
Data Caches for Superscalar Processors*

Toni Juan Juan J. Navarro Olivier Temam
antoniojQx.upc.es juanjoQac.upc.es temam@prism.uvsq.fr

Dept. Arquitectura de Computadors - Barcelona PRiSM

[Jniversitat Politecnica de Catalunya Versailles University

Spain FlWlCe

Abstract

As the number of instructions executed in parallel increases,
superscalar processors will require higher bandwidth from
data caches. Because of the high cost of true multi-ported
caches, alternative cache designs must be evaluated. The
purpose of this study is to examine the data cache band-
width requirements of high-degree superscalar processors,
and investigate alternative solutions. The designs studied
range from classic solutions like multi-banked caches to more
complex solutions recently proposed in the literature. The
performance tradeoffs of these different cache designs are
examined in details. Then, using a chip area cost model,
all solutions are compared with respect to both cost and
performance. While many cache designs seem capable of
achieving high cache bandwidth, the best cost/performance
t,radeoff varies significantly depending on the dedicated area
cost, ranging from multi-banked cache designs to hybrid
multi-banked/multi-ported caches or even true multi-ported
caches. For instance, we find that an 8-bank cache with mi-
nor optimizations perform 10% better than a true a-port
cache at half the cost, or that a 4-bank 2 ports per bank
cache performs better than a true 4-port cache and uses
45% less chip area.

1 Introduction

Currently, processor performance is improved through higher
clock rates and increasing the number of instructions ex-
ecuted in parallel. This latter trend raises several issues,
among which is the necessity to design data and instruc-
tion caches which can tolerate several accesses per cycle.
Most processors now achieve high throughput with instruc-
tion caches by loading one or several cache lines at the same
time, thus exploiting instruction stream spatial locality. To
a large extent, the effect of branches on instruction stream
locality can be hidden by using branch prediction to drive in-
struction prefetching [YMP93]. Multiple-access data caches

*This work was partly funded by CNRS under a grant from PRC
GdR ANM and by the Ministry of Education and Culture of Spain
undrr grant CICYT TIC-O-129/95

Copyright 1997 ACM O-8979l-902s5/97/7..$3.50

are more difficult to design because load/store requests sent
in parallel share no obvious locality properties. The diffi-
culty is to propose a design that can cope with increasing
degree of instruction parallelism. The solutions presently
implemented in processors can be classified as:

l True multi-porting. With respect to performance true
multi-porting is clearly an ideal solution, but its chip area
cost is high. Cost can be partly reduced by accepting a
certain degradation of cache access time that would reduce
the performance.

. Multiple Cache Copies. For n accesses, the cache must
be replicated n times with no benefit to storage space. More-
over, store requests are sent simultaneously to all cache
copies for coherence and thus no other cache request can
be sent in parallel. Since about 30% of memory accesses are
store requests [HP96], this solution is severely limited. The
DEC 21164 [Dig941 has a dual-ported cache implemented
with two copies of the cache array.

l Virtual Multiporting. In the Power2 [Mic93], virtual
dual-porting is used: the cache SRAM is twice as fast as the
processor clock allowing two processor requests in a single
processor cycle. The new Alpha 21264 [Dig961 also uses this
technique. Again, it is unlikely a cache SRAM n times as
fast as the processor clock can become a standard solution.

l Multi-banking. The cache is divided in several banks,
each bank can be accessed independently of the others. The
cost of multi-banking is a crossbar to route requests from
load/store units to cache banks and another one from banks
back to ports. The crossbar area size as well as the cache
access time increase with the number of banks. However,
the main issue are the bank conflicts as shows the experi-
ence of multi-banked memories in vector processors [OL85].
Bank conflicts occur when two or more requests need to ac-
cess the same bank simultaneously. While bank conflicts
could be partially eliminated by using a very large num-
ber of memory banks in vector processors (512 in the Hi-
tachi S-3800 [KISs94]), this solution may not be practical
for caches. Increasing the number of banks also implies
deeper crossbar and thus longer cache access time, even
though smaller banks are faster and could partially compen-
sate for cache access time degradation. The Pentium data
cache [Int93] has 8 banks, while the MIPS R8000 [MIP94]
uses a dual-banked data cache.

Thus, to design a data cache that can accept multiple
requests simultaneously there are many cost/performance
tradeoffs to address. The purpose of this study is to ex-
pose these tradeoffs for different cache structures and to
provide performance hints for each structure. In Section 2
the superscalar processor architecture used in this study is

60

http://crossmark.crossref.org/dialog/?doi=10.1145%2F263580.263595&domain=pdf&date_stamp=1997-07-11

described, its performance, cache bandwidth requirements
and the characteristics of its cache requests are analyzed
in Section 3. True multi-ported caches are examined in Sec-
t,ion 4 a.nd these results are used as performance references
t.hroughout, t.he study. Multi-banked caches are examined
in Section 5, and several alternative designs to both multi-
ported and multi-banked caches are discussed in Section 6.
These different solutions are first compared in terms of per-
formance throughout the study, and in Section 7 the area
cost model developed by Mulder et al. [MQFSl] is used to
determine the best overall cost/performance tradeoffs. Fi-
nally, Section 8 presents some related work.

