
Data Caches for Superscalar Processors* 

Toni Juan Juan J. Navarro Olivier Temam 
antoniojQx.upc.es juanjoQac.upc.es temam@prism.uvsq.fr 

Dept. Arquitectura de Computadors - Barcelona PRiSM 

[Jniversitat Politecnica de Catalunya Versailles University 

Spain FlWlCe 

Abstract 

As the number of instructions executed in parallel increases, 
superscalar processors will require higher bandwidth from 
data caches. Because of the high cost of true multi-ported 
caches, alternative cache designs must be evaluated. The 
purpose of this study is to examine the data cache band- 
width requirements of high-degree superscalar processors, 
and investigate alternative solutions. The designs studied 
range from classic solutions like multi-banked caches to more 
complex solutions recently proposed in the literature. The 
performance tradeoffs of these different cache designs are 
examined in details. Then, using a chip area cost model, 
all solutions are compared with respect to both cost and 
performance. While many cache designs seem capable of 
achieving high cache bandwidth, the best cost/performance 
t,radeoff varies significantly depending on the dedicated area 
cost, ranging from multi-banked cache designs to hybrid 
multi-banked/multi-ported caches or even true multi-ported 
caches. For instance, we find that an 8-bank cache with mi- 
nor optimizations perform 10% better than a true a-port 
cache at half the cost, or that a 4-bank 2 ports per bank 
cache performs better than a true 4-port cache and uses 
45% less chip area. 

1 Introduction 

Currently, processor performance is improved through higher 
clock rates and increasing the number of instructions ex- 
ecuted in parallel. This latter trend raises several issues, 
among which is the necessity to design data and instruc- 
tion caches which can tolerate several accesses per cycle. 
Most processors now achieve high throughput with instruc- 
tion caches by loading one or several cache lines at the same 
time, thus exploiting instruction stream spatial locality. To 
a large extent, the effect of branches on instruction stream 
locality can be hidden by using branch prediction to drive in- 
struction prefetching [YMP93]. Multiple-access data caches 
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are more difficult to design because load/store requests sent 
in parallel share no obvious locality properties. The diffi- 
culty is to propose a design that can cope with increasing 
degree of instruction parallelism. The solutions presently 
implemented in processors can be classified as: 

l True multi-porting. With respect to performance true 
multi-porting is clearly an ideal solution, but its chip area 
cost is high. Cost can be partly reduced by accepting a 
certain degradation of cache access time that would reduce 
the performance. 

. Multiple Cache Copies. For n accesses, the cache must 
be replicated n times with no benefit to storage space. More- 
over, store requests are sent simultaneously to all cache 
copies for coherence and thus no other cache request can 
be sent in parallel. Since about 30% of memory accesses are 
store requests [HP96], this solution is severely limited. The 
DEC 21164 [Dig941 has a dual-ported cache implemented 
with two copies of the cache array. 

l Virtual Multiporting. In the Power2 [Mic93], virtual 
dual-porting is used: the cache SRAM is twice as fast as the 
processor clock allowing two processor requests in a single 
processor cycle. The new Alpha 21264 [Dig961 also uses this 
technique. Again, it is unlikely a cache SRAM n times as 
fast as the processor clock can become a standard solution. 

l Multi-banking. The cache is divided in several banks, 
each bank can be accessed independently of the others. The 
cost of multi-banking is a crossbar to route requests from 
load/store units to cache banks and another one from banks 
back to ports. The crossbar area size as well as the cache 
access time increase with the number of banks. However, 
the main issue are the bank conflicts as shows the experi- 
ence of multi-banked memories in vector processors [OL85]. 
Bank conflicts occur when two or more requests need to ac- 
cess the same bank simultaneously. While bank conflicts 
could be partially eliminated by using a very large num- 
ber of memory banks in vector processors (512 in the Hi- 
tachi S-3800 [KISs94]), this solution may not be practical 
for caches. Increasing the number of banks also implies 
deeper crossbar and thus longer cache access time, even 
though smaller banks are faster and could partially compen- 
sate for cache access time degradation. The Pentium data 
cache [Int93] has 8 banks, while the MIPS R8000 [MIP94] 
uses a dual-banked data cache. 

