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Abstract

The statelessness of functional computations facilitates both par-
allelism and fault recovery. Faults and non-uniform communica-
tion topologies are key challenges for emergent large scale par-
allel architectures. We report on HdpH and HdpH-RS, a pair of
Haskell DSLs designed to address these challenges for irregular
task-parallel computations on large distributed-memory architec-
tures. Both DSLs share an API combining explicit task placement
with sophisticated work stealing. HdpH focuses on scalability by
making placement and stealing topology aware whereas HdpH-RS
delivers reliability by means of fault tolerant work stealing.

We present operational semantics for both DSLs and investigate
conditions for semantic equivalence of HdpH and HdpH-RS pro-
grams, that is, conditions under which topology awareness can be
transparently traded for fault tolerance. We detail how the DSL im-
plementations realise topology awareness and fault tolerance. We
report an initial evaluation of scalability and fault tolerance on a
256-core cluster and on up to 32K cores of an HPC platform.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

Keywords embedded domain specific 1 anguages; parallelism;
topology awareness; fault tolerance

1. Introduction

As the manycore revolution drives up the number of cores, the use
of compute resources with 100,000+ cores will become common-
place in the near future. On such architectures core failures are
predicted to become relatively common [3} [6]. Moreover, at such
scales core-to-core communication latency may vary by several or-
ders of magnitude, depending on whether the communicating cores
belong to different compute nodes, possibly living in different sub-
nets, or whether they share memory or cache.

Reliability and topology awareness are substantial challenges
even for applications that are embarrassingly parallel, or have other
simplifying properties like regular static task decomposition, or
simple data structures. The challenges are yet greater for appli-
cations without these properties. Symbolic computations, for ex-
ample, often have highly irregular task granularity, dynamic task
creation, complex control flows, or complex data structures.
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We present HdpH (Haskell distributed parallel Haskell) and
HdpH-RS (HdpH + Reliable Scheduling), a pair of DSLs designed
to address the challenges of reliability and scalability for compu-
tations with irregular parallelism. Specifically HdpH allows the
programmer to exploit communication topologies, and HdpH-RS
provides low cost automatic fault tolerance. The languages were
developed for symbolic computation on capability class high-
performance computing (HPC) platforms (currently around 10°
cores) and on commodity off-the-shelf (COTS) platforms, but have
broad application for large-scale irregularly-parallel computations.

We start by outlining related work on parallel languages/run-
times and parallel symbolic computation (Section [2). We present
the design of HdpH that is novel in combining the following fea-
tures (Section [3). It is scalable, providing a distributed-memory
parallel DSL that manages computations on multiple multicore
nodes. It provides high-level semi-explicit parallelism with im-
plicit and explicit task placement, and dynamic load management
by work stealing. It provides semi-explicit fopology awareness al-
lowing the programmer to exploit the deep communication topol-
ogy of large architectures using an abstract distance metric (Sec-
tion [3.2). HdpH-RS features a reliable scheduler to provide low
cost automatic fault tolerance using Erlang-style supervision and
recovery of location-invariant computations (Section [3.4). HdpH-
RS currently omits topology awareness, but this is an engineering
artifact rather than a fundamental issue. Both HdpH and HdpH-RS
provide high-level coordination abstractions via polymorphic algo-
rithmic skeletons (Section[7).

The initial HdpH and HdpH-RS designs are reported in [25].
The following are novel research contributions.

(1) We present operational semantics for HdpH and HdpH-RS. The
semantics combines non-deterministic scheduling of parallelism
with topology awareness and fault tolerance. We investigate con-
ditions for semantic equivalence of HdpH and HdpH-RS programs
to enable trading topology awareness for fault tolerance (Sectionfd).

(2) We outline the HdpH and HdpH-RS implementations, focus-
ing on how the work stealing schedulers achieve topology aware-
ness and fault tolerance (Section [)), to implement the operational
semantics. This includes validating HdpH-RS’ sophisticated fault
tolerant work stealing protocol by model checking (Section [3)).

(3) We present an initial evaluation of HdpH and HdpH-RS on a
256-core COTS cluster and on HECToR, a capability class HPC
platform with a total of 90,000 cores. We demonstrate the scalabil-
ity of both HdpH and HdpH-RS. We investigate the fault tolerance
of HdpH-RS, and the overheads both in the presence and absence
of faults. We sketch a case study using HdpH to coordinate 1000
instances of the GAP computer algebra system [10] on HECToR to
solve problems in algebraic representation theory (Section [g)).

2. Related Work

Parallel sublanguages. Most production languages have multi-
ple parallel or distributed sub-languages that may be built-in to
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Built-In DSLs

Language GpH Eden GHC| Par Cloud Meta HdpH
Property GUM monad Haskell Par (RS)
Scalable - dist. mem. + + — — + F T
Fault Tolerance — — - — + — +
Polymorphic Closures + + + + — — +
Pure (non-monad) API | + + + — — — _
Determinism +) +) () + - + _
Auto Load Balancing + + + + — + +

Table 1. Parallel Haskell comparison.

the language implementation like OpenMP or built-on like MPI li-
braries. Recently DSL technology is being exploited to build paral-
lel or distributed sub-languages onto existing languages. For exam-
ple the Akka toolkit [1]] that provides Erlang-style distributed actors
for Scala and Java can be viewed as a shallowly-embedded DSL.

In addition to standard DSL support capabilities like higher-
order functions and meta-programming, parallel/distributed DSLs
require to manipulate computations, often expressed as futures or
closures. Haskell augments these capabilities with a non-strict se-
mantics that minimises sequentialisation and makes it relatively
easy to provide a Monad to specify the required parallel or dis-
tributed coordination behaviour.

Parallel Haskells. Haskell language extensions like Eden [20]],
GpH [33] and GHC [26] build in parallelism in the form of elab-
orate runtime systems (RTS) that support parallelism primitives.
To improve maintainability and ease development several recent
parallel Haskells are monadic DSLs embedded in Concurrent
Haskell [29], e.g. CloudHaskell [8], the Par monad [27], Meta-
Par [9] and our new languages HdpH and HdpH-RS. Table [T]com-
pares the key features of some important general purpose parallel
Haskells, excluding more specialised variants like Data Parallel
Haskell [7]. Most of the entries in the table are self-explanatory.
The determinism properties of these languages are not trivial [[16],
and here we mean that the language guarantees that parallel evalu-
ation does not introduce observable concurrency, e. g. due to races
between parallel threadsﬂ

The crucial differences between HdpH/HdpH-RS and other
parallel Haskells can be summarised as follows. Both GHC and
the Par monad provide parallelism only on a single multicore,
where HdpH scales onto distributed-memory architectures with
many multicore nodes. Meta-Par focuses on exploiting heteroge-
neous, rather than the relatively homogeneous HPC platforms that
HdpH/HdpH-RS target. CloudHaskell replicates Erlang style [2]
explicit distribution and is the only other Haskell variant to provide
fault tolerance. It is most closely related to HdpH, but provides
lower level coordination with explicit task placement and no load
management. As CloudHaskell distributes only monomorphic clo-
sures it is not possible to construct general coordination abstrac-
tions like algorithmic skeletons.

Topology aware and fault tolerant scheduling are novel features
of the HdpH/HdpH-RS DSLs. Topology aware work stealing in
HotSLAW [28]] and load balancing in CHARM++ [17] minimise
the cost of task migration but do not expose the topology to the
programmer, and hence unlike HdpH cannot guarantee that tasks
remain close to each other. While some GRID/cloud middleware
like [15] exposes complex topologies, the architectures are very
different from HPC and the schedulers typically aim to minimise
the cost of inter-process communication rather than migration. Per-
haps most closely related is a parallel Haskell [14] that exposes a
two-level topology. In contrast HdpH topologies may be arbitrarily
deep.

