
Sketches and Diagrams in Practice

Sebastian Baltes
Computer Science
University of Trier

Trier, Germany
s.baltes@uni-trier.de

Stephan Diehl
Computer Science
University of Trier

Trier, Germany
diehl@uni-trier.de

ABSTRACT
Sketches and diagrams play an important role in the daily
work of software developers. In this paper, we investigate
the use of sketches and diagrams in software engineering
practice. To this end, we used both quantitative and qual-
itative methods. We present the results of an exploratory
study in three companies and an online survey with 394
participants. Our participants included software develop-
ers, software architects, project managers, consultants, as
well as researchers. They worked in different countries and
on projects from a wide range of application areas. Most
questions in the survey were related to the last sketch or dia-
gram that the participants had created. Contrary to our ex-
pectations and previous work, the majority of sketches and
diagrams contained at least some UML elements. However,
most of them were informal. The most common purposes
for creating sketches and diagrams were designing, explain-
ing, and understanding, but analyzing requirements was also
named often. More than half of the sketches and diagrams
were created on analog media like paper or whiteboards and
have been revised after creation. Most of them were used
for more than a week and were archived. We found that the
majority of participants related their sketches to methods,
classes, or packages, but not to source code artifacts with a
lower level of abstraction.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement —Documentation; D.2.10 [Software En-
gineering]: Design—Methodologies, Representation

General Terms
Design, Documentation, Human Factors

Keywords
Sketches, Diagrams, Empirical Study, Source Code Artifacts

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE’14 , November 16–22, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

1. INTRODUCTION
Over the past years, studies have shown the importance

of sketches and diagrams in software development [6,11,41].
Most of these visual artifacts do not follow formal conven-
tions like the Unified Modeling Language (UML), but have
an informal, ad-hoc nature [6, 11, 23, 25]. Sketches and dia-
grams are important because they depict parts of the mental
model developers build to understand a software project [21].
They may contain different views, levels of abstraction, for-
mal and informal notations, pictures, or generated parts [6,
11, 39, 40]. Developers create sketches and diagrams mainly
to understand, to design, and to communicate [6]. Media
for sketch creation include whiteboards, engineering note-
books, scrap papers, but also software tools like Photoshop
and PowerPoint [6,24,41]. When designing, sketches relieve
short-term memory, augment information processing, and
are a source of creativity [17,32,37].

The goal of our research was to investigate the usage of
sketches and diagrams in software engineering practice and
their relation to the core elements of a software project, the
source code artifacts. Furthermore, we wanted to assess how
helpful sketches are for understanding the related code. We
intended to find out if, how, and why sketches and diagrams
are archived and are thereby available for future use. Since
software is created with and for a wide range of stakehold-
ers [34] and sketches are often a means for communicating
between these stakeholders, we were not only interested in
sketches and diagrams created by software developers, but
by all software practitioners, including testers, architects,
project managers, as well as researchers and consultants.

Our study complements a number of existing studies on
the use of sketches and diagrams in software development
(see Section 4.2), which analyzed the above aspects only in
parts and often focused on an academic environment [41], a
single company [6, 21], open source projects [7, 43], or were
limited to a small group of participants [25,43]. Based on our
findings, we point at the need for tool support to better inte-
grate sketches and diagrams into the software development
process. Throughout this paper, we summarize preliminary
findings in boxes with dashed borders and our final results
in boxes with solid borders. For simplicity, we use the term
sketch in the following to denote both informal sketches as
well as diagrams following a formal notation like UML.

2. RESEARCH DESIGN
Our research was carried out in two phases: First, we con-

ducted an exploratory field study on the use of sketches and
diagrams in three different software companies to determine

ar
X

iv
:1

70
6.

09
17

2v
1

 [
cs

.S
E

]
 2

8
Ju

n
20

17

a set of dimensions for characterizing the visual artifacts.
In total, we identified the 11 dimensions that are shown in
Figure 1. Some of them were derived from related work,
others emerged during our research. In the second phase,
we asked practitioners to describe their last sketch based on
these dimensions in an online survey with 394 participants.

2.1 Exploratory Research
For our exploratory study, we collaborated with a com-

pany developing utility software (company A), a company
developing software for real-time devices (company B), and
a company developing software for the health care sector
(company C). Companies A and B are small to medium-
sized enterprises, whereas company C is a large corporation.

2.1.1 Field Study
First, our interest focused on real-life sketches drawn by

software practitioners. Previous studies showed that, in
practice, sketches and diagrams are often rather informal [6,
11, 25]. However, we had only seen few samples of sketches
drawn by professional software developers. Thus, we col-
lected 47 sketches drawn by 13 different developers of com-
panies A and B and interviewed them about certain proper-
ties of their sketches.

We prepared two questionnaires, one for each developer
and one for each collected sketch. Using the developer ques-
tionnaire, we captured demographic data like gender, age,
and work experience. Furthermore, we asked how often the
participant normally uses sketches in his or her daily work.
For each sketch, we asked how many persons contributed to
it, the purpose for creating the sketch, and its (estimated)
lifespan. Moreover, we requested a small description and
asked for the relation of the sketch to source code.

The median age of the developers was 29 and their median
work experience was 3 years. We were surprised by the broad
spectrum of sketches and diagrams, even in this limited set-
ting. The sketches ranged from simple to-do lists through
visualizations of geometric problems to computer-generated
UML diagrams. However, the majority of sketches were in-
formal, only two of them contained UML elements. The
most common purposes were understanding issues and de-
signing new features. The median lifespan was rather short
(2 to 3 days) and only a minority of sketches were kept per-
manently (8.5%). Developers related 79% of their sketches
to methods or classes. In company A, the employees used
sketches on a monthly basis, in company B on a weekly ba-
sis. These results led to first preliminary assumptions on
the dimensions formality, UML elements, purpose, lifespan,
archiving, and relation to source code.

Sketches are mostly informal and UML is rarely used.
Their main purposes are understanding and design-
ing and the lifespan is in most cases only a few days.
Sketches are rarely archived and are mainly related to
classes and methods.

2.1.2 Interviews
Since the questionnaires and collected sketches revealed

differences between the cultures of the two companies re-
garding sketch usage, we wanted to investigate how sketch-
ing is integrated in the software development workflow of
different companies. Therefore, we semi-structurally inter-
viewed one software developer and the chairman of company

Figure 1: Dimensions of a sketch or diagram in soft-
ware development

B. As we could not interview employees of company A, we
recruited two developers from company C to be interviewed.

The interviews revealed that the management of company
B actively demanded sketching and sketch archiving, with-
out forcing the developers to use a certain notation; in com-
pany C, the role of sketching differed between the teams.
One developer reported that in his team, informal white-
board and paper sketches were used “almost daily” in dif-
ferent situations. In contrast to that, the other developer
from the same company, but a different team, noted that
hand-drawn sketches were used “surprisingly little”.

While the collected sketches were mostly created on pa-
per, the interviews revealed the importance of whiteboards
as sketching media. One participant reported that in his
team, the whiteboard is normally used as soon as more
than two persons are involved. Otherwise, the preferred
medium is paper, but computer programs like PowerPoint
and Enterprise Architect are also applied. As mentioned
above, only few of the collected sketches were archived per-
manently. However, all participants mentioned important
sketches being archived, either by saving a digital picture
or by redrawing them digitally. The latter is an example of
a transition from one medium to another, as described by
Walny et al. [41]. We did not focus on these transitions in
the field study, but decided to further investigate the reuse
and revision of sketches in our online survey. In this context,
we also wanted to assess how much effort goes into the cre-
ation of sketches. Furthermore, the interviews revealed the
importance of the team context and the contributors that
helped creating the sketch.

Context and contributors influence the sketching prac-
tice in teams. Paper and computers are used when
sketching with one or two persons, otherwise white-
boards are the preferred medium.

