
Verifying Functional Behaviour of Concurrent Programs

Marina
Zaharieva-Stojanovski

University of Twente
the Netherlands

Marieke Huisman
University of Twente

the Netherlands

Stefan Blom
University of Twente

the Netherlands

ABSTRACT
Specifying the functional behaviour of a concurrent program
can often be quite troublesome: it is hard to provide a sta-
ble method contract that can not be invalidated by other
threads. In this paper we propose a novel modular tech-
nique for specifying and verifying behavioural properties
in concurrent programs. Our approach uses history-based
specifications. A history is a process algebra term built of
actions, where each action represents an update over a heap
location. Instead of describing the object’s precise state, a
method contract may describe the method’s behaviour in
terms of actions recorded in the history. The client class
can later use the history to reason about the concrete state
of the object.

Our approach allows providing simple and intuitive speci-
fications, while the logic is a simple extension of permission-
based separation logic.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—correctness proofs, formal methods, programming by
contract

General Terms
Verification

Keywords
concurrency, modular verification, histories, separation logic

1. INTRODUCTION
Verifying program correctness means proving that the pro-

gram behaves as described by its formal specification. In a
concurrent program, an inconsistent behaviour may occur
due to thread interleavings and potential data-race condi-
tions. Existing techniques for verifying concurrent software
often focus on proving data-race freedom in a program [4, 12,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
FTfJP ’14, July 29 2014, Uppsala, Sweden
Copyright 2014 ACM 978-1-4503-2866-1/14/07...$15.00.
http://dx.doi.org/10.1145/2635631.2635849

3]. Although this is an essential property for a concurrent
program, it does not guarantee that the program behaves as
the programmer expects. In practice, specifying and verify-
ing the functional behaviour of a concurrent program in a
modular way is often quite challenging.

We illustrate this by an example: Lst. 1 shows a sim-
ple shared data structure, a class Counter . The increase()
method is implemented correctly and is data-race free, as the
shared location data is protected by a lock. However, be-
cause synchronisation happens inside the method (internal
synchronisation), it is difficult to describe the behaviour via
the method contract. An expression data = \old(data) + 1
is not an acceptable postcondition in a concurrent setting,
because the value of data is unstable after the lock release.
As a result, method contracts in scenarios like this often
do not fully express the method behaviour, which also lim-
its proving properties for the client class that uses the data
structure. If the Client object in Lst. 1 creates a Counter
object c with initial value c.data = 0 , and then forks two
parallel threads, each of them increasing c.data by 1, we can
not prove in a modular way that after joining both threads,
the value of c.data is 2.

The same example was presented in 1976 in the work of
Owicki and Gries [16], where they propose the first formal
method for verifying parallel programs. To verify this pro-
gram, they use auxiliary (ghost) variables, which however,
break modularity. Modular reasoning about programs with
internal synchronisation is still a challenge.

class Counter {
2 int data;

Lock lock;
4 //... constructors

6 //postcondition = ... ?;
void increase(){

8 lock.lock();
data=data+1;

10 lock.unlock();
}

12 }
class Client{

14 // ...
Counter c = new Counter(0);

16 t1.fork(); t2.fork(); //both threads t1 and t2 call c.increase()
t1.join(); t2.join();

18 }

Lst. 1: A shared Counter data structure

In this paper we develop a new method for modular rea-

soning about partial correctness of behavioral properties in
concurrent programs. Our logic is based on permission-based
separation logic [3], while the specification language is based
on JML (Java Modeling Language) [13]. We target programs
with internal synchronisation, as the example in Lst. 1.

The general idea of the approach is the following. We
introduce actions as part of the specification language: an
action over a heap location x describes a change of the value
of x and is observed by the environment as an atomic change.
For example, the action for incrementing an integer value by
1 may be specified as:

action inc [int x] ≡ \old(x) + 1

When specifying the precise value of a location x in the
method post-state is difficult (as in Lst.1), the programmer
may specify the behaviour of the method in terms of actions
over x executed within the method. Every action over x
is recorded in a history of changes H associated to x. In
particular, every heap location x is associated with a Hist
predicate, which stores a history H (modelled as a process
algebra term [8]) in which all actions over x are recorded.

The history predicate Hist is a splittable token and thus,
may be shared among several parallel threads. Each thread
is responsible for recording its local changes in the owned
part of the token. When all threads have finished their up-
dates, the client class may collect all token parts and merge
all changes recorded by all threads. We can then reason
about the new value (or the set of possible values) of x.

