
ar
X

iv
:1

40
3.

40
64

v2
 [

cs
.P

L]
 1

7
S

ep
 2

01
4

Feedback Generation for Performance Problems in
Introductory Programming Assignments ∗

Sumit Gulwani
Microsoft Research, USA

sumitg@microsoft.com

Ivan Radiček
TU Wien, Austria

radicek@forsyte.at

Florian Zuleger
TU Wien, Austria

zuleger@forsyte.at

ABSTRACT
Providing feedback on programming assignments manually
is a tedious, error prone, and time-consuming task. In this
paper, we motivate and address the problem of generating
feedback on performance aspects in introductory program-
ming assignments. We studied a large number of function-
ally correct student solutions to introductory programming
assignments and observed: (1) There are different algorith-
mic strategies, with varying levels of efficiency, for solving
a given problem. These different strategies merit different
feedback. (2) The same algorithmic strategy can be imple-
mented in countless different ways, which are not relevant
for reporting feedback on the student program.

We propose a light-weight programming language exten-
sion that allows a teacher to define an algorithmic strategy
by specifying certain key values that should occur during
the execution of an implementation. We describe a dynamic
analysis based approach to test whether a student’s program
matches a teacher’s specification. Our experimental results
illustrate the effectiveness of both our specification language
and our dynamic analysis. On one of our benchmarks con-
sisting of 2316 functionally correct implementations to 3 pro-
gramming problems, we identified 16 strategies that we were
able to describe using our specification language (in 95 min-
utes after inspecting 66, i.e., around 3%, implementations).
Our dynamic analysis correctly matched each implementa-
tion with its corresponding specification, thereby automati-
cally producing the intended feedback.

Categories and Subject Descriptors
D.2.5 [SOFTWARE ENGINEERING]: Testing and De-
bugging; I.2.2 [ARTIFICIAL INTELLIGENCE]: Auto-
matic Programming—Automatic analysis of algorithms

∗The second and third author were supported by the Vienna
Science and Technology Fund (WWTF) grant ICT12-059.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGSOFT/FSE’14, November 16 - 22 2014, Hong Kong, China
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3056-5/14/11 ...$15.00.
http://dx.doi.org/10.1145/2635868.2635912.

General Terms
Algorithms, Languages, Performance.

Keywords
Education, MOOCs, performance analysis, trace specifica-
tion, dynamic analysis.

1. INTRODUCTION
Providing feedback on programming assignments is a very

tedious, error-prone, and time-consuming task for a human
teacher, even in a standard classroom setting. With the
rise of Massive Open Online Courses (MOOCs) [15], which
have a much larger number of students, this challenge is
even more pressing. Hence, there is a need to introduce au-
tomation around this task. Immediate feedback generation
through automation can also enable new pedagogical bene-
fits such as allowing resubmission opportunity to students
who submit imperfect solutions and providing immediate
diagnosis on class performance to a teacher who can then
adapt her instruction accordingly [9].

Recent research around automation of feedback genera-
tion for programming problems has focused on guiding stu-
dents to functionally correct programs either by providing
counterexamples [25] (generated using test input generation
tools) or generating repairs [21]. However, non-functional
aspects of a program, especially performance, are also impor-
tant. We studied several programming sessions of students
who submitted solutions to introductory C# programming
problems on the Pex4Fun [4] platform. In such a program-
ming session, a student submits a solution to a specified
programming problem and receives a counterexample based
feedback upon submitting a functionally incorrect attempt
(generated using Pex [24]). The student may then inspect
the counterexample and submit a revised attempt. This
process is repeated until the student submits a functionally
correct attempt or gives up. We studied 24 different prob-
lems, and observed that of the 3993 different programming
sessions, 3048 led to functionally correct solutions. However,
unfortunately, on average around 60% of these functionally
correct solutions had (different kinds of) performance prob-
lems. In this paper, we present a methodology for semi-
automatically generating appropriate performance related
feedback for such functionally correct solutions.

From our study, we made two observations that form the
basis of our semi-automatic feedback generation methodol-
ogy. (i) There are different algorithmic strategies with vary-
ing levels of efficiency, for solving a given problem. Algo-

http://arxiv.org/abs/1403.4064v2
http://dx.doi.org/10.1145/2635868.2635912

rithmic strategies capture the global high-level insight of
a solution to a programming problem, while also defining
key performance characteristics of the solution. Different
strategies merit different feedback. (ii) The same algorith-
mic strategy can be implemented in countless different ways.
These differences originate from local low-level implementa-
tion choices and are not relevant for reporting feedback on
the student program.

In order to provide meaningful feedback to a student it
is important to identify what algorithmic strategy was em-
ployed by the student program. A profiling based approach
that measures running time of a program or use of static
bound analysis techniques [10, 11] is not sufficient for our
purpose, because different algorithmic strategies that neces-
sitate different feedback may have the same computational
complexity. Also, a simple pattern matching based approach
is not sufficient because the same algorithmic strategy can
have syntactically different implementations.

Our key insight is that the algorithmic strategy employed
by a program can be identified by observing the values com-
puted during the execution of the program. We allow the
teacher to specify an algorithmic strategy by simply annotat-
ing (at the source code level) certain key values computed
by a sample program (that implements the corresponding
algorithm strategy) using a new language construct, called
observe. Fortunately, the number of different algorithmic
strategies for introductory programming problems is often
small (at most 7 per problem in our experiments). These
can be easily enumerated by the teacher in an iterative pro-
cess by examining any student program that does not match
any existing algorithmic strategy; we refer to each such step
in this iterative process as an inspection step.

We propose a novel dynamic analysis that decides whether
the student program (also referred to as an implementation)
matches an algorithm strategy specified by the teacher in the
form of an annotated program (also referred to as a specifica-
tion). Our dynamic analysis executes a student’s implemen-
tation and the teacher’s specification to check whether the
key values computed by the specification also occur in the
corresponding traces generated from the implementation.

We have implemented the proposed framework in C# and
evaluated our approach on 3 pre-existing programming prob-
lems on Pex4Fun (attempted by several hundreds of stu-
dents) and on 21 new problems that we hosted on Pex4Fun
as part of a programming course (attempted by 47 students
in the course). Experimental results show that: (i) The
manual teacher effort required to specify various algorith-
mic strategies is a small fraction of the overall task that
our system automates. In particular, on our MOOC style
benchmark of 2316 functionally correct implementations to
3 pre-existing programming problems, we specified 16 strate-
gies in 95 minutes after inspecting 66 implementations. On
our standard classroom style benchmark of 732 functionally
correct implementations to 21 programming problems, we
specified 66 strategies in 266 minutes after inspecting 149
implementations. (ii) Our methodology for specifying and
matching algorithmic strategies is both expressive and pre-
cise. In particular, we were able to specify all 82 strategies
using our specification language and our dynamic analysis
correctly matched each implementation with the intended
strategy.

This paper makes the following contributions:

• We observe that there are different algorithmic strate-
gies used in functionally correct attempts to introductory
programming assignments; these strategies merit differ-
ent performance related feedback.

• We describe a new language construct, called observe, for
specifying an algorithmic strategy (§3).

• We describe a dynamic analysis based approach to test
whether a student’s implementation matches the teacher’s
specification (§4).

• Our experimental results illustrate the effectiveness of our
specification language and dynamic analysis (§6).

2. OVERVIEW
In this section we motivate our problem definition and

various aspects of our solution by means of various examples.

2.1 Motivation
Fig. 1 shows our running examples. Programs (a)-(i) (IM)

show some sample implementations for the anagram problem
(which involves testing whether the two input strings can be
permuted to become equal) on the Pex4Fun platform. All
9 programs are examples of inefficient implementations, be-
cause of their quadratic asymptotic complexity. An efficient
solution, for example, is to first collect (e.g. in an array) the
number of occurrences of each character in both strings and
then compare them, leading to linear asymptotic complexity.

Algorithmic strategies. In implementations IM we
identify three different algorithmic strategies. Implementa-
tions C1-C3 iterate over one of the input strings and for
each character in that string count the occurrences of that
character in both strings (counting strategy). Implementa-
tions S1-S3 sort both input strings and check if they are
equal (sorting strategy). Implementations R1-R3 iterate
over one of the input strings and remove corresponding char-
acters from the other string (removing strategy).

Implementation details. An algorithmic strategy can
have several implementations. In case of counting strategy:
ImplementationC1 calls manually implemented method countChar
to count the number of characters in a string (lines 5 and 6),
while implementation C2 uses a special C# construct (lines
6 and 7) and implementation C3 uses the library function
Split for that task (lines 4 and 5). In case of the sorting
strategy: Implementation S1 employs binary insertion sort,
while implementation S2 employs bubble sort and imple-
mentation S3 uses a library call (lines 4 and 5). We also
observe different ways of removing a character from a string
in implementations R1-R3.