2.2 Research Questions
While some of the sketch dimensions were already partly

addressed in existing studies (e.g., medium [6,21], purpose [6,
21], revision [41], and UML elements [25]), others, like the
relation to source code, have not been investigated yet. With
our survey, we wanted to reproduce findings from the other
studies, but also intended to gain new insights into the use
of sketches and diagram in software development practice.
We were especially interested in the reasons why or why not
sketches are archived. Moreover, we wanted to collect data
on the actual lifespan of sketches in practice and their rela-
tion to source code, focussing on their value for document-
ing the related source code artifacts. We dedicated an own
dimension to UML, because it it often seen as the “lingua
franca” of software engineering (see, e.g., [14]). Since past
studies and our preliminary research showed that UML is

often used informally [6,25], we wanted to assess how many
UML elements are actually present on sketches created by
software practitioners. The following five research questions
summarize what we wanted to learn with our online survey:

RQ1 How frequently do developers create, use, and revise
sketches and how much effort is put into these sketches?

RQ2 What is the lifespan of sketches; to what extent and
why are they archived?

RQ3 How formal are sketches and to what extent do they
contain UML elements?

RQ4 What media are used for creating sketches, in what
context and for what purpose are they created, and
how many persons contribute to them?

RQ5 To what source code artifacts are sketches related and
could they help to understand these artifacts in the
future?

2.3 Survey Design
To investigate our five research questions, we designed an

online questionnaire consisting of 28 questions in total, 15
of which referred to the last sketch or diagram that the par-
ticipant created for a professional software project. Three
of these questions were open-ended, the others were closed-
ended. One of our main goals while designing the question-
naire was to make it as concise as possible to increase the
completion rate (see, e.g., [12]) and to make it more likely
that companies would forward our request for participation.

To assess the 11 dimensions mentioned above, we asked
the participants about the last sketch or diagram they cre-
ated for a software project. Furthermore, we asked if the
sketch could be helpful in the future to understand the re-
lated source code artifact(s) and for demographic data about
the respondent. The target population for our study, i.e.,
the population of which we drew a sample, were basically
all software practitioners in the world, meaning all software
developers, testers, and architects, but also consultants, re-
searcher, and everyone else involved in creation of software.

The questionnaire was online from August 28, 2013 until
December 31, 2013, collecting 394 responses in total. First,
we recruited participants by a network of colleagues and
contacts, asking them to motivate others to participate in
our study. In a second phase, we posted a call for participa-
tion in two social networks, various online communities and
IRC channels. Furthermore, we contacted several German
software companies and asked them to forward a call for par-
ticipation to their employees. In a third phase, the German
IT news website heise developer [19] published a short arti-
cle on our survey, asking the readers to participate. In the
last recruitment phase, we contacted people working in the
area of software engineering, asking them to advertise our
survey on Twitter. We also posted a call for participation
in a large LinkedIn group with more than 44.000 members,
focusing on software architecture.

All survey questions and the coding can be found in Ta-
ble 1. Moreover, we made the questionnaire and the answers
publicly available [2]. The variables in the table are either
directly related to a certain research question or capture de-
mographic data about the participants. The names of most
variables are based on the sketch dimensions. However, we
used multiple variables to capture the context in which the
sketch was created (team size, application area, employment
of agile methods and model-driven software engineering).

Beside these closed-ended questions, our questionnaire con-
tained three open-ended questions: Two of them were re-
lated to RQ2, asking for reasons why or why not the sketch
has been archived. At the end of our questionnaire, partici-
pants had the possibility to provide general remarks on their
last sketch or their general usage of sketches and diagrams.

3. RESULTS
In this section, we present the methods we used to analyze

the survey data, describe the participants, and report on
how the data answers our research questions.

3.1 Methods
We analyzed the responses to the closed-ended questions

by means of descriptive statistics and quasi-experiments [30],
and the responses to the open-ended questions using open
coding [10]. The results of the quasi-experiments are shown
in Table 2: The first column indicates the grouping (or quasi-
independent) variable, i.e., the variable which was used to
divide the responses in two or more groups. These groups
were then analyzed using the variable in the second column
(the dependent variable). Since we used pairwise deletion of
missing values and in some cases ignored the middle values
of the 6-point Likert scales (2,3), we state the number of
responses for each group and variable (n). Furthermore,
we provide the median (Mdn), the mode (Mod), and the
interquartile range (IQR).

We applied the nonparametric Wilcoxon rank-sum test
(W) [42] to test if the distributions in the two groups differ
significantly. We did not use parametric tests because our
variables did not have interval scaling and not all variables
were normally distributed. Likert items, for instance, pro-
vide only ordinal data, because the intervals between scale
values are not equal [20]. As shown in the table, all pre-
sented group pairs have significantly different distributions
(all p-values < 0.05). We calculated Spearman’s rank corre-
lation coefficient (ρ) [31] to test the statistical dependence
between two variables. This coefficient works on ordinal
data and does not require normal distribution. The values
range between +1 and −1. A positive value indicates a pos-
itive correlation, i.e., if one variable increases, so does the
other; a negative value of ρ indicates a negative correlation,
i.e., the variables vary in opposite directions. Our interpre-
tation of the values of ρ is based on the following scheme:
weak (0.1 ≤ |ρ| < 0.3), moderate (0.3 ≤ |ρ| < 0.5), and
strong (0.5 ≤ |ρ| ≤ 1), which is derived from Cohen’s defini-
tions [9]. Apart from a few exceptions, we only considered
results having at least a moderate correlation. To measure
the effect size, we used Cliff’s delta (d) [8]. Its values range
between +1, when all values of the second group were higher
than the values of the first group, and −1, when the reverse
was true. Moreover, we provide the confidence interval of d
at a 95% confidence level.

The qualitative data was generated by the three open-
ended questions in our questionnaire. In total, 343 respon-
dents (87%) answered to the questions why or why not they
archived their sketch. Furthermore, we received 69 general
remarks (18%) with diverse opinions on the respondents’
usage of sketches and diagrams. We analyzed the answers
using open coding [10] and assigned them to categories. In
the following, we will refer to statements made by partici-
pants in the open-ended questions using their ID (e.g., P12
meaning the participant with ID 12).

Table 1: Structure of online survey. Asterisks indicate level of measurement (no asterisk: nominal scale, one
asterisk: ordinal scale, two asterisks: ratio scale).
Variable Question Values and Coding

creation∗

(CRE) → RQ1

When did you create your last sketch
or diagram (that you created for your
professional work and that is related to
a software project)?

0 = less than 10 minutes ago 4 = several weeks ago (1-4 weeks)
1 = several minutes ago (10-60 minutes) 5 = several months ago (1-12 month)
2 = several hours ago (1-8 hours) 6 = more than one year ago
3 = several work days ago (1-5 days) NA = I don’t know

revision∗

(REV) → RQ1

Has the sketch/diagram been revised
after its initial creation?

0 = no 1 = yes, once 2 = yes, multiple times NA = I don’t know

effort∗

(EFF) → RQ1

How much effective work time went
into the creation and revision of the
sketch/diagram up to now?

0 = less than 10 minutes 3 = several work days (1-5 days)
1 = several minutes (10-60 minutes) 4 = more than 5 work days
2 = several hours (1-8 hours) NA = I don’t know
(If several persons were involved, add up the work times of all contributors.)

contributors∗

(CON) → RQ4

How many persons contributed to the
sketch/diagram up to now (including
yourself)?

1 = 1 person 4 = 4 to 10 persons 7 = more than 100 persons
2 = 2 persons 5 = 11 to 50 persons NA = I don’t know
3 = 3 persons 6 = 51 to 100 persons

medium
(MED) → RQ4

What medium did you use to create the
sketch/diagram?

paper / traditional whiteboard / interactive whiteboard / tablet or smartphone /
computer / other

lifespan∗

(LSP) → RQ2

Please try to estimate the lifespan of
the sketch/diagram (how long did/will
you use it?).

