
Mining Preconditions of APIs in Large-Scale Code Corpus

Hoan Anh Nguyen
hoan@iastate.edu

Robert Dyer
rdyer@iastate.edu

Tien N. Nguyen
tien@iastate.edu

Hridesh Rajan
hridesh@iastate.edu

Iowa State University
Ames, IA 50011, USA

ABSTRACT
Modern software relies on existing application programming in-
terfaces (APIs) from libraries. Formal specifications for the APIs
enable many software engineering tasks as well as help developers
correctly use them. In this work, we mine large-scale repositories
of existing open-source software to derive potential preconditions
for API methods. Our key idea is that APIs’ preconditions would
appear frequently in an ultra-large code corpus with a large num-
ber of API usages, while project-specific conditions will occur less
frequently. First, we find all client methods invoking APIs. We
then compute a control dependence relation from each call site and
mine the potential conditions used to reach those call sites. We use
these guard conditions as a starting point to automatically infer the
preconditions for each API. We analyzed almost 120 million lines
of code from SourceForge and Apache projects to infer precondi-
tions for the standard Java Development Kit (JDK) library. The
results show that our technique can achieve high accuracy with
recall from 75–80% and precision from 82–84%. We also found
5 preconditions missing from human written specifications. They
were all confirmed by a specification expert. In a user study, par-
ticipants found 82% of the mined preconditions as a good starting
point for writing specifications. Using our mining result, we also
built a benchmark of more than 4,000 precondition-related bugs.

Categories and Subject Descriptors
F.3.1 [Logics and Meanings of Programs]: Specifying and Veri-
fying and Reasoning about Programs

Keywords
Specification Mining; JML; Preconditions; Big Code Mining

1. INTRODUCTION
Software in our modern world is developed using frameworks

and libraries, which provide application programming interfaces
(APIs) via classes and their methods. To be able to correctly use
these APIs, programmers must conform to their specifications. For
example, in the standard Java Development Kit (JDK), a call to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE’14 , November 16–22, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

next() in a LinkedList needs to be preceded by a call to hasNext() to
ensure the list still has elements. For each API method, there are
conditions that must hold whenever it is invoked. These are called
the preconditions of the API. For example, in the JDK String class,
the condition ‘beginIndex <= endIndex’ must hold when the method
subString(beginIndex,endIndex) is called. These conditions, as part
of the API’s specification, have been shown to be useful for many
automated software engineering tasks including the formal verifica-
tion of program correctness [5, 7, 57], generation of test cases [22],
building test oracles [41], bug detection [16, 31, 54], design by
contract [9, 53], etc. Popular formal specification toolsets include
ESC/Java [20], Bandera [11], Java Path Finder [2], JMLC [29], Ki-
asan [15], Code Contracts [1], etc.

Manually defining specifications for libraries is time-consuming.
One must read the documentation of the APIs and even the source
code and convert the conditions to the formats suitable for verifica-
tion tools. To ease defining specifications, several approaches have
been proposed to automatically derive the specifications. Gener-
ally, there are two types of approaches that complement each other:
program analysis-based and data mining-based approaches.

Among program analysis approaches, dynamic approaches [5, 8,
17, 39, 54] could detect data and temporal invariants and recover
program behaviors. However, they require a large number of test
cases, and their results might be incomplete due to the incomplete-
ness of the test suites. On the other hand, static analysis approaches
do not require dynamic instrumentation but have high false-positive
specifications [16, 28, 44, 53]. Importantly, those static techniques
focus their analyses only on an individual project, which has the
call sites for only a small number of APIs.

In contrast to program analysis-based approaches, other tech-
niques in the mining software repositories (MSR) area have applied
mainly data mining to derive API specifications from existing code
repositories [21, 31, 34, 42, 51, 52, 58, 59]. The key difference
of these mining approaches from the traditional program-analysis
based approaches is that they consider the usages of the APIs at the
call sites in the client programs of the APIs to derive the conditions
regarding only the usage orders or temporal orders among the API
calls. While some approaches detect such orders as pairs of method
calls [52, 21, 55] (e.g., p must be called before q), other approaches
mine the sequences of calls [59, 50] or even a graph or finite state
diagram of method calls [42, 43, 51]. Other mining approaches fo-
cus on associations of API entities [31, 34]. Unfortunately, those
mining approaches do not aim to recover pre- and post-conditions
as part of specifications. Moreover, except a few methods [44],
they mainly rely on mining techniques without in-depth analyzing
the data and control properties in the mined code.

This paper introduces an approach that puts forth the idea of min-
ing API specifications that combines both static analysis and source

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FSE’14, November 16–21, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11...$15.00
http://dx.doi.org/10.1145/2635868.2635924

166

code mining from a very large code corpus in open-source reposito-
ries to derive the preconditions of APIs in libraries and frameworks.
We expect that the APIs’ preconditions would appear frequently
in an ultra-large corpus of open-source repositories that contain
a very large number of the usages of those APIs, while project-
specific conditions will occur less frequently. Importantly, we
combine the strength of both static analysis approaches (via control
dependency analysis) and MSR approaches (via mining) to make it
scale to large corpus. Moreover, we can derive preconditions for a
large number of APIs or entire library at the same time.

Specifically, we used a very large-scale data set from Source-
Forge consisting of 3,413 Java projects with 497,453 source files,
4,735,151 methods and 92,495,410 SLOCs, and from Apache con-
sisting of 146 projects with 132,951 source files, 1,243,911 meth-
ods and 25,117,837 SLOCs. To analyze the APIs’ client code in
such large data set, we did not choose the dynamic analysis ap-
proach since it would require the generation of a very large number
of test cases and a great deal of execution time. Instead, we develop
a light-weight, intra-procedural, static analysis technique to collect
all predicates for every API method in the data set. Our technique
first builds the control dependence relation for each method. It then
analyzes different paths and conditions that lead to each method to
recover all primitive predicates for all API methods in the data set.
After that, it will start mining on the preconditions by performing
normalization, merging, filtering, and ranking on them.

In our empirical evaluation, we compared the mined precondi-
tions with the real-world JML specifications for several JDK APIs
that are created and maintained by the JML team [29]. The results
show that our precondition mining technique can achieve high ac-
curacy with recall from 75–80% and precision from 82–84% for
the top-ranked results. We also found 5 new preconditions (for two
JDK classes) that were not listed by the JML team. We reported to
the team and got their confirmation on those preconditions. More-
over, we filed to the JML team the preconditions for 11 previously
unspecified methods in 2 JDK classes, and they accepted all pro-
posals. Importantly, our method is light-weight and scales to such
large amount of code, allowing us to derive preconditions for entire
JDK library. We also conducted a user study on human subjects
who have experience with specifications on the usefulness and cor-
rectness of our mined preconditions. 82% of the participants found
that our result is a good starting point for writing specifications for
APIs under study. In addition to supporting specification writing,
we show the usefulness of our mined preconditions by using them
to build a benchmark of more than 4,000 API call sites that might be
buggy due to missing precondition checking. It is useful for tools
to detect neglected conditions [10]. Our key contributions include

1. A novel approach that combines the strength from both code
mining in a ultra-large code corpus and program analysis, to derive
the preconditions of APIs in libraries and frameworks,

2. An empirical evaluation on a very large-scale data set to mine
preconditions of JDK APIs.

Section 2 will explain an example that motivates our approach.
Our key program analysis and mining technique is presented in
Section 3. Section 4 is for our empirical evaluation. Related work
is described in Section 5. Conclusions appear last.

2. MOTIVATING EXAMPLE
We first present an example of an API in Java Development Kit

(JDK), and then discuss the observations motivating our approach.
An Example. Let us consider an example of a commonly-used
API from the Java Development Kit (JDK): String.substring(int, int)
in the java.lang package. The method takes as input two integer

1 public boolean setPathFragmentation(int servletPathStart, int extraPathStart){
2 if (servletPathStart < 0 || extraPathStart < 0 ||
3 servletPathStart > completePath_.length() ||
4 extraPathStart > completePath_.length() ||
5 servletPathStart > extraPathStart)
6 return false;
7 if (servletPathStart == completePath_.length()) {
8 ...
9 return true;

10 }
11 if (completePath_.charAt(servletPathStart) != ’/’)
12 return false;
13 if (extraPathStart == completePath_.length()) {
14 ...
15 return true;
16 }
17 if (completePath_.charAt(extraPathStart) != ’/’)
18 return false;
19 contextPath_ = completePath_.substring(0, servletPathStart);
20 servletPath_ = completePath_.substring(servletPathStart, extraPathStart);
21 ...
22 return true;
23 }

Figure 1: Client code of API String.substring(int,int) in project
SeMoA at revision 1929. http://goo.gl/u0HKl6

values: beginIndex, the index of the starting character (inclusive)
and endIndex, the index of the the ending character (exclusive).
The method returns a new string that is the substring of the original
string, using the two indices. Examining this API, we could learn
that there are three preconditions that must hold before it is called:

1. beginIndex ≥ 0,
2. endIndex ≤ this.length() and
3. beginIndex ≤ endIndex.

