
On the Analysis of Indexing Schemes

Joseph M. Hellerstein* Elias Koutsoupiast

Division of Computer Science Department of Computer Science

UC Berkeley, Berkeley, CA 94720 UCLA, Los Angeles, CA 90095

jmb@cs.berkeley.edu eliasOcs.ucla.edu

Christos H. Papadimitriou*

Division of Computer Science

UC Berkeley, Berkeley, GA 94720

cln-istosOcs.berkeley.edu

We consider the problem of indexing general database

workloads (combinations of data sets and sets of poten-

tial queries). We define a framework for measuring the

efficiency of an indexing scheme for a workload based on

two characterizations: storage redundancy (how many

times each item in the data set is stored), and access

overhead (how many times more blocks than necessary

does a query retrieve). Using this framework we present

some initial results, showing upper and lower bounds

and trade-offs between them in the case of multi-dimen-

sional range queries and set queries.

1 Introduction

The success and ubiquity of the relational data model

arguably owes much to the B-tree, the access method

breakthrough that accompanied it with superb timing

[2]. It seems likely that access methods will continue

to play an important role in, and largely determine the

viability of, the novel data models currently under in-

tense scrutiny in the database research community. The

B-tree is widely recognized to be an inadequate data

structure in many of the novel contexts, and no clear

successor has emerged (or is likely, in view of the diver-

sity of the applications and requirements). It is there-

fore important to develop general methodologies and

tools for the design of new indexing methods, as well as

mathematical tools and techniques for evaluating their

performance and pointing out their limitations.

*Supported by NASA Grant FDNAGW-5198.

tsupported by NSF grant CCR-9521606.

tsupported by the National Science Foundation.

Penn&ion to make digit&bard copies of all or part of this material for

personal or classroom use is granted witbout fee provided (hat the copies

ore not made or distributed for profit or commercial advantage, tbe copy-

right notice, the title of tire publication and its date oppeor, and notice is

given that copyright is by permission of tbe ACM, Inc. To copy otherwise,

to republish, to post on servers or to redistribute to lists, requires specific

permission andlor fee

PODS ’ 97 Tucson Arizona USA

Copyright 1997 ACM O-89791-910-6/97/05 ..%3.50

A systems approach to this “generalized indexing”

problem has been proposed and implemented [ll]. The

need for theoretical tools for the rigorous analysis of

indexing problems was one of the main conclusions of

that work. What seems to be needed is a kind of the-

o y of indexability, a mathematical methodology which,

in analogy with tractability, would evaluate rigorously

the power and limitations of indexing techniques in di-

verse contexts. What differentiates such a theoretical

approach to indexing from complexity theory and the

theory of in-memory data structures is its emphasis on

the secondary storage nature of indexing schemes, and

on the two aspects that determine their cost and feasi-

bility: storage utilization and disk accesses.

In this paper, we lay out a general framework for for-

mally evaluating the power-and limitations of indexing

schemes. We identify the salient features of an index-

ing problem, and define two simple metrics for judg-

ing the difficulty of the problem. Based on this frame-

work, we provide some initial results: lower bounds and

space/time tradeoffs for multidimensional range queries

and for set inclusion queries. One novelty of our results

is that they are stated exclusively in terms of a param-

eter B, the block size. This important technological pa-

rameter, which is usually ignored in the data structures

literature, is at center stage in our work. Interestingly,

the size of the instance does not enter the statements

of our results at all.

Related Work

There is extensive work on data structures (see, for ex-

ample, [16, 1, 29, 19]), which only occasionally focuses

on the external memory aspects of the problem. Work-

loads that can be optimized off-line have also been occa-

sionally considered in the data structure literature (see,

for example, [31, 12, 211). A survey of B-trees and their

variants appears in [4]; the variant in common use in

database systems is the B-l--tree, which stores all data in

the leaf nodes, and fits our model well. A variety of ex-

ternal memory multidimensional data structures exists,

249

I --

..--- -I-- -L - L-- --__. .

including both hash structures (see, for example, [20])

and tree structures (see, for example, [lo, 28, 24, 181).

The Generalized Search Tree (GiST) [ll] is an extensi-

ble data structure which simplifies the development of

tree-based indexing schemes.

