
Your Activity Tracker Knows When You Quit Smoking

ABSTRACT 
This paper discusses outcomes of our exploratory research 
aiming to discover ways of utilising continuous long term 
respiratory rate data collected from actigraphy (wrist-worn 
accelerometers.)  We show that by monitoring changes in 
respiratory rate during sleep, we can detect and visualise 
various physical conditions that were previously not 
detectable using such simple wearable sensors, namely; the 
subjective level of drunkenness, fever, and smoking 
cessation. This study provides valuable insight into the 
potential of actigraphy, not simply as a tool for detecting 
common daily activities, but as a base for building a generic 
lifelog system that can evaluate the more qualitative aspects 
of your life. 
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INTRODUCTION 
Actigraphs (wristband based accelerometers), also 
popularly known as activity trackers, are one of the most 
commercially successful types of wearable sensors that 
have made its way into the lives of millions of consumers 
worldwide [6-8].  Some of the advantages that actigraphs 
offer over their counterparts (e.g: cameras, positioning 
systems, heart rate monitors) are that they are cheaper, less 
intrusive, and can detect a wide range of daily activities.  
Such attributes make actigraphs an attractive tool to base a 
lifelog system on. 

Our interest is in building an actigraph-based lifelog system 
that can fully automate the generation of currently hand-
written diaries.  Such systems may be useful simply as a 
tool for personal reflection, but we also see its potential for 
“activity mining”, the use of data mining on activity logs to 
understand how we can live a more abundant life [1]. 

The majority of the past research in actigraphy have 
focused on recognising common daily activities (eg: sleep, 
household chores, and various forms of exercises[2,3]).  
However, being able to log “what” you did solves only part 
of the requirements of diaries; a proportion of the contents 
of diaries is dedicated to recording our physical and mental 
conditions (i.e “how” we felt physically, and emotionally).  

In the past, we have approached the problem of physical 
condition monitoring from various angles including fitness 
evaluation and sleep quality evaluation [4].  As an 
unexpected side-effect of the latter research, we discovered 
that examination of actigraphic data during sleep allows 
accurate estimation of the respiratory rate (the rate of 
breathing)[4].  Respiratory rates are currently usually 
measured using nasal airflow sensors or chest wall sensors, 
which are both expensive and invasive [5].  The 
significance of our findings in [4] is that it allows long term 
continuous measurements of respiratory rates, which was 
particularly difficult with prior art.  Due to this, as far as the 
authors are aware, very little research has been done in the 
field of continuous long term respiratory rate recordings. 

The purpose of this study is to explore how we can utilise 
long term respiratory rate data for physical condition 
evaluation.  In this paper, we present major findings from 
this study, namely that respiratory rates measured from 
actigraphs enable the identification of conditions like 
inebriation (drunkenness), fever, and smoking cessation.  
We will not be discussing the biological mechanisms 
behind these findings; we will merely present the statistical 
facts observed in our study. 
DATA COLLECTION 
For this study, we used actigraphic data collected 
continuously over the course of 6 years (2007~2014) from 
20 individuals.  The device employed was a “Life 
Microscope” wristband (Hitachi Ltd.)[1] that measures tri-
axial acceleration at a resolution of 11.7mG at 20Hz.  All 
individuals wore the wristband all day and night, other than 
when charging the batteries (every fortnight or so). 
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We processed the actigraphic data according to the method 
detailed in [4].  To explain the idea briefly; acceleration 
data collected from the wrist during sleep contain tiny 
movements that have propagated from the chest wall’s 
breathing movements.  By performing frequency analysis, 
we can extract an estimate of the respiratory rate from this 
movement.  The results are sparse (detection rate: 44%), 
since the propagation of the chest’s movements depend on 
the posture, but the method provides an accurate (mean 
absolute error: 0.52 counts/min) estimation of respiratory 
rate during sleep, simply by wearing a wristband. 

Some of the individuals kept subjective, handwritten 
records of their daily activities.  The records of two of the 
individuals included subjective reports of their inebriation 
(drunkenness) before going to sleep on a VAS scale from 0 
(no alcohol taken) to 5 (heavily inebriated).  Two 
individuals reported days when they had fever.  Two 
individuals reported to have quit smoking during the 
recorded period.  Note that none of these self reports were 
originally intended for data analysis, so no precautions were 
made beforehand to ensure that the subjective reports 
maintained consistency between individuals, over time, or 
against some global criterion. 
INEBRIATION DETECTION 
On inspecting the collected recordings, we witnessed 
occasional nights where the respiratory rate surged in the 
first hour or so, then fell back to normal afterwards.  Fig.1 
shows four examples of this, where the surges are labelled 
with arrows.  Upon cross examination of the data with the 
handwritten records, we noticed that they matched nights 
where the individuals had reported a non-zero inebriation 
level.  This is not entirely unlikely, since it is known that 
alcohol act as stimulants, causing temporary increase of 
heart rate.  We thus explored the possibility of predicting 
nights on which individuals felt inebriated. 
Data 
The data employed were from two individuals that recorded 
nightly levels of inebriation, for a total of 753 days.  The 
individuals marked a score of 0 on days when they took no 
alcohol, a score of 5 on days when they felt heavily 
inebriated, and in-between depending on how they felt. 