A precondition for an API to be used could involve the receiver
object of the API and/or one or multiple of its arguments. Identi-
fying the complete set of preconditions for an API is a difficult and
time-consuming task. However, this particular API is extremely
popular (one of the most frequently used APIs from the JDK) and
there is another way to learn these preconditions, without having
to even look at the documentation or source code for the method.
Consider one example usage of this API as shown in Figure 1.
The method Request.setPathFragmentation(...) in the SeMoA [46]
project uses this API (lines 19 and 20). Examining the source, we
can see several conditions that must be false in order for the control-
flow to reach the API calls. For example, the if statement on line 2
must be false, meaning that both indices servletPathStart and extra-
PathStart must be non-negative, the indices must not be greater than
the length of the string completePath_, and servletPathStart must
not be greater than extraPathStart. These are the same conditions
we saw in the documentation. This gives us our first observation:

OBSERVATION 1. Preconditions can be inferred by looking at
the conditions that must be satisfied before calling the APIs, i.e.,
the guard conditions of the API call sites.

Let us consider line 19 of Figure 1. It contains another call to
the API. The only difference is that at this call site, instead of a
variable, constant value 0 is passed as the first argument. Thus, the
conditions on an argument of an API can be derived from the prop-
erties of such value passed to the API. This gives the observation:

OBSERVATION 2. The mining tool should take into account the
properties of the arguments passed as the APIs’ parameters.

This client code however contains other conditions checked be-
fore the API call. Some of these conditions are specific to the logic
of the client (lines 11 and 17). This gives our next observation:

167

1 private String getCommand(int pc, boolean allThisLine, boolean addSemi){
2 if (pc >= lineIndices.length)
3 return "";
4 if (allThisLine) {
5 ...
6 return ...;
7 }
8 int ichBegin = lineIndices[pc][0];
9 int ichEnd = lineIndices[pc][1];

10 ...
11 String s = "";
12 if (ichBegin < 0 || ichEnd <= ichBegin || ichEnd > script.length())
13 return "";
14 try {
15 s = script.substring(ichBegin, ichEnd);
16 ...
17 }
18 }

Figure 2: Client code of API String.substring(int,int) in project
Jmol at revision 18626. http://goo.gl/Qa8NiS

OBSERVATION 3. Call sites might contain client-specific con-
ditions, which could cause noise when inferring preconditions.
Thus, an approach that mines preconditions from call sites should
attempt to minimize such noise.

This has been a challenge for the existing static program
analysis-based approaches [44] when they examine the call sites
of the APIs only within the code of the APIs’ programs.

One way to minimize noise is to mine preconditions from a
large number of projects. The valid preconditions should appear
more frequently, while client-specific conditions should appear in-
frequently. Figure 2 shows another client, Jmol [27], that uses the
same API (line 15) in the method ScriptEvaluator.getCommand(...).

The if statement on line 12 checks the three required precondi-
tions. Note that, in this case, the checked condition is stronger than
the required one: the beginning index ichBegin is strictly less than
the ending index ichEnd. This gives our next observation:

OBSERVATION 4. The relationship between conditions should
be considered when mining preconditions.

For example, a stronger condition should be counted as an in-
stance of a weaker one. A mining tool must consider the relations
among conditions to derive a precondition. Similar to the previ-
ous client code, this method also contains client-specific conditions
(lines 2 and 4). Again, these conditions are project-specific and not
actual preconditions for the API in question. However, these con-
ditions do not appear in the first client code, and thus we start to
see evidence that such noise would appear less frequently.

Motivation. This example motivates us to use an approach to mine
the preconditions via the guard conditions of the call sites of the
APIs under study in a very large number of projects in a large-scale
corpus. That would help to minimize the project-specific conditions
(as noises) because they will appear less frequently in the large
corpus. The true preconditions would occur more frequently.

In this paper, we introduce such an approach that mines the
preconditions of the APIs. In fact, after running our mining tool
on a very large data set from SourceForge (consisting of 3,413
Java projects with 497,453 source files, 600,274 classes, 4,735,151
methods, and 92,495,410 SLOCs), we are able to derive the precon-
ditions for the String.substring method in JDK. The columns in Ta-
ble 1 show the preconditions with highest frequencies in the corpus
that we mined for the receiver String object, and the arguments be-
ginIndex and endIndex, respectively. As seen, the aforementioned
true preconditions have among the highest frequencies. Project-
specific conditions did not make the top of the list.

Table 1: Mined Preconditions for String.substring(int,int)
Receiver Object (rcv) beginIndex endIndex

rcv.length() > 0 rcv.length() > beginIndex endIndex >= 0
rcv.length() >= endIndex beginIndex <= endIndex endIndex != -1
rcv.length() > beginIndex beginIndex >= 0 rcv.length() >= endIndex

3. MINING WITH LARGE CODE CORPUS
Let us outline our approach for mining the preconditions for API

methods. Figure 3 gives an overview, which can be summarized as:

1. The input is the set of all API methods under analysis and
client projects to mine.

2. For each method in the corpus that calls an API, we build the
control dependence relation between each method call and
the predicates in the method (from the control-flow graph)
and identify all preconditions of API calls. (Section 3.1)

3. Next, we normalize the preconditions to identify and com-
bine the equivalent ones. (Section 3.2)

4. We then analyze the preconditions to infer additional ones
which are not directly present in the client code. (Section 3.3)

5. Finally we filter out non-frequent preconditions (Section 3.4,
and rank the remaining ones in our final result. (Section 3.5)

3.1 Control Dependence and Preconditions
In order to identify the preconditions of API calls, we need to

identify all predicates that guard the evaluation of each method call
in the program. This can be done by building the control depen-
dence relation [18], based on the control-flow graph (CFG). In a
CFG, each predicate node has exactly two outgoing edges labeled
TRUE and FALSE representing the two corresponding branches.

DEFINITION 1. A method call C is control-dependent on a
predicate expression p if and only if on the corresponding CFG,
all directed paths from p to C go out of p on the same edge - either
TRUE or FALSE.

This means that C is control-dependent on p if C is executed in
only one branch of p. If C could be called in both branches of p,
thenC’s execution does not depend on p. For example, in Figure 2,
String.substring on line 15 is called only in the FALSE branch of
the predicate on line 12, thus, it is control-dependent on that predi-
cate. Our definition is stricter than the traditional definition by Fer-
rante et al. [18], which requires C always be called in one branch
of p and not called in at least one path in the other branch. Ac-
cording to that, a method could be called in both TRUE and FALSE
branches of the predicate on which it is control-dependent, thus the
value of the predicate does not control the execution of the method
call. This is the reason we give an adaptation in Definition 1.

DEFINITION 2. An API method M is control-dependent on a
predicate expression p in a client method if and only if all call sites
of M in the client method are control-dependent on exactly one
branch of p (TRUE or FALSE).

When M is control-dependent on the FALSE branch of p, the
predicate that guards M will be the negation of the predicate ex-
pression in p. We now define what we consider to be a precondition
for calling a method.

DEFINITION 3. A precondition of a method call is a single
clause in the conjunctive normal form (CNF) of a predicate on
which the method call is control-dependent.

168

IF

Entry

a1() a2()

CFG Mn

RankingFilteringInferenceNormalization

1 p1

2 p2

.. ..

n pn

APIs

Projects

conf(p)

confpr(p) ≥ σ
confm(p) ≥ σnormalize(p)

p = (a == b) ^ q = (a < b)
→ t = (a ≤ b)

p→q ^ |Ω(p)| ≤ |Ω(q)|

Mined
Preconditions

Ω(p)

for each p

Mined
Preconditions

Ω

Calling
Methods
(M1 .. Mn)

for each MiFind methods
that call APIs IF

Entry

a1() a2()

CFG ..
M1 {<API, {p1, ..}>, ..}

M2 {<API, {p1, ..}>, ..}

.. ..