The Counter .increase() method may be specified as:

//@ requires Hist(data, π, V,H);
//@ ensures Hist(data, π, V,H · inc),

where inc is the action specified above. The method contract
describes only the local changes in the history: the current
thread has increased the value of data by 1.

The main contribution of the paper is a novel methodology
for modular verification of behavioural properties in concur-
rent programs. The problem addressed in the paper is very
common in numerous concurrent programs. Importantly,
the approach that we introduce is rather straightforward:
it allows providing simple and intuitive specifications; the
logic that we propose is a simple extension of permission-
based separation logic. We are working on integrating this
technique in the VerCors tool set [2, 1].

Outline We give a short overview of the process algebra
theory in Sec. 2 and permission-based separation logic in
Sec. 3. Further, in Sec. 4 we present our approach for rea-
soning about concurrent programs. In Sec. 5 we compare
our work with other existing approaches and we discuss fu-
ture plans.

2. ALGEBRA OF COMMUNICATING PRO-
CESSES

The algebra of communicating processes (ACP) [8] is a
mathematical approach for reasoning about system behaviour
in terms of algebraic process expressions. The basic primi-
tives in ACP are actions from the set A = {a, b, c, ...}, each
of them representing an indivisible process behaviour. To
describe various processes {p1, p2, ...}, actions are combined
using algebraic operators, the most fundamental of which
are the sequencing composition (·) and the alternative com-
position (+). For example, the expression a+(b·c) expresses
a process composed of an action a or a sequence of actions

b and c. Further, two special actions are used: the dead-
lock action δ and the silent action τ (an action without
behaviour). We have: δ · p = δ, δ + p = p and τ · p = p.

Parallel composition of two processes is described by the
binary merge operator (‖), i.e., an alternative composition of
all possible interleavings between both processes: p1 ‖ p2 =
(p1 T p2) + (p2 T p1) + (p1 | p2). The operator T is the left
merge operator, which describes a parallel composition of
two processes where the initial step is always the first action
of the left-hand operator: (a · p1) T p2 = a · (p1 ‖ p2). The
communication merge (|) expresses a parallel composition
of two processes where the first step is a communication
between the first actions of each process: a · p1 | b · p2 = a |
b ·(p1 ‖ p2). For atomic actions, the communication function
(|) is defined through the function γ : A × A 7→ A: a | b =
γ(a, b). In Sec. 4.2 we show how we use the communication
function to provide synchronisation between processes.

3. PERMISSIONS, FRAMING, STABILITY

Separation Logic and Permissions.
Permission-based separation logic [17, 15] is a program

logic (an extension of Hoare Logic [10]) used to reason about
multithreaded programs. Every access to a heap location is
associated with a fractional permission π, i.e., a value in
the domain (0, 1] [3, 5]. At any point in time, a thread
might hold a permission to access a location. To change a
location x, a thread must hold a write permission for x, i.e.,
π = 1; while for reading a location, any read permission
is required, i.e., π > 0. The soundness of this logic ensures
that the sum of all threads’ permissions for a certain location
never exceeds 1, which guarantees that a verified program is
data-race free.

The basis of this logic is the separating conjunction opera-
tion (*): P*Q states that P and Q hold for disjoint parts of
the heap and thus, may be used by two parallel threads. Fur-
thermore, the separating implication or magic wand P-*Q
asserts that, if the current heap is extended with a disjoint
part satisfying P , then Q holds for the extended heap.

Permission for a location x is expressed via the predicate
PointsTo(x, π, v), which indicates that x points to a location
for which the thread has a permission π, and the value of
x is v. Proof rules for writing and reading are described by
the following Hoare triples (where “ ?u ” means any value
and we name this value “u”):

[Write] {PointsTo(x, 1, ?u)} x = v; {PointsTo(x, 1, v)}

[Read]
{PointsTo(x, π, v)} l = x; {PointsTo(x, π, v) ∗ l == v}

The PointsTo predicate is a splittable token, and may be
distributed among different parallel threads. This is shown
by the [SplitPerm] rule, where *-* denotes a separating
equivalence (two-way magic wand):

[SplitPerm]
PointsTo(x, π, v)*-*PointsTo(x, π1, v)*PointsTo(x, π2, v),

π = π1 + π2

Framing and Stability.
Permission-based separation logic is based on the concept

of framing : every shared location x in a formula must be

class Counter {
2 ...