0 = lifespan ended immediately after creation 4 = several work days (1-5 days)
1 = less than 10 minutes 5 = several weeks (1-4 weeks)
2 = several minutes (10-60 minutes) 6 = several months (1-12 months)
3 = several hours (1-8 hours) 7 = more than one year
NA = I don’t know

archiving∗

(ARC) → RQ2

Has the sketch/diagram been archived
or will it be archived?

0 = no 1 = yes, on paper 2 = yes, digitally 3 = yes, digitally and on paper
NA = I don’t know

Furthermore, we asked why or why not the sketch or diagram was archived (open-
ended).

formality∗

(FOR) → RQ3

Please try to specify the formality of
your sketch/diagram.

0=very informal to 5=very formal NA = I don’t know
(6-point Likert scale item)

UML∗

(UML) → RQ3

To which degree does the sketch / dia-
gram contain UML elements?

0=no UML elements to 5=only UML elements NA = I don’t know
(6-point Likert scale item)

purpose
(PUR) → RQ4

The sketch/diagram helped me to ...
(none or multiple answers possible)

understand source code / understand an issue / design a new architecture / design
new GUI components / design new features / review source code / refactor source
code / debug source code / explain source code to someone else / explain an issue to
someone else / analyze requirements / support managing the project / other task(s)

artifacts
(ART) → RQ5

Please select the software arti-
fact(s) to which the content of the
sketch/diagram is related. (none or
multiple answers are possible)

(single or multiple) statement(s) or expression(s) / (single or multiple) attribute(s),
parameter(s), propertie(s), or variable(s) / (single or multiple) method(s), func-
tion(s), or procedure(s) / (single or multiple) classe(s), object(s), or prototype(s)
/ (single or multiple) package(s), namespace(s), module(s), unit(s), or folder(s) /
(single or multiple) project(s) / other artifact(s)

help-self∗

(HES) → RQ5

Do you think that the sketch/diagram
could help you in the future to un-
derstand the related source code arti-
fact(s)?

0=it will definitely not help to 5=it will definitely help NA = I don’t know
(6-point Likert scale item)

help-others∗

(HEO) → RQ5

Do you think that the sketch/diagram
could help other software developers in
the future to understand the related
source code artifact(s)?

0=it will definitely not help to 5=it will definitely help NA = I don’t know
(6-point Likert scale item)

area
(ARE) → RQ4

What is the main application
area of the project (for which the
sketch/diagram was created)?

software tools / web development / computer games / public media / telecommuni-
cations / financial services / health / retail / manufacturing / automotive systems /
aerospace / real-time systems / civil service / other

team-size∗

(TES) → RQ4

How many persons work on this
project?

See variable contributors.

model-driven∗

(MDR) → RQ4

Does the project team employ model-
driven software engineering?

0=never to 5=always NA = I don’t know
(6-point Likert scale item)

agile∗

(AGI) → RQ4

To which degree does the team employ
agile software development methods?

0=only using agile methods to 5=only using other methods NA = I don’t know
(6-point Likert scale item)

usage∗

(USE) → RQ1

When did you use (look at, modify, ex-
tend) the last sketch or diagram that
you did not create yourself?

See variable creation.

gender
(GEN)

Your gender: male / female
(optional)

age∗∗

(AGE)
Your age: 0-99 year(s)

(optional)

experience∗∗

(EXP)
Your professional work experience in
software development:

0-99 year(s)
(optional, please round up to full years.)

work-time∗∗

(TIM)
How much of your work time is dedi-
cated to software development?

0-100%
(optional)

occupation
(OCC)

Your current occupation? none / software developer / software architect / project manager / ... / other

organization
(ORG)

What type of organization do you work
in?

government / educational / very small company (<10 employees) / small company
(10-50 employees) / medium company (51-1000 employees) / large company (>1000
employees) / self-emplyed

country
(COU)

Which country do you work in? country code
(Germany=DE, United States of America=US, etc.)

Additional remarks (open-ended): remarks regarding the sketch or diagram used to answer the above questions , the
questionnaire as a whole, or the general usage of sketches and diagrams in software
development

Table 2: Quasi-experiments: Wilcoxon rank-sum test, Spearman’s rho, and Cliff’s delta. One asterisk indi-
cates that the two-tailed p-value is smaller than 0.05, two asterisks indicate a p-value smaller than 0.01. CId:
confidence interval of Cliff’s delta at 95% confidence level.

G.Var Var Group 1 Group 2 W ρ d CId
Value(s) n Mdn Mod IQR Value(s) n Mdn Mod IQR

REV

LSP

no

137 3 2 3 yes (once)
yes (multiple
times)

233 5 6 2 7106∗∗ 0.37∗∗ 0.43 (0.32, 0.53)

FOR 136 1 0 2 243 2 1 2 43858∗∗ 0.26∗∗ 0.30 (0.19, 0.41)

ARC 130 0 0 1 234 1 1 1 63024∗∗ 0.24∗∗ 0.26 (0.15, 0.36)

LSP
EFF

0, 1, 2
84 0 0 1

5, 6, 7
189 1 1 1 25095∗∗ 0.51∗∗ 0.60 (0.49, 0.69)

ARC 79 0 0 1 179 1 1 0 30358∗ 0.49∗∗ 0.56 (0.43, 0.66)

ARC

LSP

no

139 3 2 2

yes (paper),
yes (digital),
yes (both)

218 6 6 2 6344∗∗ 0.49∗∗ 0.58 (0.48, 0.66)

EFF 141 1 0 1 228 1 1 1 44991∗∗ 0.46∗∗ 0.51 (0.41, 0.60)

HES 130 2.5 1/3 3 220 4 5 2 11940∗∗ 0.41∗∗ 0.48 (0.37, 0.58)

HEO 133 2 3 3 222 4 5 2 14671∗∗ 0.41∗∗ 0.47 (0.36, 0.57)

FOR 140 1 0 2 227 2 1 3 39819∗∗ 0.36∗∗ 0.42 (0.31, 0.52)

MED
CON trad., int.

whiteboard
77 2 2 1

paper 156 1 1 1 8814∗∗ -0.44∗∗ -0.50 (-0.61, -0.36)

CON comp., tablet 157 1 1 1 7929∗∗ -0.29∗∗ -0.33 (-0.46, -0.19)

MED

LSP

paper, trad.
whiteboard

219 4 4 3

computer,
tablet, int.
whiteboard

155 6 6 2 5814∗∗ 0.54∗∗ 0.62 (0.52, 0.70)

ARC 211 0 0 1 157 1 1 0 12403∗∗ 0.53∗∗ 0.56 (0.47, 0.64)

EFF 226 1 1 1 161 2 2 1 40763∗∗ 0.47∗∗ 0.52 (0.42, 0.60)

FOR 228 1 0 2 158 3 4 3 36741∗∗ 0.44∗∗ 0.50 (0.40, 0.60)

UML 224 0 0 2 157 3 0 4 47448∗∗ 0.33∗∗ 0.37 (0.26, 0.48)

HEO 212 3 3 3 158 4 4 2 13219∗∗ 0.30∗∗ 0.35 (0.23, 0.45)

HES
LSP

0, 1
67 3 2 3

4, 5
196 6 6 2 2752∗∗ 0.42∗∗ 0.55 (0.42, 0.66)

ARC 64 0 0 1 194 1 1 0 18915∗∗ 0.42∗∗ 0.50 (0.36, 0.62)

HEO
LSP

0, 1
75 3 2 2

4, 5
179 6 6 2 2321∗∗ 0.50∗∗ 0.62 (0.49, 0.72)

ARC 73 0 0 1 180 1 1 0 16290∗∗ 0.43∗∗ 0.58 (0.48, 0.66)

COU
CRE

DE
211 3 3 1

other countries
182 3 3 2 4983∗∗ -0.07 0.08 (-0.04, 0.19)

USE 198 3 3 2 170 3 3 2 14535∗∗ -0.09 0.10 (-0.01, 0.22)

3.2 Survey Participants
Overall, 394 persons (361 male, 11 female, 22 unknown)

with a median age of 34 filled in our questionnaire. Of the
participants that indicated their age, 74% were between 20
and 40 years old and 24% were older than 40, but younger
than 60. The respondents worked in 32 different countries,
most of them in Germany (54%) or North America (15%).