Although our framework for studying indexability

is new, there are some previous results that fit into it

rather naturally. Analyses along the lines we are sug-

gesting here have been emerging in the past few years,

most notably in the work of the late Paris Kanellakis

and his collaborators [15, 23, 25, 27, 301. Most of this

work involves upper bounds, and is therefore mainly

concerned with the analysis of the searching aspect of

the problem. There are two exceptions. First, in a

recent version of [15] there is an argument (proof of

Lemma 2.7) that anticipates our Theorem 1, namely,

that the access overhead must be fi in the special

case in which the blocks are restricted to be rectangular.

Second, in the last section of [27], there is an interesting

lower bound, where it is shown (by extending a result

by Chazelle to the case of block accesses) that storage

redundancy logn/ loglogn is necessary if additive (as

opposed to our multiplicative) access overhead is to re-

main polynomial in $. The question of lower bounds

in multi-dimensional searching has been addressed in

[19], without, however, our emphasis on block accesses.

Lower bounds for multidimensional searching are also

studied in [26], where the bounds are derived in a model

involving binary trees with certain further restrictions;

the block size is considered in that paper as a function

of n, the number of points.

Finally, in the database literature there have been

analyses (worst case, expected case, or empirical) of

many access methods for multi-dimensional searching

(see, for example, [22, 7, 31). Our emphasis on the

two ratios (storage and access) as the salient perfor-

mance parameters of an indexing scheme reflects influ-

ences from the area of on-line algorithms [13].

2 Framework and Definitions

In this section, we set out a simple framework for defin-

ing an indexing problem, and for measuring the effi-

ciency of a particular indexing scheme for the problem.

2.1 Workload

Access methods must be evaluated in the context of a

particular workload. A workload consists of a finite sub-

set of some domain together with a set of queries. More

formally, a workload is a triple W = (D, I, Q), where D

is the domain (a set such as JRd together with methods

such as x-component, order, etc.), I is a finite subset of

the domain called an instance, and 8 = {Qr, . . . , Qq},

the set of queries, is a set of subsets of I.

For example, one of the workloads we consider ex-

tensively (the two-dimensional range queries) consists of

the domain lR2, the instance I = {(i, j) : 1 5 i, j, < n},

and the family of “range queries” &[a, b, c, d] = ((i, j) :

asisb,c<j_<d}, one for each quadruple (a, 6, c, d)

with 15 a 5 b 5 n, 15 c < d 5 n. Notice that this is a

family of workloads, with instances of increasing cardi-

nality, one for each n > 0. Another family of workloads

(the set inclusion queries) has as its domain, for each n,

all subsets of {1,2, . . . , n}, and for each subset I of the

domain, the set ofqueries & = {Qs : S C_ (1,2,. , . , n)},

whereQs=(TEI:TCS}.

The workload plays & indexability theory the role

played by languages in complexity theory: it is the unit

whose complexity must be characterized’.

2.2 Indexing Schemes

For each workload we have a space of possible inclex-

ing schemes, the analog of algorithms that decide the

language. Intuitively, an indexing scheme is simply a

collection of blocks, each block containing some large,

fixed number of objects (typically hundreds of objects

per block). The union of the blocks exhausts the in-

stance. Each query is answered by retrieving a set of

blocks whose union is a superset of the query.

Formally, an indexing scheme S for a workload W =

(D, I, Q) is a collection S = (Sr, Sz, . . . , S.,} of blocks,

where a block is a subset of exactly B elements of I. B

is a constant called the block size, assumed fixed for each

workload family, and large. In practice B is typically a

constant between one hundred and one thousand that

corresponds to a disk’s block size of 4 to 8 Kbytes,

2.3 Two Performance Measures

Given a workload and an indexing scheme, we iden-

tify two basic performance measures that seem to cap-

ture the two determining factors of the cost of indexing

schemes: storage and access costs.

The storage cost of an index can be expressed as the

ratio of the number of blocks used by the index, divided

by the number of blocks that are absolutely necessary

for storing the instance - the size of the instance di-

vided by B. More formally, we define the storage redun-

dancy of an indexing scheme as the maximum number

of blocks that contain an element of I. We also define

the average redundancy of the indexing scheme as the

average number of blocks that contain an element of I,

that is, sB&l.

The access cost for queries in an indexing scheme can

be defined by a similar ratio. Let Q be a query of 0.

‘More accurately, the analog of a language is a family of work-
loads, one for each cardinality of the insian& Such growing fam-
ilies of workloads allow us to focus on asymptotic onolysis and
ignore additive constants.

An ideal indexing scheme would require []Q]/B] blocks

to answer it. However, this is not in general possible.

