
On the Decidability of Semi-Linearity for Semi-Algebraic Sets 
and its Implications for Spatial Databases 

(extended abstract) 

Freddy Dumortier* 
University of Limburg 
fdumorti@luc.ac.be 

Marc Gyssens* 
University of Limburg 

gyssens@charlie.luc.ac.be 

Dirk Van Guchtt 
Indiana University 

vgucht@cs.indiana.edu 

Luc Vandeurzen* 
University of Limburg 
lvdeurze@luc.ac.be 

Abstract 1 Introduction 

Several authors have suggested to use first-order logic over 
the real numbers to describe spatial database applications. 
Geometric objects are then described by polynomial inequal- 
ities with integer coefficients involving the coordinates of the 
objects. Such geometric objects are called semi-algebraic 
sets. Similarly, queries are expressed by polynomial inequal- 
ities. The query language thus obtained is usually referred 
to as FO + poly. 

From a practical point of view, it has been argued that a 
linear restriction of this so-called polynomial model is more 
desirable. In the so-called Zinear model, geometric objects 
are described by linear inequalities, and are called semi- 
linear sets. The language of the queries expressible by linear 
inequalities is usually referred to as FO + linear. 

As part of a general study of the feasibility of the linear 
model, we show in this paper that semi-linearity is decidable 
for semi-algebraic sets. In doing so, we point out important 
subtleties related to the type of the coefficients in the linear 
inequalities used to describe semi-linear sets. An important 
concept in the development of the paper is regularity, of 
which we point out the geometric sign&axe. We show 
that the regular points of a semi-linear set can be computed 
in FO + linear. 

Following the seminal work by Kanellakis, Kuper, and 
Revesz [12] on constraint query languages with polynomial 
constraints, various researchers have introduced geometric 
database models and query languages within this framc- 
work [lo, 171. These researchers have studied the desirability 
of their models for database applications involving geometric 
data objects, as well as the expressiveness of the proposed 
geometric query languages. We adopt the formalism of [17], 
which we shall call the polynomial spatial database model, 
in which both geometric objects and queries are exprcsscd 
using polynomial inequalities. Geometric objects described 
by polynomial inequalities are called semi-algebraic sets, and 
the query language using polynomial inequalities is referred 
to as FO I- poly. 

The decidability of semi-linearity of semi-algebraic sets 
has an important consequence. It has been shown that it 
is undecidable whether a query expressible in FO + poly is 
linear, i.e., maps spatial databases of the linear model into 
spatial databases of the linear model. It follows now that, 
despite this negative result, there exists a syntactically de- 
finable language precisely expressing the linear queries ex- 
pressible in FO f poly. 

Recently, several authors [l, 2, 4, 10, 12, 13, 23, 241 dis- 
cussed linear spatial database models which can be seen ~9 
linear restrictions of the polynomial database model. These 
linear models allow users to define relational databases, 
which may, besides conventional data, contain linear gco- 
metric data objects, which suffice for the majority of appli- 
cations encountered in GIS, geometric modeling, and spatial 
and temporal databases [16, 18). Furthermore, data struc- 
tures and algorithms have been developed to efficiently im- 
plement a wide variety of operations on these sets [6,6, 7,9, 
201. Geometric objects described by linear inequalities are 
called semi-linear sets, and the restriction of FO + poly us- 
ing only linear inequalities is referred to as FO$linear. Not 
all linear queries (i.e., mappings between spatial database8 
describable in the linear model) expressible in FO+poly can 
be described in FO + linear, however [l, 24). 
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In the context of our investigation of the feasibility of the 
linear spatial database model as a restriction of the polyno- 
mial database model [23, 241, we focus in this paper on tho 
decidability of semi-linearity for semi-algebraic sets, 
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In order to give an accurate solution to this problem, 
we point out that there are two natural ways to define the 
linear spatial database model as a restriction of the polyno- 
mial database models. A minima&tic approach consists of 
restricting the degree of the polynomials used in the poly- 
nomial model, yielding semi-linear sets described by linear 
constraints with integer coefficients. In this model, semi- 
algebraic polytopes are semi-linear only if their corner points 
have rational coordinates. If, on the other hand, we want 
aIZ semi-algebraic polytopes to be semi-linear, we have to 
take a maximalistic approach which consists of considering 



linear constraints with algebraic coefficients. (Observe that 
an algebraic number can be described finitarily by a univari- 
ate polynomial and an interval with rational end points in 
which this polynomial has precisely one root.) 

We first prove that semi-linearity for semi-algebraic sets 
is decidable in the maximalistic case, and we provide an 
FO + poly expression for the corresponding decision query. 
Next, we prove that semi-linearity for semi-algebraic sets is 
decidable in the minimslistic case, too. However, we also 
prove that in this case there is no FO + poly expression for 
the corresponding decision query. Finally, we deduce from 
these decidability results that, both in the minimalistic and 
the maximslistic case, there exists a syntactically definable 
query language that precisely expresses all linear queries ex- 
pressible in FO + poly. Earlier, three of the present authors 
showed that it is undecidable whether a FO+poly expression 
computes a linear query. 

