
CogentHelp: A Tool for Authoring Dynamically Generated Help for Java GUls

David E. Caldwell
Michael White
CoGenTex, Inc.

{ted,mike@cogentex.com}

Abstract

CogentHelp is a prototype tool for authoring
dynamically generated on-line help for applications
whose graphical user interfaces (GUIs) are built with
the Java Abstract Windowing Toolkit (AWT). In this
paper, we describe some of the techniques used in
CogentHelp to facilitate the authoring, maintenance
and customization of high-quality help systems.
These include the use of (1) a “single-source”
methodology for developing program code and help
text; (2) small-grained, reusable “snippets” of help
text instead of monolithic topics; and (3) a
lightweight, extensible framework for planning and
generating help topics from “snippets”.

Introduction

We begin by discussing the design goaIs for
CogentHelp, with reference to examples of previous
work, We then give a brief overview of the
CogentHelp system, and discuss some of the
techniques used to support these goals.

Design Goals

In designing CogentHelp, we set out to achieve
three main goals, The first goal was to effectively
assist authors in creating high-quality on-line help
documents, The second goal was to support the
maintenance of help documents as the documented
application evolves; this goal is closely related to the
first, of course, since the quality of the help
documents would diminish if they became

Permk~ion to m&c digitolhrd copies of all or part of this material for
pet’~ond or chssroom use is gnntcd without fee provided that the copies
are not made or distributed for profit or commercinl advantage, the copy-
tight notice, the title of the publication and its date appear, and notice is
ghfl that copyright is by permission ofthe ACM. Inc. To copy otherGe.
to republish, to post on servers or to redistribute to lists, requir~~spccitic
permission nnd/or fee.

SIGDOC 37 Snowbird Utah USA
Copyright 1997 ACM 0-89791~8G1-4197/10..$3.50

inconsistent, either internally or with respect to the
application. The final goal was to facilitate use of the
technology deployed to achieve the first two goals.

Quality in help documents was taken to include
the following aspects:

Consistency-the grouping of material into
help pages, the use of formatting devices such as
headings, bullets, and graphics, and the general
writing style should be consistent throughout the
help system;

Navigability-the use of grouping and
formatting should make it easier to find
information about a particular GUI component in
the help system;

Completeness - all GUI components should be
documented;

Relevance - information should be limited to
that which is likely to be of current relevance,
given the current GUI state;

Conciseness -redundancy should be avoided;

Coherence - information about GUI
components should be presented in a logical and
contextually appropriate fashion.

Secondly, effective maintenance of the quality of
help documents was taken to imply:

l Fidelity-the help author should be assisted in
producing complete and up-to-date descriptions
of GUI components; D

l Reuse -wherever possible, the help author
should not have to write the same text twice.

Finally, we assumed that the benefits of the
system must be made available at a reasonable cost in
terms of the understanding and effort required of the
help author and the developer, so that they could
exercise their creativity in order to provide
customized, appropriate help solutions.

17

http://crossmark.crossref.org/dialog/?doi=10.1145%2F263367.263371&domain=pdf&date_stamp=1997-10-01

Related Work

The main idea of CogentHelp is to have
developers or help authors write the reference-
oriented part of an application’s help system’ in small
pieces (or “snippets”). indexed to the GUI
components themselves, instead of in a relatively
unstructured document or set of documents.
CogentHelp then dynamically assembles the snippets
into a set of well-structured help pages for the end
user to browse.

This general approach (storing many small
document components in a structured database. and
using them to generate complex and/or varied
documents) has two main advantages over a
“manual” approach to document creation. First. it
makes it easier to maintain documents, since the
dependencies between the snippets and the objects
they describe are represented more explicitly, and
consistency only needs to be checked “locally”.
Secondly. having a document generator frees the
author to concentrate on writing accurate content for
the snippets, rather than the drudgery ofapplying
consistent formatting and managing a complex
hypertext nehvork.