To visualise the relation of subjective inebriation with the 
respiratory rate, we evaluated the “surge amount” for each 
night, defined as follows.  We calculated the mean 

respiratory rate avg0,90[t] for the first 90 minutes of sleep 
for each night t, and then took the increase in avg0,90[t] 
compared with the past 7 days: 

Fig.2 shows the mean of diff0,90[t] for each recorded level 
of intoxication for the two individuals.  For both 
individuals, the mean surge amount rises as the level of 
inebriation rises. There is a significant (p<0.05) difference 
between days recorded 0 and days recorded above 2.   
Predictive power of respiratory rates for inebriation 
We now attempt to separate “drunk” days with recorded 
inebriation of above 2 (chosen arbitrarily), from “sober” 
days with 0 (“no alcohol taken”), by performing binary 
classification on surge level features.  For each night, we 
calculate surge features with a sliding window (diff0,90[t], 
diff90,180[t], diff180,270[t]), and train an SVM classifier for 
two target classes: “sober” and “drunk”.  We evaluate the 
effectiveness of this method by leave-one-out cross 
validation for each individual separately, and both subjects 
together. 
Results 
Table 1 shows the results of the evaluation.  The positive 
predictive ratio (precision of “Drunk”) is high (73%) for 
subject 1, and fairly low (36%) for subject 2.  Note that the 
ratio of “Drunk” days in the original data is also very low 

Figure 1. Nights with surges at sleep onset (shown with 
red arrows)

Figure 2. Mean respiratory rate surge amount per 
inebriation level (error bar= standard deviation)

Subject 1 Predicted
Drunk Sober Ratio Prec. Recall

Actual Drunk 93 70 54.7% 0.73 0.57
Sober 35 100 45.3% 0.59 0.74

Table 1. Results of “Drunk” and “Sober” classification 
for individual subjects, and both subjects

Subject 2 Predicted
Drunk Sober Ratio Prec. Recall

Actual Drunk 40 31 24.0% 0.36 0.56
Sober 72 147 76.0% 0.83 0.67

Both Predicted
Drunk Sober Ratio Prec. Recall

Actual Drunk 138 96 39.8% 0.57 0.59
Sober 104 250 60.2% 0.72 0.71
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for subject 2, which explains the low precision. The 
precision in all cases are significantly higher than chance 
level.  When evaluating using data from both individuals 
combined, the positive predictive value is 57%, and the 
balanced accuracy (accuracy accounting for imbalance in 
the training set) is 65%. 
Discussion 
We showed that respiratory rate data exhibits surges at sleep 
onset on days with subjective inebriation, and that we are 
able to predict days in which individuals subjectively felt 
“drunk” by using only data from an actigraph.  There were 
some limitations to the setup which, when solved, may 
improve the prediction accuracy.  The training data was 
based on a subjective self-report that was not normalised 
nor guaranteed to be consistent.  There were also no records 
of the quantity of alcohol intake, or time of the last intake.  
A better experiment setup in the future would be to record 
the alcohol intake time and amount, and to take objective 
inebriation level measurements (e.g blood/breath alcohol 
content, or coordination tests.)  

While our current setup and results only lets us conclude 
that actigraphs can predict days with subjective inebriation, 
future work with more objective data may let us predict the 
objective inebriation level.  To be able to do this just by 
wearing a wristband will have significance for day-to-day 
healthcare, as well as specific situations like prevention and 
treatment of alcohol abuse. 
FEVER DETECTION 
We found that with many individuals, on some days every 
year or so, there are consecutive days where the respiratory 
rate is high for the entire night.  Fig.3 shows several 
examples of this; it clearly shows the red region (high 
respiratory rate) extending across several nights.  
Examination of handwritten records revealed that they 
matched days when the individuals had “fever”.  This in 
itself is understandable, as the core body temperature 

relates closely to the respiratory rate.  From this 
observation, we considered the possibility of detecting fever 
from respiratory rate data. 
Data 
There were two individuals that recorded days when they 
had fever.  In a span of 800 days, there were 4 separate 
regions where the individuals reported a fever (high 
temperature), for a total of 17 days.  The level of fever at 
which they reported is thought to differ individually and is 
not known, nor are the actual body temperatures at those 
times.   

