(X, Y, z) v (+(X:, 2, Y) A nRP(? Y,z)) (7)

The new edge relation, called the reduced STG is com-
puted by substituting IIH for II in Equation (4). It is aIso
possible to avoid the use of a tie breaker by synthesizing dir-
ectly from a nondeterministic STG. This approach is out-
lined in Section 3.

Figure 2: Example to illustrate Hamming distance heuristic.

Example. Figure 2 shows how the priority function selects
only those edges that reduce the number of bit transitions.
Figure 2(a) shows the augmented STG and Figure 2(b) the
reduced STG. The states in the shaded area are equivalent
states, and the edges with solid arrows are the ghost edges.
The reduced STG now has fewer bit changes per state trans-
ition than the original STG.

2.3 Fanin-Oriented Heuristic

In the previous method, the potential area savings in the
form of reduction in the number of states is not inherently
taken into consideration. Potential area savings could occur,
along with reduction in average bit change, in the case when
all the incoming edges into an equivalence class get mapped
to a single state. In this section, we propose an extension
to the method described in Section 2.2 so as to include the
potential area savings into the cost function.

In this method we take into account the absolute trans-
ition probabilities along with the Hamming distance criterion
to make a better choice. The steady state probabilities 5X’(z)
are computed via markovian analysis along the lines of [7].

The steady state probability SS(z) gives us the probability
of occupation of the state encoded by x.

Each edge (z, y) of the augmented STG is annotated with
the product of &, - HD(z, y) and the absolute transition
probability. Nb denotes the number of bits encoding a state.
The absolute transition probability between state si and s, is
given by the product of the probability of state occupation of
s; and the conditional transition probability between si and
sj. The one-step conditional transition probability P”(x, y)
of the augmented STG is computed according to [7].

58

This weighted augmented STG is represented hy an ADD.
It is computed as below:

WT=(x, y) = ?(x, y) * (Nb - HD(x:, y)) * ss(X). (8)

Given the weighted matrix (relation) WT” (2, .IJ) we choose
a representative state for each equivalence class such that the
sum of weights of the edges into that state is maximum. The
maximum value gives preference to those edges that have the
maximum probability of being taken and would result in min-
imum average bit change (maximum Nt, - HD(x, v)). Since
we consider only those transitions that have the states from
an equivalence class as the destination state, this method is
called the far&-oriented method.

Figure 3: Fragment of augmented STG showing the edge
weights.

Figure 3 shows a fragment of the augmented STG. The
equivalent states are shown in the shaded area. As can be
seen from the figure, the sum of the weights of the edges with
C as the destination state is less than that of the edges with
D as the destination. Hence the optimal choice would then
be state D.

Selecting a Representative using Priority Functions.
Initially an arbitrary choice of a nominal representative for
each equivalence class is made, along the lines of [9] by using
the initial state as the reference vertex. Let the projection
function that maps each state to its nominal representativo
be denoted by Q(x, y). The x variables encode the nominal
representative and the y variables encode the state. The
weight associated with each state of an equivalence class is
computed as follows:

wx, Y) = 3w-% Y) * qx, Y) (9)

W”(Z, y) can be considered as a weighted edge relation.
The z variables encode the nominal representative and t/ the
members of the equivalence class, The weight w = WL(x, y),
on each edge (z, y) is the sum of all the weighted edges that
have y as its destination state in WT”(Z, g), In other words,
w represents the priority value for the state TV. We now select
an optimal representative with the highest weight among the
members of an equivalence class. To accomplish this, WC USC

the relative proximity function defined hr Equation (2) and
a second function Fl(x, y, Z) defined as:

J-G, Y, 2) =
1

1, if lV’(~,y) > WL(x,z);
0, otherwise. 00)

) r-y.--‘y ,(.- ;., --
“I

The resultant priority function l&1(2, y, z) is defined simil-
arly to l-IH(Z, y, 2):

l-b&, Y, 2) = FI(2, Y, 2) v (+qx:, =r Y) A a3P(X, Y, 2)).