The access overhead of the indexing scheme S for Q is

a measure of how far we are from the ideal situation: it

is the minimum number of blocks from S that cover Q,

divided by the ideal cost []Q]/B]. The access overhead

of the indexing scheme S on workload W = (0, I, 8) is

the maximum access overhead over all queries in 8.

Notice that the access overhead is never greater than

B, which is the worst case, achievable if we can cover a

large query by blocks containing only one relevant data

item each. Naturally, in one-dimensional range query

workloads, B-trees - as well as any access method that

partitions data items along the linear order - easily

achieve optimality (one) in both storage and access pa-

rameters (with an additive constant of one or two in

access overhead).

2.4 Notes on the Framework

Our approach suppresses important aspects of indexing,

such as the algorithms for determining the partition of

the instance into blocks (possibly with repetitions), as

well as the algorithms for determining, given a query,

the blocks in the index that cover it (e.g. hash lookups,

or traversal of a tree to its leaf level). Furthermore, we

ignore the storage and retrieval costs due to auxiliary

information such as “directories” or “internal nodes”.

These omissions are justified in three ways. First, we

are mostly interested in lower bounds, and therefore

we are free to disregard aspects of the complexity of

the problem. Second, these aspects do not seem to be

the source of design difficulties or of complexity - it

appears that good assignment of data items to blocks

tend to suggest efficient traversal algorithms, and to

have low storage overhead. And third, secondary stor-

age techniques such as buffer management mask and

absorb many of these auxiliary cost components.

Though our framework is simple, it captures the

essence of previous heuristic approaches taken for in-

dexing complex workloads. For example, a common

multidimensional index for database systems is the R-

tree [lo], which has redundancy 1. Three years after

the initial R-tree paper, the R+tree was proposed as

an improvement [28]; the main innovation of the R+

tree was (in our terms) to lower access overhead by in-

creasing storage redundancy. This intuition is mirrored

by the framework in this paper.2

As another example, many heuristic solutions for in-

dexing in non-traditional domains have proceeded by a

process of analogy: rather than designing indices for the

2The R+-tree has not proved popular, mostly because of the

apparent complexity of performing updates (insertions and dele-

tions) in the structure. This motivates a topic which we intend

to study in future work (Section 4): extending our results here to

consider dynamic aspects of the indexing problem.

non-traditional workloads, they have mapped the work-

loads into well-understood domains. Typically this is

done by mapping objects to points in an n-dimensional

space (e.g. based on a binary distance function), and

mapping ‘%imilarity” queries over the objects to range

queries or nearest-neighbor queries over the resulting

space [S]. A similar process of analogy motivates our

work: by defining a general framework for studying in-

dexability, we can analyze new workloads by showing

them to be isomorphic to well-understood workloads.

Of course this approach harks back to seminal tech-

niques in complexity theory as well.

As in complexity theory, one must have some basic

results in order to drive the analogy process. In the re

mainder of the paper we present initial results for two

canonical workloads: range queries in multidimensional

space, and inclusion queries over set objects. Multidi-

mensional range queries are quite natural to a variety

of applications, and hence well worth studying in their

own right. Set inclusion queries, as we shall see, repro

sent a worst-case scenario in terms of indexability, and

hence define the opposite end of the spectrum from the

simple B-tree workloads.

3 Lower Bounds and Trade-ofFs

Two-dimensional queries

We shall consider here the two-dimensional workload

with I = ((i, j) : 1 5 i, j, 5 n}, and the range queries

over this instance. We are interested in determining

the minimum possible access overhead when the redun-

dancy r is fixed.

Proposition 1 FOT each integer r, there is an index-

ing scheme S, for the &dimensional mnge queries with

redundancy T and access overhead 2Bk + 2.

Proof. The main idea for the indexing scheme S, is

that each query Q of x x y points will be covered by

disjoint blocks of S, that have “almost” the same aspect

ratio y/x with Q. The ideal situation is to have blocks

with aspect ratio y/x, so that the query Q is tiled niceIy

by these blocks; compare this with the worst case when

the query Q is “long and narrow” and it is covered by

“short and wide” blocks. Because of the restriction on

the redundancy T of the indexing scheme S,, it is not

possible to have blocks for each aspect ratio. However,

we can choose blocks so that any aspect ratio can be

approximated.