Mn {<API, {p1, ..}>, ..}

Control Dependence Relation

IF

Entry

a1() a2()

CFG M1

Figure 3: Approach Overview: We first find all methods that call each API and compute the control-flow graph for each. Then, we
generate the control dependence graph to identify conditions leading to an API call. From that, we create an inverted index, then
normalize each condition. We infer and merge conditions and then filter some out. The final list is ranked, giving us our result.

In Figure 2, the API call on line 15 is control-dependent on the
FALSE branch of the if statement on line 12, so the predicate is
negated and gives us: !(ichBegin < 0 || ichEnd ≤ ichBegin || ichEnd
> script.length()). This predicate is represented in CNF as !(ichBegin
< 0) && !(ichEnd ≤ ichBegin) && !(ichEnd > script.length()). Moving
the negations inside, we have a set of three preconditions: ichBegin
≥ 0, ichEnd > ichBegin and ichEnd ≤ script.length().

For the goal of deriving general specifications, the context-
specific names/expressions must be abstracted away from the indi-
vidual method call sites. Since each call contains a receiver object
and list of arguments, we are interested in the preconditions on each
of these components. We use rcv and argi as the symbolic names
for the receiver object and the i-th argument in the list of argu-
ments, respectively. First, we match the expression of the receiver
and that of each parameter of the method call against the expres-
sion of the precondition. Then, we try all possible substitutions of
occurrences of the receiver and parameters with their correspond-
ing symbolic names. If the condition contains a variable/field, its
latest value will be used in the precondition. Its latest value is the
expression in the right hand side of its most recent assignment (if
any). In the above example, processing the three preconditions ich-
Begin ≥ 0, ichEnd > ichBegin and ichEnd ≤ script.length() of the
method call script.substring(ichBegin, ichEnd) will result in the fol-
lowing abstracted preconditions arg0 ≥ 0, arg1 > arg0 and arg1 ≤
rcv.length(). A condition that does not involve any component of
the call (i.e., having no symbolic names) will be discarded.

Finally, to follow Observation 2, for each expression e passed as
argument argi to a method call, we create a precondition in three
cases. First, if e is a constant of a primitive type, we create a pre-
condition argi == c. Second, if e is an expression that can be rec-
ognized via its syntax as returning a non-null object, e.g., object
instantiation or array initialization expression, we create a precon-
dition argi != null. Third, if e involves any component of the call,
i.e., having some symbolic names, we create a precondition argi ==
e’, where e′ is obtained from e by replacing identifiers with the cor-
responding symbolic names, e.g., arg1 == rcv.length(). These equal-
ity preconditions are used to support the inference of the non-strict
inequality preconditions such as arg1 >= 0 or arg1 >= rcv.length().

Table 2 shows the resulting preconditions mined from our ex-
ample API using this process. For each API, the preconditions are

Table 2: Extracting preconditions for String.substring(int, int)
from the usages in Figures 1 and 2.

Figure 1, line 19 Figure 1, line 20 Figure 2, line 15
arg0 == 0 arg0 >= 0 arg0 >= 0
rcv.charAt(arg0) == ’/’ arg0 <= rcv.length() arg1 > arg0
arg1 >= 0 arg0 != rcv.length() arg1 <= rcv.length()
arg1 != rcv.length() == ’/’ rcv.charAt(arg0) == ’/’
rcv.charAt(arg1) arg0 <= arg1

arg1 >= 0
arg1 <= rcv.length()
arg1 != rcv.length()
rcv.charAt(arg1) == ’/’

stored in a map Ω, in which Ω(p) returns the set of calling methods
containing precondition p before calling the API.

3.2 Precondition Normalization
Since we collect preconditions from call sites in different meth-

ods and projects, there are conditions that are equivalent but ex-
pressed in different forms. For example, the following: arg1 >
arg0, arg0 < arg1, (arg0 - arg1) < 0, (arg1 - arg0) > 0 and arg0 -
1 < arg1 - 1 express the same conditions. Thus, we need to normal-
ize the preconditions. The first step is to ensure every unary/binary
expression is enclosed by exactly one pair of opening and closing
parentheses. The next step is to order the operands in the binary op-
eration(s) (such as >, <, etc.) of the preconditions so that they are
comparable between call sites. Whenever two operands of a binary
operation are re-ordered, the operator is reversed correspondingly.

For any comparison expression E = El D Er , where D is a
comparison operator, we transform it into E′ = E′l D E′r , where
E′r contains only literals and E′l contains all symbolic and other
identifier names. If E′r contains all numeric literals, it will be eval-
uated. The terms in E′l are ordered in the ascending order of its
symbolic names. For example, all 5 conditions above will be nor-
malized into the same condition (arg0 - arg1) < 0. Finally, the map
Ω is updated with the normalized preconditions for each API.

3.3 Precondition Inference
Inferring non-strict inequality preconditions. In the client code,
a non-strict inequality precondition (a >= b or a <= b) might be split
into strict inequality (a > b or a < b) and equality (a == b) condi-

169

1 for each precondition p = (a == b)
2 for each precondition q = (a > b) or q = (a < b)
3 if q == (a > b) then t = (a >= b)
4 else t = (a <= b)

5 if |Ω(p)| = |Ω(q)| then Ω(t) = Ω(t) ∪ Ω(p) ∪ Ω(q)
6 else if |Ω(p)| > |Ω(q)| then Ω(t) = Ω(t) ∪ Ω(q)
7 else Ω(t) = Ω(t) ∪ Ω(p)

Figure 4: Inferring non-strict inequality preconditions.

tions, and checked at different call sites. Figure 4 shows our algo-
rithm for inferring the non-strict inequality precondition. When the
two preconditions p and q are used equally, all call sites for both
of them are counted toward the inferred condition (line 5). Other-
wise, only the call sites of the less-frequently used precondition are
added (lines 6 and 7). This helps us avoid counting the occurrence
frequencies of incorrect conditions toward the inferred one.

Merging strong and weak conditions. Among the preconditions,
some imply others (Observation 4). If a stronger condition holds,
the weaker condition holds too. This means that all call sites of the
stronger condition could be merged to (counted toward) those of
the weaker. However, merging can lead to inferring wrong precon-
ditions if the weaker one is in buggy code or specific to a particular
client (Observation 3). We avoid this noise by using the assump-
tion that the more frequently a precondition is checked, the more
likely it is correct. Thus, if the stronger condition is less-frequently
checked than the weaker one, its call sites will be merged to those
of the weaker and it will be removed from the set of preconditions.

1 for each pair of preconditions (p, q)
2 if p→ q ∧ |Ω(p)| ≤ |Ω(q)| then
3 Ω(q) = Ω(q) ∪ Ω(p)
4 remove p from Ω

Figure 5: Merging preconditions with implication.

The procedure is shown in Figure 5. Note that this merging will
remove all equality and/or strict inequality preconditions compos-
ing the non-strict ones. For example, if two conditions p: (arg ==
0) and q: (arg > 0) infer the condition t: (arg >= 0) and p is stronger
and less-frequently checked than t, as at line 7 in Figure 4, its call
sites containing p will be added to those of t. Then, p is removed.

Dealing with dynamic dispatch. Since the data types cannot be
precisely resolved at static time, some actual API calls could be
missed in our static analysis, thus, all their preconditions at those
call sites could be missed too. For example, method obj.add() which
is resolved at static time as List.add() because obj is declared as List
could actually be ArrayList.add() at runtime. We address this with
a conservative solution that whenever a set of preconditions is ex-
tracted for a call of API m, that set is also considered as the pre-
conditions of all APIs that override or implement m in the library.
The rationale behind this is the assumption of behavioral subtyping
in which preconditions cannot be strengthened in a subtype [32].
Thus, this heuristic will enrich the set of extracted preconditions for
a sub-type with those from the super-type, which are the same or
stronger than the actual ones. Those preconditions could be merged
to the actual ones and increase the confidence of the actual ones.

