Ubiquity, an ACM publication
June 2014

Association for
Computing Machinery

Check for
Updates

Ubiquity Symposium

The Multicore Transformation

Auto-Tuning Parallel Software: An interview with Thomas Fahringer
by Walter Tichy

Editor’s Introduction

In this interview conducted by Ubiquity editor Walter Tichy, Prof. Thomas Fahringer of the
Institute of Computer Science, University of Innsbruck (Austria) discusses the difficulty in
predicting the performance of parallel programs, and the subsequent popularity of auto-tuning

fo automate program optimization.

http://ubiquity.acm.org ©2014 Association for Computing Machinery


http://crossmark.crossref.org/dialog/?doi=10.1145%2F2636340&domain=pdf&date_stamp=2014-06-01

Association for Ubiquity, an ACM publication
Computing Machinery
June 2014

Ubiquity Symposium

The Multicore Transformation

Auto-Tuning Parallel Software: An interview with Thomas Fahringer
by Walter Tichy

Most programmers who initially try parallel programming face disappointment: Their parallel
code runs much slower than expected, sometimes even slower than the sequential code. Even
experienced programmers spend considerable time and effort tuning parallel applications.
Auto-tuning is a promising approach that makes that task easier.

Ubiquity: Most programmers do not tune sequential programs. It seems the sequential
machine model is fairly predictable. What makes it so hard to predict the performance of
parallel programs?

Thomas Fahringer: Although developers of business and server applications may not need to
optimize their codes, some programmers of scientific applications actually spend a considerable
amount of time tuning sequential programs. A good example is tiling of programs to improve
cache behavior. This is non-trivial and very sensitive with respect to the underlying hardware.
Experiments have shown that tuning a serial program for cache locality can improve
performance of up to an order of magnitude. Often programmers first tune the performance of
the serial parts of a program and then focus on the parallel parts.

Predicting the performance of parallel programs is one of the most difficult challenges in
parallel computing as it involves unpredictable properties such as how many times a program
statement is executed or how long jobs wait in system queues. In-depth knowledge is required
as to what data and tasks are processed by which core, and a detailed system and architecture
model is needed to consider the costs of basic computations, data accesses, data transfer and
synchronization, and the behavior of runtime systems (e.g. scheduling and load balancing). For

instance, scheduling is often dependent on runtime situations such as external load or
http://ubiquity.acm.org 2 ©2014 Association for Computing Machinery



Association for Ubiquity, an ACM publication
Computing Machinery
June 2014

computational work that is data dependent. Synchronization commonly implies waiting times,
which necessitates accurate models for all activities of involved threads and cores. Predictions
are often hardware, system, compiler and data dependent. Developing prediction models is a
notoriously difficult task. Even automatic approaches, for instance, that are based on machine
learning techniques suffer from huge search spaces or use simplifications that limit their
applicability.

Ubiquity: Auto-tuning is getting a lot of attention in the parallel programming community.
What is it, and what is the objective of tuning?

TF: The idea of auto-tuning is to automatically adapt the execution of a program to a given
software and hardware environment to optimize one or more non-functional objectives such as
execution time, energy consumption, or computing costs.

Auto-tuning is not to be confused with auto-parallelization. Auto-tuning does not parallelize but
builds on an existing parallel program and explores different trade-offs among parallelism,
synchronization, load balancing, locality, and other parameters.

Before auto-tuning became popular, many optimization techniques followed a fixed strategy
that used a performance model to guide a transformation environment or a runtime library to
select specific strategies. Experiments demonstrated that those fixed strategies can often be
outperformed by exploring a larger search space of transformations and tunable parameters.
Interesting is also when auto-tuning of programs started. Its beginning may go back to the late
sixties when researchers such as David Sayre (IBM) and Domenico Ferrari (Berkeley University)
explored compiler optimization to enhance locality and other performance aspects of
programs. Since then, auto-tuning has become a well-established technique that has been
continuously improved to automate program optimization. However, the cost of tuning can be
significant, so search heuristics must be used to reduce the search space.

