
Linking Sketches and Diagrams to Source Code Artifacts

Sebastian Baltes, Peter Schmitz, and Stephan Diehl
Computer Science
University of Trier

Trier, Germany
{s.baltes,diehl}@uni-trier.de

ABSTRACT
Recent studies have shown that sketches and diagrams play
an important role in the daily work of software developers.
If these visual artifacts are archived, they are often detached
from the source code they document, because there is no ad-
equate tool support to assist developers in capturing, archiv-
ing, and retrieving sketches related to certain source code
artifacts. This paper presents SketchLink, a tool that aims
at increasing the value of sketches and diagrams created dur-
ing software development by supporting developers in these
tasks. Our prototype implementation provides a web appli-
cation that employs the camera of smartphones and tablets
to capture analog sketches, but can also be used on desktop
computers to upload, for instance, computer-generated dia-
grams. We also implemented a plugin for a Java IDE that
embeds the links in Javadoc comments and visualizes them
in situ in the source code editor as graphical icons.

More information: http://st.uni-trier.de/sketchlink

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.7 [Software Engineering]: Distribution, Main-
tenance, and Enhancement —Documentation

General Terms
Design, Documentation, Human Factors

Keywords
Sketches, Diagrams, Source Code Artifacts, Documentation

1. INTRODUCTION
Sketches and diagrams play an important role in the daily

work of software developers [1,5,8,22]. Most of these visual
artifacts do not follow formal conventions like the Unified
Modeling Language (UML), but have an informal, ad-hoc

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE’14 , November 16–22, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

nature [1,5,8,10,18]. They may contain different views, lev-
els of abstraction, formal and informal notations, pictures,
or generated parts [5, 8, 20, 21]. Developers create sketches
mainly to understand, to design, and to communicate [1,5].
Media used for sketch creation include not only whiteboards
and scrap paper, but also software tools like Photoshop and
PowerPoint [5,10,17,22]. Sketches and diagrams are impor-
tant because they depict parts of the mental model develop-
ers build to understand a software project [13]. Understand-
ing source code is one of the most important problems devel-
opers face on a daily basis [5, 12, 13, 19]. However, this task
is often complicated by documentation that is frequently
poorly written and out of date [9, 15]. Sketches and dia-
grams, whether formal or informal, can fill in this gap and
serve as a supplement to conventional documentation like
source code comments. To this end, tool support is needed
to assist developers in archiving and retrieving sketches and
diagrams related to certain source code artifacts.

2. RELATED WORK
In the past, many tools have been proposed that aim at

supporting developers’ sketching activities. Some of them
force users to employ special devices like electronic white-
boards [4,7,16] or digital pens and paper [2,6]. These tools
often focus on UML as they try to convert sketches into for-
mal UML diagrams [4, 6, 7, 11]. Branham et al. proposed a
tool to automatically capture whiteboard drawings using a
networked camera [3]. This approach leads to a large num-
ber of archived sketches, which are not likely to be used in
the future. Again, special hardware is needed for capturing
the drawings. Furthermore, tools exist that allow to create
sketches directly in the source code editor of IDEs [2, 11].
This approach is also of limited use, because, on the one
hand, sketching may happen in design meetings with other
stakeholders where IDEs are not used and source code is not
immediately created. On the other hand, sketches and dia-
grams may provide a high-level understanding of the project
architecture [14] and may thus be linked to different artifacts
in different source code files. These use cases are difficult to
support if sketches are created directly in the source code
editor and are attached to a single source code file.

In our opinion, existing tools do not adequately consider
developers’ needs. In a recent study, Petre observed that
software developers “will not adopt tools and ideologies at
odds with their considered practice” [18]. Walny et al. note
that a tool integrating sketches into the software develop-
ment workflow must support a broad range of work styles [22],
which most of the above mentioned tools do not achieve.

ar
X

iv
:1

70
6.