52% of our respondents worked as software developers,
22% as software architects. The rest included project man-
agers (5%), consultants (5%), industrial as well as academic
researchers (6%), and students (5%). 86% of them spent
most of their work time developing software; the median
value was 80%. 47% had more than 10 years of profes-
sional work experience, while 21% had less than 5 years.
The median professional work experience was 10 years. The
respondents worked with companies of very different sizes
(27% with up to 50 employees and 29% with more than
1000 employees) and the application areas of their projects
included software tools, web development, financial services,
automotive, manufacturing, and health, to name a few.

Since over half of our participants came from Germany, we
were interested if their answers were consistent with the an-
swers of non-German participants. To this end, we employed
quasi-experiments to compare these groups and found, be-
side demographic data, no major differences (see Table 2 for
the results of this test for variables creation and usage).

3.3 Findings on Research Questions
With the results of the quasi-experiments, the qualita-

tive data, and descriptive statistics, we can now answer our
research questions. When using data from the table, we pro-
vide the values of the first two columns to identify the row
we are referring to, e.g., (REV,FOR) refers to the second row.

3.3.1 Creation, Usage, Effort, and Revision (RQ1)
To assess the frequency of sketch creation, we asked the

respondents when they created their last sketch. 24% cre-
ated their last sketch on the same day, another 39% within

a week, another 22% within a month, and another 14% cre-
ated their last sketch more than one month ago. Hence, 64%
of the sketches were created at most several days ago. We
also asked the respondents about the last time they used
(looked at, modified, extended) a sketch that was not cre-
ated by themselves. 27% used it on the same day, 34%
within a week, 17% within a month, and another 15% used
it more than one month ago. Thus, 61% of the respondents
used a sketch made by someone else at most several days
ago. Overall, most respondents (77%) created and/or used
sketches within the last week.

To assess the effort of creating a sketch, we asked the re-
spondents to estimate the effective work time that went into
the creation and revision of the sketch. If several persons
were involved, we asked them to add up their individual
work times. More than two thirds (68%) of the sketches
were created in less than one hour, 25% were created in sev-
eral hours and in only four cases, the creation of the sketch
took more than five days.

After creation, about 15% of the sketches were revised
once, and 47% multiple times. 73% of the sketches that
were not revised were created on analog media, compared
to 49% of the revised ones. The median lifespan of revised
sketches was several weeks, whereas the median lifespan of
non–revised sketches was several hours (REV,LSP). Revised
sketches were also more likely to be archived (REV,ARC) and
less informal (REV,FOR).

It was common that people created a new version of an
outdated sketch, extended an existing one, or just captured
their analog whiteboard drawings. P75 named an example
for the latter: He wrote that he and his team “always take
a photograph of the sketch (we all have smartphones!) and
email the photo to the team members and place it in a shared
wiki as well”. Another transition was described by P193,
who wrote that he “started with a whiteboard drawing, then
a more detailed pencil&paper sketch, and eventually it was
modeled in yEd.” Similar workflows were reported by P41,
P52, and P149.

Sketches were not only redrawn, but were also transcribed
to other representations. P173 noted that his sketch will be
“replaced by textual documentation”, similar to P222, who
speaks of “formalization [...] in text form”, meaning source
code comments. A sketch may also be replaced simply by
a mental model that the creator built with the help of the
sketch (see also [21]): P373, for instance, wrote that his
sketch supported “knowledge transfer from explicit (paper)
to tacit (in head) knowledge”. Recreating sketches digitally
for documentation seems to be a common use case. P247
mentioned that his sketch “has been transformed digitally
by using a sketch tool and added to the development docu-
mentation”. Similar workflows were, for instance, reported
by P21, P23, and P290. Once the sketches were digital, it
was easier to update them. P305 wrote about his digital
sketch that “over the next several months we will be work-
ing from it and changing it as we learn”. P89 stated that
he always starts “a new project with a diagram, which is
modified as work progresses”.

Creating and using sketches are frequent tasks among
software practitioners. Most sketches were created in
less than one hour and more than half of them have
been revised. Transitions between different media were
common.

3.3.2 Lifespan and Archiving (RQ2)
We asked the participants to estimate the lifespan of their

sketch, i.e., how long they did or will use it. 21% used it
for less than one hour, 9% at most for one day, 32% for less
than one month, and another 33% for one month or more.
The median lifespan was several weeks. Less effort went
into the creation of sketches with a short estimated lifespan
(LSP,EFF). These sketches were also less likely to be archived
than those with a longer estimated lifespan (LSP,ARC).

Overall, more than 58% of the sketches were archived (6%
only on paper, 42% digitally, and 10% both, digitally and
on paper). Almost all digital sketches were archived (94%),
but also 38% of the analog ones. More effort went into
the creation of archived sketches (ARC,EFF) and the life-
span of those sketches was estimated to be several months—
compared to several hours for sketches that were not archived
(ARC,LSP). Archived sketches were more formal (ARC,FOR)

and would more likely help the respondent (ARC,HES) or
others (ARC,HEO) to understand the related source code ar-
tifact(s) in the future.

We asked the respondents to comment on why or why
not they archived their sketch. We categorized the answers
to both questions independently and identified nine cate-
gories in total: Four categories indicating why a sketch was
archived, four categories indicating why not, and one cat-
egory for all answers with hints on the general archiving
practice. Please note that the categories are not disjoint
and have different granularity. One answer may belong to
several categories.

Reasons for archiving a sketch

To the first category, we assigned answers indicating that
the sketch or diagram was kept as documentation. The ma-
jority of answers in this category pointed out that the sketch
documents the implementation, e.g., the architecture, struc-
ture, states, or data flows. Many respondents explicitly
mentioned the documentation of source code artifacts like

APIs, components, or test cases. Some of them reported on
the documentation of requirements and specifications, de-
cisions, ideas, solutions, or discussions. P365 archived his
sketch because it “document[s] the discussion” and it will be
used to “further investigate into [the] sketched idea”. How-
ever, sketches may also document mistakes. P327 wrote
that he archived his sketch to “trace the cause of decision”
and that the sketch “could be useful to explain our mistake
later”. P369 stated that he posted his diagram on the wall
of his office, because “charts and diagrams document where
you have been, what [you] were [...] thinking, and where [...]
you intend to go”.

To the second category, we added answers pointing out
that the sketch was or will be archived for future use. A
common reason for archiving a sketch was to be able to ref-
erence it in the future. Other future uses included reusing
the sketch as a template, as well as updating, refining, ex-
panding, or digitally recreating it. Furthermore, sketches
were used for planning, bug fixing, as a reminder, or for
communication with customers or team members (e.g., as
input for a discussion). Sketches and diagrams were also
used during implementation or for code and interface gen-
eration. Several respondents stated that they archived their
sketch to be able to explain parts of the software system or
ideas to other stakeholders (e.g., for onboarding new staff).

The visual artifacts in the third category support un-
derstanding and were thus archived. The answers showed
that understanding the implementation was a central aspect.
Some respondents archived their sketch because it helped
them to understand the whole project, others named the
understanding of processes, workflows, problems, ideas, or
decisions. P162 wrote that his sketch “greatly aids in under-
standing the basic architectural concepts”. P340 even stated
that “it will be difficult to understand the code” without the
diagram. An interesting remark by P233 highlights the con-
nection of sketches and ideation. He wrote that he keeps
sketches “as a personal archive of knowledge and ideas”.