Elements of this approach have been used in
many systems for software-related documentation in
the literate programming tradition (Knuth, 1992),
such as the jm&oc utility distributed with Sun
Microsystems’ Java Developers Kit (Friendly, I995),
and several systems presented at the last SIGDOC
conference (Priestly et al.. 1996: Carlton & Harmsen
1996: Roposh & Schoenrock, 1996; Korgen, 1996).
The approach also draws on work in the natural
language generation community (for example,
Rambow &r Korelsky, 1992; Reiter & Mellish, I992;
Johnson & Erdem, 1995; Knott et al., 1996;
Milosav!jevic et al., 1996: Paris & Vander Linden,
) 996).

’ By 1l7e reference-orientedpart of a help system.
we mean the part in which the user can navigate
according to the structure of the GUI to view
descriptions of individual windows, widgets, etc. The
remainder of the help system will usually describe
more generally what the application does, how to
accomplish specific tasks, etc. CogentHelp does not
specifically support creation of this part of the help
system. though the architecture and E.vetnplurs
framework (see “Generating Topics with Exem-
plars”) does facilitate the creation of application-
specific, dynamically generated context-sensitive
help here too.

There are currently several commercial
development and help-authoring too Is that em body
one aspect of this approach by generating initial,
“skeleton” help systems automatically, based on a
scan of the existing GUI components in an

application. And at least one such tool’ is linally
addressing the maintenance issue by performing
consistency checks to make sure that each GUI
component always has a corresponding help topic.
and vice versa. However, to the best of our
knowledge, CogentHelp is the first tool to combine
the advantages of automatic consistency checking
and automatic document generation in a tool for
authoring documentation directed at end users.

System Overview

CogentHelp takes as input a set of human-written
“help snippets” indexed to components of a GUI, and

generates help pages describing components ot
groups of components. The generated help system
incorporates various navigation alds, including an
expandable table of contents tree and an
automatically generated “thumbnail sketch”
hypergraphic representing each GUI window. A
sample help window is shown in Fig. I.

OArsign :-

Figure 1: A help wit7dow generated by C’ogenttlelp

CogentHelp’s help-page generator is implemcntctl
using Java and HTML for platform independence.
and with a client-server architecture in order to allow
dynamic generation of help pages which reflect the
current state of a GUI. IHelp topics arc delivered by
an HTTP server via the Java Servlet API, for display

’ VBHelp, from ForeFront, Inc.

in a Web browser, The expandable table of contents
and thumbnail hypergraphics are also implemented in
Java, as applets hosted by the browser.

When a context-sensitive help request is initiated
in a CogentHelp-enabled GUI, the Web browser is
told to load a URL which points to the help server.
This URL encodes most of the information needed to
dynamically generate a topic describing the current
window, in its current state -such as the locations,
types and part-whole relations of the widgets on the
window, and their current labels and states of
enablement.

The other information that the help server needs
in order to generate a topic is the help snippets
themselves. These are stored separately from the GUI
code, and consistency is maintained through the use
of utilities which check for missing or surplus
snippets? The number and type of snippets created
for each widget can be customized, but the default
implementation has the following for each widget:

l A short description of the widget;

l An optional longer description of the widget’s
function;

l A list of references to other related help topics;

l Descriptions of the conditions under which the
widget is disabled, and how to enable it.

The CogentHelp server fhnctions not only to
generate help topics for end users to view, but also to
generate HTML forms which constitute the help
author’s interface to the system. The forms generated
in authoring mode (see Fig. 2) generally resemble the
generated topics as closely as possible, except that
the help snippets are editable, and all snippets for a
given widget are shown (whereas in generated topics,
some of them will not occur in certain situations).
The forms can also furnish syntactic “frames” which
help authors to write snippets in a consistent format,
in order to create opportunities for text reuse (the
author might want to present the same text in
multiple contexts, or simply modify a single context
without having to rewrite all of the snippets that go
into it). For example, in the default implementation
the Short Description for a widget should fit
grammaticaIIy in the frame “Z&s widget “- d

3 As long as we provide such tools, we have
found a “virtual single-source” approach to be
adequate for storing snippets - it is often not
convenient, or even possible, to physically store them
with program code or resource files.

therefore, an appropriate snippet might be “opens the
Assignments window”.