I GUM, Eden and GHC guarantee determinism only for pure computations.
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Erlang [2] fault tolerance links processes, and supervision trees
are commonly constructed where one process supervises others,
that may in turn be supervisors. The supervisor is informed of the
failure of any supervised process and takes actions like respawn-
ing the failed process or killing sibling processes. Unlike HdpH-RS
the supervised processes are stateful and hence recovery is observ-
able; moreover recover policies are explicitly stated for each su-
pervisor. Distributed query frameworks like Google MapReduce or
Hadoop [34] provide automatic recovery of read-only, and hence
idempotent, functions. Unlike HdpH-RS the programming model
provided by these frameworks is a restricted to distributed data re-
trieval. Both Erlang and Hadoop tasks are placed only once, simpli-
fying replication and recovery. In contrast HdpH-RS must recover
sparks that may have migrated to a new location since their initial
placement.

General purpose fault tolerant work stealing is a relatively un-
explored area. Some closely related work is [21] that provides task
parallel fault tolerant scheduling of idempotent computations with
work stealing. Satin [35] uses a global result table for sharing com-
putation values to limit re-computation in the presence of failure,
and Cilk-NOW [4] that checkpoints individual computations to al-
low available schedulers to resume partially executed computations
in the presence of failure.

Symbolic computation and GAP. Symbolic computation is key
to both mathematics and computer science, e. g. for cryptography.
Computational algebra is an important class of symbolic computa-
tion with many complex and expensive computations that would
benefit from parallel execution. Besides well-known general-
purpose Computational Algebra Systems (CAS) like Maple, there
are a number of CAS specialised to particular mathematical do-
mains, €. g. GAP [10] to combinatorial group theory.

Parallel symbolic computation. Some discrete mathematical
problems are embarrassingly parallel, and this has been exploited
for years even at Internet scale, e. g. the “Great Internet Mersenne
Prime Search”. Other problems have more complex coordination
patterns and both parallel algorithms and parallel CAS implemen-
tations have been developed, e. g. ParGAP. Many parallel algebraic
computations exhibit high degrees of irregularity, with varying
numbers and sizes of tasks. Some computations have both mul-
tiple levels of irregularity, and enormous (5 orders of magnitude)
variation in task sizes [18]. They use complex user-defined data
structures and have complex control flows, often exploiting recur-
sion. They make little, if any, use of floating-point operations.

This combination of characteristics means that symbolic com-
putations are not well suited to conventional HPC paradigms with
their emphasis on iteration over matrices of floating point numbers,
and has motivated the development of domain specific scheduling
and management frameworks like SymGridPar [18]].

SymGridPar, SymGridPar2 and HdpH. The SymGridPar frame-
work [18] is a client/server infrastructure for orchestrating multiple
CAS instances into a parallel application. To the user it presents
itself as a set of algorithmic skeletons for introducing parallelism,
embedded into the user’s CAS (the client). The skeletons are im-
plemented in a CAS-independent distributed middleware (the co-
ordination server), which performs load balancing and calls other
CAS (the compute servers) via remote procedure call.
SymGridPar2 (SGP2) is a successor to SymGridPar that aims
to scale symbolic computation to architectures with 10° cores. The
SGP2 design aims to preserve the user experience of SGP, specif-
ically the high-level skeleton API. That is, to the CAS user SGP2
will look like SGP, apart from a few new skeleton parameters for
tuning locality control and/or fault tolerance. SGP2 retains the ar-
chitecture of SGP but provides a scalable fault tolerant coordination
server. A key design decision is to realise the coordination server
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using the HdpH and HdpH-RS DSLs that are the focus of this pa-
per.

Faults in large-scale architectures. HPC architectures exploit
extremely reliable processor and interconnect technologies and cur-
rent system still exhibit low fault rates. However, fault rates grow
rapidly with the number of cores. In consequence fault tolerance
for large HPC architectures is a very active research area [6]]. We
know from warehouse computing that fault rates are likely to be far
greater with the much cheaper and more prevalent commodity-off-
the-shelf (COTS) architectures [3]].

3. Language Design

This section presents the designs of HdpH and HdpH-RS, shal-
lowly embedded Haskell DSLs for semi-explicit parallelism on
large distributed-memory platforms. The DSLs have the following
novel combination of features. They are scalable, each providing
a parallel DSL for distributing computations across a network of
multicore nodes. They are portable, being implemented entirely in
Haskell (with GHC extensions) rather than relying on bespoke low-
level runtime systems like Glasgow parallel Haskell (GpH) [32] or
Eden [20]. HdpH and HdpH-RS provide high-level semi-explicit
parallelism with implicit and explicit task placement and dynamic
load management. Implicit placement frees the programmer from
coding work distribution and load management. Instead, idle nodes
steal work from busy nodes automatically, thereby maximising util-
isation when there is enough work to be stolen at the expense
of deterministic execution (Section [3.3). HdpH focuses on semi-
explicit topology awareness allowing the programmer to exploit
the deep communication topology of large architectures using an
abstract distance metric (Section[3.2). HdpH-RS provides low cost
automatic fault tolerance using Erlang-style supervision and recov-
ery of location-invariant computations (Section [3.4). Switching be-
tween topology awareness and fault tolerance comes at minimal
cost as both DSLs share the same polymorphic API (Section [3.T).
Polymorphism is also a key feature of advanced coordination ab-
stractions such as algorithmic skeletons combining explicit and im-
plicit task placement (Section [7).

3.1 Primitives

HdpH extends the Par monad DSL [27] for shared-memory paral-
lelism to distributed memory, and Figure [I] lists the HdpH API.
HdpH exposes locations and distances between locations as ab-
stract types Node and Dist. The functions dist and equiDist
provide information about nodes and distances as detailed in Sec-
tion[3.2]

Like [27], HdpH focuses on task parallelism. In distributed
memory, this requires serialisation of Par computations and results
so they can be sent over the network. While the Binary typeclass
provides serialisation of evaluated values (normal forms), compu-
tations (thunks) must be wrapped into explicit closures. An ex-
plicit closure is a term of type Closure t, which wraps a possi-
bly unevaluated value of type t. Generalising CloudHaskell’s clo-
sures [8]], the explicit closures of HdpH are fully polymorphic as
there is no constraint on the type parameter t; this is crucial for
building general purpose coordination abstractions like polymor-
phic skeletons (Section[7)) with the HdpH primitives.

HdpH provides the following closure primitives: unClosure
unwraps a Closure t and returns its value of type t; toClosure
wraps a normal form of any serialisable type t, i.e. any type
which an instance of Binary, into a Closure t. To construct ex-
plicit closures by wrapping thunks, including of types that cannot
have Binary instances like Par computations, HdpH offers a Tem-
plate Haskell macro for explicit closure conversion. More precisely,
the Template Haskell splice $(mkClosure [le|]) constructs a
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data Par a -- monadic parallel computation of type ’a’
eval :: a — Par a -- strict evaluation

data Node -— explicit location (shared-memory node)
data Dist -- distances between locations

dist :: Node — Node — Dist -- metric
equiDist :: Dist — Par [(Node, Int)] -- basis

data Closure a -- ezplicit closure of type ’a’
unClosure :: Closure a — a

toClosure :: (Binary a) = a — Closure a

mkClosure -— Template Haskell closure conversion macro

-- Distribution of tasks

type Task a = Closure (Par (Closure a))

spawn :: Dist — Task a — Par (Future a) -- lazy
spawnAt :: Node — Task a — Par (Future a) -- eager

-— Communication of results via futures

data IVar a -- write-once buffer of type ’a’
type Future a = IVar (Closure a)
get :: Future a — Par (Closure a) -- local read

rput :: Future a — Closure a — Par () -- intern. write

Figure 1. Types and primitives of HdpH and HdpH-RS.

Closure t wrapping the unevaluated thunk e of type t, provided
the captured free variables of e are serialisable; see [23] for details.