In the proof of the decidability results, the notion of reg- 
ularity plays a key role. It allows the decomposition of a 
semi-algebraic set into so-called regular strata. In the case 
of semi-linear sets, the regular strata constitute a decompo- 
sition of the semi-linear set into linear components. We show 
that the query returning the regular points of a semi-linear 
set can be computed in FO + linear. 

The remainder of this paper is organized as follows. Sec- 
tion 2 reviews the polynomial and linear spatial database 
models. Section 3 introduced the notion of regular strat- 
ification. Section 4 presents the key lemma of the paper. 
Section 5 contains the main decidabiity results. Section 6, 
reflects on the implications of these results, and Section 7, 
finally, discusses the practical relevance of this work. 

2 Preliminaries 

We first review the polynomial model. The polynomial model 
is described using the first-order language of the ordered 
field of the real numbers (R, 5, +, X, 0, l), i.e., the language 
(5, +, x, 0,l). The first-order formulae of this language are 
called real formulae. Seidenberg [21] and Tarski (221 showed 
that every real formula can effectively be transformed into 
a quantifier-free real formula. As a consequence, it is decid- 
able whether a real sentence is valid in the ordered field of 
the real numbers. Every real formula &IX,. . . ,z,) with free 
real variables among 21,. . . , zn defines a geometrical figure 

{(Xl , . . . ,xn) 1 ‘p(X1,. . . ,%a)) 

in n-dimensional Euclidean space R”. Point sets defined in 
this way are called semi-algebraic sets. 

A spatial database scheme S is a finite set of relation 
names. Each relation name R has a type which is a pair of 
natural numbers [m, n], where m denotes the number of non- 
spatial columns and n the dimension of the single spatial col- 
umn of R. A database scheme has type [mr,nr,. . . ,mk,nk] 
if the scheme consists of relation names, say RI,. . . , Rk, re- 
spectively of type [ml, nr], . . . , [mk, nk]. 

A syntactic spatial database instance is a mapping Z as- 
signing to each relation name R of a database scheme S a 
syntactic spatial relation Z(R) of the same type. A syntactic 
spatial relation of type [m,n] is a finite set of tuples of the 
form (VI,. . . , vm; ‘p(zr, . . . , x,)), with ~1,. . . , V~ non-spatial 
values of some domain U, and I&,. . . ,zn) a real formula 
with n free variables. 

The semantics of a syntactic database instance Z over 
a database scheme S is the mapping I assigning to each 
relation name R in S the semantic spatial relation I(Z(R)). 

Given a syntactic spatial relation T, the semantic spatial 
relation I(r) is defined as 

u 
{(b,. . . , t.wm)} x ((Xl,. . . ,%a) I t.dx1,. a., +n)l) I 

ter 

a-possibly infinite-subset of Urn x R”. 

Example 2.1 The example in Figure 1 shows a spatial da- 
tabase containing geographical information about Belgium. 
cl 

In the polynomial model, we consider a query of signa- 
ture [ml,nl,...,mk,nk] --i [m,n] to be a mapping from 
instances of a spatial database scheme of type [ml, nr , . . . , 
mk,nk] to instances Of a Spatid database Scheme Of tfle 
[m, n] that can be regarded in a consistent wa.y both at the 
syntactic and semantic level, and is computable at the syn- 
tactic level. 

In this context, we define the query language FO + poly 
as the language obtained by adding to the language of real 
formulae the following: (i) a totally ordered infinite set of 
variables cslled non-spatial variables, disjoint from the set 
of real variables, (ii) atomic formulae of the form ~1 = VZ, 
with 211 and 21s non-spatial variables, (iii) atomic formu- 
lae of the form R(vl,. . . ,vm; xl,. . . ,xn), with ~1,. . . ,v, 

non-spatial variables, xl,. . . , z,, real variables, and R a re- 
lation name of type [m, n], and finally (is) universal and 
existential quantification of non-spatial variables. A query 
of signature [mr,nr,. . . ,rnk,nk] + [m,n] is definable in 
FO+poly if there exists an FO+poly formula p with m free 
value variables and n free real variables such that, for every 
input database instance of signature [ml, nr , . . . , mk, nk], 
GJl ,... ,W,;XI ,..., xc,) 1 ‘~(wI ,..., ‘urn,21 ,..., x4} evalu- 
ates to the corresponding output database, which is of type 
[m, 4 

In this paper, the non-spatial part of a spatial database 
will play no role, and will therefore no longer be considered. 
In the same spirit, only purely spatial queries will be con- 
sidered, i.e., queries of signature [O, nr, . . . ,0, nk] + [O, n]. 

Example 2.2 Assuming that S is a relation of type [O, 21, 
i.e., a semi-algebraic set in the plane, the FO+poly-formula 

(~X1)(+/1)(322)(3~2)(3X3)(3Y3)(3X)(3d(3V) 

(S(x1, Yl) A S(x2, Y2) A S(x3, Y3) A 
X>OA~>OAV>OAX+~+Y=~A 

X=XXl+CcX2fVXQ/\Y=XYI+lly2+Vy3). 

defines the convex-closure query of signature [O, 21 ---) [O, 21 
which associates with S its convex closure’. 0 

From the polynomial model, a linear spatial database 
model can be obtained by only considering real formulae 
containing linear polynomials. There are two natural ways 
to achieve this restriction: 

a minimalistic approach, in which only the degree of 
the polynomials involved is restricted to 1, as a con- 
sequence of which all the linear polynomials consid- 
ered have integer coefficients. The real formulae to 
which this restriction gives rise will be called Z-linear 
formulae, and the semi-algebraic sets that can be de- 
fined with them Z-semi-linear sets. Linear queries in 

1. 