Again, to visualise the relation between fever and rise in 
respiratory rate, we calculate diff0,360[t], i.e the increase in 
mean respiratory rate from sleep onset to 6 hours into sleep, 
compared to the past 7 days.  As shown in Fig.4, days with 
fever have significantly higher surge level (p=4.27E-06) 
compared to normal days. 

Due to the lack in the number of training cases of fever, we 
made no attempts to evaluate the predictive power of 
respiratory rate for finding days with fever.  However, we 
found that simply labelling days with surge rate above 1.5 
as “fever” and others as “normal” allowed classification 
with balanced accuracy of 70%.  Note that this figure 
should only be regarded as a very preliminary result, since 
the training case (which were used to derive the threshold 
of 1.5) and the test case is the same. 
SMOKING CESSATION DETECTION 
Finally, we demonstrate that respiratory rate data can be 
used to determine if and when individuals quit smoking. 
Fig.5 shows an example of an individual who quit smoking 
on September 2, 2010.  Fig.5 (b) is a plot of the mean 
respiratory rate, normalised for seasonal differences; the 
mean respiratory rate at each day of the year is calculated 
for the individual, and then is deducted from the mean 
respiratory rate of that date.  The respiratory rate falls by 
1.66 counts/min from the day after cessation.  Another 
individual who also quit smoking displayed similar 
tendencies. 
Prediction of the cessation date 
There were only two individuals who quit smoking in our 
dataset.  One, shown in Fig. 5, went from smoking an 

Figure 3. Examples of respiratory surges during fever 
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Figure 5. Long term respiratory rate data of an individual 
who quit smoking (a) as a heat map (b) as a plot of the 

mean nightly respiratory rate, normalised by day of year 
(day of cessation shown with arrows)
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average of 15 cigarettes a day to none.  The other went from 
smoking an average of 10 cigarettes a day, to a couple a 
month. 
Cessation date prediction 
For these two individuals, we attempt to predict the day on 
which they quit smoking, by finding the day the largest shift 
in respiratory rate baseline occurs.  We thus find the largest 
peak in the change of respiratory rate; for any particular day 
t, we calculate the difference in the average respiratory rate 
before t and after t.  Note that this measure assumes that the 
individual has been smoking for the entirety of the data up 
to the point of cessation.  Fig.6 shows a plot of this for each 
day of the two individuals.  The maximum change (the 
“respiratory rate baseline change peak”) occurs a day after 
the actual day of cessation for subject A, with a change of 
1.66 counts/min, and 51 days before for subject 2, with a 
change of 1.06 counts/min. 
Prediction of individuals who quit smoking 
If we can assume that the only effector that will cause the 
respiratory rate baseline to fall is the cessation of cigarettes, 
then the peak respiratory baseline change value (the height 
of the peak in Fig. 6) may in itself serve as a indicator of 
whether the individual has quit smoking.  Fig. 7 shows the 
distribution of peak respiratory rate baseline change values 
for all individuals in our dataset.  The mean is 0.22 counts/
min (σ: 0.43), which is significantly lower than our two 
individuals who quit smoking.  In fact, setting a threshold at 
0.65 counts/min (i.e. 1σ) lets us cleanly separate individuals 
who quit smoking from the rest.  Again, this result is only 
preliminary since we did not have enough to evaluate using 
independent training and test data. 
CONCLUSION AND FUTURE WORK 
In this study, we demonstrated that respiratory rate data 
estimated from wrist-based accelerometers can detect 

various physical conditions such as subjective inebriation, 
fever, and smoking cessation.  We can predict days with 
high subjective inebriation far above chance level.  We have 
been able to visualise days with fever, although the lack of 
data has stopped us from evaluating its predictive power.  
Similarly, we have shown that respiratory rate may allow us 
to identify individuals who quit smoking. 

Many of the results in this study were based on a small 
number of unnormalised subjective self-reports, so the 
findings are not immediately generalizable.  However, the 
results encourage us to believe that actigraphs may allow us 
to predict the three physical conditions we targeted in this 
study for a wider general population in the future. 

The largest contribution of our work is in showing that 
actigraphs, which have previously only been considered as 
tools for behavioural recognition or measuring activity 
levels, have a potential to quantify more qualitative aspects 
of the human lifestyle.  It is true that many of the matters 
covered in this paper can already be detected more 
accurately by other means; inebriation can be measured by 
blood alcohol level, fever can be detected by a 
thermometer, and smoking cessation could be hand logged.  
The importance of our findings is that we showed that all of 
these can be detected by a single, low cost, non-invasive 
sensor that is already widely distributed in consumer 
channels.  We plan to conduct a more large scale, rigorous 
validation of the claims laid out in this paper, and consider 
consumer applications of our findings. 
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Figure 6. Difference in respiratory rate before and after 
each date.
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