In HdpH, a task computing a value of type t is an expression of
type Closure (Par (Closure t)), i.e. a serialisable monadic
computation that will deliver a serialisable value of type t. HdpH
offers two task distribution primitives, spawn and spawnAt, the
scheduling of which is discussed below (Section [3.3). Both primi-
tives immediately return a future [12] of type IVar (Closure t).
Such an I'Var is a write-once buffer expecting the result of the task,
which is an explicit closure of type t. The actual result can be read
by calling get, blocking until the result is available. Note that a
future is not serialisable, hence cannot be captured by explicit clo-
sures. As a result the future can only be read on the hosting node,
i.e. the node it was created on. The internal primitive rpu trans-
parently writes to a remote future, regardless where it is hosted, and
silently fails if the future is already full or the host is dead.

The example below illustrates the use of the HdpH primitive
to sum the Liouville function (5] from 1 to n in parallel. The code
shows how to construct a list of tasks with the mkClosure macro,
how to generate parallelism by spawning the tasks (the distance
argument 1 will be explained later), how to retrieve the results
closures, and how to unwrap them and return the final sum.

parSumLiouville :: Integer — Par Integer
parSumLiouville n = do
let tasks = [$(mkClosure [|1v k|]) | k «+ [1..n]]
futures < mapM (spawn 1) tasks
results < mapM get futures
return $ sum $ map unClosure results

lv :: Integer — Par (Closure Integer)
lv k = eval $ toClosure $ (-1)"(length $ primeFactors k)

3.2 Distance Metric and Equidistant Bases

HdpH takes an abstract view of the network topology, modelling
it as a hierarchy, i.e. an unordered tree whose leaves correspond
to compute nodes, as in Figure [2] for instance. Every subtree of
the hierarchy forms a virtual cluster. The interpretation of these

2 One cannot call rput directly; it is used only by scheduler and semantics.

3 Parallel map skeletons (Section i provide a more elegant solution.
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Figure 2. Hierarchy, distance metric and equidistant partition.

virtual clusters is not fixed; e. g. Figure [2] suggests a cluster, pos-
sibly connected to others over the Internet, consisting of multiple
racks, which in turn house several servers, each containing multiple
blades. The hierarchy need not exactly reflect the physical network
topology. Rather, it presents a logical arrangement of the network
into virtual clusters of manageable size. However, actual latencies
should be reasonably compatible, i. e. in general the latency within
a virtual cluster should be no higher than the latency between sib-
ling clusters.

Such hierarchies can be represented concisely by a distance
function d on nodes that is defined by

0 ifp=gq
d(p,q) =< 27" if p # q and n = length of longest
common path from root to p and q.

Figure [2] tables sample distances corresponding to the hierar-
chy. Mathematically, d defines an ultrametric space on the set
of nodes. That is, d is non-negative, symmetric, O on the di-
agonal, and satisfies the strong triangle inequality: d(p1,ps) <
max{d(p1,p2), d(p2,p3)} for all nodes p1, p2, p3.

Given a node p and r > 0, define D(p;r) = {q | d(p,q) < r}
to be the ball with centre p and radius r. Balls correspond to virtual
clusters in the hierarchy, see Figure [2] for a few examples. Balls
have the following properties, thanks to d being an ultrametric.

1. Every node inside a ball is its centre.

2. Every ball of radius » = 27" is uniquely partitioned by a set
of balls of radius %r, the centres of which are pairwise spaced
distance r apart.

We call the set {D(q; 37) | ¢ € D(p;)} the equidistant partition
of D(p;r). A set Q of nodes is an equidistant basis for D(p;r)
if @ contains exactly one centre of each ball in the equidistant
partition of D(p;r). Due to property [I| equidistant bases are not
unique. To illustrate, Figure [2] shows the equidistant partition of
D(z; 3), from which we can read off that {u, v, z} and {u, v, y}
are two equidistant bases.

HdpH reifies the metric d as the pure function dist, and this
implies that all nodes agree on the metric, and that the metric cannot
change over time. The primitive equiDist takes a radius r and
returns a size-enriched equidistant basis for D(po;7), where po is
the current node. More precisely, equiDist returns a non-empty
list [(go,m0),(q1,n1),...] such that the ¢; form an equidistant
basis for D(po; ) and n; is the size of D(gs; 37). By convention,
Qo is the current node po, so the current node can be queried thus:

myNode :: Par Node
myNode = do { ((p,_):_) < equiDist 0; return p }

The operator allNodes :: Par [Node] for computing a list of
all known nodes is also expressible in terms of equiDist as a
recursive distributed gather operation.

3.3 Scheduling

Lazy, implicit task placement. The spawn primitive places a task
into a local task pool, from where it is scheduled by on-demand
work stealing, either locally or onto a remote node looking for
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work. Crucially, work stealing is non-deterministic, which makes
HdpH a non-deterministic DSL because location-awareness, e. g.
via calls to myNode, may reveal scheduling decisions.

The first argument to spawn is the task radius r that constrains
how far the task can travel from the spawning node po: it can be
scheduled precisely by the nodes in the ball D(po; ). The extreme
radii deserve special attention: » = 1 means the task may be
scheduled on any node, and » = 0 means the task cannot be
scheduled anywhere but po.

The key features of topology aware on-demand scheduling are
as follows, and their implementation is outlined in Section No
task is ever scheduled beyond its task radius. Tasks with small radii
are preferred for local execution. Tasks with big radii are preferably
scheduled far away, depending on demand.

Eager, explicit task placement. Scheduling tasks on demand by
random work stealing performs well with irregular parallelism.
However, it tends to under-utilise large scale architectures at the be-
ginning of the computation. To combat this drawback, HdpH com-
plements spawn with spawnAt, which places a task on a named
node where it is scheduled for execution immediately, taking pri-
ority over any implicitly placed tasks. Eager execution implies that
the task is meant to perform coordination, e. g. spawn further tasks,
rather than actual computation.

3.4 Fault Tolerance

Crucially each HdpH node’s heap is isolated from the heaps of
other nodes. Hence the failure of one node does not poison com-
putations on other nodes. HdpH-RS provides automatic fault tol-
erance using Erlang style supervision and recovery of location-
invariant computations, that is computations that always produce
the same effect regardless where they are executed (Section [4).
Compared to other languages, fault tolerance in HdpH-RS is rela-
tively sophisticated: for example when Erlang [2] and Hadoop [34]
place tasks on remote nodes, these tasks do not move. This simpli-
fies replication and recovery, whereas HdpH-RS provides replica-
tion and recovery even when computations migrate between nodes.

Reliable scheduling. Fault tolerance in HdpH-RS is provided
by replacing the HdpH scheduler with a reliable scheduler that
handles failures automatically. The core of the reliable scheduler
is an alternative work stealing protocol that enables supervisors to
track the locations of tasks. In HdpH-RS, a supervisor is a future
created by spawn or spawnAt. As long as it is empty, a supervising
future stores a backup copy of the spawned task and monitors
the health of all nodes potentially holding the task. The reliable
scheduler will recover tasks lost due to node failure by replicating
the backups stored in supervising futures elsewhere, ensuring that
all futures are eventually filled. The implementation of the HdpH-
RS scheduler is sketched in Section [6.3} a complete exposition of
the design and implementation can be found in the thesis [30].