3.4 Precondition Filtering
Since we mine preconditions from many projects/methods in a

large-scale code corpus, there are conditions which are context-
specific or might even be incorrect. These conditions are not useful
for building the API specifications and should be filtered out. First,

we remove all conditions which are checked only once in the whole
code corpus. Then, for each API, we remove all conditions which
have low confidence in being checked before calling the API.

The confidence of a precondition for an API is measured as the
ratio between the number of code locations checking the condition
before calling the API over the total number of locations calling the
API. We compute two values for confidence corresponding to two
types of locations: one over client projects (confpr) and another
over client methods (confm):

confpr(p) = |Ψ(p)|/
∣∣∣⋃q Ψ(q)

∣∣∣
confm(p) = |Ω(p)|/

∣∣∣⋃q Ω(q)
∣∣∣

where Ψ(p) is the set of projects with condition p before the API
call. For each API, we keep only the preconditions that have both
confidence values higher than or equal to a certain threshold σ. We
use σ = 0.5 in our experiment.

3.5 Precondition Ranking
For each API, we rank the preconditions based on their total con-

fidence, which is computed as conf(p) = confpr(p)×confm(p).
Using only confm(p) might favor the conditions used a lot but only
in a small number of projects. In contrast, using only confpr(p)
might favor the conditions which are accidentally repeated in many
projects but not used frequently. Thus, our approach combines both
confidence values to rank the preconditions. Different from the tra-
ditional ranking scheme that puts all items in one list, our approach
uses different ranked lists for the receiver object, the arguments of
an API, and any combinations of them. Only the top-1 precondition
in each ranked list is kept in the final result.

4. EVALUATION
In this section, we aim to answer two research questions:

RQ1. How accurate are the preconditions mined by our approach?
The answer to this question would tell whether our approach works
in identifying the preconditions from usages in a large code corpus.
RQ2. How useful are the mined preconditions as a starting point
in writing API specifications?

4.1 Data Collection
We collected a large code corpus from two sources: Source-

Forge.net (SF) [48] and Apache Software Foundation (ASF) [6].
SF is a free source code hosting service for managing open source
software projects. ASF is an American non-profit corporation who
manages the development of Apache open source projects.

For SF, we downloaded project metadata in JSON format from
its website and collected information about all projects that are self-
classified to be written in Java. To get higher quality code for min-
ing the preconditions, we filtered out the projects that might be
experimental or toy programs based on the number of revisions
in the history. We only kept projects with at least 100 revisions.
We downloaded the last snapshots of each project. We eliminated
from the snapshot of a project the duplicated code from different
branches/versions of the project. For ASF, we checked the list of
all Apache projects [6] and downloaded the source code of the lat-
est stable releases of all projects written in Java.

Table 3 shows the statistics on our datasets. SF has 3,413 projects
satisfying the above criteria and ASF has 146 projects. They both
have hundreds of thousand of source files. The total amount of code
is almost 120 million lines of code (SLOCs) where SF contributes
about four times more than ASF. The projects are written by thou-
sands of developers and cover a variety of domains and topics.

170

Table 3: Collected projects and API usages.

SourceForge.net Apache

Projects 3,413 146
Total source files 497,453 132,951
Total classes 600,274 173,120
Total methods 4,735,151 1,243,911
Total SLOCs 92,495,410 25,117,837

Total JDK public classes 1,275 1,275
Total JDK public methods 11,049 11,049
Total used JDK classes 806 (63%) 918 (72%)
Total used JDK methods 7,592 (63%) 6,109 (55%)

Total method calls 22,308,251 5,544,437
Total JDK method calls 5,588,487 1,271,210

1 /∗@ public normal_behavior
2 @ requires 0 <= beginIndex
3 @ && beginIndex <= endIndex
4 @ && (endIndex <= length());
5 @ ensures \result != null && \result.stringSeq.equals(this.stringSeq.

subsequence(beginIndex,endIndex));
6 @ also
7 @ public exceptional_behavior
8 @ requires 0 > beginIndex
9 @ || beginIndex > endIndex

10 @ || (endIndex > length());
11 @ signals_only StringIndexOutOfBoundsException;
12 @∗/
13 public String substring(int beginIndex, int endIndex);

Figure 6: JML Specification for String.substring(int, int)

In this experiment, we focus on the APIs in the JDK library.
Analyzing all APIs from the java packages, we found that there
are 1,275 public classes and 11,049 public methods in the library.
We also observed that many APIs have not been used at all in the
studied projects. Only 63% and 72% of the accessible JDK classes
have been used in SF and Apache, respectively. The corresponding
numbers of JDK methods used are 63% and 55%, respectively. In
both SF and ASF, about one-fourth of the number of all method
calls are the calls to JDK methods. This number shows that those
open-source projects are heavily based on the JDK library.

4.2 Ground-truth: Java Modeling Language
(JML) Preconditions

In order to evaluate the accuracy of our mined preconditions,
we used a ground-truth of known-correct preconditions. The Java
Modeling Language (JML) is a language for specifying the behav-
ior of Java classes and methods. Specifications are defined using a
custom syntax inside of special comments that start with ’@’. Fig-
ure 6 shows part of the specification in JML for the substring(int, int)
method discussed in Section 2. The specification defines both nor-
mal behavior (lines 1–5) and exceptional behavior (lines 7–10), and
signals certain Exception when certain preconditions hold (line 11).

The normal behavior for this method requires three conditions
to hold prior to calling the method. These conditions are declared
using requires statements and boolean expressions (lines 2–4). The
specification also ensures that after finishing normal execution two
conditions hold. These are declared using ensures statements and
boolean expressions (line 5). A precondition is 1) a clause in the
conjunctive normal form of the boolean expression following a re-
quires keyword in a normal behavior, or 2) a clause in the conjunc-
tive normal form of the negation of the boolean expression follow-

Table 4: Specifications for JDK classes from JML Website
Package Number of classes

Full Spec Some Spec No Spec Total

java.io 3 0 7 10
java.lang 14 3 1 18
java.net 2 0 0 2
java.sql 0 0 5 5
java.util 23 2 0 25
java.util.regex 0 0 2 2

All 42 5 15 62

Table 5: JML preconditions of JDK methods in classes with full
specifications

Number of Preconditions
0 1 2 3 4 5 6 7

Methods 78 465 144 62 36 4 4 4
Number of methods: 797. Number of preconditions: 1155.

ing a requires or signals keyword in an exceptional behavior. If
a specification has multiple normal and/or exceptional behaviors,
we combine them by taking the union set of the preconditions. For
example, if preconditions i > 0 and i == 0 appear in two normal
behaviors, they will be combined into a precondition i >= 0. The
preconditions are then abstracted using the symbolic names.

The authors and maintainers of JML have written specifications
for several popular Java packages from the JDK and published them
on their website [26]. We downloaded and analyzed these specifi-
cations. As shown in Table 4, there are specification files for 62
classes from 6 JDK packages. After analyzing, we learned that,
in 15 class files, there are no specifications for any method (col-
umn No Spec) and in 5 other files, there are specifications for some
methods but not all (column Some Spec). We read the remaining
42 files, which contain specifications for all methods (column Full
Spec), and extracted all preconditions for all of their methods.

Table 5 summarizes the number of extracted preconditions of the
methods in those 42 classes. We group the methods based on the
numbers of extracted predicates in the preconditions. In total, there
are 1,155 preconditions for 797 methods in which 78 of them have
no preconditions, 465 of them have one precondition, and so on.
As seen, most of them have from 0 to 3 preconditions. A much
smaller percentage of methods has more than 3 preconditions.

4.3 RQ1: Accuracy

4.3.1 Result
We ran our tool on the two datasets, and compared the mined

preconditions with those in the JML ground-truth. We used two
metrics: precision and recall. Precision is measured as the ratio
between the number of correctly-mined preconditions and the total
number of mined preconditions. Recall is measured as the ratio
between the number of correctly-mined preconditions and the total
number of preconditions. A mined condition is considered correct
if it is exactly matched with one precondition of the same method
in the ground-truth using syntactic checking. If a mined condition
is not in the ground-truth, we manually verified it. If it is a not-yet
defined one, or semantically equivalent with a precondition (e.g.,
!rcv.isEmpty() and rcv.size() > 0) or implied by the preconditions of
that method in the ground-truth (e.g., b > 0 is implied by a > 0 and
a < b), it is counted as correct.