Ubiquity: What are some of the tuning parameters that an auto-tuner manipulates?

TF: This depends on the optimization goals. Most auto-tuners are limited to single optimization
objectives such as communication, work distribution, execution time, or energy consumption.
These techniques refer to mono-objective auto-tuning. Currently, more and more tuners are
being upgraded to deal with dual or multi-objective optimization for handling two or even more

optimization objectives. For each objective a specific set of tuning parameters is required. For
http://ubiquity.acm.org 3 ©2014 Association for Computing Machinery



Association for Ubiquity, an ACM publication
Computing Machinery
June 2014

instance execution time can be tuned by using tile sizes, scheduling parameters, number of
threads or cores, data and work distribution, and others. Energy consumption can be influenced
by voltage and frequency settings but also by execution time sensitive parameters. Computing
costs as a whole are influenced by execution time parameters, memory size, and data storage
allotted. Program transformations are tuning options for all three optimization goals.

A particular problem is to detect and implement those tuning parameters that have a
significant impact on a given optimization objective and ignore those with negligible effect.
Moreover, the search space may explode due to the large value ranges of these parameters.
Even worse, changing the value of one parameter may improve a certain optimization objective
at the cost of another.

Ubiquity: Are these tuning parameters numeric in nature, or are there other options? For
instance, could a program’s control structure change?

TF: In many cases these parameters are numerical values specifying for instance the number of
threads to be used, frequency settings of cores, and tile sizes. However, in principle nothing
speaks against non-numeric values such as scheduling directives or transformation sequences.
For example, an auto-tuner could explore different OpenMP loop scheduling directives such as
static, dynamic or guided. Each of these alternatives can be considered an element of a set of
search options, which can be explored by an auto-tuner. Control structures could change based
on transformations applied to a program or alternate code-versions provided for exploration.

Ubiquity: |s an application tuned once and for all (perhaps on each platform), or are there other
considerations? When does tuning take place?

TF: Unfortunately, there is no tuning that can be frozen. It has been clearly shown that
optimization results can substantially change for different input data and hardware. There is no
satisfactory solution so far that can deal with varying input data. Usually, auto-tuning is
repeated for each target architecture. Tuning has to be adjusted if additional optimizations
should be considered or previous optimization goals are dropped.

Auto-tuning may take place during an offline tuning phase, during runtime, or both. Offline
tuning is done with a set of benchmarks. The hope is that well-performing settings of tuning
parameters determined on the benchmarks work well in production runs. Runtime auto-tuning

means that tuning parameter values are set during the actual production run. Clearly, the
http://ubiquity.acm.org 4 ©2014 Association for Computing Machinery



Association for Ubiquity, an ACM publication
Computing Machinery
June 2014

advantage of runtime tuning is that all tuning-relevant information is available. But its
effectiveness depends on whether the program runs long enough so that the effect of each
parameter setting on an optimization objective can be explored.

Ubiquity: How does a programmer prepare an application for tuning? What would be a simple
implementation of getting auto-tuning going?

TF: There are different techniques to implement auto-tuners. A simple approach is to pass
compiler flags, runtime parameters, and their values ranges when compiling or starting a
program. A wrapper program than varies these arguments systematically for each compilation
or execution. Also, the programmer can mark parameters in the code that should be tuned and
provide their value ranges. This technique is implemented by inserting directives in the code or
in the form of a separate file that provides the same information (tunable parameter, location
in the program, and value range). Frequently, auto-tuners are provided with information about
what transformations should be explored for specific code regions. Here, programmers for
instance can indicate scheduling directives, loop unrolling or tiling parameters, or very specific
transformation sequences. Constraints on tuning parameters can reduce the search space and
also steer auto-tuning. More advanced techniques provide different algorithms or whole
libraries which can then be chosen by the auto-tuner.