4. Operational Semantics

This section presents an operational semantics for HdpH and
HdpH-RS in the style of [27], focusing on topology aware schedul-
ing and fault recovery. Figure [3| introduces the syntax of terms
and values. The language is essentially the same as the embed-
ded DSL presented in Section 3] except that the semantics ignores
explicit closures, i.e. assumes that all terms are implicitly serialis-
able. However, the semantics does restrict the second arguments of
spawn, spawnAt and rput to terms M such that fn(M) = 0, i.e.
terms not containing free (names of) IVars; this is justified because
in Section [3] these arguments are explicit closures, which cannot
capture free [Vars. For simplicity, the semantics also treats the pure
function dist as a monadic primitive.
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Meta-variables i, j names of IVars

D, q nodes
P,Q sets of nodes
r distances

x,y  term variables

Values V u= QO |i|p|r|zMi... My | Ae.M | fix M
| M>=N |returnM |eval M | distpgq | equiDistr
| spawnr M | spawnAtp M | geti | rputi M
Terms L, M,N ::=V | M N | (>>=) | return | eval | dist
| equiDist | spawn | spawnAt | get | rput

States R, S, T :=S|T parallel composition
| vi.S name restriction
| (M)p thread on node p, executing M
| (M), spark on p with radius r, to exec M
| {M}p full IVar ¢ on node p, holding M
| {}p empty IVar ¢ on node p
| i{(M)q}p RS:empty IVari on p,sv’ing thread on g
| i{{(M)5}p RS:empty IVar ¢ on p, sv’ing spark on Q
| {L}p RS: zombie IVar ¢ on node p
| dead, RS: notification that node p is dead
Evaluation contexts &£ ::=[-] | €>>= M

Figure 3. Syntax of HdpH and HdpH-RS terms, values and states.

S|T=T|S vi.vj.S = vjvi.S
R|(SIT)=R|S|T vi.(S|T)= wi.S)|T, i¢ fn(T)
S*}dT S*}dT SES/HdT/ET

R|S*>dR|T vi.S —q vi.T S—4qT

Figure 4. Structural congruence and structural transitions.

For the purposes of the DSL semantics, the host language is a
standard lambda calculus with fixed points and some data construc-
tors for nodes, distances, integers and lists (omitted to save space).
We assume a big-step operational semantics for the host language,
and write M |} V to mean that there is a derivation proving that
term M evaluates to value V. The definition of the big-step seman-
tics is entirely standard (and omitted). Note that the syntax of values
in Figure [3]implies that the DSL primitives are strict in arguments
of type Node, Dist and IVar.

4.1 Semantics of HdpH

The operational semantics of the HdpH DSL is a small-step reduc-
tion semantics —»4 indexed by a distance metric d. The reduc-
tion relation operates on the states defined in Figure 3] A state is
built from atomic states by parallel composition and name restric-
tion. Each atomic state has a location indicated by the subscript p.
An atomic state of the form (M), or (M)}, where M is a com-
putation of type Par (), denotes a thread or spark, respectively;
sparks differ from threads in that they may migrate within radius
r around their current node p. An atomic state of the form i{?},
denotes an /Var named 7; the place holder “?” signals that we don’t
care whether ¢ is empty or full. Figure [4] asserts the usual struc-
tural congruence properties of parallel composition and name re-
striction, and the usual structural transitions propagating reduction
under parallel composition and name restriction.

Figure [5] presents the transition rules for HdpH. Most of these
rules execute a thread, relying on an evaluation context £ to select
the first action of the thread’s monadic computation. Rules that are
similar to those in [27] are not explained in detail.

The first three rules are standard for monadic DSLs; note how
eval is just a strict return. The rules (spawn) and (spawnAt) de-
fine the work distribution primitives. The primitive spawn creates
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an [Var ¢ on the current node p and wraps its argument M, followed
by a write to ¢, into a spark residing on p and bounded by radius
r. In contrast, spawnAt wraps M into a thread, which is placed
on node g. The side condition on both rules ensures that the name
i is fresh, i.e. does not occur free in the current thread. The rules
for IVars are similar to those in [27] except that [Vars in HdpH can
only be read on the node they reside on. They can however be writ-
ten from any node, and writes can be racedﬂ the first write wins,
subsequent writes have no effect. The rules (dist) and (equiDist)
define the eponymous topology aware primitives. These two rules,
and the spark migration rule, are the only ones that actually require
the distance metric d.

Rules (migrate) and (convert) govern the scheduling of sparks.
A spark may migrate from node p to g, provided the distance be-
tween the two is bounded by the spark’s radius 7. Sparks cannot be
executed directly; instead they must be converted into threads that
can execute but not migrate. The (gc_*) rules eliminate garbage,
i. e. terminated threads and inaccessible IVars. Note that to become
garbage, [Vars must be filled and sparks must be converted and ex-
ecuted to termination.

We call a thread (M), reachable from a state S iff there is a
state 7" such that S —; vi1...vin.(T | (M)p), where —
denotes the reflexive-transitive closure of — 4. We call state S
well-formed iff there is a root thread (M), with fn(M) = 0 such
that (M), —; S. We observe that —»4 reductions starting from
well-formed states cannot get stuck except when embedding the
host language, namely term M diverging in rules (normalize) and
(eval). In particular, well-formedness guarantees that all rputs find
their target I'Vars, that all gets find their source ['Vars, and that these
source [Vars are hosted locally.

4.2 Fault Tolerant Semantics of HdpH-RS

The operational semantics of HdpH-RS ﬁm is an extension of
—>4, 1. €. it is a small-step reduction relation on states defined by
the same rules, with some small adaptions and some additions.

To model supervision, empty IVars i{ (M), }, and j{{N)G}p
are annotated with the thread M resp. spark N that is supposed
to fill them and with some knowledge of the current location of
M resp. N. In case of non-migratable thread M that knowledge
is the node ¢ where M was scheduled by spawnAt. In case of
spark N, however, the supervisor may not know the actual node
due to migration, hence ¢ is annotated with a set of nodes @) over-
approximating the true location of N (or of the thread that N has
been converted to).

To model node failure, we add atomic states dead,,, signalling
that node p has died, and i{_L },, representing a zombie IVar i, i.e.
an effectively dead IVar ¢ on a dead node p. The four rules in the
top right corner of Figure [§] define the fault model of HdpH-RS.
A node p may die any time, signalled by the spontaneous produc-
tion of dead,,, and non-deterministically its sparks and threads may
disappear and its [Vars may turn into zombies. IVars cannot just
disappear, or else writes to [Vars on dead nodes would get stuck
instead of behaving like no-ops. However, some of p’s sparks and
threads may survive and continue to execute. In this way the se-
mantics models partial faults and pessimistic notification of faults.
Node failure is permanent as no transition consumes dead,,.

The remaining rules in Figure[f]are the new/adapted transitions
for HdpH-RS. Rules (rput_empty_thread) and (rput_empty_spark)
fill empty supervising I'Vars. Rule (rput_zombie) lets remote writes
to zombie IVars to fail silently, and (gc_zombie) garbage col-
lects inaccessible zombie I'Vars. The rules (spawn) and (spawnAt)
are identical to the HdpH rules except for remembering the new

4 Since the DSL in Sectiondoes not expose rput, races only occur as a
result of task replication in HdpH-RS.
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Figure 6. Additional rules for small-step semantics of HdpH-RS; rules marked with 1 replace eponymous HdpH rules.

spark/thread in the empty IVar 7. Rule (migrate) works similarly
as in HdpH except for ensuring that the supervising IVar ¢ contin-
ues to track the migrating spark, i. e. the new location of the spark
remains a member of the tracking set P. That set may change via
rule (track) in arbitrary ways, provided the current location of the
supervised spark remains a member, modelling the supervisor’s
changing and uncertain knowledge about the location of a super-
vised spark.

The final two rules model the recovery of tasks that have been
lost due to faults. A thread supervised by I'Var ¢ on p and executing
on dead node q is replicated on p, after which ¢ ceases to supervise
as there is no point supervising a thread on the same node. A spark
supervised by IVar 7 on p and known to reside on some node in
the tracking set @ is replicated on p if any node ¢ € @ is dead;
afterwards 4 continues to supervise, now tracking {p}, the location
of the replica spark. Due to the inherent uncertainty of tracking,
sparks may be replicated even when actually residing on healthy
nodes.