Thus, to design a data cache that can accept multiple 
requests simultaneously there are many cost/performance 
tradeoffs to address. The purpose of this study is to ex- 
pose these tradeoffs for different cache structures and to 
provide performance hints for each structure. In Section 2 
the superscalar processor architecture used in this study is 
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described, its performance, cache bandwidth requirements 
and the characteristics of its cache requests are analyzed 
in Section 3. True multi-ported caches are examined in Sec- 
t,ion 4 a.nd these results are used as performance references 
t.hroughout, t.he study. Multi-banked caches are examined 
in Section 5, and several alternative designs to both multi- 
ported and multi-banked caches are discussed in Section 6. 
These different solutions are first compared in terms of per- 
formance throughout the study, and in Section 7 the area 
cost model developed by Mulder et al. [MQFSl] is used to 
determine the best overall cost/performance tradeoffs. Fi- 
nally, Section 8 presents some related work. 

2 Methodology 

As processor issue rate increases and the sustained number 
of instructions executed per cycle (IPC) is closer to the peak 
IPC, t#he number of memory requests per cycle is naturally 
going to increase. To mimic this increased processor pres- 
sure on data caches, we have used a superscalar processor 
with high issue rate. As issue rate increases, more sophisti- 
cated branch prediction techniques and a larger number of 
functional units can be expected. Though it is feasible to 
add functional units, elaborating on future branch predic- 
tion t#echniques is out of the scope of this article. To still 
take these future improvements into account and also to ex- 
hibit maximal data cache pressure, we have removed these 
two processor bottlenecks by using perfect branch prediction 
and a large number of functional units. We acknowledge 
these assumptions affect the data address trace. Mainly the 
distribution of data cache requests over time (which cache 
requests are sent in the same cycle) is changed, but the ad- 
dress sequence is less affected since instruction dependencies 
are considered. Inspite of the imprecision, we still find this 
tracing methodology to be the best tradeoff for obtaining 
high data cache pressure and an accurate address trace. A 
similar approach of using perfect branch prediction was used 
in a recent study by Jourdan et al. [JSL95] which aimed at 
dimensioning functional units of future superscalar proces- 
sors. 

Simulated Architecture 

We defined a processor architecture close to that of the HP- 
8000 which we found to be both aggressive at extracting ILP 
and simple enough to scale up well.’ Present processors is- 
sue 4 to 6 instructions per cycle. We found that increasing 
processor degree beyond 8 does not bring significant im- 
provements for most codes. So, except for this section, we 
use a degree 8 processor. Like the HP-8000, the processor 
architecture includes an instruction queue playing the role 
of both reservation stations and commit buffer.’ Instruc- 
tions are sent in-order to the queue, dispatched to functional 
units, executed out-of-order, and committed in-order again. 
Commits are performed in-order to preserve the coherence 
of store requests, enable easy squashing of instructions and 
recovery after exceptions. The instruction queue is split 
into a load/store queue and a scalar instruction queue as 
in the HP-8000. A scalar instruction queue entry contains 
operands and/or sources of operands (functional units iden- 
tifiers). The load/store queue contains the same information 
plus the data address. This address is used to maintain co- 
herence between load/store instructions. A load can be sent 

‘The HP-8000 is a superscalar processor of degree 4. 
2Tl,,s Instruction queue corresponds to the znstructzon wndow 

rnerkoned above and in [JSL95] 

t,o cache only if the addresses of all older store instructions 
are knowu and distinct. If there exists a store with same ad- 
dress, the load is not sent to cache and the data is directly 
read from the load/store queue. Stores execute only when 
they retire. The main processor parameters are the num- 
ber of instructions fetched together, i.e., the degree of the 
superscalar processor, the number of instructions the pro- 
cessor attempts to commit every cycle, the functional units 
configuration (number, types, latencies and issue rates) and 
the instruction window size (the size corresponds to the sum 
of the load/store queue size and the scalar queue size; both 
queues have identical size). To restrict the number of com- 
binations, several configurations have been defined which 
correspond to different scales of the same design, see Ta- 
ble 1. In Section 3, all configurations are used, but in the 
other sections, only configuration 2 is used. 

configuration 1 2 3 4 

Degree Nb. of inst. 4 8 16 32 
fetched per cycle) 
Nb of inst. attempted 4 8 16 32 
to be committed per cycle 
Instruction window size 1 64 128 256 512 

Table 1: Processor Configurations. 

As mentioned above, we assume perfect instruction fetch. 
To reduce the impact of resource conflicts on processor per- 
formance, the number of functional units of each type is 
equal to the processor degree for each configuration. The 
functional units latencies are 1 cycle for all ALU operations, 
2 cycles for floating-point ADD, 4 cycles for floating-point 
MULT and 20 cycles for floating-point DIV. All functional 
units are fully pipelined except for floating-point DIV. 