Desired feedback. Each of the three identified strategies
requires separate feedback (independent of the underlying
implementation details), to help a student understand and
fix the performance issues. For the first strategy (implemen-
tations C1-C3), a possible feedback might be: ”Calculate
the number of characters in each string in a preprocessing
phase, instead of each iteration of the main loop”; for the
second strategy (S1-S3), it might be: ”Instead of sorting
input strings, compare the number of character occurrences
in each string”; and for the third strategy (R1-R3): ”Use a
more efficient data-structure to remove characters”.

2.2 Specifying Algorithmic Strategies
Key values. Our key insight is that different implemen-

tations that employ the same algorithmic strategy generate
the same key values during their execution on the same input.

1 bool Puzzle(string s, string t) {
2 if (s.Length != t.Length) return false;
3
4 foreach (Char ch in s.ToCharArray()){
5 if (countChars(s, ch)

6 != countChars(t, ch)){

7 return false;
8 }}
9 return true;}

10
11 int countChars(String s, Char c){
12 int number = 0;
13
14 foreach (Char ch in s.ToCharArray()){
15 if (ch == c){
16 number++;
17 }}
18 return number;}

1 bool Puzzle(string s, string t) {
2 if (s.Length != t.Length)
3 return false;
4 else
5 return s.All(c =>
6 s.Where(c2 => c2 == c).Count() ==

7 t.Where(c2 => c2 == c).Count()
8);
9 }

(b) Counting/Library (C2)

1 bool Puzzle(string s, string t) {
2 if(s.Length != t.Length) return false;
3 foreach (var item in s) {
4 if(s.Split(item).Length

5 != t.Split(item).Length)

6 return false;
7 }
8 return true; }

1 int BinarySearch(List<char> xs, char y) {
2 int low = 0, high = xs.Count;
3 while (low < high) {
4 int mid = (high - low) / 2 + low;
5 if (y < xs[mid]) high = mid;
6 else if (y > xs[mid]) low = mid + 1;
7 else return mid;}
8 return low;}
9

10 char[] Sort(string xs) {
11 var res = new List<char>();
12 foreach (var x in xs) {
13 var pos = BinarySearch(res, x);
14 res.Insert(pos, x);}
15 return res.ToArray(); }
16
17 bool Puzzle(string s, string t) {
18 return String.Join("", Sort(s))

19 == String.Join("", Sort(t)); }
(a) Counting/Manual (C1) (c) Counting/Split (C3) (d) Sorting/Binary Insertion (S1)

1 bool Puzzle(string s, string t) {
2 if (s.Length != t.Length) return false;
3 char[] sa = s.ToCharArray();
4 char[] ta = t.ToCharArray();
5 for (int j=0; j < sa.Length; j++) {
6 for (int i=0; i<sa.Length - 1;i++) {
7 if (sa[i]<sa[i+1]){ char temp=sa[i];
8 sa[i]=sa[i+1]; sa[i+1]=temp;}

9 if (ta[i]<ta[i+1]){ char temp=ta[i];
10 ta[i] = ta[i+1]; ta[i+1] = temp;}
11 }}
12 for (int k = 0; k < sa.Length; k++) {
13 if (sa[k] != ta[k]) return false; }
14 return true; }

1 bool Puzzle(string s, string t) {
2 var sa = s.ToCharArray();
3 var ta = t.ToCharArray();
4 Array.Sort(sa);

5 Array.Sort(ta);
6 return sa.SequenceEqual(ta);}

(f) Sorting/Library (S3)

1 bool Puzzle(string s, string t) {
2 if (s.Length != t.Length) return false;
3 foreach (char c in t.ToCharArray()) {
4 int index = s.IndexOf(c);
5 if (index < 0) return false;
6 s = s.Remove(index, 1); }

7 return true; }

1 bool Puzzle(string s, string t) {
2 return IsPermutation(s, t);
3 }
4 bool IsPermutation(String s, string t) {
5 if (s == t) return true;
6 if (s.Length != t.Length) return false;
7 int index = t.IndexOf(s[0]);
8 if (index == -1) return false;
9

10 s = s.Substring(1);
11 t = t.Remove(index, 1);
12
13 return IsPermutation(s, t);
14 }

(e) Sorting/Bubble (S2) (g) Removing/Library (R1) (h) Removing/Recursive (R2)

1 bool Puzzle(string s, string t) {
2 char[] sc = s.ToCharArray();
3 char[] tc = t.ToCharArray();
4 Char c = ’#’;
5 if(sc.Length!=tc.Length) return false;
6 for(int i=0;i<sc.Length;i++) {
7 c = sc[i];
8 for(int j=0;j<tc.Length;j++) {
9 if(tc[j]==c){

10 tc[j]=’#’;

11 break;}
12 if(j==tc.Length-1) {
13 return false; }}}
14 return true; }

1 Puzzle(string s, string t) {
2 if (nd1) { string tt = t; t = s; s = tt; }
3 for (int i = 0; i < s.Length; ++i) {
4 int cnt1 = 0, cnt2 = 0;
5 for (int j = 0; j < s.Length; ++j) {
6 if (s[j] == s[i]) {
7 if (nd2) observe(s[j]);
8 cnt1++;
9 }}

10 if (!nd2) observeFun(Split());
11 observe(nd2 ? cnt1 : cnt1 + 1);
12 for (int j = 0; j < t.Length; ++j) {
13 if (t[j] == s[i]) {
14 if (nd2) observe(t[j]);
15 cnt2++;
16 }}
17 if (!nd2) observeFun(Split());
18 observe(nd2 ? cnt2 : cnt2 + 1); }}

1 Puzzle(string s, string t) {
2 if (nd1) s = s.ToUpperInvariant();
3 char[] ca = s.ToCharArray();
4 Array.Sort(ca);
5 if (nd2) Array.Reverse(ca);
6 observe(ca);
7 }

(k) Sorting Specification (SS)

1 Puzzle(string s, string t) {
2 if (nd1) {string tt = t; t = s; s = tt;}
3 for (int i = 0; i < s.Length; ++i) {
4 if (s.Substring(i) == t) return;
5 int ni = nd2 ? i : s.Length - i - 1;
6 int k = nd3 ? t.IndexOf(s[ni])
7 : t.LastIndexOf(s[ni]);
8 t = t.Remove(k, 1);
9 observe(t, CompareLetterString); }}

(i) Removing/Manual (R3) (j) Counting Specification (CS) (l) Removing Specification (RS)

1 bool Puzzle(string s, string t) {
2 if(s.Length != t.Length) return false;
3 Char[] taux = t.ToCharArray();
4 for(int i = 0; i < s.Length; i++) {
5 Char sc = s[i];
6 Boolean exists = false;
7 for(int j = 0; j < t.Length; j++) {
8 if(sc == taux[j]) {
9 exists = true; taux[j] = ’ ’;

10 break; }}
11 if(exists == false) return false; }
12 return true; }

1 bool CompareLetterString(string a,string b){
2 var la = a.Where(x=>char.IsLetter(x));
3 var lb = b.Where(x=>char.IsLetter(x));
4 return la.SequenceEqual(lb);
5 }

1 bool Puzzle(string s, string t) {
2 if (s.Length !=t.Length) return false;
3 int [] cs=new int [256];
4 int [] ct=new int [256];
5 for(int i=0;i<s.Length;i++)
6 cs[(int) s[i]]++;

7 for(int i=0;i<t.Length;++i)
8 ct[(int) t[i]]++;

9 for (int i=0;i<256;i++)
10 if(cs[i] != ct[i]) return false;
11 return true;
12 }

(m) Removing/Manual 2 (R4) (n) Custom Data Equality (CDE) (o) Efficient/Compare (E1)

1 bool Puzzle(string s, string t) {
2 if (s.Length != t.Length)
3 return false;
4 char[] cs = s.ToCharArray();
5 char[] ct = t.ToCharArray();
6 int[] hash = new int[256];
7 for (int i=0; i<255; ++i) {
8 hash[i] = 0;
9 }

10 foreach (char ch in cs) {
11 hash[(int)ch]++; }
12 foreach (char ch in ct) {
13 hash[(int)ch]--; }

14 for (int i=0; i<255; ++i) {
15 if (hash[i] < 0)
16 return false; }
17 return true; }

1 void Puzzle(string s, string t) {
2 if (nd1){string tt = t; t = s; s = tt;}
3 int[] cs = new int[256],ct = new int[256];
4 cover(ToCharArray());
5 cover(ToCharArray());
6 cover(255);
7 for (int i = 0; i < s.Length; ++i) {
8 cs[(int)s[i]]++;
9 observe(cs); }

10 for (int i = 0; i < t.Length; ++i) {
11 if (nd2) { cs[(int)t[i]]--;
12 observe(cs);
13 } else { ct[(int)t[i]]++;
14 observe(ct);
15 }
16 }
17 cover(255); }

1 bool Puzzle(string s, string t) {
2 if (s.Length != t.Length) return false;
3 string cp = t;
4 for(int i=0; i<s.Length; i++) {
5 char k = s[i]; bool found = false;
6 for(int j=0; j<cp.Length; j++) {
7 if (cp[j] == k) {
8 if (j == 0) {
9 cp = (Char)0+cp.Substring(1);}

10 else if(j == cp.Length - 1) {
11 cp = cp.Substring(0, j)+(Char)0;}

12 else {
13 cp = cp.Substring(0, j) +

14 (Char) 0 + cp.Substring(j + 1);}

15 found = true; break; }}
16 if (!found) return false; }
17 return true; }

(p) Efficient/Difference (E2) (q) Efficient Specification (ES) (r) Removing/Separate computation (R5)

Figure 1: Running example: Implementations and Specifications of Anagram assignment.