‘Let S C R”. The convex closure of S is the smallest convex set 
of R” con&ring S. 
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Regions 

Name Geometry 
Brussels (y 5 13) A (z 5 11) A (ar 112) A (2 ~10) 
Flanders {; < 17) A (5 z-~~78)h(z-l4y<-l50)A(z+y~45)h 

Walloon Region 
z - 4y 2 -53) A (+(y -< 13) A (z -< 11) A (v 112) A (z 1 10))) 

((z - 14y 2 -150) A (v 5 12) A (192 f 7y 5 375) A (z - 2y ,< 1S)A 
(5z$4y~89)A(z~13))V((--z+3y~5)A(z+y~45)A 
(I - 14y 1 -150) A (z 2 13)) 

(z = 10.5) A (v = 12.5) 

Rivera 

Name 
Meuse 

Scheldt 

-I Geometry 
((y 5 17) A (52 - v 6 78) A (y 2 12)) V 
((~(12)A(z-t~==)A(y>ll))V 
((u 5 11) A (z - 2y = -5) A (g 2 9)) V 
((I/ 5 9) A (z = 13) A (u 1 ‘3)) 
((u 5 17) A (5 + u = 26) A (u 2 16)) V 
((~<16)A(2~-~=4)A(~>14))V 
((z < 9) A (z 17) A (u = 14)) V 
((~/<14)A(--3z+2~=7)A(y>ll))V 
((y 5 11) A (22 + u = 21) A (u 1 9)) 

Figure’lz Example of a (linear) spatial database. 

the context of Z-semi-linear sets will be called Z-linear 
and the corresponding restriction of FO + poly will be 
denoted FO-klinear-Z. It turns out that semi-algebraic 
polytopes2 are Z-semi-linear only if their corner points 
have rational coefficients; and 

2. a maxima&tic approach, in which the linear polyno- 
mials considered may have arbitrary algebraic coeffi- 
cients. For distinction, we speak about A-linear for- 
mulae, A-semi-linear sets, A-linear queries, and the 
query language FO + linear-A. It turns out that all 
semi-algebraic polytopes are A-semi-linear. 

For use in the proof of the main result, we also consider R- 
linear formulae, in which the coefficients may be arbitrary 
real numbers, and, correspondingly, R-semi-linear sets. Eu- 
cry polytope is R-semi-linear. Similarly, we consider R-real 

‘A polytope is the convex closure of a finite set of points. 
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formulae, in which the coefficients may be arbitrary real 
numbers, and, correspondingly, R-semi-algebraic sets. 

Queries of signature [ml, nr,. . . , mk, nk] 4 (0, 0] are call- 
ed Boolean queries, because the sets (0) and (} can be seen 
as encoding- the truth values irue and fake, respectively, 
Since both these sets are semi-linear, every Boolean query 
induces a linear query (in any of the approaches considered). 

Example 2.3 The following FO + linear-Z formula defines 
a Boolean query (and hence a linear query in any of the 
approaches considered) of signature [0,2] -t [O,O] deciding 
whether S is conutzr: 

(~~1)(~~l)~)(tlyZ)@(Z3)(~~3)(~(~11~1)~~(~2,U2)~ 
3 = 21 -I- 22 h 2y3 = yl f yz 3 s(Z3,1J3). 

Observe that the convex-closure query (Example 2.2) in- 
duces a linear query (in any of the approaches considered), 
which was shown to be unexpressible in FOSlinear-Z (241.0 



Throughout the paper, we use vector notation to denote 
points. In this notation, equalities and inequalities of formu- 
lae should be interpreted coordinate-wise. Hence, -@= c) 
indicates that jiis not the origin of the coordinate system, 
whereas p’ # 6 denotes that none of the coordinates of p’ 
equals 0. Finally, p’. c denotes prqr + . - - + p,q,. 

3 Regular stratification 

The notions of a regular point and regular stratification of 
an R-semi-algebraic set [3, 8, 15, 251 play a key role in the 
technical development of this section. 

Intuitively, a regular point of an R-semi-algebraic set is a 
point of that set in which, locally, i.e., in some neighborhood 
of that point, the set looks like an algebraic variety (which 
can be described by equations only) which has a tangent 
space in 3. 

Example 3.1 Consider the semi-algebraic set 

s=((Z,y)12*+(y-l)z_<9v 
(y=lA3<z55) v (z=5Ay=5)} 

in the plane, shown in Figure 2, which consists of a closed 
disk with a closed line segment attached to it at the point 
(3,1) and an isolated point. 

Figure 2: The semi-algebraic set of Example 3.1. 