2 Methodology

As processor issue rate increases and the sustained number
of instructions executed per cycle (IPC) is closer to the peak
IPC, t#he number of memory requests per cycle is naturally
going to increase. To mimic this increased processor pres-
sure on data caches, we have used a superscalar processor
with high issue rate. As issue rate increases, more sophisti-
cated branch prediction techniques and a larger number of
functional units can be expected. Though it is feasible to
add functional units, elaborating on future branch predic-
tion t#echniques is out of the scope of this article. To still
take these future improvements into account and also to ex-
hibit maximal data cache pressure, we have removed these
two processor bottlenecks by using perfect branch prediction
and a large number of functional units. We acknowledge
these assumptions affect the data address trace. Mainly the
distribution of data cache requests over time (which cache
requests are sent in the same cycle) is changed, but the ad-
dress sequence is less affected since instruction dependencies
are considered. Inspite of the imprecision, we still find this
tracing methodology to be the best tradeoff for obtaining
high data cache pressure and an accurate address trace. A
similar approach of using perfect branch prediction was used
in a recent study by Jourdan et al. [JSL95] which aimed at
dimensioning functional units of future superscalar proces-
sors.

Simulated Architecture

We defined a processor architecture close to that of the HP-
8000 which we found to be both aggressive at extracting ILP
and simple enough to scale up well.’ Present processors is-
sue 4 to 6 instructions per cycle. We found that increasing
processor degree beyond 8 does not bring significant im-
provements for most codes. So, except for this section, we
use a degree 8 processor. Like the HP-8000, the processor
architecture includes an instruction queue playing the role
of both reservation stations and commit buffer.’ Instruc-
tions are sent in-order to the queue, dispatched to functional
units, executed out-of-order, and committed in-order again.
Commits are performed in-order to preserve the coherence
of store requests, enable easy squashing of instructions and
recovery after exceptions. The instruction queue is split
into a load/store queue and a scalar instruction queue as
in the HP-8000. A scalar instruction queue entry contains
operands and/or sources of operands (functional units iden-
tifiers). The load/store queue contains the same information
plus the data address. This address is used to maintain co-
herence between load/store instructions. A load can be sent

‘The HP-8000 is a superscalar processor of degree 4.
2Tl,,s Instruction queue corresponds to the znstructzon wndow

rnerkoned above and in [JSL95]

t,o cache only if the addresses of all older store instructions
are knowu and distinct. If there exists a store with same ad-
dress, the load is not sent to cache and the data is directly
read from the load/store queue. Stores execute only when
they retire. The main processor parameters are the num-
ber of instructions fetched together, i.e., the degree of the
superscalar processor, the number of instructions the pro-
cessor attempts to commit every cycle, the functional units
configuration (number, types, latencies and issue rates) and
the instruction window size (the size corresponds to the sum
of the load/store queue size and the scalar queue size; both
queues have identical size). To restrict the number of com-
binations, several configurations have been defined which
correspond to different scales of the same design, see Ta-
ble 1. In Section 3, all configurations are used, but in the
other sections, only configuration 2 is used.

configuration 1 2 3 4

Degree Nb. of inst. 4 8 16 32
fetched per cycle)
Nb of inst. attempted 4 8 16 32
to be committed per cycle
Instruction window size 1 64 128 256 512

Table 1: Processor Configurations.

As mentioned above, we assume perfect instruction fetch.
To reduce the impact of resource conflicts on processor per-
formance, the number of functional units of each type is
equal to the processor degree for each configuration. The
functional units latencies are 1 cycle for all ALU operations,
2 cycles for floating-point ADD, 4 cycles for floating-point
MULT and 20 cycles for floating-point DIV. All functional
units are fully pipelined except for floating-point DIV.

Cache memory parameters

In the next sections, we seek to define and dimension cache
designs that can cope with such processor architectures. A
few cache/memory parameters remain fixed. In this study,
we essentially consider a fast first-level on-chip data cache.
Since cache access time is one of our main concerns, the
cache is direct-mapped. The cache is also write-back, write-
allocate. The cache size is equal to 32 Kbytes, i.e., within
the current range of 8 Kbytes to 256 Kbytes, and the line
size is equal to 32 bytes. This cache configuration is called
the Baseline cache throughout the text and figures. Unless
otherwise mentioned, the cache is non-blocking. The miss
latency to the next memory level is 5 cycles, the access to
this lower memory level is pipelined and one miss request
can be sent every cycle with at most 5 pending requests,
i.e., as if a close second-level cache is used. However, this
lower memory level is not simulated and all requests are
considered hits to restrict the number of parameters and
focus on the first-level cache.