For example, (the underlined expressions in) the implemen-
tations C1 and C2 both produce the key value sequence
(a, b, a, 2, b, a, a, 2, a, b, a, 1, b, a, a, 1, a, b, a, 2, b, a, a, 2) on the
input strings “aba” and “baa”.

Our framework allows a teacher to describe an algorith-
mic strategy by simply annotating certain expressions in a
sample implementation using a special language statement
observe. Our framework decides whether or not a student
implementation matches a teacher specification by compar-
ing their execution traces on common input(s). We say that
an implementation Q matches a specification P , if (1) the
execution trace of P is a subsequence of the execution trace
of Q, and (2) for every observed expression in P there is
an expression in Q that has generated the same values. We
call this matching criterion a trace embedding. The notion
of trace embedding establishes a fairly strong connection
between specification and implementation: basically, both
programs produce the same values at corresponding loca-
tions in the same order. Our notion of trace embedding is
an adaptation of the notion of a simulation relation [16] to
dynamic analysis.

Non-deterministic choice. Because of minor differ-
ences between implementations of the same strategy, key-
values can differ. For example, implementation C3 uses a
library function to obtain the number of characters, while
implementations C1 and C2 explicitly count them by ex-
plicitly iterating over the string. Moreover, counted val-
ues in C3 are incremented by one compared to those in
C1 and C2. C3 thus yields a different, but related, trace
(Split, 3,Split, 3,Split, 2,Split, 2,Split, 3,Split, 3) on in-
put strings ”aba” and ”baa”. To address variations in imple-
mentation details, we include a non-deterministic choice con-
struct in our specification language. The non-determinism
is fixed before the execution; thus such a choice is merely a
syntactic sugar to succinctly representmultiple similar speci-
fications (n non-deterministic variables = 2n specifications).

Specifications. CS, SS, and RS denote the specifica-
tions for the counting strategy (used in implementations
C1-C3), sorting strategy (used in S1-S3), and removing
strategy (used in R1-R3) respectively. In CS, the teacher
observes the characters that are iterated over (lines 7 and
14), the results of counting the characters (lines 11 and 18),
and use of library function Split (lines 10 and 17). Also the
teacher uses non-deterministic Boolean variables: nd1 (line
2) to choose the string over which the main loop iterates (as
the input strings are symmetric in the anagram problem);
and nd2 to choose between manual and library function im-
plementations (which also decides on observed counted val-
ues on lines 18 and 11). In SS the teacher observes one
of the input strings after sorting, and non-deterministically
allows that implementations convert input string to upper-
case (nd1 on line 2), and sort the string in reverse order (nd2
on line 5). Notice that it is enough to observe only one sorted
input, as in the case that the input strings are anagrams,
the sorted strings are the same. In RS the teacher observes
the string with removed characters and non-deterministcally
chooses which string is iterated (nd1 on line 2), direction of
the iteration (nd2 on line 5) and the direction in which the
remove candidate is searched for (nd3 on line 6).

3. SPECIFICATIONS AND IMPLEMENTA-
TIONS

Expression e ::= d | v | v1 opbin v2 | opun v | v1[v2]

Statement s ::= v := e | v1[v2] := e | v := f(v1, . . . , vn)

| s0; s1 | while v do s | skip

| if v then s0 else s1

| observe(v, [E])

| observeFun(f[v1, . . . , vn], [E])

Figure 2: The syntax of L language.

In this section we introduce an imperative programming
language L that supports standard constructs for writing
implementations, and has some novel constructs for writing
specifications.

3.1 The LanguageL
The syntax of the language L is stated in Fig. 2. We

discuss the features of the language below.
Expressions. A data value d is any value from some

data domain set D, which contains all values in the lan-
guage (e.g., in C#, all integers, characters, arrays, hash-
sets, ...). A variable v belongs to a (finite) set of variables
Var . An expression is either a data value d, a variable v,
an operator applied to variables v1, v2 or an array access
v1[v2]. Here, opbin represents a set of binary operators (e.g.,
+, ·,=,<,∧) and opun a set of unary operators (e.g., ¬, | · |).
We point out that the syntax of L ensures that programs
are in three address code: operators can only be applied
to variables, but not to arbitrary expressions. The moti-
vation for this choice is that three address code enables us
to observe any expression in the program by observing only
variables. We point out that any program can be (automat-
ically) translated into three address code by assigning each
subexpression to a new variable. For example, the statement
v1 := v2 + (a+ b) can be translated into three-address code
as follows: v3 := a + b; v1 := v2 + v3. This enables us to
observe the subexpression a+ b by observing v3.

Statements. The statements of L allow to build simple
imperative programs: assignments (to variables and array
elements), skip statement, composition of statements, loop-
ing and branching constructs. We also allow library function
calls in L, denoted by v := f(v1, . . . , vn), where f ∈ F is a
library function name, from a set of all library functions F .
There are two special observe constructs, which are only
available to the teacher (and not to the student). We dis-
cuss the observe statements in §3.3 below. We assume that
each statement s is associated with a unique program loca-
tion ℓ, and write ℓ : s.

Functions. For space reasons we do not define functions
here. We could easily extend the language to (recursive)
functions. In fact we allow (recursive) functions in our im-
plementation.

Semantics. We assume some standard imperative seman-
tics to execute programs written in the language L (e.g., for
C# we assume the usual semantics of C#). The two ob-

serve statements have the same semantic meaning of the
skip statement.

Computation domain. We extend the data domain D
by a special symbol ?, which we will use to represent any
data value. We define the computation domain Val asso-
ciated with our language L as Val = D ∪ (F × D∗). We

assume the data domain D is equipped with some equality
relation =D⊆ D ×D (e.g., for C# we have (x, y) ∈ =D iff
a and b are of the same type and comparison by the equals
method returns true). We denote by E = 2Val×Val the set of
all relations over Val . We define a default equality relation
Edef ∈ E as follows: We have (x, y) ∈ Edef iff x =? or y =? or
(x, y) ∈=D. We have ((f, x1, . . . , xn), (f

′, y1, . . . , yn)) ∈ Edef

iff f = f′ and (xi, yi) ∈ Edef for all 1 ≤ i ≤ n.
Computation trace. A (computation) trace γ over some

finite set of (programming) locations Loc is a finite sequence
of location-value pairs (Loc × Val)∗. We use the notation
ΓLoc to denote the set of all computation traces over Loc.
Given some γ ∈ ΓLoc and Loc′ ⊆ Loc, we denote by γ|Loc′
the sequence that we obtain by deleting all pairs (ℓ, val) from
γ, where ℓ 6∈ Loc′.

3.2 Student Implementation
In the following we describe how a computation trace γ

is generated for a student implementation Q on a given in-
put σ. The computation trace is initialized to the empty
sequence γ = ǫ. Then the implementation is executed on
σ according to the semantics of L. During the execution
we append location-value pairs to γ for every assignment
statement: For ℓ : v1 := e or ℓ : v1[v2] := e we append
(ℓ, σ(v1)) to γ (we denote by σ(v1) the current value of
v1). We point out that we add the complete array σ(v1)
to the trace for an assignment to an array variable v1. For
a library function call ℓ : v := f(v1, . . . , vn) we append
(ℓ, (f, σ(v), σ(v1), . . . , σ(vn))) to γ. We denote the resulting
trace γ by JQK(σ). This construction of a computation trace
can be achieved by instrumenting the implementation in an
appropriate manner.

3.3 Teacher Specification
The teacher uses observe and observeFun for specifying

the key values she wants to observe during the execution of
the specification and for defining an equality relation over
computation domain. As usual the rectangular brackets ‘[’
and ‘]’ enclose optional arguments.