171

Table 6: Mining accuracy over preconditions
Mined Precision Recall Time

SourceForge 1,098 84% 79% 17h35m
Apache 1,065 82% 75% 34m
Both 1,127 83% 80% 18h03m

Table 7: Mining accuracy over methods
Dataset Fully-covered Total.Inc.

Total Perfect 1 Extra >1 Extra

SF 613 (77%) 492 (62%) 118 (15%) 3 (0.38%) 60 (8%)
Apache 593 (74%) 457 (57%) 126 (16%) 10 (1.25%) 78 (10%)
Both 628 (79%) 489 (61%) 131 (16%) 8 (1.00%) 47 (6%)

Table 6 shows the accuracy for all mined preconditions. In both
datasets, the tool achieved high accuracy with recall from 75–80%
and precision from 82–84%. The accuracy for two sources is com-
parable. The accuracy for SourceForge is a bit higher than that for
Apache. When both datasets are combined, precision lies between
those for two datasets. However, recall is slightly improved since a
few more API methods, which were not seen in either dataset, have
been included in the result for the combined dataset.

Table 7 shows more detailed numbers on the mining accuracy
for all the API methods. As seen, with the SourceForge dataset,
our tool can cover all of the preconditions for 613 out of 797 (77%)
JDK methods in the ground-truth. That is, in 77% of given methods
under investigation, specification writers would just have to verify
and remove some incorrect ones. Among those 613, we can derive
perfectly the preconditions for 492 methods. That is, in 62% of
methods, specification writers would use the set of preconditions as
is. There are 118 (15%) and 3 (0.38%) methods having 1 and more
than 1 extra (incorrect) preconditions, respectively. Our tool cannot
produce any correct preconditions for only 8% of the methods. The
numbers are comparable for Apache and the combined dataset.

Thanks to our light-weight analysis, the running time for
Apache, which has more than 25M SLOCs and 1.2M JDK API
calls, is just 34 minutes. The time for SourceForge and for both is
much longer mainly due to accessing the local SVN repositories.

4.3.2 Analysis
Incorrect Cases. We first analyzed the incorrect cases. Since the
JML specifications were manually built by the JML team, it is pos-
sible that some preconditions are still missing from the current ver-
sion of their specifications. Thus, for the mined preconditions that
are not in the ground-truth from the JML team, we manually veri-
fied them to see if they are truly incorrect cases. We found 5 cor-
rectly mined preconditions that were missing in the ground-truth
(Table 8). We sent them to the main author of JML. He kindly
confirmed all five cases. This is evidence that our tool could help
specification writers reduce their effort and mistakes.

Table 9 shows the summary of the incorrectly-mined precondi-
tions, which are classified into 3 types. For majority of the incorrect
cases, the mined preconditions are stronger than the actual ones.
The reason is that our tool cannot distinguish between the precon-
dition as part of an API usage and the one as part of the API spec-
ification. For example, the API java.util.List.add(Object) accepts a
null argument. However, in many usages of that API in the client
code, developers often perform null checking for the argument be-
fore calling it. Thus, our tool reported the incorrect condition: arg0
!= null. Another example is the API File.mkdir(), which does not

Table 8: Newly found preconditions in JML specifications
Class Method Precondition

String getChars(int,int,char[],int) arg3 >= 0

StringBuffer append(char[]) arg0 != null

BitSet flip(int, int) arg0 <= arg1
set(int, int) arg0 <= arg1
set(int, int, boolean) arg0 <= arg1

Table 9: Different types of incorrectly-mined preconditions
Dataset Total Stronger Irrelevant Analysis.Err.

SourceForge 173 118 53 2
Apache 187 121 65 1
Both 195 129 66 0

require any preconditions in its specification. If the operation fails
for some reason, it will return null. However, to avoid unnecessary
operations to the file system and control the reason of the failure,
developers often check file existence with !exists() before calling
mkdir(). Another example is the method valueOf(Object obj). Our
tool detects the null checking on the argument arg0 != null from
several client projects, but it is not part of its specification. These
examples show an interesting gap between the actual API usages
from client code and the intended usages from the API designers.
This suggests a further investigation for API designers on how to
adjust to support developers better in the APIs’ client code.

In the second type of incorrect cases, the conditions along the
path to an API call are irrelevant to the preconditions of the API.
For example, it is frequent that developers check if both arguments
are positive before calling Math.min(). Those checks might make
sense in term of the logic of the program, however, they are not
relevant as the preconditions.

For the third type, a few incorrect cases are caused by the im-
precision in our light-weight static program analysis. An ex-
ample is incorrectly-mined precondition arg0 <= 0 of StringBuffer.-
ensureCapacity(int). In the code, the call to this API belongs to the
branch satisfying arg0 <= 0, however, the sign of arg0 is reversed
before the call. Our analysis did not keep track of the value change
in the code leading to the call, thus, extracted incorrect condition.
To track value changes, we can use dynamic symbolic execution.
Missing Cases. To better understand the missing cases, we exam-
ined all the preconditions which are in the ground-truth but were
not mined by our tool. We classified the missing cases into four
categories as shown in Table 10. Each cell of the table shows the
ratio between the number of missing cases in the corresponding cat-
egory over the total number of preconditions in the ground-truth.

The first category (column ’No-call’) consists of the precondi-
tions of the API methods that have their JML specifications in the
ground-truth, but have never been called in the client code in our
datasets. For SourceForge, there are 46 such methods with 45 pre-
conditions. For Apache, the corresponding numbers are 49 and 58.
For those methods and preconditions, which contribute about 4%
and 5% of the total numbers of preconditions, respectively, our tool
can not mine the preconditions.

The second category (column Private) contains the preconditions
involving the APIs’ private and internal fields or methods, which
are inaccessible from client code. Examples of this category are

1. Precondition !changed of Observable.notifyObservers():
changed is a private field of the Observable class to represent the

172

Table 10: Four Types of Missing Preconditions
No-call Private No occur Low freq.

SF 4% 4% 9% 3%
Apache 5% 5% 12% 3%
Both 2% 5% 10% 4%

internal state of the object. The method notifyObservers is called
only if the object’s state was changed.

2. Precondition parseable(s) of Integer.parseInt(String s): this
condition requires the string argument of parseInt to be parseable.

3. Precondition capacityIncrement >= 0 of Stack.push(Object):
The stack can only be pushed if its internal capacity is larger than 0.

The first two categories are due to the inherent limitation of min-
ing approaches on client code, however, their percentages are small.

The last two categories contain the preconditions which could
occur in the client code but are not in our result due to the limita-
tions of our static analysis that cannot detect the occurrences of the
conditions (No occur.) or due to the cut-off thresholds (Low freq.).

4.3.3 Accuracy by data size
When computing accuracy, we also analyzed the impact of the

size of dataset in our algorithm. We ran our tool on various data
sizes. From each full dataset, SourceForge and Apache, we created
the datasets of size B by randomly selecting the projects of the full
dataset into bins having the same number of B projects. Using
each bin as input, we ran our tool on it and recorded the accuracy
(precision and recall) for that bin. Then, we computed the aver-
age accuracy over all bins, and used that accuracy for that size. In
this experiment, we chose B = 2i, meaning that we kept increas-
ing the data sizes by a power of 2 until reaching the full dataset.
To consider both precision and recall, we used Fscore. Fscore is
the harmonic mean of precision and recall, which is computed as
Fscore = 2× Precision×Recall/(Precision+Recall).

Figure 7 shows the result. The values on the lines at B = 1
shows the accuracy for the dataset containing individual projects
and those at B = Full shows the accuracy for the full dataset as
input. As the data size increases, precision decreases and recall in-
creases. The gain in recall is much higher than the loss in precision
making their harmonic mean Fscore increases significantly: 7% to
82% for SourceForge and 21% to 79% for Apache.

4.3.4 Accuracy Sensitivity Analysis
In this experiment, we studied the impact of different compo-

nents in our method on the accuracy. In Figure 8, the baseline
(group Base) is the solution that extracts the preconditions by look-
ing at only the guard conditions (e.g., the ones in if statement(s)) on
the path leading to the API calls. This baseline does not consider
the properties of the passed arguments, normalization and merging,
nor deal with dynamic dispatch. Then, we successively add other
components one by one to the baseline solution to see changes in
accuracy. The second solution (Arg) adds the preconditions that are
obtained from the properties of the passed arguments, e.g., arg0 ==
0, arg1 != null. The third one includes normalization of precondi-
tions and the fourth one includes merging. The last one covers all
components in our approach by adding the subtyping information
in which the preconditions of a method are also collected from the
call sites of its overridden methods to deal with dynamic dispatch.