//@ pred res inv = PointsTo(data, 1, ?v);
4 lock = new Lock/∗@<res inv>@∗/;

6 //@ requires //lock not held;
//@ ensures //lock not held;

8 void increase(){
lock.lock();

10 /∗{PointsTo(data, 1, ?v)}∗/
data=data+1;

12 /∗{PointsTo(data, 1, v+1);}∗/
lock.unlock();

14 /∗{true}∗/
} }

Lst. 2: The Counter class - specification with locks

framed, i.e., the formula must express a positive permission
π to x. Holding a permission guarantees that the value of x
is stable and can not be changed by any other thread. Fram-
ing is implicitly maintained with the PointsTo predicate: in
general, we can reason about the value of x only via the
PointsTo(x, π, v) predicate. This predicate in a way binds
together the knowledge of the value v at a location x with
an access permission to x.

Using Locks.
Permission-based separation logic can be used to reason

about programs with locks [9, 14]. For each lock, a special
predicate is defined, called a resource invariant, describing
which permissions the lock protects. For example, the re-
source invariant res inv associated to the lock expresses that
the lock protects a write permission to data, see Lst. 2, lines
3, 4. When a thread acquires the lock, it gets the associ-
ated resource invariant (except for reentrant acquiring) (line
10). Upon final lock release, the thread returns the resource
invariant back to the lock (line 14).

4. APPROACH
The specification of the Counter class (see Lst. 2) is strong

enough to verify data-race freedom: however, it does not
state anything about the behaviour of the increase method.
Although we can not reason about the value of data in the
method poststate, we would like the postcondition to express
that the method has properly changed the value of data.
This raises the question: How can we reason about the value
of a heap location x, without holding any permission to x?

4.1 Separation of the PointsTo Predicate
The proof outline of the increase method (see Lst. 2)

shows that one can reason about the value of data only while
the permission to data is held. Once the lock is released
and the PointsTo predicate is lost (line 13), we lose also the
information about the value of data. Our intention is to
provide a technique that allows a resource invariant to store
permissions to certain locations, while the information about
the values for these locations can be handled independently.

The key of our concept is the following rule:

[Separate]
PointsTo(x, 1, v) *-* Perm(x, 1, v)*Hist(x, 1, {v}, ε)

The [Separate] rule splits the PointsTo predicate in two
separate parts: i) Perm(x, 1, v) predicate, which keeps the

access permission for the location x and its current local
value v and ii) Hist(x, 1, V,H) predicate, which stores some
global information about how the value of x has been chang-
ing in the past. In particular, the parameter V is a set of
possible values that x initially had and H is a history of
changes of the value of x. The history H is modelled as
an ACP process algebra term [8], where every action is a
change of x (we discuss actions more precisely later in Sec.
4.2). Initially, the history is an empty process, H = ε.

The second parameter π in the Hist predicate is used to
make it a splittable token, as stated by the following rule:

[SplitHist]
Hist(x, π, V,H)*-*Hist(x, π1, V,H1)*Hist(x, π2, V,H2),

π = π1 + π2, H = H1 ‖ H2

where ‖ is the standard ACP parallel composition operator.
Later, in Sec. 4.2 we explain how H1 and H2 are chosen
when splitting the Hist token (when forking a new thread).

Reasoning about the value of x is possible either by us-
ing the PointsTo predicate, or by using both Perm and Hist
predicates. When we reason about methods with internal
synchronisation, the resource invariant typically stores the
Perm predicate, while the Hist token is independently split
and distributed among different parallel threads. When a
thread changes the value of x, it has to acquire the lock
to obtain a write permission and additionally has to record
the change in a form of an action in the owned part of the
Hist token. When all threads are joined, their local histories
are merged together. Then, a full Hist(x, 1, V,H) token is
obtained, which contains a complete information about the
global knowledge of x. Then, the value V may be updated
to a set of new possible values of x, while the history H is
reinitialised to H = ε (this is discussed in Sec. 4.5).