Cache memory parameters 

In the next sections, we seek to define and dimension cache 
designs that can cope with such processor architectures. A 
few cache/memory parameters remain fixed. In this study, 
we essentially consider a fast first-level on-chip data cache. 
Since cache access time is one of our main concerns, the 
cache is direct-mapped. The cache is also write-back, write- 
allocate. The cache size is equal to 32 Kbytes, i.e., within 
the current range of 8 Kbytes to 256 Kbytes, and the line 
size is equal to 32 bytes. This cache configuration is called 
the Baseline cache throughout the text and figures. Unless 
otherwise mentioned, the cache is non-blocking. The miss 
latency to the next memory level is 5 cycles, the access to 
this lower memory level is pipelined and one miss request 
can be sent every cycle with at most 5 pending requests, 
i.e., as if a close second-level cache is used. However, this 
lower memory level is not simulated and all requests are 
considered hits to restrict the number of parameters and 
focus on the first-level cache. 

In the remainder of the text it is necessary to distin- 
guish between the number of processor-to-cache ports which 
corresponds to the number of data paths between the pro- 
cessor and the cache, and the number of cache ports or cell 
ports which corresponds to the number of ports of each cache 
SRAM cell. An n-bank cache may have only p processor- 
to-cache ports with p < n. For example, the Pentium data 
cache [IntYS] has 2 processor-to-cache ports, 8 banks and 
1 cell port, i.e., n = 8 and p = 2. It is assumed that a 
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y-port ca.che is always associated with a processor having p 
processor-to-cache ports. 

Benchmarks 

Ten benchmarks were used for the study, five SPECint92 
codes and five SPECfp92 codes listed in Table 2. SPEC92 
was preferred over SPEC95 because simulation time restricts 
trace length. With SPEC95, a small trace length is likely to 
only correspond to a very small fraction of the whole code. 
Since this study is focused on bandwidth rather than la- 
tency, having representative ILP performance, i.e., travers- 
ing many different code constructs, was considered more im- 
portant than having large data sets. No particular criterion 
drove the selection of these SPEC92 benchmarks. We picked 
the five first SPECfp92 and SPECint92 that ran success- 
fully with Spy [G. 911, the tracer used in this study. For 
each benchmark, 100-million instruction traces were simu- 
lated which correspond to 5%-10% of most benchmarks. The 
first 10 million instructions were ignored. Benchmarks were 
compiled on Sun Spare processors using -04 optimization. 
No software optimization is used to exhibit more ILP except 
for loop unrolling as provided in the Sun compilers. 

hydro2d 0.72 1.95 2.06 2.09 2.10 42% 0.07 
Avg FP 0 91 1.91 2.06 2.13 214 32% 0.07 
espresso 1.00 3.74 5.75 7.14 7.75 25% 0.01 
Ii 0.89 4.00 7.15 8.03 8.09 31% 0.01 
eqntott 0.95 3.91 6.85 9.26 11.0 23% 0.03 
compress 0.64 3.85 4.88 5.00 5.02 23% 0.16 
IFC 0.77 3.46 5.01 5.74 6.04 28% 0.02 
Avg INT 0.85 3.79 5.93 7.03 7.58 26% 0.05 

Avg All 0.88 2.85 3.99 4.58 4.85 29% 0.06 
Mem IPC NA 0.79 1.11 1.25 1.31 N.A N.A 

Table 2: Alpha 2116.4 IPC, IPC with perfect cache for dif- 
ferent super-scalar degrees, Percentage of memory operations 
in each benchmark and Miss Ratio with the baseline cache. 

3 Performance Thresholds and Nature of Cache Requests 

In order to get a performance bound for our superscalar pro- 
cessor, simulations were first run for each of the 10 bench- 
marks assuming a perfect cache, i.e., no cache miss and 
unlimited number of cache ports, so that each load/store 
reference is serviced in a single cycle. Table 2 shows the 
performance measured in instructions committed per cycle, 
denoted IPC (Instruction Per Cycle), for the four differ- 
ent processor configurations with a perfect cache. The best 
average IPC is equal to 4.85 for a processor of degree 32. 
Though this figure is not so high, the actual sustained IPC 
of current processors is much lower. In [CB96], the IPC of 
the Alpha 21164 for the same benchmarks were collected 
and are shown in Table 2. The Alpha 21164 is a 4-way 
issue processor and it achieves an average IPC of 0.88 for 
the selected benchmarks. Therefore, even if the IPC for the 
MIPS RlOOOO or the HP 8000, which use out-of-order exe- 
cution unlike the DEC 21164, are 2 or 3 times higher, these 
results show that significantly higher IPC can be achieved 
with higher issue rate under optimal hypotheses (perfect 
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Figure 1: Distribution of Number of Cache Requests Sent 