4.3 Relating Fault Tolerant and Fault Oblivious Semantics

In order to relate the HdpH and HdpH-RS semantics, we need to
compare their respective normal forms. In HdpH, thread (), is a
normal form of state S, denoted S a4 (N)p, iff S —; (N), and
(N)p is irreducible or N = return (). We have defined normal
forms of arbitrary states .S, yet we will mostly be interested in
normal forms of threads (M), with fn(M) = (), as these threads
correspond to tasks spawned and potentially replicated. Note that
the restriction fn(M) = () makes (M), a root thread guaranteeing
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well-formedness of normal forms, hence precluding normal forms
being stuck (up to divergence).

Before defining HdpH-RS normal forms, we note that in any
—>4 reduction, rule (dead) permutes with every rule to the left.
Consequently, we ban rule (dead) and instead start reduction from
states of the form S | deadp, where P = {p1,...,pn} is a set of
nodes and deadp is short for dead,, | ... | dead,, .

In HdpH-RS, thread (V),, is a normal form of state S, written
S XS (N),, iff there is a set P such that S | deadp &S} (N), |
deadp and (N), is irreducible or N = return (). Moreover,
(N), is a failure-free normal form of S, denoted S [F (N),,
if it satisfies the above definition with P = (. It is immediate that
reductions leading to a failure-free normal form cannot use any of
the rules (kill_*), (recover_*) and (gc_zombie).

We can prove that HdpH and HdpH-RS agree on normal forms
in the absence of failures.

Lemma 1. Let M be a term with fn(M) = (. Then for all terms
N and nodes p, (M) La (N)y & (M), 15 (N),.

Proof sketch. The bisimilarity between HdpH and HdpH-RS re-
ductions is obvious, except for the rules governing spark migration.
For the forward direction a (track) transition must be inserted be-
fore and after every (migrate) transition; for the reverse direction it
suffices to delete all (track) transitions. O

We aim to transform reductions with failures into failure-free
reductions, preserving normal forms. This isn’t possible in general;
it does require some restriction on the use of location information.
Let M be a term with fn(M) = 0. We call M location-invariant
iff it does not matter where it executes, that is (M), L4 (N)p <
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(M)q la (N)g, for all terms N and nodes p and q. We call M
transitively location-invariant iff for all nodes p and all root threads
(N)q reachable from (M ),, N is location-invariant.

Now we can prove that the failure-free normal forms of transi-
tively location-invariant terms are exactly their HdpH-RS normal
forms.

Lemma 2. Let M be a term with fn(M) = (. If M is transitively
location-invariant then for all terms N and nodes p, (M), %’

(N)p & (M)p La" (N)p-

Proof sketch. The reverse direction is trivial. For the forward direc-
tion, construct a failure-free reduction from a HdpH-RS reduction
by induction on the number of (recover_*) rules. For each replicated
spark, the failure-free reduction mimics the migration and execu-
tion of the successful replica, i.e. the replica that eventually filled
the spark’s IVar. For each replicated thread, the failure-free reduc-
tion mimics the execution of the successful replica, yet translated to
the node ¢ to which the original thread was spawned (ignoring that
q is supposed to be dead); thanks to location-invariance this trans-
lation does not affect the normal form that is eventually written to
the thread’s I'Var. O

Combining lemmas [I] and 2] we find that, for transitively
location-invariant terms at least, HdpH and HdpH-RS agree on
the normal forms.

Theorem 3. Let M be a term with fn(M) = 0. If M is transitively
location-invariant then for all terms N and nodes p, (M), la
(N)p & (M) 1§* (N)p.

Observations. Firstly, inspecting the proof sketch of Lemma
it is obvious that location-invariance is not actually required of all
reachable root threads but only of the ones arising from spawnAt.
Thus the precondition of Theorem 3| could be weakened. In partic-
ular, location-invariance could be dropped completely for the sub-
language that restricts task distribution to spawn only.

Secondly, for the purpose of presenting a simple semantics,
we have ignored all observable effects apart from locations, and
location-invariance took care of reconciling the effects with task
replication. A DSL with more realistic effects (e.g. tasks per-
forming 10) would have to take more care. On top of location-
invariance, effects would need to be idempotent, i.e. invariant un-
der replication, in order to guarantee semantic equivalence between
HdpH and HdpH-RS programs.

Finally, HdpH and HdpH-RS are non-deterministic in general
as decisions taken by the non-deterministic scheduler may be-
come observable, e.g. in case migrating tasks call myNode (de-
fined in Section [3.2). The sublanguage that restricts task distribu-
tion to spawnAt only is deterministic, due to entirely deterministic
scheduling. Whether there are more interesting deterministic sub-
languages, in the face of truly non-deterministic scheduling, is an
interesting and timely [16] open question.

5. Validating the HdpH-RS Scheduler

Due to the various sources of non-determinism in faulty distributed
systems it is easy to make mistakes in their correctness arguments,
hence the need for validation by model checking and testing.
Replication is a common fault tolerance technique, for exam-
ple in the Erlang supervisor behaviour [19] and Hadoop [34]. In
both Erlang and Hadoop, tasks are placed only once, simplifying
replication and recovery. In contrast, the HdpH-RS scheduler must
consider spark migration when identifying replication candidates.

HdpH-RS Promela abstraction. The unbounded state space of
the HdpH-RS scheduler is abstracted as a finite state Promela
model. The Promela abstraction models node failure, and the la-
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Figure 7. Runtime system architecture of HdpH and HdpH-RS.

tencies of work stealing and failure detection in the network ab-
straction layer (Section[6.1).

The model only validates the supervision of a spark created
with spawn; threads placed by spawnAt cannot migrate and hence
are a far simpler to supervise. The model includes one immortal
supervising node, three mortal work stealing nodes, one spark
and its corresponding initially empty future. The work stealing
routines on the supervisor and three thieves are translated to a
finite automaton, incorporating the six additional RTS messages
needed for reliable work stealing (Section [6.3). If the supervisor
detects a node failure that may eliminate the spark from the abstract
machine state, it adds a replica to its local sparkpool, honouring the
(recover_spark) rule from Section 4| Any node that holds a spark
replica may at any time transmit a value into the empty future
hosted on the supervisor. The model is described in full in [30],
the Promela code is available [31]].

Verification with SPIN. A key property of the HdpH-RS design
is to guarantee the evaluation of supervised sparks, as recorded by
filling the corresponding I'Var on the supervising node. We model
this by defining ivar_full to be a Boolean that becomes true when
the future hosted on the supervisor is filled. Now we can specify in
linear temporal logic that this variable is always eventually true, i. e.
¢ O ivar_full. The property is true despite arbitrary combinations
of node failures, provided that the supervising node itself does
not fail. Checking this property increases our confidence that the
elaborate HdpH-RS work stealing protocol outlined in Section
correctly implements the semantics in Section ] and in particular
the rules (migrate) and (track).

The SPIN model checker exhaustively searches the model’s
state space to validate that the property holds in all states. SPIN
explores 22.4 million transitions to a reachable depth of 124 transi-
tions, proving that none of the 8.2 million reachable states violate
the property.

Chaos Monkey testing. Besides model checking an abstraction,
fault injection [13]] was used on a suite of benchmarks (Section to
test the resilience of HdpH-RS in the presence of multiple random
failures. Tests compare failure-free HdpH runs with HdpH-RS runs
in the presence of random failures. All tests pass [30].

6. Implementation
6.1 RTS architecture

Figure [/| depicts the key data structures and threads that make up
the shared HdpH and HdpH-RS RTS architecture. As the RTS
is implemented in Haskell, the data structures are concurrently
mutable maps, tables and queues in the Haskell heap, and the
threads are Haskell IO threads. Each node runs several scheduler 10
threads, typically one per core, and a message handler 10 thread.
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Each scheduler owns a thread pool, a concurrent double-ended
queue storing threads, i.e. computations of type Par (). The back
end of the queue is only accessible to the owner, both for enqueue-
ing, e. g. after unblocking, and for retrieving threads. The front end
of the queue is accessible to all schedulers for stealing threads, sim-
ilar to [27]]. The message handler also owns a thread pool. However,
unlike the schedulers, the message handler never retrieves threads;
its threads must be stolen by a scheduler in order to be executed.