In the following we describe how a computation trace γ
is generated for a specification P on a given input σ. The
computation trace is initialized to the empty sequence γ = ǫ.
Then the specification is executed according to the semantics
of L. During the execution we append location-value pairs
to γ only for observe and observeFun statements: For ℓ :
observe(v, [E]) we append (ℓ, σ(v)) to γ (we denote by σ(v)
the current value of v). For ℓ : observeFun(f[v1, . . . , vn], [E])
we append (ℓ, (f, x1, . . . , xn)) to γ, where xi = σ(vi), if the
ith argument to f has been specified, and xi =?, if it has
been left out. We denote the resulting trace γ by JP K(σ).

Custom data equality. The possibility of specifying an
equality relation E ∈ E at some location ℓ is very useful
for the teacher. We point out that in practice the teacher
has to specify E by an equality function (Val × Val) →
{true, false}. The teacher can use E to define the equality
of similar computation values. We show its usage on ex-
amples R3 and R4 (Fig. 1); both examples implement the
removing strategy (discussed in §2) in almost identical ways
— the only difference is on lines 10 and 9, respectively, where
implementations use different characters to denote a charac-
ter removed from a string: ’#’ and ’ ’. In specification RS
the teacher uses the equality function CompareLetterString

(defined in CDE) — which compares only letters of two

strings — to define value representations of both implemen-
tations, regardless of used characters, as equal.

We call a function δ : Loc → E a comparison function.
We define δ(ℓ) = E for every statement ℓ : observe(v,E) or
ℓ : observeFun(f[v1, . . . , vn], E). For statements, where [E]
has been left out, we set the default value δ(ℓ) = Edef .

Non-deterministic choice. We assume that the teacher
can use some finite set of non-deterministic Boolean vari-
ables B = {nd1, . . . , ndn} ⊆ Var (these are not available
to the student). Non-deterministic choice allows the teacher
to specify variations in implementations, as discussed in §2.
Non-deterministic variables are similar to the input vari-
ables, in the sense that are assigned before program is exe-
cuted. We note that this results into 2n different program
behaviors for a given input.

4. MATCHING
In this section, we define what it means for an imple-

mentation to (partially) match or fully match a specification
and describe the corresponding matching algorithms. The
teacher has to determine for each specification which def-
inition of matching has to be applied. In case of partial
matching we speak of inefficient specifications and in case
of full matching of efficient specifications.

4.1 Trace Embedding
We start out by discussing the problem of Trace Embed-

ding that we use as a building block for the matching algo-
rithms.

Subsequence. We call c ∈ {partial , full} a matching cri-
terion. Let γ1 = (ℓ1, val1)(ℓ2, val2) · · · (ℓn, valn) and γ2 =
(ℓ′1, val

′
1)(ℓ

′
2, val

′
2) · · · (ℓ

′
m, val ′m) be two computation traces

over some set of locations Loc, and let δ be some compari-
son function (as defined in §3.3). We say γ1 is a subsequence
of γ2 w.r.t. to δ, c, written γ1 ⊑δ,c γ2, if there are indices
1 ≤ k1 < k2 < · · · < kn ≤ m such that for all 1 ≤ i ≤ n we
have ℓi = ℓ′ki

and (val i, val
′
ki
) ∈ δ(ℓi); in case of c = full we

additionally require that γ1 and γ2|{ℓ1,...,ℓn} have the same
length. We refer to (val i, val

′
ki
) ∈ δ(ℓi) as equality check. If

δ(ℓi) = Id (the identity relation over Val) for all 1 ≤ i ≤ n,
we obtain the usual definition of subsequence.

Since deciding subsequence, i.e., γ1 ⊑δ,c γ2, is a central
operation in this paper, we state complexity of this decision
problem. It is easy to see that deciding subsequence requires
only O(m) equality checks; basically one iteration over γ2 is
sufficient.

Mapping Function. Let Loc1 and Loc2 be two disjoint
sets of locations. We call an injective function π : Loc1 →
Loc2 a mapping function. We lift π to a function π : ΓLoc1 →
ΓLoc2 by applying it to every location, i.e., we set

π(γ) = (π(ℓ1), val1)(π(ℓ2), val2) · · ·

for γ = (ℓ1, val1)(ℓ2, val2) · · · ∈ ΓLoc1 .

Given a comparison function δ, a matching criterion c,
and computation traces γ1 ∈ ΓLoc1 and γ2 ∈ ΓLoc2 we say
that γ1 can be embedded in γ2 by π, iff π(γ1) ⊑δ◦π−1,c γ2,
and write γ1 ⊑

π
δ,c γ2. We refer to π as embedding witness.

Executing a program on set of assignments I gives rise to
a set of traces, one for each assignment σ ∈ I . We say that
the set of traces (γ1,σ)σ∈I can be embedded in (γ2,σ)σ∈I by
π iff γ1,σ ⊑

π
δ,c γ2,σ for all σ ∈ I .

Definition 1 (Trace Embedding). Trace Embed-
ding is the problem of deciding for given sets of traces (γ1,σ)σ∈I

and (γ2,σ)σ∈I, a comparison function δ, and a matching cri-
terion c, if there is a witness mapping function π, such that
γ1,σ ⊑

π
δ,c γ2,σ for all σ ∈ I.

Complexity. Clearly, Trace Embedding is in NP (assum-
ing equality checks can be done in polynomial time): we first
guess the mapping function π : Loc1 → Loc2 and then check
γ1,σ ⊑

π
δ,c γ2,σ for all σ ∈ I (which is cheap as discussed

above). However, it turns out that Trace Embedding is NP-
complete even for a singleton set I , a singleton computation
domain Val , and the full matching criterion.

Theorem 1. Trace Embedding is NP-complete (assum-
ing equality checks can be done in polynomial time).

Proof. In order to show NP-hardness we reduce Permu-
tation Pattern [6] to Trace Embedding. First, we formally
define Permutation Pattern. Let n, k be positive integers
with k ≤ n. Let σ be a permutation of {1, · · · , n} and let
τ be a permutation of {1, · · · , k}. We say τ occurs in σ, if
there is an injective function π : {1, · · · , k} → {1, · · · , n}
such that π is monotone, i.e., for all 1 ≤ r < s ≤ k we
have π(r) < π(s) and π(τ (1)) · · · π(τ (k)) is a subsequence
of σ(1)σ(2) · · ·σ(n). Permutation Pattern is the problem of
deciding whether τ occurs in σ.

We now give the reduction of Permutation Pattern to
Trace Embedding. We will construct two traces γ1 and γ2
over a singleton computation domain Val , and over the sets
of locations Loc1 = {1, . . . , k} and Loc2 = {1, . . . , n}. We set
δ(i) = Id (the identity function on Val) for every i ∈ Loc1.
Because Val is singleton, we can ignore values in the rest
of the proof. We set γ1 = 12 · · · kτ (1)τ (2) · · · τ (k) and γ2 =
12 · · ·nσ(1)σ(2) · · ·σ(n). Because every i ∈ {1, · · · , k} oc-
curs exactly twice in γ1 and γ2, partial and full matching cri-
teria are equivalent so we can ignore the difference. We now
show that τ occurs in σ iff there is an injective function π :
Loc1 → Loc2 with γ1 ⊑

π γ2. We establish this equivalence
by two observations: First, because every i ∈ {1, · · · , k} oc-
curs exactly twice in γ1 and γ2 we have 12 · · · k ⊑π 12 · · ·n
and τ (1)τ (2) · · · τ (k) ⊑π σ(1)σ(2) · · ·σ(n) iff γ1 ⊑

π γ2. Sec-
ond, 12 · · · k ⊑π 12 · · ·n iff π : Loc1 → Loc2 is monotone.

Algorithm. Fig. 3 shows our algorithm, Embed, for the
Trace Embedding problem. A straightforward algorithmic
solution for the trace embedding problem is to simply test
all possible mapping functions. However, there is an expo-
nential number of such mapping functions w.r.t. to the car-
dinality of Loc1 and Loc2. This exponential blowup seems
unavoidable as the combinatorial search space is responsible
for the NP hardness. The core element of our algorithm is
a pre-analysis that narrows down the space of possible map-
ping functions effectively. We observe that if ℓ2 = π(ℓ1) and
γ1 ⊑

π
δ,c γ2, then there exists a trace embedding restricted

to locations ℓ1 and ℓ2, formally: γ1|{ℓ1} ⊑
{ℓ1 7→ℓ2}
δ,c γ2|{ℓ2}.

The algorithm uses this insight to create a (bipartite) graph
G ⊆ Loc1 × Loc2 of potential mapping pairs in lines 2-7. A
pair of locations (ℓ1, ℓ2) ∈ G is a potential mapping pair iff
there exists a trace embedding restricted to locations ℓ1 and
ℓ2, as described above.

