CogentHelp: A Tool for Authoring Dynamically Generated Help for Java GUIs

David E. Caldwell

Michael White
CoGenTex, Inc.

-
ot

CogentHelp is a prototype tool for authoring
dynamicaily generated on-line help for applications
whose graphical user interfaces (GUISs) are built with
tha Taua Ahctrant Windawing Toolkit (Aw‘T\ In this

VIV JOAYQ LAUVSUGUE TF LEUU VT IS 4 VULME (&

paper, we describe some of the techniques used in
CogentHelp to facilitate the authoring, maintenance
and customization of high-quality help systems.
These include the use of (1) a “single-source”
methodology for developing program code and help
text; (2) small-grained reusable “snippets” of help

text mblCdU UL monouuuo I.Uplbb, dIlU. \J} a

lightweight, extensible framework for planmng and
generating heln tonics from ¢ cnmnpfq

A i U R L M 2 G S AL L I

Introduction

We begin by discussing the design goals for
CogentHelp, with reference to examples of previous
work, We then give a brief overview of the

Loz,cnu'wlp byb[cm, d[l(l (.llbbubb some 01 I..llt:
techniques used to support these goals.

Design Goals

In designing CogentHelp, we set out to achieve
three main goals, The first goal was to effectively
assist authors in creating high-quality on-line help
documents, The second goal was to support the
maintenance of heip documents as the documented
application evolves; this goal is closely related to the

first. of course. since the qnallfv of the help

Ailivy Vi WURASY, SUiVE Wab Uiy Ul Wiv LUy

documents would diminish if they became

Permission to make digital/bard copies of all or part of this material for
personal or classreom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is

given that copyright is by permission of the ACM, Inc. To copy othenwise,

to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee,

sienoc 97 Snowbird Utah USA

Copyright 1997 ACM 0-89791-861-4/97/10..$3.50

on/Mnncnntay

ik mMikS(@COgemex.Comiy

17

aml

inconsistent, either internally or with respect to the
annhcatmn The final goal was to facilitate use of the

technology deployed to achieve the first two goals.

) JEpRuY

Aialtics S Tl 3 el s g, FIRR T
yuaiity i 1ié1p aoCumeiis was taxeii 1o iiciiae

the following aspects:

o Consistency — the grouping of material into

help pages, the use of formatting devices such as

nedumgs, DUIIB[S, a.ua gxapmcs, dIl(l me gcneral
writing style should be consistent throughout the

heln svstem:
help system;

Navigability — the use of grouping and
formatting shouid make it easier to find
information about a particular GUI component in

tha haln cuctams
liw uvlkl JJ“"VIH’

Completeness — all GUI components should be
documented;

Relevance — information should be limited to
that which is likely to be of current relevance,
given the current GUI state;

Conciseness — redundancy should be avoided;

Coherence — information about GUI
components should be presented in a logical and

confaviially annranvinta fachinn
\ivul\lAtuullJ OPPAUPA.IGLV 1Qo111Vvil,

effective maintenance

hell; &ocuments was taken to 1mp1y.

madle o

rtuemy - ulU l.lClp auuaor s. auuum U¢ aa:ml.cu Lll
producing complete and up-to-date descriptions
of GUI components;

Reuse — wherever possible, the help author

. s & ok Avrio

should not IldVC to write the same itext twice,

F‘lna“u we assumed that the benefits nfﬂqn

WEIIATL WGt

system must be made available at a reasonable cost in
terms of the understanding and effort required of the
help author and the developer, so that they could
exercise their creativity in order to provide
customized, appropriate help solutions.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F263367.263371&domain=pdf&date_stamp=1997-10-01

Related Work

The main idea of CogentHelp is to have
developers or help authors write the reference-
oriented part of an application’s help system' in small
pieces (or “snippets™). indexed to the GUI
components themselves, instead of in a relatively
unstructured document or set of documents.
CogentHelp then dynamically assembles the snippets
into a set of well-structured help pages for the end
user to browse.

This general approach (storing many small
document components in a structured database. and
using them to generate complex and/or varied
documents) has two main advantages over a
“manual” approach to document creation. First, it
makes it easier to maintain documents, since the
dependencies between the snippets and the objects
they describe are represented more explicitly, and
consistency only needs to be checked “locally”.
Secondly. having a document generator frees the
author to concentrate on writing accurate content for
the snippets, rather than the drudgery of applving
consistent formatting and managing a complex
hypertext network.