The fourth category, named visualization, is closely re-
lated to the previous one. However, many participants ex-
plicitly mentioned that they archived their sketch because
it visualizes a process, problems, requirements, software, or
other concepts. Some mentioned that they prefer visual rep-
resentations of software over text. P21, for instance, wrote
that his sketch “is stored [...] in case I or someone else ana-
lyzes the sketched part of code. This way, it can be quickly
understood due to the visual representation without hours of
digging through complex source code”. P145 noted that his
sketch ”explains a data flow better than in spoken words”.
P162 even states that his sketch “shows concepts that are
not directly visible from code”. Sketches reduce the cogni-
tive load, as P85 reported: “I generally use them to visualize
a process that I can’t keep in my head all at once [...].” The
team of P65 uses flip chart sketches for code reviews, be-
cause “it helps to get a grasp on the structure and make the
code concrete and available to the involved persons”.

Reasons for not archiving a sketch

The main reason why respondents did not archive their
sketch was that they thought it served its purpose and, thus,
was not worth keeping. The named purposes included un-
derstanding, explaining, visualizing, designing, communicat-
ing, prototyping, problem solving, and structuring thoughts,
ideas, or the implementation. P2, for instance, wrote that

he did not archive his sketch because he “just created it to
visualize a very special situation in the work flow of the
program”. P6 mentioned that he used his sketch to “think
through a problem”and it had“no value as a long-term refer-
ence”. Interesting is the fact that sketches were also created
where documentation was available: P4 reported that his
sketch served his “own understanding of a well-documented
system”.

The second category of answers indicated that the sketch
was substituted by another representation, e.g., being re-
placed by a new or extended version, redrawn on another
medium, or implemented in source code. P204 stated that
his sketch is “useless after implementing the ideas of the
sketch into source code”. This was a common reason for
not keeping a sketch, as it was reported by several partic-
ipants (e.g., P7, P47, P217, P256, and P334). P332 wrote
that “the code will be the final representation of the idea,
the sketch is just scaffolding”. To the third category, we
added answers indicating that the sketch was outdated. The
main reason for this was the evolution of the related soft-
ware. P27, for instance, noted that “the software will be
developed further and diverge from the sketch over time”.
Similar situations were reported by P39, P52, P102, and
P339. In the fourth category, we summarized all answers
that named some kind of technical issue as a reason for not
keeping the sketch. P78, for instance, wanted to keep his
sketch, but wrote that he had “no way to archive white-
board drawings”. P123 reported that his sketch “ended up
in code” and “there is no good option to keep it together
[with source code]”. Similarly, P2 wrote that “in case there
was an easy way to combine both, code [...] and sketch I
might have thought about archiving it”. P259 noted that
“there is no special place where to archive” the sketch and
he also addressed the issue that “nobody would update it,
if the software artifacts change”. Another problem is that
contextual information may be necessary to understand a
sketch, as reported by P314.

Archiving practice

To this category, we added all answers that contained
hints to the respondent’s general archiving practice or the
systems used for storage. Sketches were stored, for instance,
in wikis, version control systems, issue tracking systems, or
emails. Some participants reported that they try to archive
as much as possible, like P10, who stated that “every arti-
fact in the process of creating a software should be archived”.
Four participants named compliance or regulatory demands
as a reason for keeping their sketch.

One third of the sketches had an estimated lifespan
of one day or less, one third of up to one month, and
another third of more than one month. The majority of
sketches were archived, most of them digitally. Many
sketches were kept because they document or visualize
parts of the implementation or assist its understanding.

3.3.3 Formality and UML (RQ3)
In the questionnaire, we defined formality as the degree

to which a sketch follows a pre-defined visual language (e.g.,
the UML). 68% of the sketches were rated as informal (Likert
0-2). While 27% rated their sketch as very informal (Likert
0) only 6% found their sketch to be very formal (Likert 5).
We also explicitly asked the respondents about the use of

UML elements in their sketches. While 40% of the sketches
contained no UML elements at all, 9% consisted solely of
UML elements. Overall, 24% found that their sketch con-
tained few UML elements (Likert 1-2); another 24% found
that their sketch contained more UML elements (Likert 3-
4). However, 30% of the sketches that contained more UML
elements were still rated as informal (Likert 0-2). See Figure
2 for a diverging stacked bar chart [27] of the answers for
the variables formality and UML.

UML

FOR

200 100 0 100
Count

0
1
2
3
4
5Var.

Figure 2: Distribution of answers for FOR and UML

In total, 18 of the respondents’ general remarks were about
their use of UML or their general opinion on such formal
notations. The opinions ranged from completely rejecting
formal methods (P83) to very positive ones (P194). One
argument against UML or other formal notations was that
“most of the time, you’d have to read the code anyways”
(P8). P102 states that “UML is often not known, and al-
most never used”. According to him, “people prefer to code
or to get code (even buggy) rather than to draw little draw-
ings”. On the other hand, P194 stated that he thinks that
diagrams “help a lot in designing good object-oriented sys-
tems”. P210 stated that he prefers having less text docu-
mentation and more diagrams, because “people tend not to
read written specifications accurately but spend more time
understanding a diagram”. Most of the remarks indicated an
informal sketching practice, meaning that if UML was used,
it was not used strictly as defined in the standard (e.g., re-
ported by P21, P94, P190, and P304). This is in accord with
our qualitative results described above. Informal UML us-
age also influenced the choice of medium, as P210 reported
that he creates most of his sketches on paper, because they
“combine UML, icons and mind-mapping elements, as well
as graphical sketches to visualize functionality”.

The majority of sketches and diagrams were informal.
Whereas 40% of them contained no UML elements at
all, 48% contained at least some, and only 9% con-
sisted solely of UML elements. Respondents’ remarks
indicate that if UML is used, it is often not used strictly
as defined in the standard.

3.3.4 Media, Context, and Purpose (RQ4)
Almost 60% of the sketches were drawn on analog me-

dia like paper (40%) or traditional whiteboards (18%). The
remaining sketches were almost exclusively drawn on com-
puters (39%). Only five sketches were drawn on an interac-
tive whiteboard and only three on tablets or smartphones.
Sketches created on paper or digitally were most likely cre-
ated alone, whereas sketching on traditional whiteboards
was more likely to be done collaboratively (MED,CON). The
medium and lifespan of a sketch were also related: Sketches
created on analog media (paper or traditional whiteboards)
had an estimated lifespan of several work days, whereas
sketches created digitally (computer, tablet, or smartphone)
had an estimated lifespan of several months (MED,LSP). Fur-
thermore, digital sketches were more likely to be archived
than analog ones (MED,ARC), they were more formal (MED,

FOR), and were more likely to contain UML elements (MED,

UML). Digital sketches were also rated as being more likely
to help others in the future to understand the related source
code artifact(s) (MED,HEO). Besides, more effort was put
into digital sketches (MED,EFF).

While 51% of the sketches were created by a single person,
28% by two persons, and 15% by three persons, only 6%
were created by more than three persons. Actually, only
one sketch was created by more than 10 persons. Sketches to
which one or two people contributed were most likely created
on paper (46%). 38% of these sketches were created using
a computer and 15% on a traditional whiteboard. When
more than two people contributed to the sketch, the ratio of
computer sketches increases only slightly (43%). However,
the ratio of traditional whiteboards doubles (33%) and the
ratio of paper sketches halves (17%).

Most sketches were drawn on analog media like paper
or whiteboards. Half of them were created by a sin-
gle person and another third by two persons—only few
were created by more than three persons. Paper was
predominantly used alone, whiteboards collaboratively.