Simultaneously (cumulated) with perfect cache. 

branch prediction, no resource conflict). Also, the best av- 
erage floating-point IPC (2.14) is lower than the best av- 
erage integer IPC (7.58). Because branch prediction is one 
of the major bottlenecks of integer codes, it is natural that 
using perfect branch prediction boosts integer codes perfor- 
mance. These numbers do not reflect the theoretical in- 
trinsic instruction-level parallelism indicated in [HP961 but 
they are consistent with the detailed experiments by Jour- 
dan et al. [JSL95]: about 7.5 IPC for integer codes and about 
4.5 for floating-point codes in average 3. Though floating- 
point IPC is also lower than integer IPC in the latter study, 
we observed lower floating-point IPC but we used a different 
instruction set: Spare processor and code compiled on a Su- 
persparc 20 while Jourdan et al. used the MIPS instruction 
set compiled on a R4600 SGI. Table 2 also provides the miss 
ratio of the benchmarks with the baseline cache (32-Kbyte 
cache and 32-byte line). Finally, in table 2, the percent- 
age of load/store requests of each benchmark is indicated 
to get a hint at the average number of memory requests 
sent per cycle. Because the average IPC is bounded by 4.85 
even when 32 instruction slots and a window size of 512 are 
used,4 the average number of load/store requests per cycle, 
i.e., memory IPC, remains bounded by 1.31. However, cache 
performance is not only affected by global volume of data 
transactions but also by the distribution of the number of 
requests sent simultaneously. 

Figure 1 shows the cumulated distribution5 of cache re- 
quest size, i.e., the number of cache requests sent at the same 
time. For example, for an 8-degree processor, 45% of cache 
requests are sent by groups of 4 requests or more. 87% cache 
requests are sent along with one or more requests for a pro- 
cessor of degree 8, with a maximum of 93% for a processor of 
degree 32. It even appears that 25% of load/store requests 
are sent by blocks larger than 8 for an 8-degree processor, 
for example. Though a superscalar processor of degree 8 
can fetch or commit no more than 8 instructions together, 
the instruction window has 128 entries in our case. Thus, 
it is possible to have more than 8 load/store instructions 
ready to execute in the same cycle. The concentration of 
requests partly lays in the way instructions are committed. 
In Figure 2 the non-cumulated distribution6 of the number 
of instructions committed per cycle is shown. All instruc- 
tions are considered in this figure. Moreover, cycles where 

3A11 the Spec92 benchmarks were used in this study. 
4A 512~entry window is unlikely to be implemented. These param- 

eters are used to find the upper-bound IPC. 
5Note that cycles where no request is sent to cache are not con- 

sIdered in this figure 
61n this case, the non-cumulated distribution is used to better 

highlight its irregularity 
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Figure 2: Distribution of Number of Instructions Committed 
Per Cycle with perfect cache. 

4 0 cI m;::..::L-~=~i~--- 
/= ----I 

Figure 3: IPC for difierent multi-ported cache configura- 
tions. 

no instruction was committed are taken into account, unlike 
in Figure 1. It appears that commits mostly occur by bursts, 
as if it often happens that one instruction locks the commit 
buffer and prevent all dependent instructions from commit- 
ting. When an instruction that blocks the commit buffer 
can finally complete, a large set of preceding instructions 
can then commit together, hence the burst. Such bursts 
also breed load/store instruction bursts. Note also the high 
fraction of cycles where no instruction is committed, i.e., 
25% for an &degree processor. As a consequence, we found 
that for a.n 8-degree processor no cache request is sent within 
more than 60% of the cycles. 

4 Multi-Ported Caches 

In this section we examine the performance tradeoffs of true 
multi-ported caches to determine how many cache ports are 
needed. Because of the burst requests described above, the 
best number of ports is not correlated to the average num- 
ber of cache requests sent per cycle. In Figure 3 the average 
IPC is plotted for different numbers of ports and different 
cache configurations which are described below. While in 
average 1.16 cache requests are sent every cycle (see Ta- 
ble 2: 29% load/store instructions and 3.99 IPC), the av- 
erage IPC for 2 ports corresponds to 85% of the 8-port 
IPC, see Figure 3 graph Multi-Ported Baseline. This per- 
centage raises to 97% for 4 ports which corresponds to a 
reasonable cost/performance tradeoff. Increasing the num- 
ber of cache ports beyond 8 brings no improvement. With 
3.70 IPC, an &port cache is still 0.30 IPC below the per- 
formance of a perfect cache. The remaining performance 
gap with respect to a perfect cache is due to misses, and an 
S-port cache where all requests are considered hits achieves 
3.99 IPC, see graph Multi-Ported No Miss in Figure 3. 