Elements of this approach have been used in
many systems for software-related documentation in
the literate programming tradition (Knuth, 1992),
such as the javadoc utility distributed with Sun
Microsystems’ Java Developers Kit (Friendly, 1995),
and several systems presented at the last SIGDOC
conference (Priestly et al.. 1996: Carlton & Harmsen
1996: Roposh & Schoenrock, 1996; Korgen, 1996).
The approach also draws on work in the natural
language generation community (for example,
Rambow & Korelsky, 1992; Reiter & Mellish, 1992;
Johnson & Erdem, 1995; Knott et al., 1996;
Milosavljevic et al., 1996: Paris & Vander Linden,
1996).

' By the reference-oriented part of a help system.,
we mean the part in which the user can navigate
according to the structure of the GUI to view
descriptions of individual windows, widgets, etc. The
remainder of the help system will usually describe
more generally what the application does, how to
accomplish specific tasks, etc. CogentHelp does not
specifically support creation of this part of the help
system, though the architecture and Exemplars
framework (see "Generating Topics with Exem-
plars”) does facilitate the creation of application-
specific, dynamically generated context-sensitive
help here too.

There are currently several commercial
development and help-authoring tools that embody
one aspect of this approach by generating initial,
“skeleton” help systems automatically, based on a
scan of the existing GUI components in an
application. And at least one such tool” is finally
addressing the maintenance issue by performing
consistency checks to make sure that each GU!
component always has a corresponding help topic,
and vice versa. However, to the best of our
knowledge, CogentHelp is the first tool to combine
the advantages of automatic consistency checking
and automatic document generation in a tool for
authoring documentation directed at end users.

System Overview

CogentHelp takes as input a set of human-written
“help snippets” indexed to components of a GUI, and
generates help pages describing components or
groups of components. The generated help system
incorporates various navigation aids, including an
expandable table of contents tree and an
automatically generated “thumbnail sketch™
hypergraphic representing each GUI window. A
sample help window is shown in Fig. 1.

LscNétscape - [Cogenttetp) 1] - 1:

Back Previous Nedt Reftesh]
i Y Assign -
=
o —“"g Assigns the <clected operator to the
' 2 I selected part
’ N gzmmeww—J This c d 15 currently disabled
l r— Assignmects — to enable it, select one operator
j [~ KFactors Jrom aither the Operators without
| [Notes | Work hst box or the Operators on
i i :kﬂ::; Jobs kst box, and one part from the
[P:ts Hot Parts hst box. .
r— Kfactors
i Opetatoes E]Remuve
! — R . PP Ad Removes the selected assignment -
M » hd
o) [Forbel on & window camponen. cick on ks mage nthe i [

Figure 1: A help window generated by Cogentilelp

CogentHelp's help-page generator is implemented
using Java and HTML for platform independence,
and with a client-server architecture in order to allow
dynamic generation of help pages which reflect the
current state of a GUL. Help topics are delivered by
an HTTP server via the Java Servlet API, for display

2 VBHelp, from ForeFront, Inc.

in a Web browser. The expandable table of contents
and thumbnail hypergraphics are also implemented in
Java, as applets hosted by the browser.

When a context-sensitive help request is initiated
in a CogentHelp-enabled GUI, the Web browser is
told to load a URL which points to the help server.
This URL encodes most of the information needed to
dynamically generate a topic describing the current
window, in its current state — such as the locations,
types and part-whole relations of the widgets on the
window, and their current labels and states of
enablement,

The other information that the help server needs
in order to generate a topic is the help snippets
themselves. These are stored separately from the GUI
code, and consistency is maintained through the use
of utilities which check for missing or surplus
snippets.® The number and type of snippets created
for each widget can be customized, but the default
implementation has the following for each widget:

o A short description of the widget;

e An optional longer description of the widget’s
fanction;

o A list of references to other related help topics;

o Descriptions of the conditions under which the
widget is disabled, and how to enable it.