(11)

The pair (x, y) of nominal and optimal representative for
each class is computed as follows:

fqx, Y) = @‘(x9 Y) A 3zqx,g A l-L+, 2, Y). (12)

where, x encodes the nominal representative and y the corres-
ponding optimal representative. The new projection function
is then computed as follows:

Qqx, Y) = 3zqt, Y) A R(z, x). (13)

Once the optimal representative for each equivalence class is
found, the original transition relation T(x, ZU, y), the output
functions X, and the initial state So are modified using the
new projection function as follows:

T” (JG w, Y) = 3u,@In(x:, u) A ?‘(u, w, v) A @“(y, u&4)

X(x, w) = 3,#?(x, u) A &(u, w)) 05)

s*“(x) = 3u(‘Pn(x, u) A s”(u))) (16)

2.4 Fanin-Fanout Oriented Heuristic

A more sophisticated approach performs a less greedy selec-
tion. For instance, in Figure 3 the choice of state D results
in higher average bit change because of the transitions that
emerge from state D. To choose an optimal representative
for an equivalence class, it is sometimes beneficial to consider
both the transitions into and from the equivalent states. We
call such a method fanin-fanout method.

In addition to the weighted matrix WL(x, y) as described
in Section 2.3, we define W”(x, y) to take into consideration
the contribution of the transitions that originate from states
in the equivalence classes, to the average bit change. The
process is very similar to that described in Section 2.3, except
for WR(x, y) which is computed as follows:

WR(x, y) = 3;FWT”(y, u) - qx, y) 07)

The complete weight matrix W(x, y) is the average of
WL(x, y) and W”(x, y). Equations (10) through (16) still
hold with WL (t, y) replaced by W(z, y).

3 Converting the State Transition Graph into
a Circuit

After the STG has been restructured as described in Sec-
tion 2, a new circuit must be derived from it. Direct con-
version of the BDD to a circuit by translating each node of
the BDD into a multiplexer leads to a circuit that is typically
large and slow. Optimization of such a circuit with a tool like
SIS [13] is normally time consuming and ineffective, because
of the poor quality of the starting point.

We derive an efficient circuit from the BDDs of the STG
by the symbolic techniques based on ZDDs [lo, 111, which
we have extended to deal with low power consumption. The

59

inputs to the conversion procedure are the restructured STG,
T“(x, w, y), the output functions, {Xl(x, w)}, and the set of
reachable states of T”, R(x). If the circuit does not have a
prescribed set of initial states, then R(x) = 1.

Initially, the next state functions are extracted from T”.
For a deterministic T”-one that associates exactly one next
state to each combination of present state and primary inputs-
the i-th next state function 6:(x, w) can be computed as fol-
lows. First the lower bound is found by the following formula:

@(x, w) = &CT’+, w> dy.1) A R(x).

Similarly the upper bound is given by the formula:

(18)

Syn(x, w) = hf”(x, w) + R(z)‘. (19)

If T” is nondeterministic, it is still possible to extract the
next state functions from it, though the result is not unique.
To do so, one solves the boolean equation T”(x, w, y) = 1 for
the y variables to find the most general solution [4]. Then
one extracts a particular solution by assigning appropriate
values to the parameters in the general solution [6]. This
approach can be used in the case of the Hamming distance
heuristic (Section 2.2). The fanin and fanin-fanout methods
produce a deterministic STG; hence, we do not need this
more general approach.

4 Symbolic Factorization using ZDDs

The factorization procedure inputs BDDs of the next states
and output functions and don’t cares. We use Minato’s ISOP
f&redundant Sum Of Products) algorithm [lo] to extract a
ZDD from the BDD to represent an h-redundant cover of the
function.

4.1 Finding Good Divisors

The quality of factorization depends on the ability to find
good divisors. There are several ways to find a divisor for
a function to be factored. We have four methods to get
divisors: least occurrence divisor, most occurrence divisor,
level-0 kernel divisor, and random divisor. Least occurrence
divisor finds a literal that occurs least frequently in a func-
tion, among those that occur more than once. Most occur-
rence divisor finds a literal which occurs most frequently in
a function. Once the literal is chosen, we divide the function
by the literal to get a quotient, and we recur on the quotient.
Level-O kernel divisor is slightly different from most occur-
rence divisor in that we make the quotient cube-free before
we recur. A random divisor can be found quickly by tracing
through a ZDD graph. As soon as we find a ZDD node that
has two or more predecessors, we simply use the literal of
this node as a divisor, and we recur. This can be done by
depth first search. When a node is visited on a ZDD graph,
if the node is already marked, we stop and return this node
as a divisor. Otherwise, we mark the node and recur. In
Figure 4, we visit the nodes a-d-e-f-b-d. Since the node d is
already marked, d is chosen as a divisor.