In the remainder of the text it is necessary to distin-
guish between the number of processor-to-cache ports which
corresponds to the number of data paths between the pro-
cessor and the cache, and the number of cache ports or cell
ports which corresponds to the number of ports of each cache
SRAM cell. An n-bank cache may have only p processor-
to-cache ports with p < n. For example, the Pentium data
cache [IntYS] has 2 processor-to-cache ports, 8 banks and
1 cell port, i.e., n = 8 and p = 2. It is assumed that a

61

y-port ca.che is always associated with a processor having p
processor-to-cache ports.

Benchmarks

Ten benchmarks were used for the study, five SPECint92
codes and five SPECfp92 codes listed in Table 2. SPEC92
was preferred over SPEC95 because simulation time restricts
trace length. With SPEC95, a small trace length is likely to
only correspond to a very small fraction of the whole code.
Since this study is focused on bandwidth rather than la-
tency, having representative ILP performance, i.e., travers-
ing many different code constructs, was considered more im-
portant than having large data sets. No particular criterion
drove the selection of these SPEC92 benchmarks. We picked
the five first SPECfp92 and SPECint92 that ran success-
fully with Spy [G. 911, the tracer used in this study. For
each benchmark, 100-million instruction traces were simu-
lated which correspond to 5%-10% of most benchmarks. The
first 10 million instructions were ignored. Benchmarks were
compiled on Sun Spare processors using -04 optimization.
No software optimization is used to exhibit more ILP except
for loop unrolling as provided in the Sun compilers.

hydro2d 0.72 1.95 2.06 2.09 2.10 42% 0.07
Avg FP 0 91 1.91 2.06 2.13 214 32% 0.07
espresso 1.00 3.74 5.75 7.14 7.75 25% 0.01
Ii 0.89 4.00 7.15 8.03 8.09 31% 0.01
eqntott 0.95 3.91 6.85 9.26 11.0 23% 0.03
compress 0.64 3.85 4.88 5.00 5.02 23% 0.16
IFC 0.77 3.46 5.01 5.74 6.04 28% 0.02
Avg INT 0.85 3.79 5.93 7.03 7.58 26% 0.05

Avg All 0.88 2.85 3.99 4.58 4.85 29% 0.06
Mem IPC NA 0.79 1.11 1.25 1.31 N.A N.A

Table 2: Alpha 2116.4 IPC, IPC with perfect cache for dif-
ferent super-scalar degrees, Percentage of memory operations
in each benchmark and Miss Ratio with the baseline cache.

3 Performance Thresholds and Nature of Cache Requests

In order to get a performance bound for our superscalar pro-
cessor, simulations were first run for each of the 10 bench-
marks assuming a perfect cache, i.e., no cache miss and
unlimited number of cache ports, so that each load/store
reference is serviced in a single cycle. Table 2 shows the
performance measured in instructions committed per cycle,
denoted IPC (Instruction Per Cycle), for the four differ-
ent processor configurations with a perfect cache. The best
average IPC is equal to 4.85 for a processor of degree 32.
Though this figure is not so high, the actual sustained IPC
of current processors is much lower. In [CB96], the IPC of
the Alpha 21164 for the same benchmarks were collected
and are shown in Table 2. The Alpha 21164 is a 4-way
issue processor and it achieves an average IPC of 0.88 for
the selected benchmarks. Therefore, even if the IPC for the
MIPS RlOOOO or the HP 8000, which use out-of-order exe-
cution unlike the DEC 21164, are 2 or 3 times higher, these
results show that significantly higher IPC can be achieved
with higher issue rate under optimal hypotheses (perfect

3i

Figure 1: Distribution of Number of Cache Requests Sent

Simultaneously (cumulated) with perfect cache.

branch prediction, no resource conflict). Also, the best av-
erage floating-point IPC (2.14) is lower than the best av-
erage integer IPC (7.58). Because branch prediction is one
of the major bottlenecks of integer codes, it is natural that
using perfect branch prediction boosts integer codes perfor-
mance. These numbers do not reflect the theoretical in-
trinsic instruction-level parallelism indicated in [HP961 but
they are consistent with the detailed experiments by Jour-
dan et al. [JSL95]: about 7.5 IPC for integer codes and about
4.5 for floating-point codes in average 3. Though floating-
point IPC is also lower than integer IPC in the latter study,
we observed lower floating-point IPC but we used a different
instruction set: Spare processor and code compiled on a Su-
persparc 20 while Jourdan et al. used the MIPS instruction
set compiled on a R4600 SGI. Table 2 also provides the miss
ratio of the benchmarks with the baseline cache (32-Kbyte
cache and 32-byte line). Finally, in table 2, the percent-
age of load/store requests of each benchmark is indicated
to get a hint at the average number of memory requests
sent per cycle. Because the average IPC is bounded by 4.85
even when 32 instruction slots and a window size of 512 are
used,4 the average number of load/store requests per cycle,
i.e., memory IPC, remains bounded by 1.31. However, cache
performance is not only affected by global volume of data
transactions but also by the distribution of the number of
requests sent simultaneously.