The key idea in finding an embedding witness π is to con-
struct a maximum bipartite matching in G. A maximum
bipartite matching has an edge connecting every program

1: Embed((γ1,σ)σ∈I , (γ2,σ)σ∈I ,Loc1,Loc2, δ, c):
2: G← Loc1 × Loc2
3: for all ℓ1 ∈ Loc1, ℓ2 ∈ Loc2:
4: for all σ ∈ I:
5: if γ1,σ|{ℓ1} 6⊑

{ℓ1 7→ℓ2}
δ,c γ2,σ|{ℓ2}:

6: G← G \ {(ℓ1, ℓ2)}
7: break
8: for all π ∈ MaximumBipartiteMatching(G):
9: found ← true

10: for all σ ∈ I:
11: if γ1,σ 6⊑

π
δ,c γ2,σ:

12: found ← false

13: break
14: if found = true: return true

15: return false

Figure 3: Algorithm for Trace Embedding problem.

location from Loc1 to a distinct location in Loc2 and thus
gives rise to an injective function π. We point out that such
an injective function π does not need to be an embedding
witness, because, by observing only a single location pair
at a time, it ignores the order of locations. Thus, for each
maximum bipartite matching [26] π the algorithm checks (in
lines 8-14) if it is indeed an embedding witness.

The key strength of our algorithm is that it reduces the
search space for possible embedding witnesses π. The ex-
perimental evidence shows that this approach significantly
reduces the number of possible matchings and enables a very
efficient algorithm in practice, as discussed in §6.

4.2 Partial Matching
We now define the notion of partial matching (also referred

to simply as matching) which is used to check whether an
implementation involves (at least) those inefficiency issues
that underlie a given inefficient specification.

Definition 2 (Partial Matching). Let P be a spec-
ification with observed locations Loc1, let δ be the compari-
son function specified by P , and let Q be an implementation
whose assignment statements are labeled by Loc2. Then im-
plementation Q (partially) matches specification P , on a
set of inputs I, if and only if there exists a mapping function
π : Loc1 → Loc2 and an assignment to the non-deterministic
variables σnd such that γ1,σ ⊑

π
δ,c γ2,σ, for all input val-

ues σ ∈ I, where γ1,σ = JP K(σ ∪ σnd), γ2,σ = JQK(σ) and
c = partial .

Fig. 4 describes an algorithm for testing if an implementa-
tion (partially) matches a given specification over a given set
of input valuations I . In lines 6-7, the implementation Q is
executed on all input values σ ∈ I . In line 9, the algorithm
iterates through all assignments σnd to the non-deterministic
variables BP of the specification P . In lines 10-11, the spec-
ification P is executed on all inputs σ ∈ I . With both sets
of traces available, line 12 calls subroutine Embed which
returns true iff there exists a trace embedding witness.

Example. We now give an example that demonstrates
our notion of programs and that contains example applica-
tions of algorithms Embed and Matches. In Fig. 5 we state
two implementations, (a) and (b), and one specification (c).
These programs represent simplified versions (transformed
into three adress code) of R1 (after function inlining), R3

1: Matches(Specification P, Implementation Q, Inputs I):
2: Loc1 = observed locations in P
3: δ = comparison function specified by P
4: c = matching criterion
5: Loc2 = assignment locations of Q
6: for all σ ∈ I:
7: γ2,σ ←JQK(σ)

8: BP = non-deterministic variables in P
9: for all assignments σnd to BP :
10: for all σ ∈ I:
11: γ1,σ ←JP K(σ ∪ σnd)

12: if Embed((γ1,σ)σ∈I , (γ2,σ)σ∈I ,Loc1,Loc2, δ, c):
13: return true

14: return false

Figure 4: Matching algorithm.

1Puzzle(s, t) {
2 i = 0;

3 n = |s|;
4 while (i < n) {

5 c = s[i];
6 j = 0;
7 cnt1 = 0;

8 while (j < n) {
9 c2 = s[j];

10 if (c == c2) {
11 cnt1 = cnt1 + 1; }

12 j = j + 1; }
13 j = 0;

14 cnt2 = 0;
15 while (j < n) {

16 c2 = t[j];

17 if (c == c2) {

18 cnt2 = cnt2 + 1; }
19 j = j + 1; }

20 i = i + 1; }}

(a)

1Puzzle(s, t) {
2 i = 0;

3 n = |s|;
4 while (i < n) {
5 c = s[i];

6 ss = Split(s,c);

7 cnt1 = |ss|;
8 st = Split(t,c);

9 cnt2 = |st|;

10 i = i + 1; }}

(b)

1 Puzzle(s, t) {

2 i = 0;
3 n = |s|;

4 while (i < n) {
5 c = s[i];

6 observe(c);
7 j = 0;
8 cnt1 = 0;

9 while (j < n) {
10 c2 = s[j];

11 if (nd1)
12 observe(c2);
13 j = j + 1; }

14 j = 0;
15 if (!nd1)

16 observeFun(Split());
17 while (j < n) {

18 c2 = t[j];
19 if (nd1)
20 observe(c2);

21 j = j + 1; }
22 if (!nd1)

23 observeFun(Split());
24 i = i + 1; }}

(c)

Figure 5: Implementations (a), (b) and Spec. (c).

and SC (Fig. 1). Note, that every assignment and observe

statement is on its own line; we denote line i in program x
by by location ℓx,i. The argument [E] has been left out for
all locations in the specification, thus we have δ(ℓ) = Edef

for all specification locations ℓ.
Algorithm Matches runs all three programs on input val-

ues s = ”aab” and t = ”aba”. For program (a) we obtain the
following computation trace:
γa = (ℓa,2, 0)(ℓa,3, 3)(ℓa,5, a)(ℓa,6, 0)(ℓa,7, 0)(ℓa,9, a)(ℓa,11, 1)
(ℓa,12, 1)(ℓa,9, a)(ℓa,11, 2)(ℓa,12, 2)(ℓa,9, b)(ℓa,12, 3)(ℓa,13, 0) · · ·
Similarly, for program (b) we obtain:
γb = (ℓb,2, 0)(ℓb,3, 3)(ℓb,5, a)(ℓb,6, (Split, aab, a))(ℓb,7, 3)
(ℓb,8, (Split, aba, a))(ℓb,9, 3)(ℓb,10, 1)(ℓb,5, a) · · ·
For specification (c) we obtain two traces, depending on the
choice for the non-deterministic variable nd1 :
γc,t = (ℓc,6, a)(ℓc,12, a)(ℓc,12, a)(ℓc,12, b)(ℓc,20, a)(ℓc,20, b) · · ·
γc,f = (ℓc,6, a)(ℓc,16, (Split, ?, ?))(ℓc,23, (Split, ?, ?)) · · ·

Algorithm Matches then calls Embed to check for trace
embedding. Algorithm Embed first constructs a potential
graph G, which contains an edge for two locations of the
specification and the implementation that show the same
values.
For implementation (a), we obtain the following graph: Ga =
{(ℓc,6, ℓa,5), (ℓc,6, ℓa,9), (ℓc,6, ℓa,16), (ℓc,12, ℓa,9), (ℓc,20, ℓa,16)}. No-
tice that ℓc,6 shows the same values as the locations ℓa,5, ℓa,9, ℓa,16
in the implementation (a). However, there is only one maxi-
mal matching inGa, πa = {(ℓc,6, ℓa,5), (ℓc,12, ℓa,9), (ℓc,20, ℓa,16)},
which is also an embedding witness; thus implementation (a)
matches specification (c).
For implementation (b) and nd1 = true, we obtain the
graph Gb,t = {(ℓc,6, ℓb,5)}, from which we cannot construct
a maximal matching. However, for nd1 = false, we obtain
Gb,f = {(ℓc,6, ℓb,5), (ℓc,16, ℓb,6), (ℓc,23, ℓb,8)}, which is also an
embedding witness; thus implementation (b) matches speci-
fication (c).

4.3 Full Matching
Below we will define the notion of full matching, which

is used to match implementations against efficient specifica-
tions. We will require that for every loop and every library
function call in the implementation there is a corresponding
loop and library function call in the matching specification.
In order to do so, we need some helper definitions.

Observed loop iterations. We extend the construction
of the implementation trace (defined in §3.2): For each state-
ment ℓ : while v do s, we additionally append element (ℓ,⊥)
to the trace whenever the loop body s is entered. We call
(ℓ,⊥) a loop iteration. Let π be a embedding witness s.t.,
γ1 ⊑

π γ2. We say that π observes all loop iterations iff be-
tween every two loop iterations (ℓ,⊥) in γ2 there exists a
pair (ℓ′, val), such that ∃ℓ′′.π(ℓ′′) = ℓ′. In other words, we
require that between any two iterations of the same loop,
there exists some observed location ℓ′.