4.2 A History as a Communication Process

Actions.
As discussed above, the history H in the Hist(x, π, V,H)

predicate is modelled as an ACP process, where the primi-
tives in the process H represent actions over x, i.e., a change
of the value of x. An action is defined as part of the program
specification with the following syntax:

action act label [Type x] (Type l) ≡ f(l, \old(x))

The syntax shows that every action is labeled with a name
(action label), and is parameterised by a special single pa-
rameter x that represents the location that is changed. We
call this the location parameter. The action may further con-
tain an additional list of parameters l; it is important that
in this list we do not allow any heap location.

The right hand-side of the action definition is the interpre-
tation of the action, for an action a we denote rs(a). Every
action over x is interpreted as a function over the list of pa-
rameters l and the value \old(x), i.e., the value of x at the
moment before the action starts. The function returns the
value of x after the action is finished. In practice, an ac-
tion is not necessarily atomic, but is observed by the other
threads as an atomic change.

For every action, the history H carries the action label
together with the concrete values of the action parameters
l. The location parameter is not mentioned because it is
already stored in the Hist predicate associated to H.

Below, we show examples of three actions. The action a
represents incrementing an integer value by k; action b de-
scribes adding an element to a list; while action c represents
an assignment to a specific value k.

action a [int x] (int k) ≡ \old(x) + k
action b [list l] (int elem) ≡ cons(elem, \old(l))
action c [int x] (int k) ≡ k

History Merging.
As the [SplitHist] rule shows, when the Hist(x, π, V,H)

token is split (when forking a new thread), two histories H1

and H2 should be provided for which H = H1 ‖ H2. Each
thread records its own changes in a separate history H1 or
H2. When threads are joined and H1 and H2 are merged,
only the new actions from both histories, i.e., those actions
recorded after splitting, should be interleaved.

To this end, we extend the set of actions A with an addi-
tional set As of synchronisation action labels. For each label
s ∈ As, the set As also contains its complement s̄ ∈ As

(¯̄s = s). We define that two complementary synchronisation
actions communicate in a silent action, while communica-
tion between any other two actions returns a deadlock.

γ(s, s̄) = τ
γ(a, b) = δ if a /∈ As ∨ (a ∈ As ∧ b 6= ā)

Furthermore, when a full Hist(x, 1, v,H) token contains a
history H = s ·H1 +H2, s ∈ As, we can evaluate H to H2,
resulting in the token Hist(x, 1, V,H2).

The synchronisation actions and the communication func-
tion (|) can impose some constraints when evaluating the
parallel composition between two processes. For example
the expression p1 · s · p2 ‖ q1 · s · q2, (s, s /∈ p1, q1) results in
a process (p1 ‖ q1) · (p2 ‖ q2), i.e., actions from process p1
and q2 (or p2 and q1) are not interleaved. In practice, the
synchronisation actions are used as follows: when a thread
t1, holding a token Hist(x, π, V,H) forks a thread t2, the
token is split:

Hist(x, π, V,H)-*Hist(x, π/2, V,H · s)*Hist(x, π/2, V, s̄),

where s ∈ As. Threads t1 and t2 then start to run in parallel,
each of them recording its changes to x into its local history,
H · s and s̄ respectively. When threads are joined, the new
histories H · s ·H1 and s ·H2 are merged such that only the
actions happened after forking the thread are interleaved:
H · s ·H1 ‖ s ·H2 is trace equivalent to H · (H1 ‖ H2).

The current approach does not support scenarios where
one thread is joined by several threads. We consider that
these scenarios are not very common; however, we plan to lift
this limitation, generally by storing the same complementary
synchronisation action in the histories of all joining threads.

4.3 Program Specifications
Lst. 3 shows the full specification of the Counter class

containing two methods: increase() and set(int). The lock
object which protects the field data now stores only the per-
mission to data (line 3). An action labeled a is defined to
represent incrementing an integer value by k (line 5), while
the action b describes overriding an integer value (line 6).

Having the Hist predicate, we can easily specify the be-
haviour of both methods. In their prestate it is required that
the current thread holds (part of) the Hist token associated
to data (lines 8, 18), while the postconditions guarantee that

class Counter{
2 int data;

Lock lock; /∗ res inv = Perm(data, 1, ?u); ∗/
4 . . .