Ubiquity: Are there language constructs that have built-in parameters?

TF: Yes, there are. A good example is OpenMP, which offers directives ideally suited for auto-
tuning, for instance the size parameter for loop scheduling directives. High Performance Fortran
is another directive based language with parameters for data distribution, array alignment, and
processor numbers that can be used for tuning.

Ubiquity: What would be the ideal solutions?

TF: In the ideal case the programmer does not have to change the code at all. It is left to the
auto-tuner with the help of a sophisticated compiler and runtime system to determine the
promising tuning parameters and their value ranges. A compiler would then expose these
parameters and propose a default value range. During execution of an auto-tunable program,

http://ubiquity.acm.org 5 ©2014 Association for Computing Machinery



Association for Ubiquity, an ACM publication
Computing Machinery
June 2014

the runtime system would then try out different settings of the parameters to optimize the
program.

Stream programming languages such as XlJava offer language constructs for expressing
pipelines and master/worker patterns. These constructs provide implicit parameters such as
the replication factor of pipeline stages, fusion of successive stages, or the number of workers.
These are optimized automatically with an auto-tuner in the runtime system.

Ubiquity: What if a program runs often, but never runs long enough to get to an optimal
configuration. Is it possible to tune across many runs?

TF: Auto-tuner can pro-actively tune a code during an offline phase without using production
runs. This makes sense for programs that will be executed on a few parallel computers over
longer time periods. In this case offline tuning can achieve highly optimized results.

Auto-tuning means exploring the value ranges of tuning parameters and observing those values
that improve the optimization objectives. Maintaining the results of historic tuning efforts
makes sense as it can shrink the search space for future tuning efforts. Each additional tuning of
a program could then reduce the value ranges to be explored and will shorten the time to finish
the optimization.

Ubiquity: An important ingredient is obviously the search algorithm. Where would | find a good
search algorithm?

TF: There is a plethora of search algorithms for auto-tuning. Unfortunately, there is no single
solution that works best for every situation. For mono-objective auto-tuning, random search is
suitable if the difference between the best and worst alternative is small. Local search such as
hill climbing is an option for solving optimization problems where exhaustive search is
impractical. Local search methods iteratively modify the current parameter setting until no
further improvement is possible. Local search can be applied to determine numeric parameters
as well as sequences of program transformations. However, local search methods suffer from
three drawbacks: (1) the computed optimum may depend on the starting point; (2) local search
may get trapped in local optima; (3) numerous iterations may be necessary. Nelder-Mead and
other simplex-based techniques are non-linear optimizers that converge faster. They
extrapolate from a number of points called a simplex. In n-dimensional search space, n+1 points

need to be evaluated initially, before the search can start. Some of these points may perform
http://ubiquity.acm.org 6 ©2014 Association for Computing Machinery



Association for Ubiquity, an ACM publication
Computing Machinery
June 2014

poorly, which may be undesirable for online tuning. In principle, simplex-based searchers
require continuous parameter spaces, but discrete adaptations of Nelder-Mead work
satisfactorily.

Evolutionary computation represents a class of techniques that can be applied to mono-
objective auto-tuning. Examples of evolutionary computation are genetic algorithms, genetic
programming, evolutionary strategy or other methods that mimic the evolutionary behavior of
certain species in nature such as ant colonies. All of these techniques share a common
behavior. They work with a set of alternatives, in most cases generated randomly. This set is
used to generate new alternatives by reusing the transformations and parameter values of the
best configurations found so far. Evolutionary methods have been applied to tuning compiler
flags or finding tile sizes and loop unroll factors for optimizing execution time. Evolutionary
computation navigates the search space following a stochastic path that explores with a higher
probability those areas where the best sequences of transformations and parameter values are
located. Evolutionary techniques are popular as they can target almost any optimization
problem and complex search spaces, and they have been shown to be robust. However,
evolutionary techniques may require many iterations and are therefore best executed off-line,
or when the code regions to be tuned are executed frequently. In such cases, auto-tuning can
explore a reasonable large search space to find good solutions.