Observed library function calls. We say that π ob-
serves all library function calls iff for every (ℓ, f(val1, . . . , valn))
in γ2 there is a ℓ′ such that π(ℓ′) = ℓ.

Definition 3 (Full Matching). Let P be a specifica-
tion with observed locations Loc1, let δ be the comparison
function specified by P , and let Q be an implementation
whose assignment statements are labeled by Loc2. Then im-
plementation Q fully matches specification P , on a set
of inputs I, if and only if there exists a mapping function
π : Loc1 → Loc2 and an assignment to the non-deterministic
variables σnd such that γ1,σ ⊑

π
δ,c γ2,σ, for all input valuations

σ ∈ I, where γ1,σ = JP K(σ ∪ σnd), γ2,σ = JQK(σ), c = full
and π observes all loop iterations and library function calls.

We note that procedure Embed (Fig. 3) can easily check
at line 11 whether the current mapping π observes all loop
iterations and library function calls.

It is tedious for a teacher to exactly specify all possible loop
iterations and library function calls used in different efficient
implementations. We add two additional constructs to the
language L to simplify this specification task.

Cover statement. We extend L by two cover state-
ments: ℓ : cover(f[v1, . . . , vm], [E]) and ℓ : cover(v). The
first statement is the same as the statement ℓ : observeFun(
f[v1, . . . , vm], [E]), except that we allow the embedding wit-
ness π to not map ℓ to any location in the implementation.
This enables the teacher to specify that function f(v1, . . . , vm)

may appear in the implementation. The second statement
allows π to map ℓ to a location ℓ′ that appears at most σ(v)
times for each appearance of ℓ, where σ(v) is the current
value of the specified variable v. Thus cover(v) enables the
teacher to cover any loop with up to σ(v) iterations.

Example. Now we present examples for efficient imple-
mentations (E1 and E2) and specification (ES) for the Ana-
gram problem (Fig. 1). The teacher observes computed val-
ues on lines 9, 12 and 14, and uses a non-deterministic choice
(on line 11) to choose if implementations count the number
of characters in each string, or decrement one number from
another. Also the teacher allows up to two library function
calls and two loops with at most 255 iterations, defined by
cover statements on lines 4,5,6 and 17.

5. EXTENSIONS
In this section, we discuss useful extensions to the core

material presented above. These extensions are part of our
implementation, but we discuss them separately to make the
presentation easier to follow.

One-to-many Mapping. According to definition of Trace
Embedding, an embedding witness π maps one implementa-
tion location to a specification location, i.e., it constructs a
one-to-one mapping. However, it is possible that a student
splits a computation of some value over multiple locations.
For example, in the implementation stated in R5 (Fig. 1),
the student removes a character from a string across three
different locations (on lines 9, 11, 13 and 14), depending on
the location of the removed character in the string. This
requires to map a single location from the specification to
multiple locations in the implementation! For this reason,
we extend the notion of trace embedding to one-to-many
mappings π : Loc1 → 2Loc2 where π(ℓ′) ∩ π(ℓ) = ∅ for all
ℓ 6= ℓ′. It is easy to extend procedure Embed (Fig. 3) to
this setting: the potential graph G is also helpful to enu-
merate every possible one-to-many mapping. However, it is
costly (and unnecessary) to search for arbitrary one-to-many
mappings. We use heuristics to consider only a few one-to-
many mappings. For example, one of the heuristics in our
implementation checks if the same variable is assigned in dif-
ferent branches of an if-statement (e.g., in example R5, for
all three locations there is an assignment to variable cp).

Although many-to-many mappings may seem more pow-
erful, we point out that the teacher can always write a spec-
ification that is more succinct than the implementation of
the student, i.e., the above described one-to-many mappings
provide enough expressivity to the teacher.

Non-deterministic behaviour. Trace Embedding re-
quires equal values in the same order in the specification and
implementation traces. However, an implementation can use
a library function with non-deterministic behaviour, e.g., the
values returned by a random generator or the iteration order
over a set data structure. For such library functions we elim-
inate non-determinism by fixing one particular behaviour,
i.e, we fix the values returned by a random generator or the
iteration order over a set during program instrumentation.
These fixes do not impact functionally correct programs be-
cause they cannot rely on some non-deterministic behaviour
but allow us to apply our matching techniques.

6. IMPLEMENTATION AND EXPERIMENTS

We now describe our implementation and present an ex-
perimental evaluation of our framework. More details on
our experiments can we found on the website [1].

6.1 Experimental Setup
Our implementation of algorithm Matches (Fig. 4) is in

C# and analyzes C# programs (i.e., implementations and
specifications are in C#). We used Microsoft’s Roslyn com-
piler framework [3] for instrumenting every sub-expression
to record value during program execution.

Data. We used 3 preexisting problems from Pex4Fun (as
mentioned in §1): (1) the Anagram problem, where students
are asked to test if two strings could be permuted to become
equal, (2) the IsSorted problem, where students are asked to
test if the input array is sorted, and (3) the Caesar problem,
where students are asked to apply Caesar cipher to the input
string. We have chosen these 3 specific problems because
they had a high number of student attempts, diversity in
algorithmic strategies and a problem was explicitly stated
(for many problems on Pex4Fun platform students have to
guess the problem from failing input-output examples).

We also created a new course on the Pex4Fun platform
with 21 programming problems. These problems were as-
signed as a homework to students in a second year under-
graduate course. We created this course to understand per-
formance related problems that CS students make, as op-
posed to regular Pex4Fun users who might not have previ-
ous programming experience. We encouraged our students
to write efficient implementations by giving more points for
performance efficiency than for mere functional correctness.
We omit the description of the problems here, but all de-
scriptions are available on the original course page [2].

6.2 Methodology
In the following we describe the methodology by which we

envision the technique in the paper to be used.
The teacher maintains a set of efficient and inefficient spec-

ifications. A new student implementation is checked against
all available specifications. If the implementation matches
some specification, the associated feedback is automatically
provided to the student; otherwise the teacher is notified
that there is a new unmatched implementation. The teacher
studies the implementation and identifies one of the follow-
ing reasons for its failure to match any existing specification:
(i) The implementation uses a new strategy not seen before.
In this case, the teacher creates a new specification. (ii) The
existing specification for the strategy used in the implemen-
tation is too specific to capture the implementation. In this
case, the teacher refines that existing specification. This
overall process is repeated for each unmatched implementa-
tion.

New specification. A teacher creates a new specifica-
tion using the following steps: (i) Copy the code of the un-
matched implementation. (ii) Annotate certain values and
function calls with observe statements. (iii) Remove any un-
necessary code (not needed in the specification) from the
implementation. (iv) Identify input values for the dynamic
analysis for matching. (v) Associate a feedback with the
specification.

Specification refinement. To refine a specification, the
teacher identifies one of the following reasons as to why
an implementation did not match it: (i) The implementa-
tion differs in details specified in the specification; (ii) The

0 5 10 15 20 25

0

500

1,000

1,500

of inspection steps

#
o
f
m
a
tc
h
ed

im
p
le
m
en

ta
ti
o
n
s

(a) # of required inspection steps (1/3)

0 10 20 30 40

0

500

1,000

1,500

time [min]

#
o
f
m
a
tc
h
ed

im
p
le
m
en

ta
ti
o
n
s

(b) time required to write/refine specifications (1/3)

Anagram

IsSorted

Caesar

0 5 10 15

0

20

40

of inspection steps

#
o
f
m
a
tc
h
ed

im
p
le
m
en

ta
ti
o
n
s

(c) # of required inspection steps (2/3)

0 10 20 30 40

0

20

40

60

80

time [min]

#
o
f
m
a
tc
h
ed

im
p
le
m
en

ta
ti
o
n
s

(d) time required to write/refine specifications (2/3)
DoubleChar LongestEqual

LongestWord RunLength

Vigenere BaseToBase

CatDog MinimalDelete

CommonElement Order3

0 2 4 6 8 10 12

0

10

20

30

40

50

of inspection steps

#
o
f
m
a
tc
h
ed

im
p
le
m
en

ta
ti
o
n
s

(c) # of required inspection steps (3/3)

0 10 20 30

0

20

40

60

80

time [min]

#
o
f
m
a
tc
h
ed

im
p
le
m
en

ta
ti
o
n
s

(d) time required to write/refine specifications (3/3)
2DSearch TableAggSum

Intersection ReverseList

SortingStrings MinutesBetween

MaxSum Median

DigitPermutation Coins

Seq235

Figure 6: The number of inspection steps and time required to completely specify assignments.

Problem Correct Inefficient
N S I ND LS/LI OS OI M

Performance

Name Implement. Implement. Avg. Max.