Figure 2: CogentHelp in authoring mode

The steps required to enable a Java GUI to use the
CogentHelp hework involve both the help author
and the developer. The developer “drops in” a Java
package which handles communications with the
Web browser and the help server, and implements a
help button (or simiku device) on each GUI window.
Some code must aIso be added to specify which
widgets on each window will be documented in help
topics -this amounts to about one line of code per
widget, and the effort involved is comparable to that
of assigning unique help IDS to widgets in
conventional help systems.

The help author, meanwhile, decides on the
number and form of the help snippets to be assigned
to each widget, and customizes the help exemplars
(see the next section), if desired, to produce the
appropriate structure and layout of the help system.
The author may also collaborate with the developer
to customize the information that is passed from the
GUI and used in generating topics which reflect the
dynamic state of the GUI - for example, giving
messages about widgets which are disabled, or whose
labels change in certain situations.

Generating Topics with Exemplars

To generate help documents, CogentHelp uses
Exemplars, a lightweight Java-based text planning
fiamework developed in connection with a variety of
projects at CoGenTex (see also Lavoie et al. 1997;
White & Caldwell 1997). Esemplars are designed to
flexibly support a range of different text generation
methodologies - from designs incorporating deep
linguistic modeIs via CoGenTex’s RealPro syntactic

19

realizer (Lavoie & Rambow 1997). to approaches
closer to traditional template-based document
generation.

Exemplars are so called because they are meant to
capture an exenlplury (or expert) way of achieving a
communicative goal in a given communicative
context: as such, exemplars are more like mail-merge
templates (or CC1 scripts) than rules for first-
principles planning. What distinguishes exemplars
from templates is that they are object-oriented and
recursive.

Object orientation in this case chiefly means that
exemplars are arranged in a specialization hierarchy,
where more specialized exemplars can inherit
properties and methods from more general ones. For
example, the help author might create an exemplar
called DescribePopupA4enu, which inherits from
another called DescribeA4em. and which generates
the same help text as DescribeMerm, but adds some
material only relevant to pop-up menus (or, on the
other hand. it could ignore its parent and generate its
own text from scratch). The choice of which
exemplar to use to describe a given widget is
determined by constraints that the author attaches to
each exemplar - in this case, DescribeA4em would
be specified to apply to menus, and
DmcribePop~rpMetw only to pop-up menus
(assuming that any pop-up menu is also a menu). As
part of the help topic generation process, the text
planner will automatically select the most specific
exemplar whose constraints are satisfied by a given
input.

Exemplars are recursive in that they can be
embedded within one another - unlike templates,
which are typically “flat”. For example. a help author
could create a MukeStattdurdTopic exemplar that
builds a shell containing the features common to all
help topics. such as background color, standard
hypertext links, etc. Some of the holes in this shell,
such as the name of the widget being described in the
topic, could be filled in in the usual way, by simply
substituting the value of a variable. But others could
be filled in by calling other exemplars - say, one
called DescribeWidget which generated a paragraph
describing a widget. By itself, the recursive quality of
exemplars allows for a more modular and compact
specification of a help system, since the decisions
made by DescribeWidget about how to generate a
particular paragraph could be isolated from other
decisions. and DescribeWidget could be reused by
other exemplars. But recursivity provides the greatest
benefit when it interacts with the specialization
hierarchy - if, say, DescribeWidget had subclasses
DescribeRudioButtonGrozcp and DescribeTextField,

which generated appropriate descriptions of IWO
different types of widget. In this case, when
DescribeWidget was called to fill in a hole in
MukeStundurdTopic, the text planner would select
whichever of these more-specific exemplars was
appropriate for the given widget. By contrast, with
flat templates the author might be forced to create a
MukeRudioBzlttonTopic template and a
MukeTe.xtFieldTopic template, which would each
specify the standard topic features redundantly,
making it more difficult to modify them consistently
later, should the need arise.