//@ action a[int x](int k) ≡ \old(x) + k;
6 //@ action b[int x](int k) ≡ k;

8 //@ requires Hist(data, π, V, H);
//@ ensures Hist(data, π, V, H.a(1));

10 void increase(){
lock.lock();

12 //@ start a[data](1);
data=data+1;

14 //@ commit a[data](1);
lock.unlock();

16 }

18 //@ requires Hist(data, π, V, H);
//@ ensures Hist(data, π, V, H.b(k));

20 void set(int k){
lock.lock();

22 //@ start b[data](k);
this.data = k;

24 //@ commit b[data](k);
lock.unlock();

26 }

Lst. 3: The Counter class - complete specification

the proper change over data is recorded in the history H
(lines 9, 19). Thus, no permission to data is needed in the
pre- or poststate of the method: the permission is obtained
inside the method via the lock object.

It is required that the program segment where a certain ac-
tion occurs is explicitly specified in the program. Therefore,
we introduce two specification commands: i) start(a [x] (̄l))
indicates the beginning of the action and ii) commit(a [x] (̄l))
indicates the end of the action after which the action must be
recorded in the history (see Lst. 3, lines 12, 14 and 22, 24).
We consider that actions are correctly typed (a start action
is always followed by a corresponding commit command).
Further, actions over a same location do not overlap: this
is important in order to avoid recording the same update
several times in the history.

4.4 Verification Methodology
To check whether the program meets the specification, the

verifier must: i) ensure that the start and commit specifica-
tion commands are properly added when required; ii) ensure
that the actions added to the history have indeed happened.

Ensuring start and commit existence.
When updating the value of a certain location x, we want

to ensure that the change is registered somewhere. When
using the PointsTo predicate, the newly assigned value is
directly recorded into the predicate itself, see Hoare triple
[Write], Sec. 3. With our approach, the PointsTo predicate is
split into the predicates Perm and Hist. Thus, in addition to
the triple [Write] and [Read], we need to introduce another
rules for writing and reading that should be used when the
PointsTo predicate is split. In particular, we have to ensure
that the assignment to x happens indeed as part of an action
over x that later will be added to the history of changes of
x.

To start an action over x, a write access to x is required,

//@ requires Hist(data, π, V, H);
2 //@ ensures Hist(data, π, V, H·a(1));

void increase(){
4 /∗{Hist(data, π, V, H)}∗/

lock.lock();
6 /∗{Perm(data, 1, ?v) ∗ Hist(data, π, V, H)}∗/

//@ start a[data](1);
8 /∗{Perm(data, 1, v) ∗ HistPerm(data, π, V, H, v)}∗/

data=data+1;
10 /∗{Perm(data, 1, v+1) ∗ HistPerm(data, π, V, H, v)∗/

//@ commit a[data](1);
12 /∗{Perm(data, 1, v+1) ∗ Hist(data, π, V, H·a(1))}∗/

lock.unlock();
14 /∗{Hist(data, π, V, H·a(1)}∗/

}

Lst. 4: Proof outline of the increase method

i.e., the Perm(x, 1, v) predicate. Within the action, the cur-
rent thread must not lose this predicate. This is important
to ensure that actions over the same location do not inter-
leave. Additionally, the start command requires (part of)
the Hist token associated to x, which is consumed and re-
placed with a new HistPerm token, which exists until the
action ends. This token is in a way a permission obtained
from the history that allows writing at the location x, with a
guarantee that the changes will be recorded later. The cur-
rent value of x is then copied into the HistPerm predicate.
This is described by the following Hoare triple:

[Start] {Perm(x, 1, v)*Hist(x, π, V,H)}
start a[x](l̄);

{Perm(x, 1, v)*HistPerm(x, π, V,H, v)}

The new Hoare triples for writing and reading a location
x (in addition to the rules [Write] and [Read]) are defined
as:

[WrtHist] {Perm(x, 1, ?u)*HistPerm(x, π, V,H, v)}
x = w;

{Perm(x, 1, w)*HistPerm(x, π, V,H, v)}

[RdHist] {Perm(x, π, v)} l = x; {Perm(x, π, v)*l == v}

Ensuring actions correctness.
Before the action ends, the verifier checks whether the

specified action is properly executed. The Hoare triple for
committing an action states:

[Commit]

{Perm(x, 1, w)*HistPerm(x, π, V,H, v)*w == rs(a[v](l))}
commit a[x](l̄);

{Perm(x, 1, w)*Hist(x, π, V,H · a(l̄))}

With the execution of the commit command, the action is
recorded in the history under the condition that the old value
of x, i.e., v, is properly updated to a new value w according
to the action interpretation. Lst. 4 shows the proof outline
for the increase method.