09
70

0v
1

 [
cs

.S
E

]
 2

9
Ju

n
20

17

http://st.uni-trier.de/sketchlink

(a) Whiteboard sketching (b) Capturing the sketch (c) Selecting and linking areas

Figure 1: Exemplary usage of SketchLink for whiteboard sketching

3. MOTIVATION
In a large study with 394 participants [1], we investigated

the use of sketches and diagrams in software engineering
practice to validate our motivation for building a new tool.
In this section, we briefly summarize the most important
findings that are relevant for the design of this tool. As
expected, the majority of sketches and diagrams from the
study were informal and most of them were drawn on ana-
log media like paper or whiteboards. The most common
purposes for creating sketches were related to designing, ex-
plaining, or understanding. One third of them had an es-
timated lifespan of one day or less, one third of up to one
month, and another third of more than one month. The
majority of sketches were archived, most of them digitally.
Many sketches were kept because they document or visual-
ize parts of the implementation or assist its understanding.
The high number of archived sketches lead to the assump-
tion that developers are willing to keep their visual artifacts.
However, they also named technical issues, e.g., that there
is no good technique to keep sketches together with source
code. Regarding the relation to source code, we found out
that sketches and diagrams were rarely related to certain
attributes or statements, but rather to methods, classes,
packages, or projects (or, depending on the programming
language, other artifacts with the same levels of abstrac-
tion). About half of the sketches and diagrams from our
study were rated as helpful to understand the related source
code artifact(s) in the future, which supports our goal to use
sketches as a supplement to conventional documentation.

4. OUR APPROACH
With the results from our study in mind, our main goal

was to create a tool that would enable developers to easily
capture and annotate the sketches and diagrams they create
to link them afterwards to the related source code artifacts.
The sketches could then be used to understand the related
code and to navigate to the linked artifacts, enabling devel-
opers to explore relations depicted in the linked sketches.
The tool should integrate with heterogenous workflows and
should not be restricted to a certain visual convention or
a special medium for creating sketches. Finding relevant
documentation in external systems is a task that developers
generally regard as challenging, time consuming, and not al-
ways worth its effort, because even an elaborate search does
not guarantee to produce helpful content [13,15]. Thus, the
links should be visualized in situ in the source code editor,
e.g., using color coding, highlighting, or graphical icons, but
should not distract the developer. This allows developers to

quickly access relevant sketches. In order to provide flexible
means for capturing analog drawings, we decided to focus
on mobile devices like smartphones and tablets for captur-
ing, annotating, and linking sketches. Since such devices are
prevalent nowadays, they are available in almost every sit-
uation (see Figure 1 for an exemplary workflow). However,
it should also be possible to upload, for instance, computer-
generated diagrams from conventional desktop computers.

5. PROTOTYPE
Our prototype named SketchLink consists of a server, a

web application, and an IDE plugin (see Figure 3). The
server stores the sketch images, metadata, and the links,
providing a WebSocket interface for updating and retrieving
this information. The web application runs in both desktop
and mobile browsers and can be used to upload, annotate,
and link sketches. It requests information about available
source code artifacts from the server, which has access to
the version control system. The IDE plugin, which we im-
plemented for the Java IDE IntelliJ IDEA, visualizes the
links in the editor and can be used to create link anchors
in the source code. Furthermore, the plugin enables the
web application to scroll the editor view to a linked source
code artifact to navigate through source code using a linked
sketch or diagram.

5.1 Link Anchors
SketchLink uses a generic approach for linking sketches

and diagrams to source code artifacts by employing universal
link anchors. Every artifact that can be linked to other arti-
facts is identified by a Universally Unique Identifier (UUID),
to which a one-digit type identifier is prepended. SketchLink
currently supports three types of link anchors: source code
anchors, sketch anchors, and marker anchors.

5.1.1 Source Code Anchors
Source code anchors are either created by the server when

the user links a sketch to a certain source code artifact us-
ing the web application or by the IDE plugin. Our proto-
type currently only supports Java and embeds link anchors
in Javadoc comments (see Figure 2). This has the advan-
tage that links to the sketches on the server can be auto-
matically inserted into the HTML documentation generated
from Javadocs comments (at least for classes and methods).
If other statements or expressions are located in the same
source code line as the comment, the anchor referes to this
line. Otherwise, the anchor refers to the subsequent ele-
ment (e.g., a class or method decalaration). Our approach

(a) Floating mode (b) Docked mode

Figure 2: SketchLink plugin for IntelliJ IDEA

is not limited to Java or Javadoc, because it only depends on
the ability to insert an identifier in a source code comment,
which is possible in every other programming language.

5.1.2 Sketch and Marker Anchors
The container format for sketch and marker anchors is

SVG. The sketch images are loaded using an SVG image

element. Users can link parts of a sketch to source code
artifacts with rectangular markers (see Figure 1c), which
are stored as rect elements in the SVG. The link anchors
for a whole sketch or single markers are stored in the id

attribute either of the SVG root element (sketch anchors)
or of an rectangle element (marker anchors).