When we have a tie, we try to find a better divisor by
considering how many output functions contain this variable

I I

I
/

I

!-

I

j

I
/

1

I
I

!
/

I

! .
1

,
:

b,

,- _- .____--.-^_____ z- --- .1.7AA--d

Figure 4: An example of a ZDD cover.

and what the input probability is. If the transition probab-
ility of an input is known, the input with highest transition
probability is chosen. This would ensure that an high activ-
ity input will be closer to the output and hence reduce the
switching activity in the combinational part.

Among the factoring methods, no one is consistently su-
perior to the others. Therefore, our program offers all of
them as options.

4.2 Maximizing Sharing

The more nodes we share, the fewer literals we get. In order
to maximize sharing of common nodes, we do the following.

First, we order the output functions according to the size
of their supports. We factor the functions with the smallest
support first.

Second, we use algebraic re-substitution [3]. After we
divide a function by a divisor, division of de remainder by
the complement of the divisor is attempted.

Third, we keep all divisors, quotients, and remainders
that are already generated by previous divisions in a list,
sorted by the size of their support. Whenever we find a
divisor for a function, we extract a divisor from the function
itself, and another divisor from the list. We then use the one
with more literals.

Fourth, we use the complement of each divisor. If the
complement of a divisor can divide another function, we can
increase sharing of nodes. Whenever we put divisors and
quotients in the divisor list, we insert their complements as
well.

Fifth, we use kernel-by-kernel division. After we finish
factoring all output functions, we have a lot of level-O kernels
that cannot be factored further. However, there is still a
chances to share nodes. A level-O kernel may be divided by
another level-0 kernel, and a cube of a kernel may divide other
level-0 kernels. This post-processing is very important to
reduce the number of literals in factorization. As an example,
consider the following two level-O kernels.

F = a+bcd

G = b’+c’+ d’

Even though both F and G cannot be factored further, F

can be divided by the complement of G. Therefore, we can
save two literals by letting F = a + G’.

5 Experimental Results

All the algorithms that we have described in this paper have
been implemented in VIS [2]. From our experiments we have
observed that neither of the previously described restruc-
turing algorithms, viz., Hamming distance based heuristic,
fanin, andfanin-fanoutmethods was consistently better than
the others. So, the results that we have reported here corres-
pond to the best run among the three restructuring options.
In Table 2 we report the results of the restructuring process,
The algorithms were run on many ISCAS ‘89 benchmarks,
The experiments were conducted on an UltraSparc 167MHz
with 192MB of memory. To get an estimate of the power dis-
sipated we have used the power estimator in SIS [13] package.
No further optimizations are performed in SIS after symbolic
synthesis. Library delay model was used for all the experi-
ments. The circuits were mapped with the map -AFG -n 1
command using the lib2 and lib%Jatch standard libraries.
Since performance is an important factor, we have mapped
the circuits to reduce delay, rather than area.

-
Circuit

xor8
xor16
Ssym

v@
alu4
apex1
apex2
apex3
apex4
apex5
~432

-

yg
28
60

117
102

1148
2521
253

2221
3473
1185
1510

.to
Time

0.3
0.7
1.8
1.7

64.5
209.6
29.5

158.2
462.4
58.7

692.3

-

83
97

1319
2863

-

2132
3509
1206

-

IS
Time

38.3
-

29.8
33.9

3751.6
10945.1

-

1926.6
1345.9
156.9

-

28
60
76
93

1375
1784
336

1687
1979
1070
2454

‘8

Time

0.02
2,37
0414
0*40
5.26
7872
3,oo

11.92
21.93
3.90

36.62

Table 1: Results of symbolic factorization.

In Table 2 column Equiu states the number of equival-
ence classes. The average bit changes are shown in column
ABC. From the experiments it can be seen that most of the
circuits have many equivalent states. Circuits tic, s9&, a641
show substantial decreases in the average bit change after rc-
structuring. Though there is no substantial decrease.in the
average bit change for other circuits, the power dissipation,
nevertheless decreases. This is due in part to a decrease
in area. In some cases like 3832, s149.$, 9386 and 3510,
even though restructuring did not decrease the average bit
change, restructuring did produce reduced STGs with fewer
states resulting in lower power dissipation and lower area,
In the case of 3298 the area as well as the power increased
after restructuring. This is due in part to the failure of the
factoring heuristics on this specific example. The time taken
to complete the restructuring and the symbolic synthesis pro-
cess for all the examples is very small. The time reported
is the time taken in CPU seconds for the symbolic synthesis
of original circuits, restructuring and the synthesis of the rc-
duced FSMs.