4.5 Reasoning using a History
As discussed above, to reason about the value of a heap

location x we need the full Hist(x, 1, V,H) token, which en-
sures that x is in a stable state and no thread can modify
its value. The set of possible values for x can be calculated

class Client{
2 void main(){

Counter c = new Counter(0);
4 /∗{Hist(c.data, 1, {0}, ε)}∗/

Thread t = new Thread(c);
6 t.start(); // t calls c.increase();

/∗{Hist(c.data, 1/2, {0}, s)} (s is a sync. act.)∗/
8 c.set(4);

/∗{Hist(c.data, 1/2, {0}, s·b(4))}∗/
10 t.join();

/∗{Hist(c.data, 1, {0}, s·b(4) || s·a(1)}∗/
12 /∗{Hist(c.data, 1, [[(b(4) || a(1))]]{0}), ε)}∗/

/∗{Hist(c.data, 1, [[(b(4)·a(1) + a(1)·b(4))]]{0}), ε)}∗/
14 /∗{Hist(c.data, 1, {4,5}, ε)}∗/

}
16 }

Lst. 5: A Client class - reasoning using histories

after interpreting all actions from the history. This is stated
by the rule:

Hist(x, 1, V,H)-*Hist(x, 1, [[H]]V , ε),

where [[H]]V returns a set of possible values for x after the
evaluation of the process H of actions over x, where the
initial value of x was any v ∈ V .

We define the [[H]]V operation inductively as follows (note
that the ‖ operator can be reduced to · and +):

i) [[ε]]V = V
ii) [[H1 +H2]]V = [[H1]]V ∪ [[H2]]V

iii) [[a(l̄) ·H]]V = [[H]]V
′
, V ′ = {rs(a[v](l))|v ∈ V }

Lst. 5 shows an example of a client that uses a Counter
object c. During the initialisation phase of the object c the
PointsTo(c.data, 1, 0) predicate is obtained from which the
permission part, Perm(c.data, 1, 0), is transferred into the
lock. Thus, the client obtains the Hist predicate for data
(line 4). The client starts a new thread t and then both
threads running in parallel use the same Counter object:
thread t increments the value c.data by 1 (line 6), while the
client thread assigns c.data to 4 (line 8). The Hist token is
divided into two parts (line 7), so both threads record the
change in their own history. At the end, both histories are
merged (line 11). The client, holding the full Hist token can
reason that the value of data is either 4 or 5 (line 14).

5. CONCLUSIONS AND RELATED WORK
This paper introduced a new history-based technique for

modular reasoning about concurrent programs. The tech-
nique allows one to provide intuitive method specifications
that describe only the local effect of a thread, in terms of
abstract (user-specified) actions. This reduces the need to
reason about fine-grained thread interleavings. The tech-
nique is an extension of permission-based separation logic.

Comparable to our approach, is the work on linearisabil-
ity [19, 20]. A method is linearisable if the system can ob-
serve it as if it is atomically executed. Linearisability is
proved by identifying linearisation points, i.e. points where
the method takes effect. This allows one to specify a con-
current method in the form of sequential code, which is in-
lined in the client’s code (replacing the call to the concurrent
method). In a similar spirit, Elmas et al. [7] abstract away
from reasoning about fine-grained thread interleavings, by

transforming a fine-grained program into a corresponding
course-grained program. The general idea behind the code
transformation is that consecutive actions are merged in a
proper way to increase atomicity up to the desired level.

Compared to these approaches, our technique provides
more flexibility, because the interpretation of the abstract
actions is user-specified. In particular, it may consist of sev-
eral complex operations. Additionally, we postpone how the
action is to be interpreted, and first build an abstract pro-
cess algebra term to model the history. This means that any
process algebra optimisation can be applied on the history
as well. Finally, in contrast to the work presented above,
our technique is also suited to reason about object-oriented
code with dynamic thread creation.

Another approach to reason about the functional behaviour
of concurrent programs is by using Concurrent Abstract Pred-
icates [6], which extends separation logic with shared re-
gions. A specification of a shared region describes possi-
ble interference, in terms of actions and permissions to ac-
tions. These permissions are given to the client thread to
allow them to execute the predefined actions according to
a hardcoded usage protocol. A more advanced logic is the
extension of this work to iCAP (Impredicative Concurrent
Abstract Predicates) [18], where a concurrent abstract pred-
icate may be parameterised by a protocol defined by the
client. In a similar spirit, Jacobs et al’s [11] propose to rea-
son about a data structure with internal synchronisation,
by augmenting the client program with ghost code that is
passed as an argument to the module. This results in a kind
of a higher-order programming, in order to allow auxiliary
variable updates into the module.