Figure 1 shows the cumulated distribution5 of cache re-
quest size, i.e., the number of cache requests sent at the same
time. For example, for an 8-degree processor, 45% of cache
requests are sent by groups of 4 requests or more. 87% cache
requests are sent along with one or more requests for a pro-
cessor of degree 8, with a maximum of 93% for a processor of
degree 32. It even appears that 25% of load/store requests
are sent by blocks larger than 8 for an 8-degree processor,
for example. Though a superscalar processor of degree 8
can fetch or commit no more than 8 instructions together,
the instruction window has 128 entries in our case. Thus,
it is possible to have more than 8 load/store instructions
ready to execute in the same cycle. The concentration of
requests partly lays in the way instructions are committed.
In Figure 2 the non-cumulated distribution6 of the number
of instructions committed per cycle is shown. All instruc-
tions are considered in this figure. Moreover, cycles where

3A11 the Spec92 benchmarks were used in this study.
4A 512~entry window is unlikely to be implemented. These param-

eters are used to find the upper-bound IPC.
5Note that cycles where no request is sent to cache are not con-

sIdered in this figure
61n this case, the non-cumulated distribution is used to better

highlight its irregularity

62

Figure 2: Distribution of Number of Instructions Committed
Per Cycle with perfect cache.

4 0 cI m;::..::L-~=~i~---
/= ----I

Figure 3: IPC for difierent multi-ported cache configura-
tions.

no instruction was committed are taken into account, unlike
in Figure 1. It appears that commits mostly occur by bursts,
as if it often happens that one instruction locks the commit
buffer and prevent all dependent instructions from commit-
ting. When an instruction that blocks the commit buffer
can finally complete, a large set of preceding instructions
can then commit together, hence the burst. Such bursts
also breed load/store instruction bursts. Note also the high
fraction of cycles where no instruction is committed, i.e.,
25% for an °ree processor. As a consequence, we found
that for a.n 8-degree processor no cache request is sent within
more than 60% of the cycles.

4 Multi-Ported Caches

In this section we examine the performance tradeoffs of true
multi-ported caches to determine how many cache ports are
needed. Because of the burst requests described above, the
best number of ports is not correlated to the average num-
ber of cache requests sent per cycle. In Figure 3 the average
IPC is plotted for different numbers of ports and different
cache configurations which are described below. While in
average 1.16 cache requests are sent every cycle (see Ta-
ble 2: 29% load/store instructions and 3.99 IPC), the av-
erage IPC for 2 ports corresponds to 85% of the 8-port
IPC, see Figure 3 graph Multi-Ported Baseline. This per-
centage raises to 97% for 4 ports which corresponds to a
reasonable cost/performance tradeoff. Increasing the num-
ber of cache ports beyond 8 brings no improvement. With
3.70 IPC, an &port cache is still 0.30 IPC below the per-
formance of a perfect cache. The remaining performance
gap with respect to a perfect cache is due to misses, and an
S-port cache where all requests are considered hits achieves
3.99 IPC, see graph Multi-Ported No Miss in Figure 3.

Figure 4: Influence of the number of processor-to-cache ports

jor a processor of degree 8.

5 Multi-Banked Caches

A multi-banked cache consists of several banks connected
to processor-to-cache ports via a crossbar. All banks of a
multi-banked cache are considered blocking in this study.
To investigate multi-banked caches, two new components
must be considered: the crossbar which increases cost and
cache access time, and the data layout among banks. The
crossbar cost is discussed below. With respect to data lay-
out, the straightforward distribution which consists in stor-
ing consecutive cache lines into consecutive banks is used as
a performance reference in this section. This distribution is
used in the Intel Pentium [Int93]. Alternative distributions
are examined in Section 6.

To decrease the crossbar cost and its impact on cycle
time, either its fan-in or its fan-out can be reduced. Reduc-
ing the fan-out means reducing the number of banks and
possibly increasing the number of bank conflicts. Reducing
the fan-in means reducing the number of processor-to-cache
ports which is then smaller than the number of banks. In
Figure 4, multi-banked cache performance is reported for
different numbers of processor-to-cache ports. Inspite of
burst requests, we found a small fan-in of 4 processor-to-
cache ports is sufficient to exploit most of the performance
potential of a multi-banked cache. Thus, we use 4 processor-
to-cache ports in the remainder of this section and in the
next sections, unless otherwise specified.

In Figure 5, the performance of multi-ported caches is
reported along with that of multi-banked caches as a func-
tion of the number of banks. While reasonable performance
is obtained with multi-banking, a maximum IPC of 3.24 is
reached with 32 banks which is significantly lower than the
3.70 IPC of a true &port cache. Even with 32 banks, per-
formance remains lower than what is obtained with a true
4-port cache.