The CogentHelp server functions not only to
generate help topics for end users to view, but also to
generate HTML forms which constitute the help
author’s interface to the system. The forms generated
in authoring mode (see Fig. 2) generally resemble the
generated topics as closely as possible, except that
the help snippets are editable, and all snippets for a
given widget are shown (whereas in generated topics,
some of them will not occur in certain situations).
The forms can also furnish syntactic “frames” which
help authors to write snippets in a consistent format,
in order to create opportunities for text reuse (the
author might want to present the same text in
multiple contexts, or simply modify a single context
without having to rewrite all of the snippets that go
into it), For example, in the default implementation
the Short Description for a widget should fit
grammatically in the frame “This widget S—

* As long as we provide such tools, we have
found a “virtual single-source” approach to be
adequate for storing snippets — it is often not
convenient, or even possible, to physically store them
with program code or resource files.

19

therefore, an appropriate snippet might be “opens the

Assignments window”.
e tictieope [Lovenilien) TR
Back. | Prevos | Nex | EdtNew Update Save Refaer
i .
— Soe Alee
r Exsm B -
| Skf;;m 1 Dascommand is enabled wien
g R :
»ts
| - Pane .
{GRCUPY B
;;m k& 15 currenily disadled — to anable st,
Roes
select ons operator frem eithsz tha »
L[EROUFI IOpv::nr.o:s witksut Uork list hax or ﬁ
e Bromeree . °
K1 15 R e K
rfasl WHelscape) i) =]

Figure 2: CogentHelp in authoring mode

The steps required to enable a Java GUI to use the
CogentHelp framework involve both the help author
and the developer. The developer “drops in” a Java
package which handles communications with the
Web browser and the help server, and implements a
help button (or similar device) on each GUI window.
Some code must also be added to specify which
widgets on each window will be documented in help
topics — this amounts to about one line of code per
widget, and the effort involved is comparable to that
of assigning unique help IDs to widgets in
conventional help systems.

The help author, meanwhile, decides on the
number and form of the help snippets to be assigned
to each widget, and customizes the help exemplars
(see the next section), if desired, to produce the
appropriate structure and layout of the help system.
The author may also collaborate with the developer
to customize the information that is passed from the
GUI and used in generating topics which reflect the
dynamic state of the GUI — for example, giving
messages about widgets which are disabled, or whose
labels change in certain situations.

Generating Topics with Exemplars

To generate help documents, CogentHelp uses
Exemplars, a lightweight Java-based text planning
framework developed in connection with a variety of
projects at CoGenTex (see also Lavoie et al. 1997;
White & Caldwell 1997). Exemplars are designed to
flexibly support a range of different text generation
methodologies — from designs incorporating deep
linguistic models via CoGenTex’s RealPro syntactic

realizer (Lavoie & Rambow 1997). to approaches
closer to traditional template-based document
generation.

Exemplars are so called because they are meant to
capture an exemplary (or expert) way of achieving a
communicative goal in a given communicative
context: as such, exemplars are more like mail-merge
templates (or CGI scripts) than rules for first-
principles planning. What distinguishes exemplars
from templates is that they are object-oriented and
recursive.

Object orientation in this case chiefly means that
exemplars are arranged in a specialization hierarchy,
where more specialized exemplars can inherit
properties and methods from more general ones. For
example, the help author might create an exemplar
called DescribePopupMenu, which inherits from
another called DescribeMenu, and which generates
the same help text as DescribeMenu, but adds some
material only relevant to pop-up menus (or, on the
other hand, it could ignore its parent and generate its
own text from scratch). The choice of which
exemplar to use to describe a given widget is
determined by constraints that the author attaches to
each exemplar — in this case, DescribeMenu would
be specified to apply to menus, and
DescribePopupMenu only to pop-up menus
(assuming that any pop-up menu is also a menu). As
part of the help topic generation process, the text
planner will automatically select the most specific
exemplar whose constraints are satisfied by a given
input.