Compared to this work, our technique allows more natu-
ral specifications where a method contract may describe the
thread’s local changes, and there is no need to specify a pro-
tocol or any auxiliary ghost code. The abstraction provided
by specifying actions helps to keep the specifications and
program code clean, and requires only a few annotations.

Future Work Our next goal is to reason about more com-
plex concurrent data structures. For this, we expect that our
technique can be applied, if the specifications are expressed
in terms of actions over a ghost field that represents the real
data structure. Next, we plan to extend the definition of
an action to allow more expressive specifications, as well as
to support actions over multiple locations. We also intend
to integrate our history-based approach in reasoning about
distributed software.

Aknowledgements We would like to thank Bart Jacobs
and Dilian Gurov for their helpful comments. This work was
supported by ERC grant 258405 for the VerCors project.

6. REFERENCES
[1] A. Amighi, S. Blom, M. Huisman, and

M. Zaharieva-Stojanovski. The VerCors project:
setting up basecamp. In PLPV, pages 71–82, 2012.

[2] S. Blom and M. Huisman. The VerCors Tool for
verification of concurrent programs. In Formal
Methods (FM) 2014, volume 8442 of LNCS, pages
127–131. Springer, 2014.

[3] R. Bornat, C. Calcagno, P. O’Hearn, and
M. Parkinson. Permission accounting in separation
logic. In POPL, pages 259–270. ACM, 2005.

[4] C. Boyapati, R. Lee, and M. C. Rinard. Ownership
types for safe programming: preventing data races and

deadlocks. In OOPSLA, pages 211–230, 2002.

[5] J. Boyland. Checking interference with fractional
permissions. In R. Cousot, editor, Static Analysis
Symposium, volume 2694 of LNCS, pages 55–72.
Springer, 2003.

[6] T. Dinsdale-Young, M. Dodds, P. Gardner, M. J.
Parkinson, and V. Vafeiadis. Concurrent abstract
predicates. In ECOOP, pages 504–528, 2010.

[7] T. Elmas, S. Qadeer, and S. Tasiran. A calculus of
atomic actions. In POPL, pages 2–15, 2009.

[8] W. Fokkink. Introduction to Process Algebra.
Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1st edition, 2000.

[9] C. Haack, M. Huisman, C. Hurlin, and A.Amighi.
Permission-based separation logic for Java, 201x.
Conditionally accepted for LMCS.

[10] C. A. R. Hoare. An axiomatic basis for computer
programming. Commun. ACM, 12(10):576–580, 1969.

[11] B. Jacobs and F. Piessens. Expressive modular
fine-grained concurrency specification. In POPL, pages
271–282, 2011.

[12] B. Jacobs, F. Piessens, J. Smans, K. R. M. Leino, and
W. Schulte. A programming model for concurrent
object-oriented programs. ACM Trans. Program.
Lang. Syst., 31(1), 2008.

[13] G. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby,
D. R. Cok, P. Müller, J. Kiniry, and P. Chalin. JML
Reference Manual, Feb. 2007.

[14] P. W. O’Hearn. Resources, concurrency and local
reasoning. In CONCUR, pages 49–67, 2004.

[15] P. W. O’Hearn. Resources, concurrency, and local
reasoning. Theor. Comp. Sci., 375(1-3):271–307, 2007.

[16] S. S. Owicki and D. Gries. Verifying properties of
parallel programs: An axiomatic approach. Commun.
ACM, 19(5):279–285, 1976.

[17] J. Reynolds. Separation logic: A logic for shared
mutable data structures. In 17th IEEE Symposium on
LICS 2002, pages 55–74. IEEE Computer Society.

[18] K. Svendsen and L. Birkedal. Impredicative concurrent
abstract predicates. In ESOP, pages 149–168, 2014.

[19] V. Vafeiadis. Modular fine-grained concurrency
verification. PhD thesis, University of Cambridge,
2007.

[20] V. Vafeiadis. Automatically proving linearizability. In
CAV, pages 450–464, 2010.