Ubiquity: What if | need to tune several objective functions at once, say performance and
energy?

TF: As many auto-tuning objectives may conflict with each other (e.g. energy consumption
versus execution time, communication overhead versus computational effort, and resource
speed versus economic costs), the result of this complex optimization problem is usually
expressed by a set of trade-off solutions called Pareto front. Every solution on this front
corresponds to a specific trade-off among different objectives. Each solution fulfills two
conditions. Firstly, it cannot be further improved without worsening at least one of the
objective functions. Secondly, none of the solutions is better than the others for all the
objective functions. More formally a Pareto front consists of those solutions that are not
dominated by any other alternative solution. A solution X dominates another solution Y if X
outperforms Y regardless of the tradeoff between different objectives. X thus performs better
in all objectives compared to Y.

http://ubiquity.acm.org 7 ©2014 Association for Computing Machinery



Association for Ubiquity, an ACM publication
Computing Machinery
June 2014

A Pareto font is an essential tool for decision support and preference discovery whose shape
can provide new insights and allow users to explore the space of non-dominated solutions with
certain properties, possibly revealing performance aspects that are impossible to uncover
otherwise. For example, it may happen that by conceding a few percentages in performance,
the computing cost halves by using slower and cheaper resources, or by increasing the overall
storage capacity by 10 percent, the execution time improves by 40 percent due to a better
locality behavior. A Pareto front can expose alternative solutions if the importance of objectives
changes, for example by giving economic costs priority over execution time.

An extra step is then required to select a single solution from the Pareto front that can be based
on user-preferences.

Ubiquity: The ideal would be if the programmer does not have to think about auto-tuning at
all—tuning should be fully automatic. Is this achievable?

TF: For simple tuning problems with a well-defined set of tunable parameters and reasonable
value ranges, auto-tuning can be automated. However, in general it is difficult to determine the
tunable parameters and their values ranges that actually impact the objectives to be optimized.
Auto-tuners are often limited to a pre-defined set of tunable parameter such as MPI runtime
parameters, number of threads, scheduling strategy, clock rate, and voltage settings. | am not
aware of an auto-tuner that exhaustively explores all possible transformation sequences. It is
likely that many transformations that have an impact on the optimization objective are not
considered by automatic approaches.

Ubiquity: What are the issues that auto-tuning research must address next?

TF: Future research has to address techniques that avoid repetition of full auto-tuning for
changing objectives, input data, and platforms. Furthermore, locating the proper set of tunable
parameters and ignoring those that are irrelevant is a major issue. No one really has a
systematic approach for that. Furthermore, auto-tuning in most cases relies on real program
runs. Complementing auto-tuning with sophisticated performance models that would reduce
the number of runs would be a major step forward. With models, one could handle larger
search spaces and still find solutions that are close the optimum.

http://ubiquity.acm.org 8 ©2014 Association for Computing Machinery



Association for Ubiquity, an ACM publication
Computing Machinery
June 2014

Ubiquity: Prof. Fahringer, thank you very much for this interview.

About the Author

Walter Tichy (walter.tichy@kit.edu) is professor of software engineering at Karlsruhe Institute
of Technology (formerly University of Karlsruhe) and a director of the Forschungszentrum
Informatik, a technology transfer institute. He is both a Distinguished Scientist and a Fellow of
the ACM, and an associate editor of ACM Ubiquity and IEEE Transactions on Software
Engineering. He earned M.S. and Ph.D. degrees from Carnegie Mellon University. He received
the Intel Award for the Advancement of Parallel Computing, the ACM Sigsoft Impact Paper
Award, and the IEEE Most Influential Paper Award, among others.

DOI: 10.1145/2636340

http://ubiquity.acm.org 9 ©2014 Association for Computing Machinery