Excluding cache access time issues, the main limitation
to multi-banking is bank conflicts. The occurrence and na-
ture of bank conflicts are analyzed in details at the end of
this Section. To isolate the impact of bank conflicts on per-
formance, it is assumed in Figure 5, graph Multi-Banked
No Miss, that all requests hit. Thus, performance degrada-
tions are only due to bank conflicts. Multi-Banked No Miss
results should be confronted with Multi-Banked Baseline
results, in Figure 5. The performance difference varies be-
tween 0.28 IPC and 0.42 IPC. Though this difference is sig-
nificant, it is not as important as the large fraction of bank
conflicts suggests, see paragraph on bank conflicts below.
Firstly, a bank conflict does not necessarily result in a pro-
cessor slowdown, especially using dynamic execution order-
ing. Secondly, the drawbacks of multi-banked caches are

63

Figure 6: Distribution OS number of simultaneous requests to
u bank.

partly compensated by a few minor assets. One of the main
point is that multi-banked caches are naturally non-blocking
because banks operate in a decoupled manner. Thus, a miss
in one bank does not stall other banks. In Figure 5, the per-
formance of blocking multi-banked caches (Baseline graph)
is compared with non-blocking multi-banked caches (up to
5 outstanding misses) Multi-Banked Non-Blocking graph.
As the number of banks increases, the number of simultane-
ous misses that can occur in a blocking multi-banked cache
also increases (one per bank), and thus performance differ-
ence tends to 0. Similarly, multi-banked caches with large
numbers of banks are better capable of limiting the cache
bandwidth wasted by writes.

The second main performance bottleneck of multi-banked
caches is crossbar routing delay. In order to examine the
impact of crossbar on performance, several simulations were
run where cache access time is increased by one or two cy-
cles. The results are reported in [JNT96].

Nature of bank conflicts

Bank conflicts are shown in Figure 6 which indicates the dis-
tribution of the number of simultaneous requests to a bank.
These statistics have been collected by counting each cycle
the number of cache requests in the load/store queue which
are both rea.dy to execute and mapped to the same bank;
these statistics were averaged over all banks. For instance
with 4 ba.nks, 28% of requests never experience bank con-
flicts, 18% conflict with another request, 12% conflict with
two other requests,. and the remaining 42% conflict with
at, least 3 other requests. The number of conflicts is very
high, see Figure 6, starting with 81% of requests experienc-
ing a conflict in a 2-bank cache, and still more than 60%
in a 16-bank or 32-bank cache. Past 16 banks, increasing

Figure 7: Distribution of number of distinct lines
conflicting requests.

among

the number of banks is rather inefficient at removing bank
conflicts.

We now wish to further analyze the nature of bank con-
flicts. Spatial locality suggests consecutive many closely
spaced requests can target the same line and thus the same
bank. To determine what fraction of conflicts correspond to
requests to the same line, the distribution of the number of
distinct lines among conflicting requests is reported in Fig-
ure 7. For instance with 4 banks, 71% of pending requests
target the same line. This result should be confronted to
the 28% of requests which do not conflict in a 4-bank cache,
see Figure 6. This means 43% requests experienced con-
flicts with one or more requests that referenced the same
line. This difference is still equal to 43% for 32 banks. Also,
Figure 7 indicates there are few cases where 3 distinct lines
are involved in a bank conflict when 4 or more banks are
used.

Not only multiple simultaneous requests to banks occur
frequently, but we also found that conflicts are not evenly
distributed over banks, certain banks standing significantly
more stress than others with an average fourfold difference
between the bank with fewest conflicts and the bank with
most conflicts for an a-bank cache (27% versus 7%).

6 Alternative Cache Designs

The previous sections were dedicated to the two most straight-
forward techniques for improving data cache bandwidth, i.e.,
multi-porting and multi-banking. In this section, we explore
several alternative designs that attempt to address the main
flaws of each solution, i.e., cost and cache access time for
multi-porting or bank conflicts and cache access time for
multi-banking.

6.1 Hybrid Design

A first alternative is a combination of both designs i.e., a
multi-banked cache where each bank has several ports. Us-
ing multiple banks provides additional bandwidth at a low
cost, and multiple ports help removing bank conflicts. Fix-
ing the number of processor-to-cache port to 4,7 the per-
formance of several bank/port configurations has been mea-
sured for 1,2,4 and 8 banks and is reported in Figure 8 as
a function of the number of ports per bank. The banks
are here considered non-blocking for the sake of comparison
with multi-ported caches. We find that a true 4-port cache
performs only slightly better than a 4-bank ‘L-port cache.

7More exactly, we use mzn(4,number of banks x num- be? o.f ports per bank).

64

Since the cost of a crossbar for a 4-bank cache is fairly low,
hybrid designs seem to provide interesting cost/performance
tradeoffs.