To capture the creation context, we asked for the applica-
tion area, team size, and employment of model-driven soft-
ware engineering or agile methods in the software project
for which the sketch was created. The most common ap-
plication areas were software tools (27%), followed by web
development (18%), and financial services (11%). In 54% of
the cases, the project teams never or only rarely employed
model-driven software engineering (Likert 0-1), whereas 42%
of the teams intensively employed agile methods (Likert 4-
5). As mentioned before, the respondents worked with com-
panies of very different sizes. The most common team size
was 4 to 10 (40%), 11% of the respondents worked alone,
8% with one colleague, and 19% with two colleagues. 15%
worked in teams of 11 to 50 people, whereas only 5% worked
in teams with more than 50 employees. However, we found
no significant influence of the team context on the sketching
behavior of our participants.

We also asked the respondents about the purpose of their
sketch. They could choose multiple answers from a given
list of tasks that the sketch helped to accomplish (see Table
1). The most frequent tasks were designing a new archi-
tecture (52%), designing new features (48%), explaining an
issue to someone else (46%), analyzing requirements (45%),
and understanding an issue (44%); the least common tasks
were reviewing source code (9%) and debugging source code
(7%). Overall, most tasks were either related to designing
(75%), explaining (60%), or understanding (56%). Of the
most frequent tasks only analyzing requirements cannot be
assigned to these categories.

Three participants mentioned sketches as a medium to
outline the high-level system architecture (P8, P26, P304).
P374 thinks that “sketches and diagrams are critical to un-
derstanding software projects and architectures”. Sketching
is also used to communicate with clients (P106, P112) or
between “business and development” (P224).

The most common purposes for creating sketches were
related to designing, explaining, or understanding. Fur-
thermore, analyzing requirements played an important
role.

3.3.5 Relation to Source Code and Value (RQ5)
We asked the respondents to select the software artifact(s)

to which the content of their sketch was related. They could
choose multiple answers from a given list of artifacts, which
was sorted in order of increasing level of abstraction (e.g.,
statement, method, class, package). For each level, we not
only named terms used in object-oriented programming, but
also similar concepts used in other paradigms (see Table 1).
Furthermore, respondents could indicate whether the sketch
was related to a single instance or to multiple instances of
the chosen artifact. For the sake of brevity, we will only
name one representative of each level and do not distinguish
single and multiple instances in the following. If a sketch is
related to a lower level of abstraction this normally implies
that it is also related to the levels above. Thus, we base our
interpretation on the most specific artifact the participant
selected, i.e., the artifact with the lowest level of abstraction.
9% of the sketches were most specifically related to state-
ments, 8% to attributes, 20% to methods, 23% to classes,
17% to packages, and 19% to projects. We can conclude that
sketches rarely pertain to certain attributes or statements,
but rather to methods, classes, packages, or projects.

We asked the respondents to assess if their sketch could
help them or others to understand the related source code
artifact(s) in the future. 52% of the sketches were rated
as helpful (Likert 4-5) for the respondent, 47% were rated
as helpful for others. Helpful sketches had a longer esti-
mated lifespan (HES,LSP) (HEO,LSP) and were more likely to
be archived than not helpful sketches (HES,ARC) (HEO,ARC).

Sketches were rarely related to certain attributes or
statements, but rather to methods, classes, packages,
or projects. About half of the sketches were rated
as helpful to understand the related source code ar-
tifact(s) in the future.

3.4 Correlations
To estimate the strength of the correlations between the

captured variables we used Spearman’s rank correlation co-
efficient ρ (see Section 3.1). To test the significance of each
correlation coefficient, we computed the two-tailed p-values
and checked whether these p-values were both less than
α = 0.05 and α = 0.05/15 (Bonferroni correction [13], as we
computed a total of 15 correlations). Since we didn’t start
with apriori hypotheses about the correlations, we only con-
sider moderate and strong correlations that are significant
after Bonferroni correction.

The results are shown in Table 3: The strongest correla-
tion was found between formality and UML, other strong
correlations exist between archiving and lifespan, and be-
tween effort and lifespan. Furthermore, all pairwise cor-
relations of the four variables formality, archiving, effort,
lifespan and the three variables effort, lifespan, revision are
at least moderate. Note that one has to be cautious when
interpreting these correlations, because correlation does not
imply causality. For example, the above mentioned correla-
tions of the variable effort can be put in other words: The
more effort is put into a sketch, the more likely it is that it
will be used for a longer time, that it will be archived, and
that it will be more formal. But, for example, we may not
conclude that effort is the cause for archiving a sketch.

As mentioned above, the four variables formality, archiv-
ing, effort, and lifespan each correlate at least moderately.

Table 3: Correlation table with Spearman’s corre-
lation coefficients ρ (one asterisk: significant at the
0.05 level, two asterisks: remains significant after
Bonferroni correction).

ρ UML FOR ARC EFF LSP REV

UML -

FOR 0.62∗∗ -

ARC 0.26∗∗ 0.37∗∗ -

EFF 0.27∗∗ 0.39∗∗ 0.47∗∗ -

LSP 0.26∗∗ 0.38∗∗ 0.52∗∗ 0.50∗∗ -

REV 0.17∗ 0.26∗∗ 0.24∗ 0.45∗∗ 0.36∗∗ -

n 384 389 371 390 377 383

We analyzed the open-ended answers and searched the data
for sketches illustrating these correlations: P156 created his
rather formal sketch (formality: 3) using a traditional white-
board and archived it digitally. He spent several hours cre-
ating it and estimated its lifespan to be more than one year,
noting that it is a “general architecture sketch” that “will
help others understand communication and probably won’t
change in the forthcoming months”. Another example is the
formal sketch (formality: 5) of P122 that was created in
more than 5 work days. It was a “state diagram” created
digitally that is “needed as long as the program exists” (life-
span: more than one year). The above examples are sketches
that have high values for the considered variables. However,
there are also examples for sketches at the other end of the
spectrum. P73 created his informal sketch (formality: 0) in
less than ten minutes on paper. The sketch had an estimated
lifespan of only several minutes and was not archived, since
it was a “temporary sketch for debugging”. The sketch of
P80 had similar characteristics, being a “transient diagram,
used to explain an approach to a problem”.

Formality, archiving, effort, and lifespan each correlate
at least moderately. This is also the case for effort,
lifespan, and revision.

4. DISCUSSION
Creating sketches and using sketches created by others are

common tasks among software practitioners. Most sketches
were revised multiple times and had an estimated lifespan of
more than one week. This is backed up by qualitative data,
as respondents reported that sketches were often revised or
redrawn, especially when used for documentation. Qualita-
tive data also indicates that it is common that the lifecycle
of a sketch starts on analog media like paper or whiteboards
and eventually ends as an archived digital version.

More than two thirds of the sketches were created in less
than one hour, mostly using analog media like paper or
whiteboards. This may be a reason for many sketches being
rated as informal. Interactive whiteboards and tablets were
almost never used. The use of UML elements was higher
than we expected after the field study, just like the life-
span. Another unexpected result was that most sketches
were archived. Besides being archived, many sketches were
rated as helpful to understand the related source code arti-
facts in the future. In the open-ended answers, many respon-
dents stated that their sketch helped them to understand is-
sues or implementation details. Thus, despite the difficulty

of keeping them up to date, sketches are a valuable resource
for developers.

With our survey, we could validate insights from the in-
terviews we made during our exploratory research: One in-
terviewed developer noted that in his team, whiteboards
are normally used as soon as more than two persons are
involved. Otherwise, the preferred medium is paper. We
found out that paper was the prevalent medium for one or
two contributors and that whiteboard usage doubled when
more than two persons contributed. Furthermore, we ob-
served that while half of the sketches were created by a
single person, the other half was almost entirely created
by two or three persons; only few sketches were created
by more than three persons. Our preliminary assumption
that sketches and diagrams primarily relate to classes and
methods—or other source code artifacts with the same level
of abstraction—was partly confirmed, but projects and pack-
ages played also an important role.