Anagram 290 (37.9%) 261 (90.0%) 5 25 1 3 1.41 11 89 28357 0.42 7.67
IsSorted 1460 (90.1%) 139 (9.5%) 3 23 2 2 1.45 6 51 13 0.33 1.31
Caesar 566 (81.2%) 343 (60.6%) 5 18 1 1 1.10 7 39 172 0.37 0.83

DoubleChar 46 (97.9%) 31 (67.4%) 1 5 1 0 0.72 3 23 2 0.31 0.42
LongestEqual 37 (78.7%) 1 (2.7%) 1 3 1 0 0.57 1 35 2 0.33 0.44
LongestWord 39 (83.0%) 13 (33.3%) 2 6 2 0 1.31 7 46 15 0.35 0.47
RunLength 43 (97.7%) 32 (74.4%) 1 6 1 0 0.90 8 37 54 0.33 0.44
Vigenere 41 (93.2%) 32 (78.0%) 3 5 1 0 0.64 3 84 6 0.34 0.50

BaseToBase 15 (39.5%) 14 (93.3%) 2 5 1 1 0.35 3 64 13 0.36 0.48
CatDog 41 (87.2%) 8 (19.5%) 2 18 1 1 2.02 21 53 1629 0.36 0.58

MinimalDelete 15 (39.5%) 8 (53.3%) 1 8 2 3 2.21 4 75 10 0.86 4.36
CommonElement 43 (95.6%) 32 (74.4%) 4 14 2 1 0.97 6 79 107 0.36 0.53

Order3 40 (87.0%) 30 (75.0%) 6 12 1 2 1.45 6 78 19 0.40 0.59
2DSearch 37 (84.1%) 36 (97.3%) 3 7 1 1 1.09 2 67 1 0.34 0.45

TableAggSum 11 (25.0%) 10 (90.9%) 1 5 1 1 0.80 3 144 1 0.40 0.53
Intersection 14 (31.8%) 12 (85.7%) 3 7 2 1 0.89 4 73 5 0.37 0.56
ReverseList 39 (97.5%) 0 (0.0%) 0 3 1 0 0.35 4 34 1 0.34 0.44

SortingStrings 41 (91.1%) 34 (82.9%) 5 11 1 1 1.48 13 110 866 0.55 14.59
MinutesBetween 45 (100.0%) 0 (0.0%) 0 5 1 0 0.64 8 101 1 0.37 0.48

MaxSum 42 (95.5%) 17 (40.5%) 2 7 1 1 1.14 2 51 3 0.35 0.47
Median 47 (100.0%) 47 (100.0%) 1 1 1 0 0.39 1 100 1 0.34 0.44

DigitPermutation 36 (100.0%) 1 (2.8%) 1 3 1 0 0.26 4 29 4 0.32 0.44
Coins 27 (65.9%) 14 (51.9%) 2 6 1 1 1.65 4 93 175 2.41 15.44
Seq235 33 (89.2%) 30 (90.9%) 4 12 1 2 1.79 3 232 3 0.94 22.08

Table 1: List of all assignments with the experimental results.

specification observes more values than those that appear in
the implementation; (iii) The implementation uses different
data representation. In case (i) the teacher adds a new non-
deterministic choice, and, if necessary, observes new values
or function calls; in case (ii) the teacher observes less val-
ues; and in case (iii) the teacher creates or refines a custom
data-equality.

Input values. Our dynamic analysis approach requires
the teacher to associate input values with specifications. These
input values should cause the corresponding implementa-
tions to exhibit their worst-case behavior; otherwise an ineffi-
cient implementation might behave similar to an efficient im-
plementation and for this reason match the specification of
the efficient implementation. This implies that trivial inputs
should be avoided. For example, two strings with unequal
lengths constitute a trivial input for the counting strategy
since each of its three implementations C1-C3 (Fig. 1) then
exit immediately. Similarly, providing a sorted input for the
sorting strategy is meaningless. We remark that it is easy
for a teacher (who understands the various strategies) to
provide good input values.

Granularity of feedback. We want to point out that
the granularity of a feedback depends on the teacher. For
example, in a programming problem where sorting the input
value is an inefficient strategy, the teacher might not want to
distinguish between different sorting algorithms, as they do
not require a different feedback. However, in a programming
problem where students are asked to implement a sorting
algorithm it makes sense to provide a different feedback for
different sorting algorithms.

6.3 Evaluation
We report results on the 24 problems discussed above in

Table 1.
Results from manual code study. We first observe

that a large number of students managed to write a function-
ally correct implementation on most of the problems (col-

umn Correct Implementations). This shows that Pex4Fun
succeeds in guiding students towards a correct solution.

Our second observation is that for most problems a large
fraction of implementations is inefficient (column Inefficient
Implementations), especially for Anagram problem: 90%.
This shows that although students manage to achieve func-
tional correctness, efficiency is still an issue (recall that in
our homework the students were explicitly asked and given
extra points for efficiency).

We also observe that for all, except two, problems there
is at least one inefficient algorithmic strategy, and for most
problems (62.5%) there are several inefficient algorithmic
strategies (column N). These results highly motivate the
need for a tool that can find inefficient implementations and
also provide a meaningful feedback on how to fix the problem.

Precision and Expressiveness. For each programming
assignment we used the above described methodology and
wrote a specification for each algorithmic strategy (both ef-
ficient and inefficient). We then manually verified that each
specification matches all implementations of the strategy,
hence providing desired feedback for implementations. This
shows that our approach is precise and expressive enough
to capture the algorithmic strategy, while ignoring low level
implementation details.

Teacher Effort. To provide manual feedback to students
the teacher would have to go through every implementation
and look at its performance characteristics. In our approach
the teacher has to take a look only at a few representative
implementations. In column S we report the total num-
ber of inspection steps that we required to fully specify one
programming problem, i.e., the number of implementations
that the teacher would had to go through to provide feed-
back on all implementations. For the 3 pre-existing problems
the teacher would only have to go through 66 out of 2316 (or
around 3%) implementations to provide full feedback. Fig. 6
shows the number of matched implementations with each in-
spection step, as well the time it took us to create/refine all

specifications (we measured the time it takes from seeing an
unmatched implementation, until writing/refining a match-
ing specification for it).

In column LS/LIwe report the largest ratio of specifica-
tion and average matched implementation in terms of lines
of code. We observe that in half of the cases the largest spec-
ification is about the same size or smaller than the average
matched implementation. Furthermore, the number of the
input values that need to be provided by the teacher is 1-2
across all problems (column I). In all but one problem (Is-
Sorted) one set of input values is used for all specifications.
Also, in about one third of the specifications there was no
need for non-deterministic variables, and the largest num-
ber used in one specification is 3 (column ND). Overall, our
semi-automatic approach requires considerably less teacher
effort than providing manual feedback.

Performance. We plan to integrate our framework in
a MOOC platform, so performance, as for most web ap-
plications, is critical. Our implementation consists of two
parts. The first part is the execution of the implementa-
tion and the specification (usually small programs) on rel-
atively small inputs and obtaining execution traces, which
is, in most cases, neglectable in terms of performance. The
second part is the Embed algorithm. As discussed in §4.1
the challenge consists in finding an embedding witness π.
With OS observed variables in the specification and OI ob-
served variables in the implementation, there are OI !

(OI−OS)!

possible injective mapping functions. E.g., for the Sort-
ingStrings problem that gives ≈ 1026 possible mapping func-
tions (OI = 110, OS = 13). However, our algorithm reduces
this huge search space by constructing a bipartite graph G
of potential mappings pairs. In M we report the number of
mapping functions that our tool had to explore. E.g., for
SortingStrings only 866 different mapping functions had to
be explored. For all values (OS, OI and M) we report the
maximal number across all specifications. In the last column
we state the total execution time required to decide if one
implementation matches the specification (average and max-
imal). Note that this time includes execution of both pro-
grams, exploration of all assignments to non-deterministic
Boolean variables and finding an embedding witness π. Our
tool runs, in most cases, under half a second per implemen-
tation. These results show that our tool is fast enough to be
used in an interactive teaching environment.

6.4 Threats to Validity
Unsoundness. Our method is unsound in general since

it uses a dynamic analysis that explores only a few possible
inputs. However, we did not observe any unsoundness in our
large scale experiments. If one desires provable soundness,
an embedding witness could be used as a guess for a simu-
lation relation that can then be formally verified by other
techniques. Otherwise, a student who suspects an incorrect
feedback can always bring it to the attention of the teacher.

Program size. We evaluated our approach on introduc-
tory programming assignments. Although questions about
applicability to larger programs might be raised, our goal
was not to analyze arbitrary programs, but rather to de-
velop a framework to help teachers who teach introductory
programming with providing performance feedback — cur-
rently a manual, error-prone and time-consuming task.