6.2 Two-Level Multi-Ported Cache

Multi-level cache hierarchies is a well known technique for
achieving low average memory access time together with low
cycle time. We experimented the idea of two-level cache hi-
erarchies for achieving high data cache bandwidth. Level-O,
i.e., closest to the processor, is a small highly true multi-
ported cache, whereas Level-l is a larger cache with the
same characteristics as the baseline cache mentioned in Sec-
tion 3 and a small number of ports. The role of Level-O is to
provide high cache bandwidth at a small cost, thanks to its
reduced size, and the role of Level-l is to provide low miss
ratio for the overall two-level hierarchy. Level-O will mostly
exploit spatial locality while Level-l will exploit both spatial
and temporal locality.

Level-l is designed to have the same access time as Level-
0 to compensate for the reduced amount of temporal locality
exploited by Level-O. Moreover, Level-O is fully-associative
to avoid conflict misses associated with small sized caches,
but random replacement is used to cut down chip area cost.
Level-l only has 1 or 2 ports that are connected to Level-O
through a high bandwidth bus, so it can refill one cache line
per port each cycle. Level-O to Level-l miss latency is equal
to 1 cycle. Level-l only allows hit under miss while Level-O
is non-blocking (4 pending misses).

The main parameters are Level-O size and the number of
ports between Level-O and Level-l. In Figure 9 the average
IPC is indicated for different configurations and a proces-
sor of degree 8. As can be seen, Level-O filters most of the
data traffic and adding more ports from Level-O to Level-l
does not significantly increase performance. However, per-
formance remains significantly worse than true multi-ported
caches, unlike the same design applied to TLBs, see [AS96].
Performance is close to that of multi-banked caches.

6.3 Alternative Data layout

Bank conflicts are one of the two performance bottlenecks
of multi-banked caches. The data distribution in banks can
have a strong impact on the occurrence of bank conflicts.
Word distribution can be an alternative to the cache line
distribution used in Section 5. With word distribution, con-
secutive words of the same cache line, are stored in con-
secutive banks. For vector processors multi-bank memo-
ries, l-word wide memory banks were used thus limiting the
probability of conflict. In a cache, this solution is costly
because each banked data must be tagged so that if the

2.0 , -~~~~~ --2 I
2 4 r-dmk...:o, ,e 32

PO”.

Figure 9: Performance of several two-level configuration
compared with true multiporting.

bank width is divided by n the number of tags is multiplied
by n. The HP-8000 [Gwe94] uses an intermediate but still
expensive solution which consists in dual-porting the tag
for its dual-banked cache.’ For its floating-point cache, the
MIPS R8000 [MIP94] implements word distribution.

Spatial locality suggests word distribution since two con-
secutive references of a given load/store are often to consec-
utive addresses. Loop unrolling particularly favors this data
layout since consecutive references of a load/store instruc-
tion then occur at short time intervals. However, the main
flaw of this concept is tag area: a line is split in several
pieces, each assigned to a different bank. Thus, the line tag
must be replicated as many times as the number of banks or
the tags must have as many ports as the number of banks.
To compensate for tag area increase, the line size must be
increased.g This, in turn, may increase cache miss ratio and
degrade overall performance.” In Figure 10, experiments
were run using this scheme, see graph Adjusted Line Size.
The baseline structure is a l-bank 32-byte line cache, and
the cache line size of an n-bank cache is 32 x n bytes.
4 processor-to-cache ports are used. Up to 4 banks, the
miss ratio of several codes is decreased by the larger cache
line while the miss ratio of other codes is not significantly
increased. With 8 banks, poorer average miss ratio is com-
pensated by fewer bank conflicts. Beyond that threshold,
average cache miss ratio increases by 30% and word distri-
bution eventually performs worse than line distribution.

6.4 Hiding Bank Conflicts

While optimizing data layout can remove bank conflicts, it
is also possible to partially hide their effect. If the processor
can issue requests without delay in case of bank conflicts,
part of the delay is hidden. In vector processors, fifos are
used to buffer conflicting requests to memory banks [RR95].
We applied the same technique to cache banks by inserting
a small fifo above each bank. Thus, several requests can be
sent simultaneously to the same bank, store requests can be
committed earlier so that some load/store queue entries can
be released, and processor-to-cache ports are more efficiently
used over time. 4-entry fifos placed above each bank im-
prove the baseline multi-banked configuration performance
by 0.20 IPC in average, see Figure 10.

These fifos can be used to implement further optimiza-
tions. For multi-banked TLBs, Austin et al. [AS961 have

‘The HP-8000 primary cache is located off-chip so chip area is less
a concern.

‘128-byte lines are used in the MIPS R8000 floating-point cache.
“The dual-banked floating-point cache of the MIPS R8000 is l-

Mbyte to 16-Mbyte large.