HdpH maintains one spark pool per node, a distance-indexed
set of concurrent double-ended queues for storing sparks, i.e. se-
rialisable computations of type Closure (Par ()). For the role of
the spark pool in scheduling see Section[6.2}

IVars are write-once buffers that are either empty or full, where
empty ['Vars may also store a list of blocked threads to support the
blocking get primitive as in [27], and a record of the thread or
spark that is supposed to fill the IVar, to support task replication in
HdpH-RS (Section[6.3).

HdpH maintains a registry per node, providing globally unique
handles to locally hosted IVars, in order to support remote writing
via rput. The registry is a concurrent map linking handles to their
underlying IVars as detailed in [23]].

For scalability, HdpH avoids a central table of all nodes. In-
stead, each node maintains its own node table, which is a distance-
indexed set of some other nodes that it knows about. At system
startup, the node table is initialised so that it holds random equidis-
tant bases (), one per distance r. The primitive equiDist returns
exactly these Q.. The node table also records individual nodes g,
one per distance r, that have recently scheduled work to this node.

Two communication backends have been developed for HdpH.
The first provides MPI-based message passing for HPC architec-
tures. Failures are fatal as MPI aborts on discovering faults.

The second backend targets COTS architectures and uses
network-transport, a TCP-based network abstraction layer
(NAL) designed for distributed Haskells such as CloudHaskell [8].
The NAL provides connection-oriented communication primitives
that simplify message passing and fault detection. In particular,
the NAL generates connection-lost events which indicate potential
remote node failure. The backend reacts to these events and even-
tually, after failing to re-establish a lost connection over a period of
time, propagates DEADNODE messages to the HdpH-RS scheduler.

6.2 Topology Aware Scheduling

Rule (migrate) in Section .1 models topology aware scheduling
non-deterministically, constrained by the distance metric. This sec-
tion details aspects of HdpH’s topology aware work stealing algo-
rithm, including its task selection policy. When a node po executes
the call spawn r task, the task is converted into a spark (which
involves creating and registering an I'Var for the result) and added
to the spark pool queue for distance r.

When po runs out of work, and its own spark pool is non-empty,
it uses the following local spark selection policy: Pick a spark with
minimal radius; if there are several such sparks, pick the one at the
back of the queue, i. e. the youngest or most recently stolen spark.
Thus, HdpH prioritises sparks with small radii for local scheduling.
As an aside, local scheduling requires to unClosure the spark,
thereby converting it into a thread.

If, on the other hand, po runs out of work with its own spark pool
empty then it will engage in a distributed work stealing protocol
comprising the messages FISH, SCHEDULE and NOWORK. In
fact po does not wait for its spark pool to drain completely; to hide
latency work stealing is initiated as soon as the spark pool hits a
low water mark.

Figure [B]illustrates the protocol with a successful and an unsuc-
cessful stealing attempt. In both cases, po starts by sending a FISH
message to a random node nearby, that is a minimal distance away.
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Figure 9. Fault tolerant work stealing protocol in HdpH-RS.

When a node p receives a FISH message originating from po, it
tries to find a suitable spark using the following remote spark selec-
tion policy: Pick a spark with minimal radius from the set of sparks
whose radius is greater or equal to d(p, po); if there are several such
sparks, pick the one at the front of the queue, i.e. the oldest one.
Thus for remote scheduling, HdpH prioritises sparks whose radii
match the distance to the node requesting work. If remote spark
selection is successful, p sends a SCHEDULE message containing
the selected spark M and its radius 7 to po. On receipt of SCHED-
ULE from p, po inserts M into the spark pool queue for distance
r, and records p in the node table at distance . If remote spark se-
lection is unsuccessful, p forwards the FISH message to a random
node ¢ such that d(q, po) = d(p, po) or d(gq, po) > d(p, po). That
is, the FISH message slowly “ripples away” from its originating
node, as illustrated in Figure [8} how slowly depends on how often
the message is forwarded to a node at the same distance. If there
is no work the FISH will eventually be forwarded to a node ¢ such
that d(g, po) = 1 is maximal. To stop the FISH bouncing forever,
it will only be forwarded further a fixed number of times, 2 in Fig-
ure[8] after which a NOWORK message is sent to po. Upon receipt
of NOWORK, po backs off for some milliseconds before initiating
another work stealing attempt.

The node table is used to select the targets for a forwarded FISH.
Before p forwards a FISH originating from po it decides whether
to increase the distance » = d(p, po) i. e. whether to ripple further
out. If not, p forwards to a random node of the equidistant basis @,
recorded in its node table. If the distance is increased (minimally)
to ' > d(p,po) then p forwards to the node g, recorded in its
node table as recent source of work at distance r’, if it exists,
otherwise to a random node of the equidistant basis Q,. Thus, the
work stealing protocol combines random searching for work with
targeted probing of recent sources, while prioritising stealing from
nearby.

6.3 Fault Tolerant Scheduling

The fault tolerance implementation in HdpH-RS is threefold. First,
the HdpH scheduler is extended to track task locations. Second,
the structure of IVars are extended to fulfil the role of supervised
futures. Third, the scheduler replicates potentially lost tasks when
failures are detected.

Reliable scheduling extension. The fault tolerant work stealing
protocol is illustrated with a message sequence chart in Figure 0]
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The protocol involves the supervisor in spark migration, and six
additional RTS messages are used in HdpH-RS for the purpose of
supervised work stealing. A thief targets a victim with a FISH mes-
sage. If the victim has a sufficient number of sparks, then it sends
a request to the supervisor as a REQ message for it be scheduled
to the thief. The location state recorded by a supervisor for a spark
is either OnNode or InTransition. The supervisor checks that the
spark’s location is marked as OnNode. If it is, an AUTH message is
returned to the victim. Otherwise, a DENIED message is returned.
When the supervisor and victim is the same node i.e. the spark is
on the supervisor, the REQ and AUTH messages by-pass the net-
work layer (Section [6.T). Instead, local function calls are used to
determine the response to a FISH message.

Replica counts are used to avoid race conditions when multi-
ple replicas co-exist. Only the spark tagged with the highest replica
number may be scheduled elsewhere. The response to a REQ mes-
sage regarding an older replica is an OBSOLETE message. A node
that receives an OBSOLETE reply will discard the spark and send
a NOWORK message to the thief.

Supervised futures. The spawn and spawnAt HdpH-RS prim-
itives create extended versions of IVars to store additional state
for fault tolerance. A copy of the task closure is held within
the empty IVar, in case replication is later necessary. The loca-
tion of the corresponding spark or thread, either OnNode (p) or
InTransition(p,q), is stored in the IVar, together with a replica
number counting how often the spark or thread has been replicated.
A flag indicating whether to schedule the task lazily or eagerly is
also stored in the IVar.

A spark created with spawn in HdpH-RS is transmitted as a
tuple consisting of the following three components: the task to
be evaluated, the task replica number, and a global handle to the
IVar that will receive the task’s result. The replica number and
IVar handle are included in REQ and ACK messages to allow the
supervisor to update the location state of the corresponding [Var.

Task replication. Task location state is used in the recovery phase
to ensure that lost tasks are replicated. If failure is reported, i.e. a
DEADNODE(p) message is received from the transport layer (Sec-
tion[6.T)), then the state of all empty IVars in the registry is inspected
to identify replication candidates. A task is replicated in either of
two cases. First, when its location record is OnNode (p), indicating
that it was on the dead node at the point of failure. Second, when its
location record is InTransition(p,q) or InTransition(q,p),
indicating that the task was in-flight either towards or away from
the dead node.