The Exemplars framework is implemented in
Java, in order both to exploit aspects of Java’s objcc~
orientation, and to facilitate customization by
developers and help authors. Each exemplar is
actually a Java class, which inherits from the base
E~etnplur class and overrides various members as
appropriate, in order to specify:

. the input to the exemplar (typically a reference IO
a Widget object with a type, a label, etc.);

. the conditions in which the exemplar can bc
used;

. the output text (HTML) of the exemplar
(possibly built recursively by calls to other
exemplars).

The inheritance structure of exemplars is simpl)
that given by the corresponding Java classes.J The
output of an exemplar is built up as a tree
representing an HTML document, using an API
designed to make this not much harder in practice
(and easier, in some respects) than editing raw
HTML.

Customizing exemplars is easier in Java than it
would be in some other languages, mainly because 01‘
Java’s simpler compiling and linking procedures.
And we believe that writing Java, at least within a
constrained framework. will not daunt today’s help
author, who has lived to tell of RTF, HTML,
JavaScript. Per], etc. We have also developed a 1001
which minimizes the help author’s exposure to Java
code - the Exemplar Definition Wizard lets the
author create a “starter” HTML file using the visual
editor of his/her choice, then graphically specify the
attributes of a new exemplar based on this IHTMI,.

’ The inheritance structure of a set of exemplars is
not to be contised with another hierarchical
structure, a goal strzrctwe, which is what is built up
when exemplars call each other recursively in order
to generate a specific topic.

10

The bulk of the Java code is then generated
automatically, with comments indicating what details
the author needs to fill in.

Customizing the exemplars typically means
creating a new set of exemplar classes to generate a
desired help system (or simply modifying an existing
set, such as the default exemplars provided with
CogentHelp). But authors, in collaboration with
developers, can also customize more “deeply” by
changing the nature of the information passed from
an application to the help-topic generator. For
example, one might want to generate messages which
explain to the user not just why a button is disabled,
but why the database they are browsing is in a certain
state, with reference to underlying business rules.
This type of customization is also facilitated by the
fact that exemplars are written in the same language
as the application they are documenting, and
therefore can access any information in the
application, in principle.5

Conclusion

In summary, each of the various ideas we have
assembled in our approach to authoring and
generating help contributes to the quality and
maintainability of the fmished product, in the aspects
mentioned earlier. First, viewing the help system as
“one topic per widget”, plus a structure to be imposed
on these topics, allows the author to focus on the
accuracy of individual topics @de&y) and the globa
presentation format of the help system (consistency)
independently, without one of these interfering with
the other. The utilities which monitor the
correspondence of widgets to topics help to ensure
completeness.

Secondly, the finther step of assigning a set of
help snippets, rather than just a block of text, to each
widget gives the author the flexibility to tailor
different help messages appropriate to different
contexts, without necessarily writing each one from
scratch (conciseness, reuse). Designing a set of
exemplars also gives the author a framework for
thinking about what help information should be
presented where (coherence).

’ This might call for another kind of architecture
which we have experimented with, where the
CogentHelp server actually runs in a separate thread
within the application it is documenting, giving it
direct access to any desired runthne information. We
have so far only implemented this with Java
applications, not apple&

Finally, the ability to use runtime information in
generating dynamic help topics can enhance their
relevance, and the automatically generated
thumbnails and table of contents improve the
navigability of a help system, while relieving the help
author of some exacting chores.

Future Plans

CogentHelp in its current form incorporates
several features developed as a result of our work
with a trial user group at Raytheon - especially in
the area of authoring support and visual navigation
aids. By the time of the conference, which coincides
with the end of our Rome Laboratory-sponsored
software documentation SBIR project, we hope to
have completed the transition of CogentHelp from a
research prototype to a user-f?iendly, configurable
system suitable for use by a wider range of Java GUI
development teams. Part of this transition will
involve simplifjling the process of customizing the
exemplars even further - in particular, we plan to
create an exemplar detinition language, from which
the exemplar classes will be generated automatically.
As with the current Definition Wizard, this language
will hide much of the complexity of implementing
exemplars as Java classes, while additionally
allowing the author to freely mix annotated HTML
with Java expressions and statements for information
access, conditionaliition, loops, etc.