The results show that our symbolic synthesis approach

60

Table 2: Symbolic restructuring and synthesis.

is quite effective in most cases. Refinement of the synthesis

process is still under development and we hope to have even
better results soon.

The results of our symbolic factorization are shown in
Table 1. The results reported in this table are for combina-
tional synthesis. The results of Minato and MIS come from
[ll]. Those experiments were run on SPARCstation 2. Even
assuming a conservative factor of 10 between the speed of
the two computers, our implementation is faster, especially
on the larger examples. In terms of literals, we get mostly
better results than both Minato and MIS. There is still some
room for improvement. The strategy for choosing divisors is
straightforward and we use only the algebraic division and
sequential factorization for multiple output functions. If we
adapt a backtracking strategy, boolean division, and simul-
taneous factorization in our algorithm, we may get better
results.

6 Conclusions

In this paper we have presented algorithms for the restructur-
ing of state transition graphs without changing the behavior
of the circuit. Prom experimental results we have found that
the restructuring works well for circuits with large number of
equivalent states. Currently, we are in the process of synthes-
izing circuits described in Verilog. Behavioral descriptions
often have large redundancies. We plan to integrate restruc-
turing algorithms with symbolic re-encoding of sequential
circuits to take advantage of these redundancies. With these
two methodologies in place we hope the synthesis process to
improve further.

7 Acknowledgments

We would like to thank Srilatha Manne for the interesting
discussions on this topic.

References

[l] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel,
E. Macii, A. Pardo, and F. Somenzi. Algebraic decision
diagrams and their applications. In Proceedings of the In-

ternational Conference on Computer-Aided Design, pages
188-191, Santa Clara, CA, November 1993.

PI

[31

141

[51

if51

171

is1

PI

WI

Pll

WI

1131

R. K. Brayton et al. VIS: A system for verification and syn-
thesis. Technical Report UCB/ERL M95/104, Electronics
Research Lab, Univ. of California, December 1995.

R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and
A. R. Wang. MIS: A multiple-level interactive logic op-
timization system. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, CAD-6(6):1062-
1081, November 1987.

F. M. Brown. Boolean Reasoning: The Logic of Boolean

Equations. Kluwer, Boston, 1990.

R. E. Bryant. Graph-based algorithms for boolean func-
tion manipulation. IEEE Transactions on Computers, C-
35(8):677-691, August 1986.

M. Fujita, Y. Tamiya, Y. Kukimoto, and K.-C. Chen. Ap
plication of boolean unification to combinational logic.syn-
thesis. In Proceedings of the International Conference on
Computer-Aided Design, pages 510-513, Santa Clara, CA,
November 1991.

G. D. Hachtel, E. Macii, A. Pardo, and F. Somenzi.
Markovian analysis of large finite state machines. IEEE

Transactions on Computer-Aided Design, 15(12):1479-1493,
December 1996.

G. D. Hachtel and F. Somenzi. A symbolic algorithm for
maximum flow in O-l networks. In Proceedings of the In-
ternational Conference on Computer-Aided Design, pages
403-406, Santa Clara, CA, November 1993.

B. Lin, H. Touati, and A. R. Newton. Don’t care minimiza-
tion of multi-level sequential logic networks. In Proceedings
of the IEEE International Conference on Computer Aided

Design, pages 414-417, Santa Clara, CA, November 1990.

S.-I. Minato. Fast generation of irredundant sums-of-products
forms from binary decision diagrams. In SASIMI ‘9g, pages
64-73, Kyoto, Japan, April 1992.

S.-I. Minato. Fast weak-division method for implicit cube
representation. In SASIMI ‘93, pages 423-432, Nara, Japan,
October 1993.

S.-I. Minato. Zero-suppressed BDDs for set manipulation in
combinatorial problems. In Proceedings of the Design Auto-

mation Conference, pages 272-277, Dallas, TX, June 1993.

E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K.
Brayton, and A. Sangiovanni-Vincentelli. Sequential circuit
design usingsynthesis and optimization. In Proceedings of the

International Conference on Computer Design, pages 328-
333, Cambridge, MA, October 1992.

61