Exemplars are recursive in that they can be
embedded within one another — unlike templates,
which are typically “flat”. For example. a help author
could create a MakeStandardTopic exemplar that
builds a shell containing the features common to all
help topics. such as background color, standard
hypertext links, etc. Some of the holes in this shell,
such as the name of the widget being described in the
topic, could be filled in in the usual way, by simply
substituting the value of a variable. But others could
be filled in by calling other exemplars — say, one
called DescribeWidger which generated a paragraph
describing a widget. By itself, the recursive quality of
exemplars allows for a more modular and compact
specification of a help system, since the decisions
made by DescribeWidget about how to generate a
particular paragraph could be isolated from other
decisions. and Describe Widget could be reused by
other exemplars. But recursivity provides the greatest
benefit when it interacts with the specialization
hierarchy — if, say, DescribeWidget had subclasses
DescribeRadioButtonGroup and DescribeTextField,

20

which generated appropriate descriptions of two
different types of widget. In this case, when
DescribeWidget was called to fill in a hole in
MakeStandardTopic, the text planner would select
whichever of these more-specific exemplars was
appropriate for the given widget. By contrast, with
flat templates the author might be forced to create a
MakeRadioButtonTopic template and a
MakeTextFieldTopic template, which would each
specify the standard topic features redundantly,
making it more difficult to modify them consistently
later, should the need arise.

The Exemplars framework is implemented in
Java, in order both to exploit aspects of Java’s object
orientation, and to facilitate customization by
developers and help authors. Each exemplar is
actually a Java class, which inherits from the base
Exemplar class and overrides various members as
appropriate, in order to specify:

¢ the input to the exemplar (typically a reference to
a Widget object with a type, a label, etc.);

» the conditions in which the exemplar can be
used;

o the output text (HTML) of the exemplar
{possibly built recursively by calls to other
exemplars).

The inheritance structure of exemplars is simply
that given by the corresponding Java classes. The
output of an exemplar is built up as a tree
representing an HTML document, using an API
designed to make this not much harder in practice
(and easier, in some respects) than editing raw
HTML.

Customizing exemplars is easier in Java than it
would be in some other languages, mainly because of
Java’s simpler compiling and linking procedures.
And we believe that writing Java, at least within a
constrained framework. will not daunt today’s help
author, who has lived to tell of RTF, HTML,
JavaScript, Perl, etc. We have also developed a tool
which minimizes the help author’s exposure to Java
code — the Exemplar Definition Wizard lets the
author create a “starter” HTML file using the visual
editor of his/her choice, then graphically specify the
attributes of a new exemplar based on this HTMI..

¥ The inheritance structure of a set of exemplars is
not to be confused with another hierarchical
structure, a goal structure, which is what is built up
when exemplars call each other recursively in order
to generate a specific topic.

The bulk of the Java code is then generated
automatically, with comments indicating what details
the author needs to fill in.

Customizing the exemplars typically means
creating a new set of exemplar classes to generate a
desired help system (or simply modifying an existing
set, such as the default exemplars provided with
CogentHelp). But authors, in collaboration with
developers, can also customize more “deeply” by
changing the nature of the information passed from
an application to the help-topic generator. For
example, one might want to generate messages which
explain to the user not just why a button is disabled,
but why the database they are browsing is in a certain
state, with reference to underlying business rules.
This type of customization is also facilitated by the
fact that exemplars are written in the same language
as the application they are documenting, and
therefore can access any information in the
application, in principle.’

Conclusion

In summary, each of the various ideas we have
assembled in our approach to authoring and
generating help contributes to the quality and
maintainability of the finished product, in the aspects
mentioned earlier. First, viewing the help system as
“one topic per widget”, plus a structure to be imposed
on these topics, allows the author to focus on the
accuracy of individual topics (fidelity) and the global
presentation format of the help system (consistency)
independently, without one of these interfering with
the other, The utilities which monitor the
correspondence of widgets to topics help to ensure
completeness.

Secondly, the further step of assigning a set of
help snippets, rather than just a block of text, to each
widget gives the author the flexibility to tailor
different help messages appropriate to different
contexts, without necessarily writing each one from
scratch (conciseness, reuse). Designing a set of
exemplars also gives the author a framework for
thinking about what help information should be
presented where (coherence).

5 This might call for another kind of architecture
which we have experimented with, where the
CogentHelp server actually runs in a separate thread
within the application it is documenting, giving it
direct access to any desired runtime information. We
have so far only implemented this with Java
applications, not applets.

21

Finally, the ability to use runtime information in
generating dynamic help topics can enhance their
relevance, and the automatically generated
thumbnails and table of contents improve the
navigability of a help system, while relieving the help
author of some exacting chores.