Acknowledgements

We gratefully acknowledge the helpful comments
and advice of Ehud Reiter, Philip Resnik, Keith
Vander Linden, Teni SooHoo, Marsha Nolan, Doug
White, Cohn Scott, Owen Rambow, Tanya Korelshy,
Benoit Lavoie and Daryl McCullough. This work
has been supported by SBIR award F30602-94-C
0124 from Rome Laboratory (USAF) and by the
TRP/ROAD cooperative agreement F30602-9%2-
0005 with the sponsorship of DARPA and Rome
Laboratory.

References

1. Carlton, D. & Harmsen, M. (1996). Customizing
tools to manage complex online help
development. In Proceedings of the 14”‘Annual
International Conference on Computer
Documentation (SIGDOC-96), Research
Triangle Park, North Carolina, 29-34.

2. Friendly, L. (1995). The design of distributed
hyperlinked programming documentation. In
International Workshop on Hypermedia Design.

21

3.

4.

5.

6.

7.

8.

9.

IO.

11.

13.

13.

Johnson, W.L. & Erdem. A. (1995). Interactive
explanation of software systems. In Proceedings
of rhe Tenth Knowledge-Based Sofhvare
Engineering Conference (KBSE-95), 155 164.

14.

Knott, A., Mellish, C.? Oberlander, J. &
O’Donnell, M. (I 996). Sources of flexibility in
dynamic hypertext generation. In Proceedings of
the Eighrh International Natural Language
Generation Workshop (INLG-96), 15 1 - 160.

15.
Knuth, D. E., editor (1992). Liter&e
Programming. CSLI.

Korgen, S. (1996). Object-oriented, single-
source, on-line documents that update
themselves. In Proceedings of (he 141h Annual
International Conference on Computer
Documentation (SIGDOC-96), Research
Triangle Park, North Carolina, 229-237.

Lavoie, B. & Rambow, 0. (1997). A fast and
portable realizer for text generation systems. In
Proceedings of the Fifih Conference on Applied
Natural Language Processing, Washington,
D.C.. 265-268.

Lavoie, B., Rambow. 0. & Reiter, E. (1997).
Customizable descriptions of object-orienred
models. In Proceedings of the Fifth Conference
on Applied Natural Language Processing,
Washington. D.C., 253-256.

Milosavljevic. M., Tulloch. A. & Dale, R.
(1996). Text generation in a dynamic hypertext
environment. In Proceedings of the 19’
Australasian Cotnputer Science Conference,
Melbourne, Australia, 229-238.

Paris, C. & Vander Linden, K. (1996). Drafter:
An interactive support tool for writing. IEEE
Cotnputer, Special Issue on Interactive Natural
Language Processing, July.

Priestly, M., Chamberland, L. & Jones, J. (1996).
Rethinking the reference manual: Using database
technology on the www to provide complete,
high-volume reference information without
overwhelming your readers. In Proceedings of

the 14”’ Annual International Conference on
Cotnputer Documentation (SIGDOC-96),
Research Triangle Park, North Carolina, 23-28.

Rambow. 0. & Korelsky, T. (1992). Applied
text generation. In Third Conference on Applied
Natural Language Processing, Trento, Italy, 40-
47.

Reiter. E. & Mellish, C. (1992). Using
classification to generate text. In Proceedings of

the 30ih Annual Meeting of the Associatiotl.for

Computational Linguistics, Newark, Delaware,
265-272.

Roposh, C. & Schoenrock, H. (1996).
Developing single-source documentation for
multiple formats. In Proceedings of (he 14’”
Annual International Conference on Computer
Documentation (SIGDOC-96), Research
Triangle Park, North Carolina, 205-2 12.

White, M. & Caldwell, D.E. (1997).
CogentHelp: NLG meets SE in a tool for
authoring dynamically generated on-line help. In
Proceedings of rhe F$h Cocference on Applied
Natural Language Processing, Washington,
D.C., 257-264.