This pessimistic replication strategy may lead to multiple copies
of a spark. A migrating spark may survive a node failure, provided
it was stolen from the failed node in time. Hence, an obsolete
spark may be executed and its result written to the IVar. Assuming
idempotence, this scenario is indistinguishable from the one where
the obsolete spark has been lost.

The replication of sparks conforms to the (recover_spark) rule
in Section [ If a spark is to be re-scheduled, the replica count in
the IVar is incremented. Then a new spark, consisting of the stored
task, replica number and [Var handle, is added to the supervisor’s
spark pool, from where it may be stolen once again. The replication
of threads is simpler, and conforms to the (recover-thread) rule. Re-
scheduling a thread is done by adding the stored task to the thread
pool of the supervisor’s message handler.

7. Algorithmic Skeletons

HdpH skeletons provide high-level coordination abstractions and
are implemented using the primitives of Section [3] These abstrac-
tions provide topology awareness or fault tolerance depending on
whether they are run by the topology aware scheduler of HdpH,
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parMapSliced, pushMapSliced -- slicing parallel map
:: Int —-- number of slices
— Closure (a — b) -- function closure

— [Closure al
— Par [Closure b]

-- input list
-- output list

parMapReduceRangeThresh, pushMapReduceRangeThresh -- dfic

:: Closure Int -- threshold
— Closure (Int,Int) -- range to divide/compute over
— Closure (Closure Int — Par (Closure a)) -- map fun
— Closure (Closure a — Closure a — Par (Closure a))
— Closure a -- initial wvalue for reduction
— Par (Closure a) -- mapreduced result

parMapLocal -- bounded parallel map
: Dist -- bounding radius
— Closure (a — b) -- function closure
— [Closure a] - input list
— Par [Closure b] -- output list

parMapLocal r f xs = mapM fork xs >>=mapM get where
fork x = spawn r $(mkClosure
[|eval $ toClosure (unClosure f $ unClosure x)|1)

parMap2Level, parMap2LevelRelaxed -- 2-lewel par map
: Dist -- pushing radius
— Closure (a — b) -- function closure

— [Closure al -- input list
— Par [Closure b] -- output list
parMap2Level r f xs = do
basis < equiDist r
let chunks = chunkWith basis xs
futures <— mapM spawnChunk chunks
concat <$> mapM (fmap unClosure o get) futures where
spawnChunk (q,xs) = spawnAt q $(mkClosure
[|toClosure <$> parMapLocal (r/2) f xs|])

Figure 10. Some HdpH skeleton APIs and implementations.

or the reliable scheduler of HdpH-RS. HdpH and HdpH-RS pro-
vide libraries with around 30 skeletons, including several divide-
and-conquer, map/reduce, parallel map, and parallel buffer vari-
ants [25) 130]. Figure [10] outlines a selection of skeletons used in
the evaluation in Section[8]

Topology agnostic skeletons make no use of the HdpH dis-
tance primitivesE] Four such skeletons are used in the evaluation
of HdpH-RS (Section [83). The skeletons parMapSliced and
pushMapSliced divide the input list into a given number of slices
and evaluate each slice in parallel. For example, dividing the list
[e1, ..., es] into three slices yields a list [[e1, e4], [e2, e5], [es]] and
three parallel tasks that are distributed lazily by parMapSliced or
eagerly in a round-robin fashion by pushMapSliced.

Two divide-and-conquer skeletons are used to implement Man-
delbrot in Section again with both lazy and eager task place-
ment. The skeletons generalise the parMapReduceRangeThresh
skeleton of the Par monad library [27] to distributed memory. The
skeletons combine a map over a finite range, which is recursively
split until its size falls under a threshold, with a binary reduction
of the map results. Task placement relies on work stealing for
parMapReduceRangeThresh, whereas tasks are eagerly pushed
to random nodes with pushMapReduceRangeThresh. In HdpH-
RS these skeletons create a nested supervision tree that reflects the
divide-and-conquer call tree.

Topology aware skeletons exploit the HdpH distance primitives
to control locality by (1) restricting work stealing to nearby nodes,

5 The HdpH distance primitives can be used in HdpH-RS but HdpH-RS
assumes the topology to be discrete.
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e.g. parMapLocal (Figure @) creates tasks bounded by radius r,
resulting in a lazy distribution of work to nodes at most distance
r from the caller; and (2) eagerly spreading tasks to distant nodes
across the system. For example parMap2Level uses a combination
of eager and lazy work distribution. After obtaining an equidistant
basis for radius r, it splits the input list into chunks, one per basis
node, taking into account the size information present in the basis,
and eagerly spawns a big task per basis node. This achieves quick
distribution of big tasks across the architecture. Eagerly evaluating
their big tasks with parMapLocal, each basis node becomes a local
coordinator: spawning small tasks to be evaluated in their vicinity,
i.e. at a distance of no more than r/2. Thanks to equidistance of
the basis nodes, the bounding radius of r/2 guarantees that small
tasks cannot stray too far.

A variant of this two-level skeleton, parMap2LevelRelaxed,
differs only in relaxing the bound imposed on small tasks from r /2
to r. The effect is to allow the stealing of small tasks even between
previously isolated local coordinators, which can help mitigate
imbalances in task distribution arising from irregular parallelism.
Due to the work stealing algorithm’s preference for local work
(Section [6.3), stealing due to the relaxation is a last resort, and
occurs mostly in the final stages of a computation when work is
drying up.

All topology aware skeletons provide a semi-explicit interface
for tuning of locality via a single distance parameter, without ever
exposing locations. This abstract locality control is intended to
facilitate performance portability between parallel architectures.
By not exposing locations these skeletons are location-invariant
in the sense of Section[#.3] so their semantics won’t change when
switching from HdpH to HdpH-RS, although the performance is
likely to change. We conjecture that not exposing locations also
guarantees that these skeletons hide the effects of non-deterministic
scheduling and compute deterministic results.

8. Evaluation

Benchmark platforms. HdpH and HdpH-RS are evaluated on
HECToR and a COTS Beowulf cluster using the appropriate com-
munication backends. HECToR is the UK’s publicly funded HPC
platform with a total of 90K cores; it comprises 2816 compute
nodes, each with 32 AMD Opteron cores at 2.3GHz sharing 32GB
of RAM, divided into 4 NUMA regions. The 256 core Beowulf
cluster comprises 32 nodes connected via Gigabit Ethernet; each
node has 12GB of memory and 8 Intel Xeon cores at 2GHz.

Benchmarks applications. We evaluate scaling and topology
awareness of HdpH on two version of the SumEuler benchmark
(Sections and @ and on a computational algebra case study
(Section . Scaling and fault tolerance of HdpH-RS is evaluated
on the Mandelbrot and Summatory Liouville benchmarks (Sec-
tion [823). The benchmarks typically compare several coordination
alternatives like distributing work lazily/eagerly, being topology
aware/agnostic, or being fault tolerant/oblivious. The sources of
HdpH and HdpH-RS, including benchmark applications, are pub-
licly available [22][30].

8.1 Scaling

We investigate the weak scaling of HdpH from 1 to 1024 HEC-
ToR nodes (i.e. from 32 to 32K cores) using the moderately ir-
regular SumEuler benchmark, a data-parallel computation of the
sum of Euler’s ¢ function over an integer interval. This benchmark
relies on GAP to compute ¢, and each HECToR node is popu-
lated with 31 GAP instances, coordinated by one HdpH instance.
Distributed coordination is performed by the parMap2Level and
parMap2LevelRelaxed skeletons, and the topology is discrete,
i. e. the distance between HdpH instances is always 1.
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Figure 11| shows weak scaling and efficiency results. The input
interval starts at 6.25 million integers on one HECToR node (32
cores), and doubles when doubling the number of cores up to
6.4 billion integers on 1024 nodes (32K cores). Doubling the size
of the input interval more than doubles the amount of work as
computing ( is more expensive on larger numbers, so we estimate
a runtime curve for perfect scaling (by sampling and interpolating
the runtimes of small tasks). The runtime graphs in Figure@ show
that the two skeletons do not scale perfectly. However, even on 32K
cores their runtimes are still within a factor of 1.5 of the ideal.