Future Plans

CogentHelp in its current form incorporates
several features developed as a result of our work
with a trial user group at Raytheon — especially in
the area of authoring support and visual navigation
aids. By the time of the conference, which coincides
with the end of our Rome Laboratory—sponsored
software documentation SBIR project, we hope to
have completed the transition of CogentHelp from a
research prototype to a user-friendly, configurable
system suitable for use by a wider range of Java GUI
development teams. Part of this transition will
involve simplifying the process of customizing the
exemplars even further — in particular, we plan to
create an exemplar definition language, from which
the exemplar classes will be generated automatically.
As with the current Definition Wizard, this language
will hide much of the complexity of implementing
exemplars as Java classes, while additionally
allowing the author to freely mix annotated HTML
with Java expressions and statements for information
access, conditionalization, loops, etc.

Acknowledgements

We gratefully acknowledge the helpful comments
and advice of Ehud Reiter, Philip Resnik, Keith
Vander Linden, Terri SooHoo, Marsha Nolan, Doug
White, Colin Scott, Owen Rambow, Tanya Korelsky,
Benoit Lavoie and Daryl McCullough. This work
has been supported by SBIR award F30602-94-C-
0124 from Rome Laboratory (USAF) and by the
TRP/ROAD cooperative agreement F30602-95-2-
0005 with the sponsorship of DARPA and Rome
Laboratory.

References

1. Carlton, D. & Harmsen, M. (1996). Customizing
tools to manage complex online help
development. In Proceedings of the 14" Annual
International Conference on Computer
Documentation (SIGDOC-96), Research
Triangle Park, North Carolina, 29-34.

2. Friendly, L. (1995). The design of distributed
hyperlinked programming documentation. In
International Workshop on Hypermedia Design.

[95]

Johnson, W.L. & Erdem, A. (1995). Interactive
explanation of software systems. In Proceedings
of the Tenth Knowledge-Based Software
Engineering Conference (KBSE-93), 155-164.

Knott, A., Mellish, C., Oberlander, J. &
O’Donnell, M. (1996). Sources of flexibility in
dynamic hypertext generation. In Proceedings of
the Eighth International Natural Language
Generation Workshop (INLG-96), 151-160.

Knuth, D. E., editor (1992). Literate
Programming. CSLIL

Korgen, S. (1996). Object-oriented, single-
source, on-line documents that update
themselves. In Proceedings of the 14" Annual
International Conference on Computer
Documentation (SIGDOC-96), Research
Triangle Park, North Carolina, 229-237.

Lavoie, B. & Rambow, O. (1997). A fast and
portable realizer for text generation systems. In
Proceedings of the Fifth Conference on Applied
Natural Language Processing, Washington,
D.C.. 265-268.

Lavoie, B., Rambow, O. & Reiter, E. (1997).
Customizable descriptions of object-oriented
models. In Proceedings of the Fifth Conference
on Applied Natural Language Processing,
Washington, D.C., 253-256.

Milosavljevic. M., Tulloch. A. & Dale, R.
(1996). Text generation in a dynamic hﬁypertext
environment. In Proceedings of the 19"

Australasian Computer Science Conference,
Melbourne, Australia, 229-238.

. Paris, C. & Vander Linden, K. (1996). Drafter:
An interactive support tool for writing. /EEE
Computer, Special Issue on Interactive Natural
Language Processing, July.

. Priestly, M., Chamberland, L. & Jones, J. (1996).
Rethinking the reference manual: Using database
technology on the www to provide complete,
high-volume reference information without
overwhelming your readers. In Proceedings of
the 14" Annual International Conference on
Computer Documentation (SIGDOC-96),
Research Triangle Park, North Carolina, 23-28.

. Rambow, O. & Korelsky, T. (1992). Applied
text generation. In Third Conference on Applied
Natural Language Processing, Trento, Italy, 40-
47.

. Reiter, E. & Mellish, C. (1992). Using
classification to generate text. In Proceedings of
the 30" Annual Meeting of the Association for

Computational Linguistics, Newark, Delaware,
265-272.

. Roposh, C. & Schoenrock, H. (1996).

Developing single-source documentation for
multiple formats. In Proceedings of the 14"
Annual International Conference on Computer
Documentation (SIGDOC-96), Research
Triangle Park, North Carolina, 205-212.

. White, M. & Caldwell, D.E. (1997).

CogentHelp: NLG meets SE in a tool for
authoring dynamically generated on-line help. In
Proceedings of the Fifth Conference on Applied
Natural Language Processing, Washington,
D.C, 257-264.