The regular points of S are the points in the interior 
of the disk, the points of the open line segment, and the 
isolated points. In a small enough neighborhood of a point in 
the interior of the disk, the set S looks like the whole plane, 
which happens to be also the tangent space in that point. In 
a small enough neighborhood of the a point in the open line 
segment, the set S looks like the line y = 1, which happens 
to be also the tangent space in that point. Finally, in a small 
enough neighborhood of the isolated point, the S looks like 
that isolated point, which happens to be its own tangent 
space. In any neighborhood of a point on the boundary of 
the disk or the other end point of the line segment the S 
does not look like an algebraic variety, and, therefore, these 
points are not regular. Cl 

We now formalize the intuition given above. 

Definition 3.2 Let S be an R-semi-algebraic set of R” and 
let p’be a point of S. The point p’is a regular point of S if 
there exists a neighborhood V of p’, and polynomials with 

real coefficients A,. . . , Pk in n real variables such that? 

are linearly independent and S n V = {Z E V 1 PI(Z) = 
-**=P&)=o}. cl 

If S and p’ satisfy the above conditions, then, locally 
around pi S is an n - k-dimensional algebraic variety which 
has an n - k-dimensional tangent space at $, defined by the 
system of k linear equations 

!+g@-).,-=o ,..., ~(p’po. 
We say that S has dimension n - k in p’ and call the maxi- 
mum of these numbers the overall dimension of S, denoted 
dim(S). 

Now, let S be an R-semi-algebraic set, and let Reg(S) be 
the set of those regular points of S in which S has dimension 
dim(S). It is well-known that the connected components of 
Reg(S) are R-semi-algebraic [8,15]. These are called regular 
strata. To S- Reg(S), which is again R-semi-algebraic and 
of strictly lower dimension than S, we apply the same proce- 
dure, until no more points are left. In this way, we obtain a 
decomposition of S in regular strata. Each R-semi-algebraic 
set has only a finite number of regular strata. 

Example 3.3 Consider again the semi-algebraic set S, de- 
fined in Example 3.1, and shown in Figure 2. In Exam- 
ple 3.1, we observed that the set of regular points of S con- 
sists of the open disk, the open line segment, and the isolated 
point. Only in the points of the open disk does S have di- 
mension 2. They form the only stratum in the first layer of 
the regular stratification. The complement of the first layer 
with respect to S, say S’, consists of the circle, the closed 
line segment attached to it, and has overall dimension 1. Its 
set of regular points consists of the circle from which the left 
end point of the attached line segment has been removed, 
the open line segment, and the isolated point. Only in the 
regular points of the circle and the line segment does Sr have 
dimension 1. The circle from which the left end point of the 
attached line segment has been removed and the open line 
segment are therefore the 2 strata of the second layer of the 
regular stratification. Each of the remaining 3 points con- 
stitute a stratum in the third and &al layer of the regular 
stratification of S. cl 

If S is an R-semi-linear set, then, locally around a regu- 
lar point 3, S will coincide with its tangent space at $. This 
observation leads us to the following result (proof omitted): 

Lemma 3.4 Let S be an R-semi-linear set of R”. The 
FO + linear-Z expression 

z(z) A (%)(E’# fl A (Vy’)(v<)(S(f) A 
x-$<$<S+zA s(a) Ax-E’<Z<f+E’+ 
(%)(ik =%+tA s(z)) A @v’)(v’= 2&-y’A s(z)))). 

defines the Z-linear query returning the regular points of S. 

In previous work, three of the present authors [24] showed 
that the dimension query is expressible in FO + linear-z. 
Using this result, Lemma 3.4 can be sharpened, as follows 
(proof omitted). 

‘For a function f : FL” --) R, and a point Gof R”, g(5) is defined 

as (&$tns...7xl$(P)). 
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Proposition 3.5 Let S be an R-semi-linear set of R”. 
There exists an FO + linear-Z expression computing the Z- 
linear query returning those regular points in which S has 
dimension dim(S). 

Hence, the subsequent layers of regular points encoun- 
tered during a regular stratification of a semi-linear set are 
again semi-linear (in any of the approaches considered) and 
can effectively be computed (if the set is A- or Z-semi- 
linear). 

We now give two examples of the regular stratification 
of a semi-linear set. 

Example 3.6 Consider the semi-linear set 

in three-dimensional space, shown in Figure 3, which con- 
sists of a closed filled cube with a closed line segment at- 
tached to it at the point (3,&O) and an isolated point. 

t 

t 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

I 

Figure 3: The semi-linear set of Example 3.6. 

The set of regular points of S consists of the open cube, 
the open line segment, and the isolated point. Only in the 
points of the open cube does S have dimension 3. They form 
the only stratum in the first layer of the regular stratifica- 
tion. The complement of the first layer with respect to S, 
say S’, consists of the faces of the cube, the closed line seg- 
ment attached to it, and the isolated point, and has overall 
dimension 2. Its set of regular points consists of the 6 open 
faces of the cube, the open line segment, and the isolated 
point. Only in the points of the open faces does S’ have 
dimension 2. The open faces of the cube are therefore the 6 
strata of the second layer of the regular stratification. The 
complement of this second layer with respect to S’, say Se, 
consists of the edges of the cube, the line segment attached 
to it, and the isolated point, and has overall dimension 1. 
Its set of regular points consists of the 12 open edges of the 
cube with the exception of the point (3,1,0), the open line 
segment, and the isolated point. Only in the points of the 
open edges with exception of the point (3,&O) and in the 
points of the open line segment does S2 have dimension 1. 
The two open line segments in which the point (3,1,0) di- 
vides one of the open edges of the cube, the 11 remaining 
edges, and the line segment are therefore the 14 strata of 
the third layer of the regular stratification. The remaining 
8 corner points, the point in which line segment meets the 
cube, and the isolated point each constitute a stratum in the 
fourth and final layer of the regular stratification of S. 0 
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Example 3.7 Consider the semi-linear set 

S=((z,y,z)~(3z-y>2A\>lA~+221/<lO)A 
+53Ay>2Am>2/) 

$15 9 < 3 A m = 3) 

in the plane, shown in Figure 4, which consists of an opon 
triangle, out of which a closed triangle and a closed line 
segment have been cut out. 