5.2 Web Application
Using SketchLink on mobile devices like smartphones or

tablets has the advantage that users can take a picture, for
instance, of a whiteboard sketch, directly from the applica-
tion running in a web browser, and upload it to the server
(see Figure 1). When used in a desktop browser, the tool
offers a file dialog for uploading image files like scanned
sketches or digitally created diagrams. After uploading the
image file, users may add additional information like the
authors of the sketch or a short description of the visual ar-
tifact. This information is sent to the server, along with the
image file of the sketch. After the sketch is uploaded, the
user can either link the entire sketch, or parts of it using
a rectangular selection, to a source code artifact. Further-
more, the user may annotate the selected areas with a text
comment. With support of our IDE plugin, the user can
navigate to linked source code artifacts using the WebApp,
either running on the same computer like the IDE or, for
instance, a mobile device (see Figure 4).

5.3 IDE Plugin
When the plugin is started, it folds each UUID in the

Figure 3: SketchLink architecture

@sketchlink tags in Javadoc comments and hides them be-
hind an icon (see Figure 2). If no other tags or comment
text is present, Javadoc comments found inside a method are
completely hidden. The plugin was not only developed with
the goal to explicitly visualize source code anchors, but to do
this without distracting the developer during coding phases.
Therefore, the icon considers the current color scheme and
automatically hides if its enclosing Javadoc comment gets
folded. Moreover, the icons—and the corresponding Javadoc
tags—can be hidden globally.

When the user positions the mouse cursor over an icon,
the linked source code is highlighted. If the user clicks on
an icon, a list with linked artifacts is shown (see Figure 2a).
By positioning the mouse cursor over a list element, the user
can open a preview of the linked sketch or marker (floating
mode). Above the image, the authors of the sketch and
its annotation are displayed (if this information is available
on the server). If markers are present and the user places
the mouse cursor over one of them, the annotation for this
marker is displayed instead of the annotation for the whole
sketch and the linked source code is highlighted. By left-
clicking on a marker or a sketch, the user can navigate to the
linked source code artifacts directly from within the preview
window. A right-click opens the configured web browser and
loads the sketch in the SketchLink WebApp. This way, the
user may edit the annotation or create and link new mark-
ers. The user can also switch to the docked mode of the
plugin, where a list of the linked sketches is displayed right
next to the source code (see Figure 2b). Furthermore, the
plugin assists the user in creating new source code anchors.
After a new anchor is created, the plugin prompts the user
to open the WebApp in order to directly link the newly cre-
ated anchor to a sketch or marker. For each source code an-
chor, metadata like the modification timestamp, the project
name, the type of the linked artifact (e.g., class, method,
if-statement), and the path to the source code file (relative
to the project root) are stored on the server.

Figure 4: Source code navigation using tablet

6. CONCLUSION AND FUTURE WORK
Our first prototype named SketchLink enables developers

to easily capture, annotate, and link their sketches and di-
agrams to the related source code artifacts of Java projects
using a web application and an IDE plugin. The WebApp
can also be used to navigate through a software project us-
ing created links. Furthermore, our IDE plugin visualizes
the links in situ in the source code editor and assists devel-
opers in creating new link anchors.

A future version of SketchLink should support the evo-
lution of sketches and diagrams, because they are often re-
iterated and evolve over time [1, 5, 22]. However, not only
the evolution of sketches has to be considered. When soft-
ware evolves, linked source code artifacts may be deleted or
renamed. Since the detection of moved or renamed source
code artifacts between two revisions in the version control
system is generally not an easy task [23], the plugin should
consider common refactorings in order to keep the data on
the server up to date. Moreover, the tool could propose new
links to the user by analyzing existing links and the relation
between linked source code artifacts. In the future, we want
to enable users to retrieve captured sketches using metadata
like the date, authors, or keywords found in the annotation.
Another future feature could be the visualization of the cur-
rently executed method in a linked sketch to support debug-
ging tasks. In addition, we plan to implement the possibility
to link sketches or parts of sketches to other sketches. One
application of this feature would be the creation of a sto-
ryboard, allowing the user to “play” sketches in a defined
order. Moreover, linking markers with other sketches would
be helpful to evaluate GUI mockups, because transitions
from one view to another could be simulated. Furthermore,
it may be sensible to add a user management, allowing to
differentiate between personal and shared sketches.

Finally, we plan to execute both a user study evaluating
the usability of our prototype and empirical studies to in-
vestigate if and how the availability of our tool supports
the understanding of unfamiliar source code. An interesting
but hard-to-measure property is the value of captured and
linked sketches. It would be interesting to know how and
when developers use the links. We could investigate which
properties valuable sketches possess and if visualizations for
certain source code artifacts share common characteristics.