Figure 4: Influence of the number of processor-to-cache ports 

jor a processor of degree 8. 

5 Multi-Banked Caches 

A multi-banked cache consists of several banks connected 
to processor-to-cache ports via a crossbar. All banks of a 
multi-banked cache are considered blocking in this study. 
To investigate multi-banked caches, two new components 
must be considered: the crossbar which increases cost and 
cache access time, and the data layout among banks. The 
crossbar cost is discussed below. With respect to data lay- 
out, the straightforward distribution which consists in stor- 
ing consecutive cache lines into consecutive banks is used as 
a performance reference in this section. This distribution is 
used in the Intel Pentium [Int93]. Alternative distributions 
are examined in Section 6. 

To decrease the crossbar cost and its impact on cycle 
time, either its fan-in or its fan-out can be reduced. Reduc- 
ing the fan-out means reducing the number of banks and 
possibly increasing the number of bank conflicts. Reducing 
the fan-in means reducing the number of processor-to-cache 
ports which is then smaller than the number of banks. In 
Figure 4, multi-banked cache performance is reported for 
different numbers of processor-to-cache ports. Inspite of 
burst requests, we found a small fan-in of 4 processor-to- 
cache ports is sufficient to exploit most of the performance 
potential of a multi-banked cache. Thus, we use 4 processor- 
to-cache ports in the remainder of this section and in the 
next sections, unless otherwise specified. 

In Figure 5, the performance of multi-ported caches is 
reported along with that of multi-banked caches as a func- 
tion of the number of banks. While reasonable performance 
is obtained with multi-banking, a maximum IPC of 3.24 is 
reached with 32 banks which is significantly lower than the 
3.70 IPC of a true &port cache. Even with 32 banks, per- 
formance remains lower than what is obtained with a true 
4-port cache. 

Excluding cache access time issues, the main limitation 
to multi-banking is bank conflicts. The occurrence and na- 
ture of bank conflicts are analyzed in details at the end of 
this Section. To isolate the impact of bank conflicts on per- 
formance, it is assumed in Figure 5, graph Multi-Banked 
No Miss, that all requests hit. Thus, performance degrada- 
tions are only due to bank conflicts. Multi-Banked No Miss 
results should be confronted with Multi-Banked Baseline 
results, in Figure 5. The performance difference varies be- 
tween 0.28 IPC and 0.42 IPC. Though this difference is sig- 
nificant, it is not as important as the large fraction of bank 
conflicts suggests, see paragraph on bank conflicts below. 
Firstly, a bank conflict does not necessarily result in a pro- 
cessor slowdown, especially using dynamic execution order- 
ing. Secondly, the drawbacks of multi-banked caches are 
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Figure 6: Distribution OS number of simultaneous requests to 
u bank. 

partly compensated by a few minor assets. One of the main 
point is that multi-banked caches are naturally non-blocking 
because banks operate in a decoupled manner. Thus, a miss 
in one bank does not stall other banks. In Figure 5, the per- 
formance of blocking multi-banked caches (Baseline graph) 
is compared with non-blocking multi-banked caches (up to 
5 outstanding misses) Multi-Banked Non-Blocking graph. 
As the number of banks increases, the number of simultane- 
ous misses that can occur in a blocking multi-banked cache 
also increases (one per bank), and thus performance differ- 
ence tends to 0. Similarly, multi-banked caches with large 
numbers of banks are better capable of limiting the cache 
bandwidth wasted by writes. 

The second main performance bottleneck of multi-banked 
caches is crossbar routing delay. In order to examine the 
impact of crossbar on performance, several simulations were 
run where cache access time is increased by one or two cy- 
cles. The results are reported in [JNT96]. 

Nature of bank conflicts 

Bank conflicts are shown in Figure 6 which indicates the dis- 
tribution of the number of simultaneous requests to a bank. 
These statistics have been collected by counting each cycle 
the number of cache requests in the load/store queue which 
are both rea.dy to execute and mapped to the same bank; 
these statistics were averaged over all banks. For instance 
with 4 ba.nks, 28% of requests never experience bank con- 
flicts, 18% conflict with another request, 12% conflict with 
two other requests,. and the remaining 42% conflict with 
at, least 3 other requests. The number of conflicts is very 
high, see Figure 6, starting with 81% of requests experienc- 
ing a conflict in a 2-bank cache, and still more than 60% 
in a 16-bank or 32-bank cache. Past 16 banks, increasing 

Figure 7: Distribution of number of distinct lines 
conflicting requests. 

among 

the number of banks is rather inefficient at removing bank 
conflicts. 