65

Figure 10: Performance of conflict hiding techniques.

proposed to compare pending TLB requests because of bank
conflicts to the request currently processed by the bank.
When this request completes, all matching pending requests
use the result and complete simultaneously. We have eval-
uated a similar design for multi-banked caches using the
fifo placed above each bank. One or several fifo entries
can be compared to the address of the request in process.
Wilson et al. [WOR96] have proposed a similar scheme for
single-banked caches where multiple pending requests can
be checked against the request in process. Such schemes
can only remove conflicts between requests to the same cache
line but, in Section 5, we show that such conflicts correspond
to a significant share of all bank conflicts. The design cost
essentially depends on the number of fifo entries that can be
simultaneously compared to the request processed by the
bank (1 up to 4 in our case). Performance for 1 and 4 simul-
taneous comparisons are indicated in Figure 10 (4 processor-
to-cache ports). Hiding same-line conflicts brings an overall
performance improvement of 0.15 IPC, i.e., about half the
performance difference between a true 8-port cache and a
32-bank cache. Hiding bank conflicts reduces the number
of banks necessary to achieve reasonable performance and
thus lessens cache access time degradations.

7 A Cost/Performance Comparison

One the main motivations for this work is the prohibitive
cost of true multi-ported caches. After examining the per-
formance of several alternative designs, we wish to show
that, for a given transistor count, some of these alterna-
tives provide better performance than true multi-porting.
For that purpose, we use the area model for on-chip mem-
ories by Mulder et al. [MQFSl] where each cache memory
component cost is measured in register-bit equivalent (rbe)
cells. This is a technology-independent metric correspond-
ing to a 6-transistor static area cell with high bandwidth.
A single such 6-transistor SRAM cell has a cost of 0.6 rbe.
The rbe of control logic, comparators, sense amplifiers and
all other basic blocks is also provided. Layout and aspect
ratio are assumed to have no effect on area count. Though
this is an approximation, we believe that the layout impact
can be made similar for all proposed designs and thus can
be ignored. Moreover, the area model is used to sort cache
designs according to the area cost and not to compute an
accurate area cost value.

In Figure 11 the relative cost/performance of most cache
designs evaluated in this study is plotted. The x-axis cor-
responds to the relative cost with respect to baseline cache
(1 port, 1 bank), and the y-axis to the IPC. The x-axis uses
a logarithmic scale. Each category of design is associated
with a character reported in the legend (P for multi-ported

4.0 -

Figure 11: C’ost/Yerformance tradeoffs between different
cache designs.

for instance), and the number next to this character is the
design configuration. This number corresponds to the num-
ber of banks for all designs, except for Multi-Port where
it corresponds to the number of ports, and for Two-Level
where it corresponds to the number of Level-O ports.

95% of the maximal performance is achieved with an 8-
bank cache using same-line optimization, see Section 6.4.
On the other hand standard multi-bank caches usually do
not represent a good cost/performance tradeoff. Hybrid de-
signs perform well but for comparable performance their cost
is usually two times that of a multi-bank design with conflict
optimizations. None of the design studied can reach more
than 95% of the performance of true multi-ported caches.
However, many designs can achieve 75% or more of the max-
imal performance at a very small cost. For instance a 2-bank
cache using fifos above each bank reaches 75% of the max-
imal performance with only a 10% area overhead. Other
designs like two-level caches perform well but for a narrow
interval of performance: to get 90% of the maximal perfor-
mance, a two-level hierarchy with an 8-port Level-O cache
represents the best cost/performance tradeoff.

In Figure 11, it was assumed the same cycle time can
be achieved for all designs. In [JNT96], some experiments
introduce delay cycles and can be used to determine a more
accurate order of each design.

8 Related Work

While many studies have dealt with improving memory hi-
erarchy performance, most have focused on memory latency
issues. This trend is now changing, with several recent stud-
ies dealing with cache bandwidth issues. Sohi et al. [SF911
evaluated non-blocking caches as a means to increase mem-
ory hierarchy bandwidth. They also suggest multi-ported,
duplicate or inter-leaved caches as solutions to cache band-
width issues, but do not evaluate these different solutions in
details. Burger et al. [BKG96] have isolated the respective
impact of latency and bandwidth on global memory hier-
archy performance, concluding cache bandwidth is a major
performance issue in current superscalar processors. They
further outline that latency tolerating techniques can de-
grade cache bandwidth. Wilson et al. [WOR96] have pro-
posed and evaluated several mechanisms to obtain more
than one memory access per cycle from a single cache port

66

using buffering techniques to increasing port width. Their
motivation also lays in the prohibitive cost of multiported
caches, with respect to both area cost and cache access time.
Finally, Austin et al. [AS961 examine in details several TLB
designs for physically tagged caches that can achieve high
bandwidt,h. Though most of these designs were also exam-
ined in the present study, conclusions diverge significantly
because cache and TLB locality properties are different.