As more components are added, recall increases significantly
from 60 to 79% in SourceForge and from 55 to 75% in Apache,
while precision is maintained. Among the components, adding pro-
perties of arguments passed to APIs improves the recall 6% in

SourceForge and 8% in Apache. The respective improvements
from adding merging conditions are 7% and 5%. Adding subtyping
contributes 4% and 6%. Normalization contributes 2% for both.

4.4 RQ2: Usefulness
We also studied how useful our automatically mined precondi-

tions are for writing specifications via two experiments.

4.4.1 Suggesting preconditions in specifications
Our first experiment looks at the mined preconditions for API

methods that currently do not have a JML specification provided.
We run our tool to automatically mine preconditions for the APIs
and then manually transformed them into JML syntax. We then
sent these JML-styled specifications to one of the original authors
of JML. If he agreed these specifications are correct, it lends evi-
dence that our approach is useful as a tool for suggesting precondi-
tions when writing the initial specification for APIs.

Our results are summarized in Table 11. In total, we prepared
specifications for 11 API methods from 2 JDK classes which pre-
viously had no JML specifications. Our tool generated a total of
29 mined preconditions (column M). For our approach, one author
transformed the automatically generated preconditions into JML
specifications. A second author, who has extensive experience with
JML’s syntax including designing and implementing the JML re-
search compiler JAJML, then performed a manual validation of the
results and removed 4 preconditions (column Rm) which are incor-
rect for the corresponding APIs. Five preconditions are deemed
close (column Fix), but require modifications of the comparison
operator from strictly greater than (>) to greater than or equal to
(>=). The remaining 20 were accepted exactly as the tool mined
them. After this step, the specifications containing 25 preconditions
(including the 5 modified) were sent to the JML team member.

Table 11: Suggesting preconditions
Class Method M Rm Fix Accept

StringBuffer delete(int,int) 4 1 2 Y
replace(int,int,String) 3 1 0 Y*
setLength(int) 2 1 0 Y
subSequence(int,int) 4 1 1 Y
substring(int,int) 3 0 1 Y

LinkedList add(int,Object) 2 0 0 Y
addAll(int,Collection) 3 0 1 Y
get(int) 2 0 0 Y
listIterator(int) 2 0 0 Y
remove(int) 2 0 0 Y
set(int,Object) 2 0 0 Y

29 4 5

As seen, the JML team member agreed on 10 out of 11 meth-
ods’s specifications, such that the set of suggested preconditions is
complete and precise (Y in column Accept). For only one method
StringBuffer.replace (Y* in column Accept), the preconditions are
correct however two other ones are missing.

4.4.2 Web-based survey
In the second experiment, we created a web-based survey and

asked human subjects who have experience with using JDK library
and/or formal specification languages such as JML to evaluate the
resulting preconditions. We had a total of 15 respondents. Partic-
ipants were asked to rate their experience with Java, JML, reading
specifications, and writing specifications. Two thirds self-indicated

173

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 2 4 8 16 32 64 128 256 512 1024 Full

Data size (projects)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32 64 128 256 512 1024 Full

Data size B (projects)

Precision Recall Fscore

(a) SourceForge

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 2 4 8 16 32 64 Full

Data size (projects)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32 64 Full

Data size B (projects)

Precision Recall Fscore

(b) Apache

Figure 7: Mining accuracy as the size of dataset varies

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Base Arg Norm Merge Subtype

Precision Recall

(a) SourceForge

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Base Arg Norm Merge Subtype

Precision Recall

(b) Apache

Figure 8: Mining accuracy as technical components are successively added

having more than 6 months experience writing specifications and
many with experience in JML specifically.

Participants were shown an example method (e.g., the substring
method from Section 2) along with the set of proposed precondi-
tions we mined for that method. We then pre-selected the correct
answers (based on the JML ground-truth) for each condition and
explained why it was “correct”, “a good starting point”, or “incor-
rect”. “Correct” means that this precondition can be used as-is in
the specification. “Good starting point” means that it might need
small modifications to be used in a specification, such as changing
a comparison operator from strict to non-strict. “Incorrect” means
that the condition is irrelevant in building the specification.

Next, users were shown 5 methods one at a time and the mined
preconditions for them. They were asked to rate each individual
precondition as mentioned. We also asked them to give an over-
all, more subjective, rating for the entire method on whether our
mined preconditions are useful. After 5 methods, they were given
an opportunity to write general feedback. They also had an oppor-
tunity to continue rating more preconditions for other methods. On
average each participant graded 20 preconditions.

When randomly choosing methods for a user, we enforced that
the first two were APIs that existed in the ground-truth and the last
three were APIs that did not. Using the responses from the first two,
we were able to grade the users on their expertise by calculating the
answers that matched the ground-truth out of the total number of
ground-truth answers. For this study, we only keep responses from
users who scored 100% on this grading. In total, there were 9 users
grading 75 methods with 104 preconditions.

The following table shows the correctness of the preconditions
as rated by participants. Excluding the ’Not Sure’ responses, the

participants rated 63% as Correct. What the results in Section 4.3
could not show however was the amount of almost correct precon-
ditions, which the participants rated as almost 19%.

Correct Good Starting Point Incorrect Not Sure

64 19 18 3
63% 19% 18% –

Overall, participants found that 82% of the mined preconditions
are useful as the starting point for writing the specification. The
following table shows the responses for rating the tool’s usefulness:

Agree+ Agree No Opinion Disagree Disagree+

23 33 6 9 4
33% 48% – 13% 6%

Again, excluding the ’No Opinion’ responses, the participants rated
the tool as useful for 81% of the methods shown!

4.4.3 A benchmark of precondition-related bugs
In this section, we show an application of our mined precondi-

tions in building a benchmark of bugs caused by missing precondi-
tion checking. An example of this type of bug is that a developer
does not check the condition beginIndex ≤ endIndex before call-
ing String.substring(int, int) when the logic of the program does not
ensure it. This type of benchmark is very useful for bug detection
tools that look for neglected condition checking such as Chang et
al.’s tool [10] and Alattin[50]. It was reported that neglected con-
ditions are an important but difficult-to-find class of defects [10].

To build the benchmark, we processed all 1,966,563 revisions
with changed Java files for all 3,413 Java projects in SourceForge

174

dataset. For a project P , we first identified the fixing revisions by
the popular method [60] that uses the heuristic of searching in com-
mit logs for the phrases indicating fixing activities. For each fixing
revision ri, we used our prior origin analysis tool to compare it with
the previous one ri−1. We detected the mapped methods and API
calls between two revisions. For each pair of mapped API calls in a
method, we computed two sets of guard conditions. We compared
each set with the mined preconditions of the API to find the set of
preconditions that are implied by a guard condition. If there ex-
ists such a precondition in ri but not in ri−1, we add the API call
sites and (ri−1, ri) to our benchmark. In total, there are 369,532
fixing revisions. Among them, 3,130 (0.85%) in 931 projects are
detected as related to missing preconditions. The total number of
call sites related to those fixes is 4,399. To check its quality, we
manually checked a sample of 100 call sites in the benchmark, and
found that 80 of them are related to preconditions. We will man-
ually check all and make our benchmark available. We found that
null-pointer and index-out-of-bounds exceptions are the two most
common sub-types in those bugs. Our result confirms this type of
bug and calls for detection tools. This shows the usefulness of our
mined preconditions in building the benchmark. Our mined pre-
conditions can also be used in such detection tools.
Threats to Validity. The two chosen datasets might not be repre-
sentative. The criteria of 100 revisions might not have filtered out
all experimental and toy projects. We conducted experiments only
on JDK. The ground-truth was built by us. Thus, human errors
could occur. The two chosen classes in the usefulness study might
not be representative. Our human study suffers from selection bias,
as not all participants have the same level of expertise on formal
specifications. There is possible construct bias as we chose the
APIs in JDK. We did not compare our tool to a related one in [44].
Similar to ours, their tool is also based on both mining and program
analysis. However, their tool is for C code and re-implementing it
for Java code is infeasible due to their algorithm’s complexity as
well as the differences between two languages. Moreover, their ap-
proach operates on a single project while we rely on large number
of projects. Thus, the two approaches require inputs with different
nature. Other mining-based approaches do not work for precondi-
tions, while other static and dynamic analysis methods for specifi-
cation inference do not have a mining component (Section 5).