We now wish to further analyze the nature of bank con- 
flicts. Spatial locality suggests consecutive many closely 
spaced requests can target the same line and thus the same 
bank. To determine what fraction of conflicts correspond to 
requests to the same line, the distribution of the number of 
distinct lines among conflicting requests is reported in Fig- 
ure 7. For instance with 4 banks, 71% of pending requests 
target the same line. This result should be confronted to 
the 28% of requests which do not conflict in a 4-bank cache, 
see Figure 6. This means 43% requests experienced con- 
flicts with one or more requests that referenced the same 
line. This difference is still equal to 43% for 32 banks. Also, 
Figure 7 indicates there are few cases where 3 distinct lines 
are involved in a bank conflict when 4 or more banks are 
used. 

Not only multiple simultaneous requests to banks occur 
frequently, but we also found that conflicts are not evenly 
distributed over banks, certain banks standing significantly 
more stress than others with an average fourfold difference 
between the bank with fewest conflicts and the bank with 
most conflicts for an a-bank cache (27% versus 7%). 

6 Alternative Cache Designs 

The previous sections were dedicated to the two most straight- 
forward techniques for improving data cache bandwidth, i.e., 
multi-porting and multi-banking. In this section, we explore 
several alternative designs that attempt to address the main 
flaws of each solution, i.e., cost and cache access time for 
multi-porting or bank conflicts and cache access time for 
multi-banking. 

6.1 Hybrid Design 

A first alternative is a combination of both designs i.e., a 
multi-banked cache where each bank has several ports. Us- 
ing multiple banks provides additional bandwidth at a low 
cost, and multiple ports help removing bank conflicts. Fix- 
ing the number of processor-to-cache port to 4,7 the per- 
formance of several bank/port configurations has been mea- 
sured for 1,2,4 and 8 banks and is reported in Figure 8 as 
a function of the number of ports per bank. The banks 
are here considered non-blocking for the sake of comparison 
with multi-ported caches. We find that a true 4-port cache 
performs only slightly better than a 4-bank ‘L-port cache. 

7More exactly, we use mzn(4,number of banks x num- be? o.f ports per bank). 
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Since the cost of a crossbar for a 4-bank cache is fairly low, 
hybrid designs seem to provide interesting cost/performance 
tradeoffs. 

6.2 Two-Level Multi-Ported Cache 

Multi-level cache hierarchies is a well known technique for 
achieving low average memory access time together with low 
cycle time. We experimented the idea of two-level cache hi- 
erarchies for achieving high data cache bandwidth. Level-O, 
i.e., closest to the processor, is a small highly true multi- 
ported cache, whereas Level-l is a larger cache with the 
same characteristics as the baseline cache mentioned in Sec- 
tion 3 and a small number of ports. The role of Level-O is to 
provide high cache bandwidth at a small cost, thanks to its 
reduced size, and the role of Level-l is to provide low miss 
ratio for the overall two-level hierarchy. Level-O will mostly 
exploit spatial locality while Level-l will exploit both spatial 
and temporal locality. 

Level-l is designed to have the same access time as Level- 
0 to compensate for the reduced amount of temporal locality 
exploited by Level-O. Moreover, Level-O is fully-associative 
to avoid conflict misses associated with small sized caches, 
but random replacement is used to cut down chip area cost. 
Level-l only has 1 or 2 ports that are connected to Level-O 
through a high bandwidth bus, so it can refill one cache line 
per port each cycle. Level-O to Level-l miss latency is equal 
to 1 cycle. Level-l only allows hit under miss while Level-O 
is non-blocking (4 pending misses). 

The main parameters are Level-O size and the number of 
ports between Level-O and Level-l. In Figure 9 the average 
IPC is indicated for different configurations and a proces- 
sor of degree 8. As can be seen, Level-O filters most of the 
data traffic and adding more ports from Level-O to Level-l 
does not significantly increase performance. However, per- 
formance remains significantly worse than true multi-ported 
caches, unlike the same design applied to TLBs, see [AS96]. 
Performance is close to that of multi-banked caches. 