A 

Figure 4: The semi-linear set of Example 3.7. 

Each point of S is regular, whence S itself is the only 
regular stratum in the regular stratification of S. cl 

4 Key lemma 

To obtain the results announced earlier, we define the fol- 
lowing property for point sets, called Property SL: 

Definition 4.1 Let S E R”. We say that S satisfies Prop- 
erty SL if for every point p’ of the topological closure 3 of S, 
there exists a neighborhood V of p’ such that, for euem point 
dof v, 

1. if a is in S, then all points on the open line segment 
between p’ and 4’ are also in S; and 

2. if 4’ is not in S, then none of the points on the open 
line segment between p’ and { is in S. cl 

We claim that an R-semi-algebraic set is R-semi-linear 
if and only if it has Property SL. Obviously, each R-somi- 
linear set satisfies Property SL. Before proving the converse, 
we first give an example illustrating that non-R-semi-linear 
sets do not have Property SL. 

Fz;Ae 4.2 Consider SI = ((z, y) 1 a: 2 0 A y 2 0 A 
= 4) (Frgure 5 left) and S2 = {(z,~) 1 0 C a C 

3 A 0 _< y 5 3 A z2 + yd # 4) (Figure 5, right). Theset 5 
is a quarter circle, and the set SZ is a square with a quarter 
circle cut out. Both are non-semi-linear semi-algebraic sets. 
The set Sr fails Property SL, since no open line segment 
connecting two different points of 5’1 is contained within Sr. 
The set Se fails Property SL, since each open line segment 
connecting two different points of the cut-out quarter circla 
meets S2. Observe that t&e cut-out quarter circle belongs 
to the topological closure Se of Se. 0 

We now prove our key lemma. The proof technique uses 
regular decomposition and is of interest in its own right. 

Proposition 4.3 Let S be an R-semi-algebraic set. The 
set S is R-semi-linear if and only if it has Property SL. 

Proof. We provide a rough sketch of the proof of the “if.” 
First, we show that the class of R-semi-algebraic sets 

satisfying Property SL is closed under finite union and in- 
tersection, difference, and topological closure. Next, we con- 
sider the strata of the first regular layer of S, say 5’1,. . . , Sr. 



Figure 5: The non-semi-linear semi-algebraic sets of Exam- 
ple 4.2. 

It is shown that Sr, . . . ,Sr are open with respect to their 
a&e supports4 and satisfy Property SL. As a consequence, 
S - ULr Si satisfies Property SL, whence the same reason- 
ing can be reiterated on all subsequent regular layers. Thus, 
each regular stratum of S is open with respect to its a&e 
support and satisfies Property SL. To prove Proposition 4.3, 
it suffices to show that each regular stratum individually is 
R-semi-linear. 

Thus, let SJ be a stratum in theregular stratification 
of S. Since the topological closure 5’1 of Sr is an-R-semi- 
algebraic set satisfying Property SL, so is &Sl = St - St=. 
Thus we can repeat the above reasoning on a$. Let To = Sr 
and let 2’1 , . . . , Td be the decomposition of aSr obtained. 
Each T;, 0 5 i <_ s, is open with respect to its afiine sup- 
port, say pi. Each Ai is the intersection of hyperplanes 
Hi’, . . . . Ht,,O<t:<n. EachhyperplaneHj,O<i<s, 
1 < j 5 ti, partitions R” into two open half-spaces and 
th& separating hyperplane, all three of which are obviously 
R-semi-linear. Of all these partitions, we now consider the 
coarsest common refinement. The classes of this Iast par- 
tition are finite intersections of classes of the original par- 
titions, and are therefore also R-semi-linear. Finally, it is 
shown that Sl is the (finite) union of all the classes with 
which it has a non-empty intersection, whence 5’1 is also 
R-semi-linear. 0 

We illustrate the proof of Proposition 4.3. 

Example 4.4 In the first paragraph of the proof of Propo- 
sition 4.3, a regular stratification of the set S under consider- 
ation is obtained. This process has already been illustrated 
in Examples 3.3, 3.6, and 3.7. Then, each stratum is con- 
sidered separately in the second paragraph of the proof. 

To illustrate the second paragraph of the proof, we con- 
sider again Example 3.7, since, in this example, the set S 
coincides with its only regular stratum. 

In the next stage of the proof, we consider dS = 3 - S, 
which is shown in Figure 6. 

Figure 6: The set a.9 of Example 4.4.. 

When this figure is decomposed, the resulting regular 
stratification consists of the 7 special points and the 8 line 

‘Let S C R”. The affine support of S is the smallest a&e variety 
of EL” cont&ing S. 