Difficulty of the specification language. Although
we did not perform case study with third-party instructors,

we report our experiences with using the proposed language.
We would also like to point out that writing specifications
is a one-time investment, which could be performed by an
experienced personnel.

7. RELATED WORK

7.1 Automated Feedback
There has been a lot of work in the area of generating

automated feedback for programming assignments. This
work can be classified along three dimensions: (a) aspects
on which the feedback is provided such as functional correct-
ness, performance characteristics or modularity (b) nature
of the feedback such as counterexamples, bug localization or
repair suggestions, and (c) whether static or dynamic anal-
ysis is used.

Ihantola et.al. [13] present a survey of various systems de-
veloped for automated grading of programming assignments.
The majority of these efforts have focussed on checking for
functional correctness. This is often done by examining
the behavior of a program on a set of test inputs. These
test inputs can be manually written or automatically gen-
erated [25]. There has only been little work in testing for
non-functional properties. The ASSYST system uses a sim-
ple form of tracing for counting execution steps to gather
performance measurements [14]. The Scheme-robo system
counts the number of evaluations done, which can be used
for very coarse complexity analysis. The authors conclude
that better error messages are the most important area of
improvement [20].

The AI community has built tutors that aim at bug lo-
calization by comparing source code of the student and the
teacher’s programs. LAURA [5] converts teacher’s and stu-
dent’s program into a graph based representation and com-
pares them heuristically by applying program transforma-
tions while reporting mismatches as potential bugs. TALUS [17]
matches a student’s attempt with a collection of teacher’s al-
gorithms. It first tries to recognize the algorithm used and
then tentatively replaces the top-level expressions in the stu-
dent’s attempt with the recognized algorithm for generating
correction feedback. In contrast, we perform trace compar-
ison (instead of source code comparison), which provides
robustness to syntactic variations.

Striewe and Goedicke have proposed localizing bugs by
trace comparisons. They suggested creating full traces of
program behavior while running test cases to make the pro-
gram behavior visible to students [22]. They have also sug-
gested automatically comparing the student’s trace to that
of a sample solution [23] for generating more directed feed-
back. However, no implementation has been reported. We
also compare the student’s trace with the teacher’s trace,
but we look for similarities as opposed to differences.

Recently it was shown that automated techniques can
also provide repair based feedback for functional correctness.
Singh’s SAT solving based technology [21] can successfully
generate feedback (of up to 4 corrections) on around 64% of
all incorrect solutions (from an MIT introductory program-
ming course) in about 10 seconds on average. While test
inputs provide guidance on why a given solution is incorrect
and bug localization techniques provide guidance on where
the error might be, repairs provide guidance on how to fix an
incorrect solution. We also provide repair suggestions that
are manually associated with the various teacher specifica-

tions, but for performance based aspects. Furthermore, our
suggestions are not necessarily restricted to small fixes.

7.2 Performance Analysis
The Programming Languages and Software Engineering

communities have explored various kinds of techniques to
generate performance related feedback for programs. Sym-
bolic execution based techniques have been used for iden-
tifying non-termination related issues [12, 7]. The SPEED
project investigated use of static analysis techniques for esti-
mating symbolic computational complexity of programs [27,
10, 11]. Goldsmith et.al. used dynamic analysis techniques
for empirical computational complexity [8]. The Toddler
tool reports a specific pattern: computations with repeti-
tive and similar memory-access patterns [19]. The Cachetor
tool reports memoization opportunities by identifying oper-
ations that generate identical values [18]. In contrast, we
are interested in not only identifying whether or not there is
a performance issue, but also identifying its root cause and
generating repair suggestions.

8. REFERENCES
[1] http://forsyte.at/static/people/radicek/fse14.

[2] Making Programs Efficient.
http://pexforfun.com/makingprogramsefficient.

[3] Microsoft ”Roslyn” CTP.
http://msdn.microsoft.com/en-us/vstudio/roslyn.aspx.

[4] Pex for fun. http://www.pexforfun.com/.

[5] A. Adam and J.-P. H. Laurent. LAURA, a system to
debug student programs. Artif. Intell., 15(1-2), 1980.

[6] P. Bose, J. F. Buss, and A. Lubiw. Pattern matching
for permutations. Inf. Process. Lett., 65(5):277–283,
1998.

[7] J. Burnim, N. Jalbert, C. Stergiou, and K. Sen.
Looper: Lightweight detection of infinite loops at
runtime. In ASE, pages 161–169, 2009.

[8] S. Goldsmith, A. Aiken, and D. S. Wilkerson.
Measuring empirical computational complexity. In
ESEC/SIGSOFT FSE, 2007.

[9] S. Gulwani. Example-based learning in
computer-aided STEM education. To appear in
Commun. ACM, 2014.

[10] S. Gulwani, K. K. Mehra, and T. M. Chilimbi. Speed:
precise and efficient static estimation of program
computational complexity. In POPL, pages 127–139,
2009.

[11] S. Gulwani and F. Zuleger. The reachability-bound
problem. In PLDI, pages 292–304, 2010.

[12] A. Gupta, T. A. Henzinger, R. Majumdar,
A. Rybalchenko, and R.-G. Xu. Proving
non-termination. In POPL, pages 147–158, 2008.

[13] P. Ihantola, T. Ahoniemi, V. Karavirta, and
O. Seppälä. Review of recent systems for automatic

assessment of programming assignments. In
Proceedings of the 10th Koli Calling International
Conference on Computing Education Research, Koli
Calling ’10, pages 86–93, New York, NY, USA, 2010.
ACM.

[14] D. Jackson and M. Usher. Grading student programs
using ASSYST. In SIGCSE, pages 335–339, 1997.

[15] K. Masters. A brief guide to understanding MOOCs.
The Internet Journal of Medical Education, 1(2), 2011.

[16] R. Milner. An algebraic definition of simulation
between programs. Technical report, Stanford, CA,
USA, 1971.

[17] W. R. Murray. Automatic program debugging for
intelligent tutoring systems. Computational
Intelligence, 3, 1987.

[18] K. Nguyen and G. Xu. Cachetor: Detecting cacheable
data to remove bloat. In Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2013, pages 268–278, New York, NY,
USA, 2013. ACM.

[19] A. Nistor, L. Song, D. Marinov, and S. Lu. Toddler:
Detecting performance problems via similar
memory-access patterns. In Proceedings of the 2013
International Conference on Software Engineering,
ICSE ’13, pages 562–571, Piscataway, NJ, USA, 2013.
IEEE Press.

[20] R. Saikkonen, L. Malmi, and A. Korhonen. Fully
automatic assessment of programming exercises. In
Proceedings of the 6th Annual Conference on
Innovation and Technology in Computer Science
Education, ITiCSE ’01, pages 133–136, New York, NY,
USA, 2001. ACM.

[21] R. Singh, S. Gulwani, and A. Solar-Lezama.
Automated feedback generation for introductory
programming assignments. In PLDI, pages 15–26,
2013.

[22] M. Striewe and M. Goedicke. Using run time traces in
automated programming tutoring. In ITiCSE, pages
303–307, 2011.

[23] M. Striewe and M. Goedicke. Trace alignment for
automated tutoring. In CAA, 2013.

[24] N. Tillmann and J. de Halleux. Pex-white box test
generation for .NET. In TAP, pages 134–153, 2008.

[25] N. Tillmann, J. de Halleux, T. Xie, S. Gulwani, and
J. Bishop. Teaching and learning programming and
software engineering via interactive gaming. In ICSE,
2013.

[26] T. Uno. Algorithms for enumerating all perfect,
maximum and maximal matchings in bipartite graphs.
In ISAAC, pages 92–101, 1997.

[27] F. Zuleger, S. Gulwani, M. Sinn, and H. Veith. Bound
analysis of imperative programs with the size-change
abstraction. In SAS, pages 280–297, 2011.

http://forsyte.at/static/people/radicek/fse14
http://pexforfun.com/makingprogramsefficient
http://msdn.microsoft.com/en-us/vstudio/roslyn.aspx
http://www.pexforfun.com/

	1 Introduction
	2 Overview
	2.1 Motivation
	2.2 Specifying Algorithmic Strategies

	3 Specifications and Implementations
	3.1 The Language L
	3.2 Student Implementation
	3.3 Teacher Specification

	4 Matching
	4.1 Trace Embedding
	4.2 Partial Matching
	4.3 Full Matching

	5 Extensions
	6 Implementation and Experiments
	6.1 Experimental Setup
	6.2 Methodology
	6.3 Evaluation
	6.4 Threats to Validity

	7 Related Work
	7.1 Automated Feedback
	7.2 Performance Analysis

	8 References