Efficiency (i.e. speedup divided by number of cores) is esti-
mated by relating the observed runtimes to the (estimated) perfect
scaling time. The graphs show that efficiency is steadily declining,
yet remains above 70% even on 32K cores. These graphs also show
that parMap2LevelRelaxed offers a small efficiency advantage
over parMap2Level.

8.2 Topology Awareness

The impact of different topologies and of different modes of task
placement on HdpH performance are also investigated with the
SumEuler benchmark. Yet, here ¢ is computed naively in HdpH
rather than relying on GAP. Coordination is again performed by
the skeletons parMap2Level and parMap2LevelRelaxed, both
with radius 1. The experiments are performed on the 256 core
Beowulf with either the discrete topology, or the standard multicore
topology (i. e. distance between cores sharing memory is %).
Figure [I2] shows runtimes, averaged over 11 runs, and 95%
confidence intervals. Sequential runtime is 1115 + 20 seconds.
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The skeletons divide the input into 1024 tasks, so average task
granularity is about 1 second, but varies by 3 orders of magnitude,
between 2 seconds and a few milliseconds. We observe that, as
in the weak scaling experiment, parMap2LevelRelaxed performs
best, with speedups of 130 to 140, whereas parMap2Level only
achieves speedups of 80 to 90. Remarkably, the topology does not
matter; the multicore topology appears to perform slightly worse
but the overheads stay well within the error margin. We conclude
that a 256-core cluster is too small to suffer from locality issues.

Figure [I2] also compares the performance of HdpH to a base-
line SumEuler benchmark, implemented natively in C+MPI. Se-
quential runtime of the C code is 956 £ 1 seconds, about 15%
faster than Haskell. A naive static MPI task placement achieves
speedups of about 95; the optimal static schedule (found by ex-
periment) yields speedups of about 130. Ultimately, C+MPI with
optimal static scheduling is about 10 to 15% faster than HdpH with
parMap2LevelRelaxed, matching the sequential performance
gap. This shows that (1) HdpH introduces minimal overheads, and
(2) HdpH work stealing can compete with optimal static scheduling
for this benchmark.

8.3 Fault Tolerance

A total of five benchmarks are used to measure scalability, super-
vision overheads, and recovery overheads of HdpH-RS in the the-
sis [30].

Scaling and supervision overheads. The speedup of the Sum-
matory Liouville program outlined in Section is measured on
HECTOoR up to 1400 cores using [20, 40..200] nodes with n=500m
and a threshold of 250k. This generates 2000 tasks so that all PEs
may be saturated with at least one task up to 1400 cores with ideal
scheduling.

Figure [T3] compares the performance of the slicing parallel
map skeletons parMapSliced and pushMapSliced (Section [7),
both with reliable scheduling enabled (indicated by suffix FT) and
disabled. Beyond 280 cores, the eager skeletons outperform the
lazy ones, reaching peak speedups of around 750 versus 340. More
importantly, however, we observe that the FT graphs stay close
to the graphs of their unreliable cousins, that is the overhead of
reliable scheduling is negligible.

Fault recovery costs. The HdpH-RS scheduler is designed to sur-
vive both single and simultaneous node failures. The cost of re-
covering from such failures is assessed with the well-known Man-
delbrot benchmark. The coordination is performed by the divide-
and-conquer skeletons par/pushMapReduceRangeThresh (Sec-
tion[7), generating 1023 tasks.
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Figure 14. Simultaneous node failures (Mandelbrot on Beowulf).

For each skeleton the mean duration of five fault-free runs, 66
and 92 seconds respectively, is plotted as a horizontal base line in
Figure [T4] To assess recovery time, 5 nodes are killed simultane-
ously after 10, 20,...,60 seconds. Each recovery experiment is
performed 5 times, and Figure [T4] plots the average recovery run-
times (including standard error bars). The recovery overheads for
parMapReduceRangeThresh are consistently low, and variability
limited. Recovery overheads for pushMapReduceRangeThresh
increase over time, and variability is generally higher. These re-
sults highlight a preference towards lazy on-demand scheduling to
minimise recovery time.

8.4 Representation Theory Case Study

This section briefly reports the performance of HdpH coordinating
GAP on a case study [24] from the representation theory of Hecke
algebras [11]]. Given generators M, ..., M., square matrices of
polynomials in Z[x, '], the problem is to find a (non-trivial)
symmetric matrix @ over Z[z, :U_l] such that the product of @
with each generator is itself symmetric. Depending on the Hecke
type E,, (m =6, 7, 8), the dimension of the generators and the
degrees of the polynomials in () may vary considerably.

We parallelise the three most time-consuming phases of the
algorithm for finding @Q: (1) solving of homomorphic images over
finite fields, (2) solving of interpolation problems over rationals,
and (3) final product symmetry check over polynomial matrices.
All algebraic computations are done by sequential GAP instances
and coordinated by HdpH, as in Section [8.I} Some illustrative
results are as follows. For medium-size E; representations (23 to
38) we obtain relative speedups of between 40 and 55 using 106
GAP instances on 16 Beowulf nodes (128 cores). For small Eg
representations (11 to 15) we obtain relative speedups of between
116 and 548 using 992 GAP instances on 32 HECToR nodes (1024
cores).

9. Discussion

Large commodity manycore architectures will have high failure
rates and a non-uniform communication topology between cores.
We have outlined the design of a pair of shallowly embedded
Haskell DSLs, HdpH and HdpH-RS, to address these challenges
for computations with irregular parallelism (Section [3). We have
presented operational semantics for both DSLs and established
conditions for semantic equivalence (Section ). We have briefly
sketched validation of the sophisticated work stealing protocol of
HdpH-RS by model checking and testing (Section [5). We have
described the DSL implementations, focusing on how the work
stealing schedulers achieve topology awareness and fault tolerance
(Section [6). We have provided examples of algorithmic skeletons,
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including skeletons for sophisticated topology aware work distri-
bution (Section [7). An initial evaluation using 5 benchmarks on a
Beowulf cluster and the HECToR HPC platform shows good weak
scaling of HdpH up to 32K cores, and that HdpH-RS has low over-
heads both in the presence and absence of faults. In a computational
algebra case study we obtain speedups of up to 548 coordinating
992 GAP instances on 1024 cores (Section [g).

Although developed for symbolic computation the HdpH DSLs
are general purpose, being designed to manage dynamic and ir-
regular task parallelism on large scale hierarchical architectures.
They cope well with complex algorithms, coordination patterns,
and data structures, but typical numeric HPC workloads are not
well suited. The HdpH programming model works particularly well
where tasks are stateless. For good performance, task execution
time should greatly outweigh communication time, which is largely
determined by the size of the closures transmitted, hence Big Data
workloads with large memory footprints are also not suitable. As
HdpH-RS retains backups of supervised closures, its performance
is additionally predicated on a small retained closure footprint. That
is, either the number of supervised closures is small, or the closures
are small in size (on average). Thus HdpH-RS offers a trade-off be-
tween fault tolerance and memory use.

Currently, HdpH and HdpH-RS provide orthogonal features. An
immediate engineering task is to amalgamate topology awareness
and fault tolerance into a single DSL. While HdpH was designed
for architectures with 10° cores, we only have made systematic
measurements up to 32K cores for pragmatic reasons: access to all
90K cores of HECToR is simply too expensive. As COTS and HPC
platforms grow, we expect that larger architectures will eventually
become more affordable, which would help us continue to use
HdpH for solving open problems in algebraic representation theory.
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