4.1 Threats to Validity
During the qualitative analysis, we tried to mitigate the

“lone researcher bias” [5] by applying multiple coding [3]:
Two researchers performed the coding independently, be-
fore they discussed the results and agreed on common cat-
egories. Furthermore, most of the quantitative results were
computed independently by both researchers. Nevertheless,
there exist possible threats to external and construct valid-
ity, which we address in the following.

External validity: It is obvious that drawing a random
sample from the population of software practitioners was
impossible for us. We had to rely on available subjects,
which is known as convenience sampling [1, 18] or opportu-
nity sampling [29]. Since we asked people to spread the link
to our online questionnaire, we also applied a kind of snow-
ball sampling [1]. We had only little control over the repre-
sentativeness of our sample, because the participants were
selected by the channels we used to contact them. How-
ever, we tried to mitigate this threat to external validity
by describing our sample in detail to ensure comparability
to results of other studies and available demographic data
about the target population. Furthermore, we named the
channels we used to contact participants.

Construct validity: In our field study, we explicitly asked
about the usual frequency of sketching. In hindsight, we
found that this question ignored that the sketching frequency
most likely varies with the different software development
phases and it may thus be difficult for the participants to
give such a general estimate. To reduce biases like social
desirability and frequency illusion in our survey, we decided
not to ask participants about their typical sketching behav-
ior, e.g., how often they sketch or whether they use UML
notation, but instead asked them about a concrete artifact,
namely their last sketch. However, a threat to construct
validity may be the way we tried to capture the context in
which the sketch was created. Beside asking for the team size
and application area of the project, we asked whether the
project team “employs model-driven software engineering”.
This question may be too vague, as participants may have a
differing notion of what model-driven software engineering
is. In hindsight, we may have better asked for more concrete
tools or practices, e.g. which programming languages are
used. Furthermore, the perception of what exactly “UML
elements” are may differ between respondents.

For most questions, we asked the participants to think of
the last sketch or diagram they created. Depending on how
long the period of time between creation and filling out the
questionnaire was, a recall bias may affect the answers. As
85% of our participants created their last sketch not longer
than one month ago, this bias is unlikely to influence our re-
sults. Moreover, we cannot rule out the possibility that we
may have missed an important confounding variable. How-
ever, since our sketch dimensions are based on past studies
and our preliminary research, we think that this is unlikely.

4.2 Related Work
Over the past years, studies have shown the importance of

sketches and diagrams in software development. However,
sketching is also an important task in other domains.

Sketches in general: Artists sketch to clarify existing ideas
and to develop new ones [15]. In mechanical design, sketches
not only document final designs, but also provide designers
with a memory extension to help ideas taking shape and
to communicate concepts to colleagues [38]. Beside sketches
being an external representation of memory and a means for
communication [35, 36], they serve as documentation [28].
Schütze et al. showed that the possibility to sketch has
a positive effect on the quality of solutions in early stages
of the design process [28]. Furthermore, the ambiguity in
sketches is a source of creativity [17, 32, 37] and they sup-
port problem-solving and understanding [33]. In our survey,
we found that the latter was one of the main reasons why
participants archived their sketch.

Sketches in software engineering: Software designers not
only use sketches to design the appearance, but also the be-
havior of software [24]. A study of Brown et al. [4] revealed
the importance of sketches for collaboration between user in-
teraction designers and software developers. Chung et al. [7]
showed that diagramming in distributed environments like
open-source projects differs from diagramming in co-located
settings. Dekel and Herbsleb [11] studied software design
teams at the OOPSLA DesignFest, observing that teams in-
tentionally improvise representations to fulfill ad-hoc needs,
which arise during the evolution of object-oriented design,
and thus diverge from standard-notations like UML. We can
support this with our survey, since most sketches were in-
formal, but often contained at least some UML elements.

Walny et al. [41] analyzed eight workflows of software de-
velopers in an academic setting. They report on a variety of
transitions that sketches and diagrams undergo. Our quanti-
tative as well as qualitative results provided insights into the
transitions of sketches. More than half of the sketches were
revised. Furthermore, respondents reported on sketches be-
ing shared with others or redrawn digitally.

In another study, Walny et al. [40] analyzed 82 whiteboard
drawings in a research institution to achieve a better un-
derstanding of what they called spontaneous visualizations.
Our study suggests that one reason for archiving a sketch
is that it helps to visualize the implementation, issues, or
processes.

LaToza et al. [21] conducted a survey with 280 software
engineers at Microsoft. They found that paper and white-
boards were perceived as most effective for designing. Fur-
thermore, they state that understanding the rationale be-
hind code is the biggest problem for developers. In our
study, over half of the sketches helped the respondents to
understand source code or general issues.

Cherubini et al. [6] interviewed eight software developers
at Microsoft, identifying nine scenarios in which developers
created and used drawings. They explored these scenarios
using a survey with 427 participants, also recruited at Mi-
crosoft. We based our list of purposes for sketch creation
on their scenarios (see Table 2) and found similar results.
However, we asked for further purposes and found analyz-
ing requirements to be an important task. Cherubini et al.
state that the use of formal notations like UML was very low.
This is consistent with Petre [26], who reports on a series of
semi-structured interviews with 50 professional software de-
velopers on their UML use. She states that the majority of
interviewed practitioners did not use UML and those using
UML, tended to use it informally and selectively. Our study
confirms the informal use of UML, but we found that 57%
of the sketches contained at least some UML elements.

5. CONCLUSION
The main contribution of this paper is a thorough descrip-

tion of the manifold dimensions of sketches and diagrams
in software development by presenting quantitative as well
as qualitative results from a survey with 394 participants.
This survey revealed that sketches and diagrams, even if
they are often informal, are a valuable resource, document-
ing many aspects of the software development workflow. We
showed that sketches are related to different source code ar-
tifacts and that roughly half of the sketches were rated as
either helpful for the respondents or others to understand
these artifacts. Furthermore, the qualitative data showed
that sketches often document or visualize the implementa-
tion and support people in understanding it.

As documentation is frequently poorly written and out of
date [16, 22], sketches could fill in this gap and serve as a
supplement to conventional documentation like source code
comments. Tool support is needed to assist developers in
archiving and retrieving sketches related to certain source
code artifacts. Since more than half of the sketches an-
alyzed in our survey were archived either digitally or digi-
tally and on paper, software professionals are willing to keep
their visual artifacts. However, they also named technical
issues, e.g., that there is no good technique to keep sketches
together with source code. A tool should support the evo-
lution of sketches, because more than 60% of them were
revised once or multiple times. Qualitative data indicates
that it is a common use case for sketches to be initially cre-
ated on analog media like paper or whiteboards and then,
potentially after some revisions, they end up as an archived
digital sketch.

Our work is a good starting point for future research: We
plan to evaluate what distinguishes helpful from not help-
ful sketches and what contextual information is needed to
understand them later. Moreover, it would be interesting
to examine if visualizations for certain source code artifacts
share common characteristics. This research may lead to
recommendations for software practitioners on how to aug-
ment or annotate their sketches so that they can serve as a
valuable software documentation.

Acknowledgments
We want to thank the participants of our survey as well
as the software developers we interviewed and who shared
their sketches with us. Thanks to Fabian Beck for his helpful
suggestions on this paper.

6. REFERENCES
[1] E. Babbie. The practice of social research. Cengage

Learning, 2010.

[2] S. Baltes and S. Diehl. Sketches and diagrams in
practice – survey data.
http://www.st.uni-trier.de/survey-sketches/.

[3] R. S. Barbour. Checklists for improving rigour in
qualitative research: a case of the tail wagging the
dog? British Medical Journal, 322(7294):1115, 2001.

[4] J. Brown, G. Lindgaard, and R. Biddle. Stories,
sketches, and lists: Developers and interaction
designers interacting through artefacts. In AGILE ’08:
Proceedings of the 11th AGILE Conference, pages
39–50. IEEE, 2008.