5. RELATED WORK
The condition mining work that is closest to our approach is from

Ramanathan, Grama, and Jagannathan (RGJ) [44]. Similar to ours,
the RGJ approach tightly integrates program analysis with data
mining techniques. They proposed a static inference mechanism to
identify the preconditions that must hold when a method is called.
They first analyze the call sites of the method in its containing pro-
gram and then use a path-sensitive inter-procedural static analysis
to collect the predicates at each program point. To compute pre-
conditions, RGJ collects a predicate set along each distinct path to
each call-site. The intersection of predicate sets is then constructed
at the join points where distinct paths merge. Predicates computed
within a procedure are memorized and used to compute precondi-
tions that capture inter-procedural control- and data-flow informa-
tion. RGJ then runs frequent itemset mining on data-flow predicate
sets, and sub-sequence mining for control-flow conditions to derive
preconditions. They reported a precision level of 77.13%.

Our approach has several key differences. First, it operates on a
very large-scale corpus of client programs of the libraries that con-
tain the call sites of APIs. In contrast, RGJ is designed to perform
its inter-procedural analysis on only an individual client program

containing the APIs’ call sites. Thus, RGJ can be used to improve
our analysis technique when running on each project. Second, their
mining algorithm works on the data-flow predicate sets in an indi-
vidual program, while our mining technique operates on the com-
parable preconditions across an ultra-large number of projects. In
contrast, they find conditions using sophisticated data- and control-
flow analyses on a single program. Their mining algorithm does
not consider the predicates across projects.

Our work is also related to static approaches for mining speci-
fications. Those static approaches rely more on data mining, while
using more light-weight static analyses than our approach and RGJ.
Gruska et al. [23] introduce the idea of wisdom of the crowds sim-
ilar to our approach on 6,000 Linux projects (about 200MLOCs).
However, their technique mines only temporal properties in term of
pairs of method calls. They used 16 million mined temporal prop-
erties to check the anomalies in a new project. Our prior work,
GrouMiner [42] performs frequent subgraph mining to find API
programming patterns. JADET [52], Dynamine [34], Williams and
Hollingsworth [55], CodeWeb [40] mine pairs of calls as patterns.
MAPO [59, 3] expresses API patterns in term of partial orders of
API calls. Tikanga [51] mines temporal specification in term of
Computation Tree Logic formulas. Shoham et al. [47] use inter-
procedural analysis to mine API specification in term of FSAs.

Other static approaches to mine API specifications and then
leverage them to detect bugs [16, 28, 30, 31, 33]. FindBugs [25]
looks for specified bug patterns. Tools suggest code examples re-
lated to specific APIs and types [38, 45, 49, 56]. All above static
approaches do not recover APIs’ preconditions.

There are several dynamic approaches in mining specifica-
tions [5, 12, 13, 17, 21, 33, 35, 43, 53, 58]. Daikon [17] automati-
cally detects invariants in a program via running test cases. Wei et
al. [53] infer complex post-conditions from simple programmer-
written contracts in the code. Weimer et al. [54] mine method pairs
from exception control paths and identify temporal safety rules. In
brief, our approach can complement well to dynamic approaches.

There are other approaches that require annotations on partial
specifications on desired invariants, and then verify program prop-
erties and detect violations [4, 19, 24]. Our approach is automatic.

Our work is also related to research to derive the behavior model
of a program or software component for verification [14, 36, 37].
These approaches aim to recover the formal model for a program
with pre/post-conditions of the states’ transitions. In contrast, our
approach focuses at a more fine-grained level of individual APIs.

6. CONCLUSIONS
In this paper, we propose a novel approach to mine the precondi-

tions of API methods using a large code corpus. Our key idea is that
the true API preconditions appear frequently in their usages from a
large code corpus with large number of API usages, while project-
specific conditions occur less frequently. We mined the precondi-
tions for JDK methods on almost 120 million SLOCs on Source-
Forge and Apache projects. Comparing to the human-written pre-
conditions in JML, our approach achieves high accuracy with re-
call from 75–80% and precision from 82–84% for the top-ranked
results. In our user study, participants found 82% of the mined
preconditions as a good starting point for writing specifications.

7. ACKNOWLEDGMENTS
Hoan Anh Nguyen and Tien N. Nguyen are funded in part by

NSF grants CCF-10-18600, CNS-12-23828, CCF-1320578, CCF-
1349153, and CCF-1320578. Hridesh Rajan and Robert Dyer are
funded in part by NSF grants CCF-11-17937 and CCF-08-46059.

175

8. REFERENCES
[1] Code Contracts at Rise4Fun.

http://rise4fun.com/CodeContracts.
[2] Java Path Finder (JPF).

http://babelfish.arc.nasa.gov/trac/jpf.
[3] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining api patterns as

partial orders from source code: From usage scenarios to
specifications. In Proceedings of the Symposium on
Foundations of Software Engineering, ESEC-FSE ’07, pages
25–34. ACM, 2007.

[4] R. Alur, P. Černý, P. Madhusudan, and W. Nam. Synthesis of
interface specifications for java classes. In Proceedings of the
32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’05, pages 98–109. ACM,
2005.

[5] G. Ammons, R. Bodík, and J. R. Larus. Mining
specifications. In Proceedings of the 29th ACM SIGPLAN
SIGACT Symposium on Principles of Programming
Languages, POPL ’02, pages 4–16. ACM, 2002.

[6] Apache Software Foundation. http://apache.org.
[7] T. Ball and S. K. Rajamani. Automatically validating

temporal safety properties of interfaces. In Proceedings of
the 8th International SPIN Workshop on Model Checking of
Software, SPIN ’01, pages 103–122. Springer-Verlag, 2001.

[8] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D.
Ernst. Leveraging existing instrumentation to automatically
infer invariant-constrained models. In Proceedings of the
19th Symposium on Foundations of Software Engineering,
ESEC/FSE ’11, pages 267–277. ACM, 2011.

[9] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry,
G. T. Leavens, K. R. M. Leino, and E. Poll. An overview of
JML tools and applications. Int. J. Softw. Tools Technol.
Transf., 7(3):212–232, June 2005.

[10] R.-Y. Chang, A. Podgurski, and J. Yang. Discovering
neglected conditions in software by mining dependence
graphs. IEEE Trans. Softw. Eng., 34(5):579–596, 2008.

[11] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S.
Păsăreanu, Robby, and H. Zheng. Bandera: Extracting
finite-state models from Java source code. In Proceedings of
the 22nd International Conference on Software Engineering,
ICSE ’00, pages 439–448. ACM, 2000.

[12] P. Cousot, R. Cousot, and F. Logozzo. Precondition inference
from intermittent assertions and application to contracts on
collections. In Proceedings of the 12th International
Conference on Verification, Model Checking, and Abstract
Interpretation, VMCAI’11, pages 150–168. Springer-Verlag,
2011.

[13] V. Dallmeier, C. Lindig, and A. Zeller. Lightweight defect
localization for java. In Proceedings of the 19th European
Conference on Object-Oriented Programming, ECOOP’05,
pages 528–550. Springer-Verlag, 2005.

[14] G. de Caso, V. Braberman, D. Garbervetsky, and S. Uchitel.
Automated abstractions for contract validation. IEEE Trans.
Softw. Eng., 38(1):141–162, Jan. 2012.

[15] X. Deng, Robby, and J. Hatcliff. Kiasan: A verification and
test-case generation framework for java based on symbolic
execution. In Proceedings of the Second International
Symposium on Leveraging Applications of Formal Methods,
Verification and Validation, ISOLA ’06, pages 137–. IEEE
Computer Society, 2006.

[16] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: A general approach to inferring

errors in systems code. In Proceedings of the Eighteenth
ACM Symposium on Operating Systems Principles,
SOSP’01, pages 57–72. ACM, 2001.

[17] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to
support program evolution. In Proceedings of the 21st
International Conference on Software Engineering,
ICSE’99, pages 213–224. ACM, 1999.

[18] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization. ACM Trans.
Program. Lang. Syst., 9(3):319–349, July 1987.