6.3 Alternative Data layout 

Bank conflicts are one of the two performance bottlenecks 
of multi-banked caches. The data distribution in banks can 
have a strong impact on the occurrence of bank conflicts. 
Word distribution can be an alternative to the cache line 
distribution used in Section 5. With word distribution, con- 
secutive words of the same cache line, are stored in con- 
secutive banks. For vector processors multi-bank memo- 
ries, l-word wide memory banks were used thus limiting the 
probability of conflict. In a cache, this solution is costly 
because each banked data must be tagged so that if the 

2.0 , -~~~~~ --2 I 
2 4 r-dmk...:o, ,e 32 
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Figure 9: Performance of several two-level configuration 
compared with true multiporting. 

bank width is divided by n the number of tags is multiplied 
by n. The HP-8000 [Gwe94] uses an intermediate but still 
expensive solution which consists in dual-porting the tag 
for its dual-banked cache.’ For its floating-point cache, the 
MIPS R8000 [MIP94] implements word distribution. 

Spatial locality suggests word distribution since two con- 
secutive references of a given load/store are often to consec- 
utive addresses. Loop unrolling particularly favors this data 
layout since consecutive references of a load/store instruc- 
tion then occur at short time intervals. However, the main 
flaw of this concept is tag area: a line is split in several 
pieces, each assigned to a different bank. Thus, the line tag 
must be replicated as many times as the number of banks or 
the tags must have as many ports as the number of banks. 
To compensate for tag area increase, the line size must be 
increased.g This, in turn, may increase cache miss ratio and 
degrade overall performance.” In Figure 10, experiments 
were run using this scheme, see graph Adjusted Line Size. 
The baseline structure is a l-bank 32-byte line cache, and 
the cache line size of an n-bank cache is 32 x n bytes. 
4 processor-to-cache ports are used. Up to 4 banks, the 
miss ratio of several codes is decreased by the larger cache 
line while the miss ratio of other codes is not significantly 
increased. With 8 banks, poorer average miss ratio is com- 
pensated by fewer bank conflicts. Beyond that threshold, 
average cache miss ratio increases by 30% and word distri- 
bution eventually performs worse than line distribution. 

6.4 Hiding Bank Conflicts 

While optimizing data layout can remove bank conflicts, it 
is also possible to partially hide their effect. If the processor 
can issue requests without delay in case of bank conflicts, 
part of the delay is hidden. In vector processors, fifos are 
used to buffer conflicting requests to memory banks [RR95]. 
We applied the same technique to cache banks by inserting 
a small fifo above each bank. Thus, several requests can be 
sent simultaneously to the same bank, store requests can be 
committed earlier so that some load/store queue entries can 
be released, and processor-to-cache ports are more efficiently 
used over time. 4-entry fifos placed above each bank im- 
prove the baseline multi-banked configuration performance 
by 0.20 IPC in average, see Figure 10. 

These fifos can be used to implement further optimiza- 
tions. For multi-banked TLBs, Austin et al. [AS961 have 

‘The HP-8000 primary cache is located off-chip so chip area is less 
a concern. 

‘128-byte lines are used in the MIPS R8000 floating-point cache. 
“The dual-banked floating-point cache of the MIPS R8000 is l- 

Mbyte to 16-Mbyte large. 
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Figure 10: Performance of conflict hiding techniques. 

proposed to compare pending TLB requests because of bank 
conflicts to the request currently processed by the bank. 
When this request completes, all matching pending requests 
use the result and complete simultaneously. We have eval- 
uated a similar design for multi-banked caches using the 
fifo placed above each bank. One or several fifo entries 
can be compared to the address of the request in process. 
Wilson et al. [WOR96] have proposed a similar scheme for 
single-banked caches where multiple pending requests can 
be checked against the request in process. Such schemes 
can only remove conflicts between requests to the same cache 
line but, in Section 5, we show that such conflicts correspond 
to a significant share of all bank conflicts. The design cost 
essentially depends on the number of fifo entries that can be 
simultaneously compared to the request processed by the 
bank (1 up to 4 in our case). Performance for 1 and 4 simul- 
taneous comparisons are indicated in Figure 10 (4 processor- 
to-cache ports). Hiding same-line conflicts brings an overall 
performance improvement of 0.15 IPC, i.e., about half the 
performance difference between a true 8-port cache and a 
32-bank cache. Hiding bank conflicts reduces the number 
of banks necessary to achieve reasonable performance and 
thus lessens cache access time degradations. 