9 Conclusions and Future Work

In this paper, several techniques for improving data cache
bandwidth have been evaluated. Because of the prohibitive
cost of multi-ported SRAM cells, most designs based on this
technique, i.e., true multi-ported caches, two-level caches
with highly multi-ported first-level cache or hybrid designs
(multi-bank + multi-port) are usually too costly for the
performance obtained. Best solutions are based on multi-
banked caches. Raw multi-banked caches usually perform
poorly, but simple hardware enhancements to hide or re-
move conflicts can significantly improve overall performance,
and the chip overhead for such add-ons is only lo-15% of
the raw multi-banked cache cost. Besides deciding the best
cost/performance tradeoff for achieving high data cache band-
width, these results also provide a hierarchy of the different
techniques for improving cache bandwidth, both with re-
spect to performance (IPC) and chip area cost.

In this study, the influence of access time was modeled by
increasing the cache pipeline length. We intend to use a time
model to improve the accuracy of the comparison between
the different cache designs. Ultimately, this comparison will
be based on three parameters: IPC, cycle time and chip area
cost.

References

[AS961 Todd M. Austin and Gurindar S. Sohi. High-
bandwidth address translation for multiple-issue pro-
cessors. In Proceedings of the ,?3rd ACM International
Symposium on Computer Architecture, Philadelphia,
May 1996.

[BKGSG] D. Burger, A. K;igi, and J. R. Goodman. Memory
bandwidth limitations of future microprocessors. In
Proceedings of the L&d ACM International Sympo-
sium on Computer Architecture, Philadelphia, May
1996.

[CBS61 Zarka Cvetanovic and Dileep Bhandakar. Performance
characterization of the alpha 21164 microprocessor us-
ing TP and SPEC wordloads. In Second IEEE Inter-
national Symposium on High Performance Computer
Architecture, pages 2X-280, San Jose, February 1996.

[Dig941 Digital Equipment Corporation, Maynard, Massachus-
sets. Alpha Architecture Handbook, 1994.

[Dig961 Digital Equipment Corporation, Maynard, Massachus-
sets. Alpha Architecture Handbook, 1996.

[G. 911 G. Irlam. SPA package, 1991.

[Gwe94] Linley Gwennap. HP-8000 combines complexity and
speed. MiCTOpTOCeSSOT Report, 8(15):5-g, November
1994.

[HP961 John L. Hennessy and David A. Patterson. CompzLter
Architecture: A Quantitative Approach, 2nd Edition.
Morgan Kaufmann Publishers Inc., 1996.

[Int93] Intel. Pentiam Processor User’s Manual, 1993.

[JNTSG] Toni Juan, Juan J. Navarro, and Olivier Temam. Data
caches for superscalar processors. Technical Report
96/038, PRISM, Versailles University, December 1996.

[JSL95]

[KIS+94]

[MicQ3]

[MIP94]

[M&F911

[OL85]

[RR951

[SF911

[WOR96]

[YMPSS]

Stephan Jourdan, Pascal Sainrat, and Daniel Litaize.
Exploring Configurations of Functional Units in an
Out-of-Order Superscalar Processor. In Proceedings oj
the 23rd ACM International Symposium on Computer
Architecture, pages 117-125, Italy, July 1995.

K. Kitai, T. Isobe, T. Sakakibara, S. Yazawa,
Y. Tamaki, T. Tanaka, and K. Ishii. Distributed stor-
age control unit for the hitachi s-3800 multivector su-
percomputer. In Proceedings of the International Con-
ference orz Stipe~compating, pages l-10, Manchester,
.Jul 1994.

MicroprocessorReport, ~01.7, no 13. IBM Regains Per-
,formance Lead with Power& October 1993.

MIPS Technologies Incorporated. R8000 Micropro-
C~SSOT Chip Set, Product Overview, 1994.

Johannes M. Mulder, Nhon T. Quach, and Michael J.
Flynn. An area model for on-chip memories and its
application. International Journal of High Speed Com-
puting, 26(2):98-106, Feb 1991.

W. Oed and 0. Lange. On the effective bandwidth
of interleaved memories in vector processor systems.
IEEE TT~TLSaCtiOTLS 0lt 6bTpteTS, c-34(1o):949-957,
Ott 1985.

K.A. Robbins and S. Robbins. Buffered banks in multi-
processor systems. IEEE Transactions on Computers,
44(4), Apr 1995.

Gurindar S. Sohi and Manoj Franklin. High-bandwidth
data memory systems for superscalar processors. In
Proceedings of the 4th International Conference on AT-
chitectural Support for Programming Languages and
Operating Systems, pages 53-62, April 1991.

Kenneth M. Wilson, Kunle Olukotun, and Mendel
Rosenblum. Increasing cache port efficiency for dy-
namic superscalar microprocessors. In Proceedings of
Ihe 23rd ACM International Symposium on Computer
Architecture, pages 147-157, Philadelphia, May 1996.

T. Yeh, D. T. Marr, and Y. N. Patt. Increasing the
instruction fetch rate via multiple branch predictors
and a branch address cache. In Proceedings of the
7th ACM International Conference on Supercompzlt-
ing, Jul 1993.

67