7. REFERENCES
[1] S. Baltes and S. Diehl. Sketches and Diagrams in

Practice. In FSE’14. ACM, 2014.

[2] P. Brandl, M. Haller, J. Oberngruber, and
C. Schafleitner. Bridging the Gap Between Real
Printouts and Digital Whiteboard. In AVI’08. ACM,
2008.

[3] S. Branham, G. Golovchinsky, S. Carter, and J. T.
Biehl. Let’s Go From the Whiteboard: Supporting
Transitions in Work Through Whiteboard Capture
and Reuse. In CHI’10. ACM, 2010.

[4] Q. Chen, J. Grundy, and J. Hosking. An
E-Whiteboard Application to Support Early
Design-stage Sketching of UML Diagrams. In HCC’03.
IEEE, 2003.

[5] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko.
Let’s Go to the Whiteboard: How and Why Software
Developers Use Drawings. In CHI’07. ACM, 2007.

[6] R. Dachselt, M. Frisch, and E. Decker. Enhancing
UML sketch tools with digital pens and paper. In
SOFTVIS’08. ACM, 2008.

[7] C. H. Damm, K. M. Hansen, and M. Thomsen. Tool
Support for Cooperative Object-oriented Design:
Gesture Based Modelling on an Electronic
Whiteboard. In CHI’00. ACM, 2000.

[8] U. Dekel and J. D. Herbsleb. Notation and
Representation in Collaborative Object-Oriented
Design: An Observational Study. In OOPSLA’07.
ACM, 2007.

[9] A. Forward and T. C. Lethbridge. The Relevance of
Software Documentation, Tools and Technologies: A
Survey. In DocEng’02. ACM, 2002.

[10] T. Gorschek, E. Tempero, and L. Angelis. On the use
of software design models in software development
practice: an empirical investigation. In The Journal of
Systems and Software. Elsevier, 2014.

[11] T. Hammond and R. Davis. Tahuti: A Geometrical
Sketch Recognition System for UML Class Diagrams.
In SIGGRAPH’06 Courses. ACM, 2006.

[12] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H.
Aung. An exploratory study of how developers seek,
relate, and collect relevant information during
software maintenance tasks. IEEE Transactions on
Software Engineering, 32(12), 2006.

[13] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining
Mental Models: A Study of Developer Work Habits.
In ICSE’06, 2006.

[14] S. Lee, G. C. Murphy, T. Fritz, and M. Allen. How
Can Diagramming Tools Help Support Programming
Activities? In VL/HCC’08. IEEE, 2008.

[15] T. C. Lethbridge, J. Singer, and A. Forward. How
Software Engineers Use Documentation: The State of
the Practice. IEEE Software, 20(6), 2003.

[16] N. Mangano, A. Baker, M. Dempsey, E. Navarro, and
A. van der Hoek. Software Design Sketching with
Calico. In ASE’10. ACM, 2010.

[17] B. Myers, S. Y. Park, Y. Nakano, G. Mueller, and
A. Ko. How Designers Design and Program Interactive
Behaviors. In VL/HCC’08. IEEE, 2008.

[18] M. Petre. UML in Practice. In ICSE’13. IEEE, 2013.

[19] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil.
An examination of software engineering work
practices. In CASCON ’97. IBM Press, 1997.

[20] A. van der Hoek and M. Petre, editors. Software
Designers in Action: A Human-Centric Look at
Design Work. CRC Press, 2014.

[21] J. Walny, S. Carpendale, N. Henry Riche, G. Venolia,
and P. Fawcett. Visual Thinking in Action:
Visualizations as Used on Whiteboards. IEEE
Transactions on Visualization and Computer
Graphics, 17(12), 2011.

[22] J. Walny, J. Haber, M. Dork, J. Sillito, and
S. Carpendale. Follow that Sketch: Lifecycles of
Diagrams and Sketches in Software Development. In
VISSOFT’11. IEEE, 2011.

[23] P. Weissgerber and S. Diehl. Identifying Refactorings
from Source-Code Changes. In ASE’06. IEEE, 2006.

	1 Introduction
	2 Related Work
	3 Motivation
	4 Our Approach
	5 Prototype
	5.1 Link Anchors
	5.1.1 Source Code Anchors
	5.1.2 Sketch and Marker Anchors

	5.2 Web Application
	5.3 IDE Plugin

	6 Conclusion and Future Work
	7 References