%ere, &?I denotes the topological boundary of St with respect to 
its affine support. 

segments connecting them. Thus, the sequence To, Tl , . . . , Td 
in the proof of Proposition 4.3 consists of S itself, 8 line seg- 
ments and 7 points, 16 point sets in total. The respective 
a&e supports of these 16 sets are the entire plane, sup- 
porting S, the lines supporting the 8 line segments, and the 
7 points, supporting themselves. According to the proof of 
Proposition 4.3, all 16 point sets under consideration here 
are open in their respective afiine supports. Now, each of 
the 16 affine supports is an intersection of OJ, or more hy- 
perplanes, which, in the two-dimensional plane, are lines. 
Indeed, the entire plane is the empty intersection of lines 
and a point is the intersection of two non-parallel lines. If 
we describe the 7 points by the afilne supports of the line 
segments that meet in these points, then Figure 7, shows 
all the lines involved. These lines, together with the open 
half-planes they define, induce a partition of the entire plain, 
consisting of 12 points, 31 open line segments or half-lines, 
and 20 open regions. In Figure 7, these regions have been 
identified by numbers. By construction, all 63 members of 
the induced partition are semi-linear sets. 

Figure 7: The lines needed to describe the a8lne supports 
of the regular strata in the decomposition of the set aS of 
Example 4.4. The numbers indicate the open regions in the 
induced partition. 

The closing argument of the proof of Proposition 4.3 is 
that S is the union of some members of the induced parti- 
tion, and, thereby, also semi-linear. Indeed do we see in this 
example that S is the union of the open regions 13,14, 15, 
17,18, and 19, eIl of which are filled polygons, and the open 
intervals separating them. 0 

5 Decidability results 

Proposition 4.3 can be sharpened to our first main result: 

Theorem 5.1 Let S be a semi-algebraic set. The set S is 
A-semi-kxar if and only if it has Property SL. ikforeouer, 

A-semi-linearity of semi-algebraic sets is decidable. 

The second statement in Theorem 5.1 follows from the 
first, because the corresponding Boolean decision query of 
type [O,n] -+ [0, O] can easily be expressed in FO + poly 
using Property SL, and the validity of real sentences in R is 
decidable. 

Unfortunately, the truth of the first statement is not re- 
vealed by the proof of Proposition 4.3, because Definition 3.2 
of regular point does not specify anything regarding the type 
of the coefficients in the polynomials involved. Rather, we 
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shall derive the first statement of Theorem 5.1 from Propo- 
sition 4.3 using the following two lemmas. The second one is 
stated more strongly than strictly required, in anticipation 
of the proof of Theorem 5.6. 

Lemma 5.2 Every bounded R-semGlinear semi-algebraic 
set is A-semi-linear. 

Proof. We provide a rough sketch of the proof. 
Let S be a bounded R-semi-linear semi-algebraic set. It 

suffices to show that each regular stratum Sl of S is A- 
semi-linear. Therefore, let TO,. . . , TB be as in the proof of 
Proposition 4.3. For each Ti, 1 ,< i < s, let Ai be the 
a&e support of Ti. We show byinduct%n on dim(T;), the 
dimension of Ti, that each Ti has the following Property AC: 

Ai, the afline support of Ti, is the intersection 
of hyperplanes which can be described by linear 
equations with algebraic coefficients. 

The A-semi-linearity of 5’1 then follows as in the last part of 
the proof of Proposition 4.3. 

Now consider the following procedure. Let S’ be the first 
layer in the regular stratification of S. By Proposition 3.5, 
this layer can be computed from S in FO + linear-Z. Since 
S is semi-algebraic, so are S’, S - S’, and p - 5”. Both 
S-S’andS - S’ have strictly lower dimension than S. 
Repeat this procedure on S- 5” and p - S’ independently, 
and let S” be the union of all the O-dimensional layers finally 
obtained. Thus S” is semi-algebraic. If dim(Ti) = 0, i.e., 
Ti consists of a single point, then it can be seen that Ti c 
S” (details omitted). Therefore, Ti is also semi-algebraic, 
whence it can be described by a real formula. By the Tarski- 
Seidenberg quantifier elimination theorem [21, 221, it fol- 
lows that the coordinates of that point can be described 
using univariate polynomials. By definition, it follows that 
these coordinates must be algebraic, whence Ti = Ai satis- 
fies Property AC. 

Now assume dim(Ti) = cl, 15 d 5 n. Let 

J={jllsj<n A dim(Tj)<d-lh 
Tj is in the boundary of Ti). 

Assume, for all j in J, that Tj has Property AC. Since S is 
bounded, gl and Ti are also bounded. Hence, Ai, the alline 
support of Ti, is also the a&e support of the boundary of 
Ti. Since the boundary of Ti equals UjaJTj, Ai is also the 
afllne support of UjeJ Aj. NOW, it readily follows from the 
inductive hypothesis that Ti has property AC. Cl 

Lemma 5.3 For each R-semi-linear semdalgebraic set S, 
there exists a positive integer d that can e&tively be com- 
puted such that, for the open filled cube C(6,d) with center 
a and edges 2d, 

1. S is A-semi-linear if and only ifSnC(o’, d) is A-semi- 
linear, and 

2, S is Z-semi-linear if and only if Sn C(6, a) is Z-semi- 
linear. 