[19] J. Fischer, R. Jhala, and R. Majumdar. Joining dataflow with
predicates. In Proceedings of the 13th Symposium on
Foundations of Software Engineering, ESEC/FSE-13, pages
227–236. ACM, 2005.

[20] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B.
Saxe, and R. Stata. Extended static checking for java. In
Proceedings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation, PLDI
’02, pages 234–245. ACM, 2002.

[21] M. Gabel and Z. Su. Javert: Fully automatic mining of
general temporal properties from dynamic traces. In
Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
SIGSOFT ’08/FSE-16, pages 339–349. ACM, 2008.

[22] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed
automated random testing. In Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’05, pages 213–223. ACM, 2005.

[23] N. Gruska, A. Wasylkowski, and A. Zeller. Learning from
6,000 projects: Lightweight cross-project anomaly detection.
In Proceedings of the 19th International Symposium on
Software Testing and Analysis, ISSTA ’10, pages 119–130.
ACM, 2010.

[24] T. A. Henzinger, R. Jhala, and R. Majumdar. Permissive
interfaces. In Proceedings of the 13th Symposium on
Foundations of Software Engineering, ESEC/FSE-13, pages
31–40. ACM, 2005.

[25] D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN
Not., 39(12):92–106, 2004.

[26] JML. Examples page. http://www.eecs.ucf.edu/
~leavens/JML/examples.shtml, 2013.

[27] Jmol.
http://sourceforge.net/projects/jmol/.

[28] T. Kremenek, P. Twohey, G. Back, A. Ng, and D. Engler.
From uncertainty to belief: inferring the specification within.
In Proceedings of the 7th symposium on Operating systems
design and implementation, OSDI ’06, pages 161–176.
USENIX Association, 2006.

[29] G. T. Leavens. The Java Modeling Language (JML).
http://www.eecs.ucf.edu/~leavens/JML.

[30] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: Finding
Copy-Paste and Related Bugs in Large-Scale Software Code.
IEEE Trans. Softw. Eng., 32(3):176–192, 2006.

[31] Z. Li and Y. Zhou. Pr-miner: Automatically extracting
implicit programming rules and detecting violations in large
software code. In Proceedings of the 13th Symposium on
Foundations of Software Engineering, ESEC/FSE-13, pages
306–315. ACM, 2005.

[32] B. H. Liskov and J. M. Wing. A behavioral notion of
subtyping. ACM Trans. Program. Lang. Syst.,
16(6):1811–1841, Nov. 1994.

176

[33] C. Liu, E. Ye, and D. J. Richardson. Software library usage
pattern extraction using a software model checker. In
Proceedings of the 21st IEEE/ACM International Conference
on Automated Software Engineering, ASE ’06, pages
301–304. IEEE Computer Society, 2006.

[34] B. Livshits and T. Zimmermann. Dynamine: finding
common error patterns by mining software revision histories.
SIGSOFT Softw. Eng. Notes, 30(5):296–305, 2005.

[35] D. Lo and S. Maoz. Mining hierarchical scenario-based
specifications. In Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software
Engineering, ASE ’09, pages 359–370. IEEE Computer
Society, 2009.

[36] D. Lo, L. Mariani, and M. Pezzè. Automatic steering of
behavioral model inference. In Proceedings of the
Symposium on Foundations of Software Engineering,
ESEC/FSE ’09, pages 345–354. ACM, 2009.

[37] D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic
generation of software behavioral models. In Proceedings of
the 30th International Conference on Software Engineering,
ICSE ’08, pages 501–510. ACM, 2008.

[38] D. Mandelin, L. Xu, R. Bodík, and D. Kimelman. Jungloid
mining: helping to navigate the api jungle. In Proceedings of
the 2005 conference on Programming language design and
implementation, PLDI ’05, pages 48–61. ACM, 2005.

[39] L. Mariani and F. Pastore. Automated identification of failure
causes in system logs. In Proceedings of the 2008 19th
International Symposium on Software Reliability
Engineering, ISSRE ’08, pages 117–126. IEEE Computer
Society, 2008.

[40] A. Michail. Data mining library reuse patterns using
generalized association rules. In Proceedings of the 22nd
International Conference on Software Engineering,
ICSE’00, pages 167–176. ACM, 2000.

[41] C. D. Nguyen, A. Marchetto, and P. Tonella. Automated
oracles: An empirical study on cost and effectiveness. In
Proceedings of the Symposium on Foundations of Software
Engineering, ESEC/FSE 2013, pages 136–146. ACM, 2013.

[42] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi,
and T. N. Nguyen. Graph-based mining of multiple object
usage patterns. In Proceedings of the Symposium on
Foundations of Software Engineering, ESEC/FSE ’09, pages
383–392. ACM, 2009.

[43] M. Pradel and T. R. Gross. Automatic generation of object
usage specifications from large method traces. In
Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering, ASE ’09,
pages 371–382. IEEE Computer Society, 2009.

[44] M. K. Ramanathan, A. Grama, and S. Jagannathan. Static
specification inference using predicate mining. In
Proceedings of the 2007 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI
’07, pages 123–134. ACM, 2007.

[45] N. Sahavechaphan and K. Claypool. Xsnippet: Mining for
sample code. In Proceedings of the 21st Annual ACM
SIGPLAN Conference on Object-oriented Programming
Systems, Languages, and Applications, OOPSLA ’06, pages
413–430. ACM, 2006.

[46] SeMoA - Secure Mobile Agents.
http://sourceforge.net/projects/semoa/.

[47] S. Shoham, E. Yahav, S. Fink, and M. Pistoia. Static
specification mining using automata-based abstractions. In
Proceedings of the 2007 International Symposium on
Software Testing and Analysis, ISSTA ’07, pages 174–184.
ACM, 2007.

[48] SourceForge.net. http://sourceforge.net/.
[49] S. Thummalapenta and T. Xie. Parseweb: A programmer

assistant for reusing open source code on the web. In
Proceedings of the Twenty-second IEEE/ACM International
Conference on Automated Software Engineering, ASE ’07,
pages 204–213. ACM, 2007.

[50] S. Thummalapenta and T. Xie. Alattin: Mining alternative
patterns for detecting neglected conditions. In Proceedings of
the 2009 IEEE/ACM International Conference on Automated
Software Engineering, ASE ’09, pages 283–294. IEEE
Computer Society, 2009.

[51] A. Wasylkowski and A. Zeller. Mining temporal
specifications from object usage. In Proceedings of the 2009
IEEE/ACM International Conference on Automated Software
Engineering, ASE ’09, pages 295–306. IEEE Computer
Society, 2009.

[52] A. Wasylkowski, A. Zeller, and C. Lindig. Detecting object
usage anomalies. In Proceedings of the Symposium on
Foundations of Software Engineering, ESEC-FSE ’07, pages
35–44. ACM, 2007.

[53] Y. Wei, C. A. Furia, N. Kazmin, and B. Meyer. Inferring
better contracts. In Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pages
191–200. ACM, 2011.

[54] W. Weimer and G. C. Necula. Mining temporal
specifications for error detection. In Proceedings of the 11th
International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS’05, pages
461–476. Springer-Verlag, 2005.

[55] C. C. Williams and J. K. Hollingsworth. Automatic mining
of source code repositories to improve bug finding
techniques. IEEE Trans. Softw. Eng., 31(6):466–480, 2005.

[56] T. Xie and J. Pei. Mapo: Mining api usages from open source
repositories. In Proceedings of the 2006 International
Workshop on Mining Software Repositories, MSR ’06, pages
54–57. ACM, 2006.

[57] Y. Xie and A. Aiken. Scalable error detection using boolean
satisfiability. In Proceedings of the 32nd ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’05, pages 351–363. ACM,
2005.

[58] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das.
Perracotta: Mining temporal api rules from imperfect traces.
In Proceedings of the 28th International Conference on
Software Engineering, ICSE ’06, pages 282–291. ACM,
2006.

[59] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei. Mapo:
Mining and recommending api usage patterns. In
Proceedings of the 23rd European Conference on ECOOP
2009 — Object-Oriented Programming, pages 318–343.
Springer-Verlag, 2009.

[60] T. Zimmermann and P. Weißgerber. Preprocessing cvs data
for fine-grained analysis. In Proceedings of the First
International Workshop on Mining Software Repositories,
pages 2–6, May 2004.

177