[5] P. Burnard, P. Gill, K. Stewart, E. Treasure, and
B. Chadwick. Analysing and presenting qualitative
data. British Dental Journal, 204(8):429–432, 2008.

[6] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko.
Let’s go to the whiteboard: how and why software
developers use drawings. In CHI ’07: Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems, pages 557–566. ACM, 2007.

[7] E. Chung, C. Jensen, K. Yatani, V. Kuechler, and
K. N. Truong. Sketching and drawing in the design of
open source software. In VL/HCC ’10: Proceedings of
the IEEE Symposium on Visual Languages and
Human-Centric Computing, pages 195–202. IEEE,
2010.

[8] N. Cliff. Dominance statistics: Ordinal analyses to
answer ordinal questions. Psychological Bulletin,
114(3):494, 1993.

[9] J. Cohen. Statistical power analysis for the behavioral
sciences. Psychology Press, 2nd edition, 1988.

[10] J. Corbin and A. Strauss. Basics of qualitative
research. Sage Publications, 3rd edition, 2008.

[11] U. Dekel and J. D. Herbsleb. Notation and
representation in collaborative object-oriented design:
an observational study. In OOPSLA ’07: Proceedings
of the 22nd Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages,
and Applications, pages 261–280. ACM, 2007.

[12] D. A. Dillman, M. D. Sinclair, and J. R. Clark. Effects
of questionnaire length, respondent-friendly design,
and a difficult question on response rates for
occupant-addressed census mail surveys. Public
Opinion Quarterly, 57(3):289–304, 1993.

[13] O. J. Dunn. Multiple comparisons among means.
Journal of the American Statistical Association,
56(293):52–64, 1961.

[14] S. Evans, A. Kent, and B. Selic. UML 2000–The
Unified Modeling Language. LNCS number 1939, 2000.

[15] J. Fish and S. Scrivener. Amplifying the mind’s eye:
sketching and visual cognition. Leonardo, pages
117–126, 1990.

[16] A. Forward and T. C. Lethbridge. The relevance of
software documentation, tools and technologies: a
survey. In DocEng ’02: Proceedings of the 2002 ACM
Symposium on Document Engineering, pages 26–33.
ACM, 2002.

[17] G. Goldschmidt. The backtalk of self-generated
sketches. Design Issues, 19(1):72–88, 2003.

[18] F. Gravetter and L.-A. Forzano. Research methods for

the behavioral sciences. Cengage Learning, 2012.

[19] Heise Verlag. Heise developer news.
http://www.heise.de/developer/.

[20] S. Jamieson. Likert scales: How to (ab)use them.
Medical Education, 38(12):1217–1218, 2004.

[21] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining
mental models: a study of developer work habits. In
ICSE ’06: 28th International Conference on Software
Engineering, pages 492–501, 2006.

[22] T. C. Lethbridge, J. Singer, and A. Forward. How
software engineers use documentation: the state of the
practice. IEEE Software, 20(6):35–39, 2003.

[23] N. Mangano, T. D. LaToza, M. Petre, and A. van der
Hoek. Supporting informal design with interactive
whiteboards. In CHI’14: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
pages 331–340. ACM, 2014.

[24] B. Myers, S. Y. Park, Y. Nakano, G. Mueller, and
A. Ko. How designers design and program interactive
behaviors. In VL/HCC ’08: Proceedings of the IEEE
Symposium on Visual Languages and Human-Centric
Computing, pages 177–184. IEEE, 2008.

[25] M. Petre. UML in practice. In ICSE ’13: 35th
International Conference on Software Engineering,
pages 722–731. IEEE, 2013.

[26] M. Petre. Reflections on representations – cognitive
dimensons analysis of whiteboard design notations,
pages 267–294. Software Design in Action. CRC Press,
2014.

[27] N. B. Robbins and R. M. Heiberger. Plotting Likert
and other rating scales. In Proceedings of the 2011
Joint Statistical Meeting, 2011.

[28] M. Schütze, P. Sachse, and A. Römer. Support value
of sketching in the design process. Research in
Engineering Design, 14(2):89–97, 2003.

[29] A. Searle. Introducing research and data in psychology:
A guide to methods and analysis. Routledge, 2000.

[30] W. R. Shadish, T. D. Cook, and D. T. Campbell.
Experimental and quasi-experimental designs for
generalized causal inference. Wadsworth Cengage
Learning, 2002.

[31] C. Spearman. The proof and measurement of
association between two things. American Journal of
Psychology, 15(1):72–101, 1904.

[32] M. Suwa, J. Gero, and T. Purcell. Unexpected
discoveries and s-invention of design requirements:
important vehicles for a design process. Design
Studies, 21(6):539–567, 2000.

[33] M. Suwa and B. Tversky. External representations
contribute to the dynamic construction of ideas. In
Diagrammatic Representation and Inference, pages
341–343. Springer, 2002.

[34] R. N. Taylor and A. Van der Hoek. Software design
and architecture – the once and future focus of
software engineering. In FOSE ’07: International
Conference on Software Engineering – Workshop on
the Future of Software Engineering, pages 226–243.
IEEE, 2007.

[35] B. Tversky. Spatial schemas in depictions. In Spatial
Schemas and Abstract Thought, pages 79–111, 2001.

[36] B. Tversky. What do sketches say about thinking? In
AAAI Spring Symposium, Sketch Understanding

http://www.st.uni-trier.de/survey-sketches/
http://www.heise.de/developer/

Workshop, pages 148–151. Stanford University, 2002.

[37] B. Tversky, M. Suwa, M. Agrawala, J. Heiser,
C. Stolte, P. Hanrahan, D. Phan, J. Klingner, M.-P.
Daniel, P. Lee, et al. Sketches For Design and Design
Of Sketches. In Human Behavior in Design:
Individuals, Teams, Tools. Springer, 2003.

[38] D. G. Ullman, S. Wood, and D. Craig. The
importance of drawing in the mechanical design
process. Computers & Graphics, 14(2):263–274, 1990.

[39] A. van der Hoek and M. Petre, editors. Software
designers in action. CRC Press, 2014.

[40] J. Walny, S. Carpendale, N. Henry Riche, G. Venolia,
and P. Fawcett. Visual thinking in action:
visualizations as used on whiteboards. Transactions on
Visualization and Computer Graphics,

17(12):2508–2517, 2011.

[41] J. Walny, J. Haber, M. Dork, J. Sillito, and
S. Carpendale. Follow that sketch: lifecycles of
diagrams and sketches in software development. In
VISSOFT ’11: Proceedings of the 6th IEEE
International Workshop on Visualizing Software for
Understanding and Analysis, pages 1–8. IEEE, 2011.

[42] F. Wilcoxon. Individual comparisons by ranking
methods. Biometrics, 1(6):80–83, 1945.

[43] K. Yatani, E. Chung, C. Jensen, and K. N. Truong.
Understanding how and why open source contributors
use diagrams in the development of Ubuntu. In CHI
’09: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 995–1004. ACM,
2009.

	1 Introduction
	2 Research Design
	2.1 Exploratory Research
	2.1.1 Field Study
	2.1.2 Interviews

	2.2 Research Questions
	2.3 Survey Design

	3 Results
	3.1 Methods
	3.2 Survey Participants
	3.3 Findings on Research Questions
	3.3.1 Creation, Usage, Effort, and Revision (RQ1)
	3.3.2 Lifespan and Archiving (RQ2)
	3.3.3 Formality and UML (RQ3)
	3.3.4 Media, Context, and Purpose (RQ4)
	3.3.5 Relation to Source Code and Value (RQ5)

	3.4 Correlations

	4 Discussion
	4.1 Threats to Validity
	4.2 Related Work

	5 Conclusion
	6 References