Proof. We provide a rough sketch of the proof. 
We require that, for each ai-line variety A which is the 

support of some regular stratum, there is a (possibly, but 
not necessarily, different) stratum in the same layer of the 
stratification which has A as its a.fFine support and which 
has a non-empty intersection with C(8,d). The set D of 

all real numbers d satis@ng this requirement is non-empty, 
since there are only a finite number of afllne varieties to 
be considered. Hence, D is a half line. Moreover, the query 
returning D on input S can be described in FOSpoly (details 
omitted). As a consequence, membership of D is decidable, 
By enumeration, one can effectively find the smallest into&or 
dinD. 

Since C(@ d) is Z-semi-linear, SrX’(8, d) is A-semi-linear 
(Z-semi-linear) whenever S is A-semi-linear (Z-semi-linoar). 

By construction, all the linear polynomials needed to dc- 
scribe S as in the proof of Proposition 4.3 are also needod 
to describe Sn C(8, d). Thus, conversely, S is A-semi-linoar 
(Z-semi-linear) whenever S n C(&d) is A-semi-linear (Z- 
semi-linear). cl 

From Lemmas 5.2 and 5.3, it follows that every R-semi- 
linear semi-algebraic set is A-semi-linear. Theorem 5.1 is 
now readily deduced from Proposition 4.3. 

By Theorem 5.1, A-semi-linearity of a semi-algebraic sot 
is decidable. In view of the reasons for which semi-linear sots 
are most often preferred over general semi-algebraic sots, 
Z-semi-linearity is a far more interesting property than A- 
semi-linearity. Therefore, we next proceed to show that Z- 
semi-linearity of a semi-algebraic set is decidable, too. 

Lemma 5.4 Suppose an algebraic number is given by a uni- 
variate polynomial equation with integer coefjicienta and an 
open interval with rational endpoints which contains that al- 
gebraic number as only solution of the equation. It is ddd- 
able whether that algebraic number is rational. 

Proof. It is an easily provable consequence of Eisenstein’s 
irreducibility criterion that any rational root of a polynomial 
a,&“+-.--+ac can be written as r/s with r and s relatively 
prime, rlao, and sla,,. (This result is called the rational 
root theorem in [19].) Hence, there are only a finite number 
of rational numbers for which the conditions defining the 
algebraic number have to be verified. CL 

Lemma 5.5 It is decidable whether a bounded semi-alge= 
braic set defined by a real formula ia Z-semi-linear. 

Proof. We provide a rough sketch of the proof. 
Let S be a bounded semi-algebraic set. First, we verify 

whether S satisfies Property SL. If S does not satisfy prop- 
erty SL, it is not R-semi-linear (Proposition 4.3), whence 
certainly not Z-semi-linear; else it is A-semi-linear (The- 
orem 5.1). In the latter case, we perform the construc- 
tion explained in the proof of Lemma 5.2, leading to a O- 
dimensional set S”. All the steps of this construction can 
be expressed in FO + linear-Z. 

Thus, if S is Z-semi-linear, so is S”, whence all the points 
constituting S must have rational coordinates. Conversely, 
if all the points constituting S” have rational coordinates, 
an inductive proof along the lines of the proof of Lemma 52 
can be given to show that all regular strata of S are Z-somi- 
linear, whence S is. 

By Lemma 5.4, it is decidable whether a semi-algebraic 
singleton set consists of a point with rational coordinates, 0 

Theorem 5.6 It is decidable whether a semi-algebraic set 
defined by a real formula ia Z-semi-linear. 

Proof. Let S be a semi-algebraic set. First, we verify 
whether S satisfies Property SL. If S does not satisfy prop- 
erty SL, it is not R-semi-linear (Proposition 4.3), whence 



certainly not, Z-semi-linear; else it is A-semi-linear (Theo- 
rem 5.1). In the latter case, we compute a open full cube 
C&d) with center 6 and edges 2d such that S is Z-semi- 
linear if and only if SnC(c, d) is Z-semi-linear (Lemma 5.3). 
By Lemma 5.5, it, is decidable whether SnC(& d) is Z-semi- 
linear. 0 

However, the Boolean query deciding the Z-semi-linearity 
of a semi-algebraic set is not expressible in FO + poly. 

Theorem 5.7 !E+e Booleun query of type [0, n] + [O, 0] de- 
ciding the Z-semi-linearity of a semi-algebraic set is not ex- 
pressible in FO + poly. 

Proof. Assume to the contrary that there exists a sen- 
tence u in the first-order language (5, S, +, X, 0, l), with S 
an n-dimensional predicate, such that, for each possible in- 
terpretation of S as a semi-algebraic set, u is true if and 
only if this interpretation is a Z-semi-linear set of Rn. 

Now, let 21,. . . , zc,, be real variables not occurring in u, 
and transform u into a real formula cp(~, . . . ,z,) by re- 
placing each subformula S(yl, . . . , yn) in u, with ~1,. . . , yn 
bound variables, by the subformula (~1 = yl A . . . A z,, = 
y,,). Hence ‘p&l,. . . , zc,) evaluates to true if and only if the 
evaluation of (21,. . . , zc,) is a point with rational coordi- 
nates. Now, let $(z) be the real formula cp(z,. . . ,z). Then 
{z 1 $(z)) is the set, of all rational numbers, which is not 
semi-algebraic, a contradiction. 0 

6 Discussion 

We first discuss some philosophical consequences of our re- 
sults. 