7 A Cost/Performance Comparison 

One the main motivations for this work is the prohibitive 
cost of true multi-ported caches. After examining the per- 
formance of several alternative designs, we wish to show 
that, for a given transistor count, some of these alterna- 
tives provide better performance than true multi-porting. 
For that purpose, we use the area model for on-chip mem- 
ories by Mulder et al. [MQFSl] where each cache memory 
component cost is measured in register-bit equivalent (rbe) 
cells. This is a technology-independent metric correspond- 
ing to a 6-transistor static area cell with high bandwidth. 
A single such 6-transistor SRAM cell has a cost of 0.6 rbe. 
The rbe of control logic, comparators, sense amplifiers and 
all other basic blocks is also provided. Layout and aspect 
ratio are assumed to have no effect on area count. Though 
this is an approximation, we believe that the layout impact 
can be made similar for all proposed designs and thus can 
be ignored. Moreover, the area model is used to sort cache 
designs according to the area cost and not to compute an 
accurate area cost value. 

In Figure 11 the relative cost/performance of most cache 
designs evaluated in this study is plotted. The x-axis cor- 
responds to the relative cost with respect to baseline cache 
(1 port, 1 bank), and the y-axis to the IPC. The x-axis uses 
a logarithmic scale. Each category of design is associated 
with a character reported in the legend (P for multi-ported 
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Figure 11: C’ost/Yerformance tradeoffs between different 
cache designs. 

for instance), and the number next to this character is the 
design configuration. This number corresponds to the num- 
ber of banks for all designs, except for Multi-Port where 
it corresponds to the number of ports, and for Two-Level 
where it corresponds to the number of Level-O ports. 

95% of the maximal performance is achieved with an 8- 
bank cache using same-line optimization, see Section 6.4. 
On the other hand standard multi-bank caches usually do 
not represent a good cost/performance tradeoff. Hybrid de- 
signs perform well but for comparable performance their cost 
is usually two times that of a multi-bank design with conflict 
optimizations. None of the design studied can reach more 
than 95% of the performance of true multi-ported caches. 
However, many designs can achieve 75% or more of the max- 
imal performance at a very small cost. For instance a 2-bank 
cache using fifos above each bank reaches 75% of the max- 
imal performance with only a 10% area overhead. Other 
designs like two-level caches perform well but for a narrow 
interval of performance: to get 90% of the maximal perfor- 
mance, a two-level hierarchy with an 8-port Level-O cache 
represents the best cost/performance tradeoff. 

In Figure 11, it was assumed the same cycle time can 
be achieved for all designs. In [JNT96], some experiments 
introduce delay cycles and can be used to determine a more 
accurate order of each design. 

8 Related Work 

While many studies have dealt with improving memory hi- 
erarchy performance, most have focused on memory latency 
issues. This trend is now changing, with several recent stud- 
ies dealing with cache bandwidth issues. Sohi et al. [SF911 
evaluated non-blocking caches as a means to increase mem- 
ory hierarchy bandwidth. They also suggest multi-ported, 
duplicate or inter-leaved caches as solutions to cache band- 
width issues, but do not evaluate these different solutions in 
details. Burger et al. [BKG96] have isolated the respective 
impact of latency and bandwidth on global memory hier- 
archy performance, concluding cache bandwidth is a major 
performance issue in current superscalar processors. They 
further outline that latency tolerating techniques can de- 
grade cache bandwidth. Wilson et al. [WOR96] have pro- 
posed and evaluated several mechanisms to obtain more 
than one memory access per cycle from a single cache port 
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using buffering techniques to increasing port width. Their 
motivation also lays in the prohibitive cost of multiported 
caches, with respect to both area cost and cache access time. 
Finally, Austin et al. [AS961 examine in details several TLB 
designs for physically tagged caches that can achieve high 
bandwidt,h. Though most of these designs were also exam- 
ined in the present study, conclusions diverge significantly 
because cache and TLB locality properties are different. 

9 Conclusions and Future Work 

In this paper, several techniques for improving data cache 
bandwidth have been evaluated. Because of the prohibitive 
cost of multi-ported SRAM cells, most designs based on this 
technique, i.e., true multi-ported caches, two-level caches 
with highly multi-ported first-level cache or hybrid designs 
(multi-bank + multi-port) are usually too costly for the 
performance obtained. Best solutions are based on multi- 
banked caches. Raw multi-banked caches usually perform 
poorly, but simple hardware enhancements to hide or re- 
move conflicts can significantly improve overall performance, 
and the chip overhead for such add-ons is only lo-15% of 
the raw multi-banked cache cost. Besides deciding the best 
cost/performance tradeoff for achieving high data cache band- 
width, these results also provide a hierarchy of the different 
techniques for improving cache bandwidth, both with re- 
spect to performance (IPC) and chip area cost. 

In this study, the influence of access time was modeled by 
increasing the cache pipeline length. We intend to use a time 
model to improve the accuracy of the comparison between 
the different cache designs. Ultimately, this comparison will 
be based on three parameters: IPC, cycle time and chip area 
cost. 
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