A first, consequence of the results in the previous sec- 
tion is that, whenever a real formula ~(2) defines an A- 
semi-linear (a Z-semi-linear) set, an equivalent A-linear (Z- 
linear) formula can effectively be computed. Fist, verify 
Property SL to find out whether ~(3) defines an A-semi- 
linear set (Theorem 5.1). If necessary, verify whether cp(z) 
defines a Z-semi-linear set, (Theorem 5.6). In the case of a 
positive answer, enumerate all A-linear (Z-linear) formulae 
g(z) and decide whether the real sentence (Vz)((p(z) @ 
e(s)) is true in R. Because cp(z) is already known to define 
an A-linear (a Z-linear) set, such a formula $(z) must be 
found. 

A second consequence of the results in the previous sec- 
tion concerns A-linear and Z-linear queries. We recall the 
following result, proved by three of the present authors [24]: 

Theorem 6.1 It is undecidable whether an FO +poly-ez- 
pression induces an A-linear (a Z-linear) query. 

Our results show, however, that there exists a syntacti- 
cally definable query language which expresses precisely the 
A-linear (Z-linear) queries expressible in FO + poly. Syn- 
tactically, this query language is just FO + poly. However, 
another semantics is given to FO + poly expressions. This 
semantics is obtained by modifying the standard output of 
FO + poly expression applied to some input database as 
follows: all semi-algebraic sets represented in this standard 
output that are not A-semi-linear (Z-semi-linear) are re- 
placed by the empty set. With respect to the A-linear (Z- 
linear) queries expressible in FO + poly, the language thus 
obtained is sound (it, returns linear outputs on linear inputs) 
as well as complete (it does not modify the standard seman- 
tics of linear FO + poly queries). Notice that this result 

does not contradict Theorem 6.1, in the same way that the 
existence of a syntactically definable query language which 
is sound and complete for the domain-preserving calculus’ 
queries in the relational model does not contradict the un- 
decidabiity of domain preservation for arbitrary calculus 
queries. - 

For A-linear queries, the above new semantics of an 
FO + ~olv exoression can be expressed by an FO + poly ex- 
pressi& & thk standard way. Ai a conse&ence, there exists 

a recursively enumerable subset of FO+poly which expresses 
precisely the A-linear queries expressible in FO -I- poly, ac- 

. cording to the standard semantics of FO + poly. Whether 
a similar result holds for the Z-linear queries is still open. 
(Because of Theorem 5.7, the argument used for A-linear 
queries fails for Z-linear queries). 

Finally, the asymmetry between both decidability results 
(A-semi-linearity being expressible in FO + poly, and Z- 
semi-linearity being not expressible in FO + poly) and some 
of their consequences emphasize the necessity of properly 
distinguishing these two notions of semi-linearity. 

7 Practical relevance 

Of course, the query language complete for the A-linear (Z- 
linear) queries described in the previous section, is very ar- 
tificial and not practically useful. Nevertheless, our results 
show that a A-linear-complete (Z-linear-complete) query 
language exists, and, therefore, show that is reasonable to 
search for a more practical such language. 

Furthermore, the techniques developed to derive our re- 
sults also have more immediate ramifications in that they 
can be used to show that certain Z-linear queries can be 
expressed in FO -!- linear-Z. 

For example, the proof of Lemma 5.2 contains a proce- 
dure that, given a bounded semi-algebraic set S, computes 
a set of points, called S”. Intuitively, these are the “key” 
points of S, from which S can be “reconstructed.” (As a 
matter of fact,, this is what happens in the remainder of 
the proof of Lemma 5.2.) Recently, other researchers have 
also considered these “special points;” Grumbach and Ku- 
per, e.g., call them significant points [14]. A special case is 
exhibited in the following example. 

Example 7.1 Corners of a polygon. 
Let, S be a closed filled polygon in the plane. Then 

(S-Beg(S))-Reg(S-Reg(S)) is the set of all comer points 
of this polygon. By our results, this set can be computed 
in FO + linear-Z. This technique can of course be general- 
ized to higher-dimensional simplices and higher-dimensional 
spaces. cl 

It must be noted, moreover, that not only the O-dimen- 
sional sets (i.e., the points) yielded by the procedure in the 
proof of Lemma 5.2 are of interest, but also, e.g., the l- 
dimensional sets. In computer graphics, the union of all this 
l-dimensional sets is called the wire frame of S [ll], which 
is used to render J-dimensional figures. A special case is 
exhibited in the following example. 

Example 7.2 Wire frame of a polyhedron. 
Let S be a closed iilled polyhedron in three-dimensional 

space. Then (S-Reg(S))-Reg(S-Reg(S)) is the wire frame 
of S. As in Example 7.1, the wire frame can be computed in 
FO + linear-Z. Again, the computation of wire frames can 
be generalized to higher-dimensional simplices and higher- 
dimensional spaces. _ cl 
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