More precisely, for each i = 1,2,. _ ., T, the indexing

scheme S, contains all Bg x B v blocks that par-

tition I. The aspect ratios B*, for i = 1,2,. . ., T, of

these blocks are evenly distributed. It is immediate that

S, has redundancy T (maximum as well as average). It

suffices therefore to show that the access overhead is at

251

most 2B% + 2. Consider a query Q with Bf x B*

points, for some integer j. Clearly, the best coverage

of the query is by blocks that have almost the same as-

pect ratio, that is, by blocks of size B* x Bw

or by blocks of size Bw x Bar-:?’ . In both cases,

when the query is “aligned” with the blocks, it requires

B& blocks (either one row of B& blocks or one column

of Bh blocks). For non-aligned queries the number of

blocks needed to cover Q can be as high as 2Bh + 2;

to see this, consider the case where an aligned query is

satisfied by a row of B& blocks. If we shift this query

out of horizontal and vertical alignment, we need two

rows of blocks instead of one, and at one of the ends

we need an additional column of two blocks as well. It

is not difficult to show that these are the worst queries

for this indexing scheme. !

If the access overhead is Q, the above scheme has av-

erage and maximum redundancy P = @(log B/logo).

We conjecture that this is the best possible relation

between P and a. Indeed, in the remainder of this

section we prove that this is the case when the max-

imum redundancy is one. For the general case, we show

that the average - and therefore the maximum - re-

dundancy is R(log B/(a2 log a)). This establishes the

conjecture for the most interesting case, when a is a

fixed constant. It remains an interesting open prob-

lem to remove the factor a2 from the denominator of

the above bound. In particular, when the redundancy

T is a small constant, our lower bound implies a log-

arithmic lower bound a = n(dog B/ log log B) , while

the above construction guarantees a polynomial upper

bound, O(B&).

The case P = 1

We will show that up to a constant factor the above

indexing scheme is optimal when r = 1. The result

below was implicitly shown for the special case when

the blocks are restricted to be rectangular, in [15].

Theorem 1 Any indexing scheme of redundancy 1 for

Sdimensional range queries has access overhead at least

Bi. For the d-dimensional case, the lower bound is
g-5.

Sketch of proof. We only sketch the Zdimensional

case, the general case being a straightforward general-

ization.

We will use only the 1 x B and B x 1 queries. Con-

sider a block S E S that intersects x horizontal lines and

y vertical lines (by a ‘line” we mean a set of data points

of the form ((1, j), (2, j), . . ., (n, j)} or {(i, l), (i,2), . . .,

(i, n)}. Since we must have xy 2 B, we conclude that

x + y is at least 2B3. Therefore, the block intersects

at least 2B* of the above queries. The number of pairs

of intersecting blocks and queries is no less than 2B*

252

Therefore, every t < k must satisfy the inequality art -

p(i) - 1 < 0. It immediately follows that if a posi-

tive integer t does not satisfy this inequality, then the

number k of subsets must be less than t. So, in order

to upper bound the number k of subsets, we need to

guarantee that the above inequality is not satisfied by

at least one positive integer. Obviously, the numbers t

that do not satisfy the inequality are between the roots

of the polynomial at -p(i) - 1. We can therefore guar-

antee that one of them is integer by requiring that the

two roots differ by more than 1. Since the roots of the

polynomial are

a + p/2 f & + Pm2 - 2p

P
,

times the total number of blocks, which is 2Btn2/B.

Since there are 2n2/B queries in total in the collection

being considered, the average number of intersecting

blocks per query is B+ . When the maximum redun-

dancy is r = 1, all these blocks are needed to cover the

query. Notice that we showed not only that there exists

a query with access overhead B*, but that a random

query (from the above set) has this access overhead. !

The redundant case

To prove a lower bound for the case in which redun-

dancy is allowed to be greater than one, we will use an

interesting result from extremal set theory. A similar

result is given as exercise 13.3 in [17], attributed to I<,

Corr&li; it is also apparently known in coding theory as

Johnson’s Lemma (Z. Furedi, private communication).

We give a simple proof below:

Lemma 1 Let A be a finite set and Sl, 5’2,. . . , Sk be

subsets of A, each of size at least CXIAI, such that the

intersection of any two of them is at most /3IAl. If p <

(Y~/(~-cY) then th e number of subsets k is at most a//3.

Proof. Since Sr, Ss, . . . , St, t 5 k, are subsets of A,

their union Sr U 5’2 U . . . U St is also a subset of A and

therefore
t

It follows that

j=l

By the assumptions about the sizes of the subsets and

their pairwise intersection, the last inequality implies

that
‘A\

tcxIAl -
0
; PI4 5 I4

it is easy to verify that they differ by more than 1 when

p < o2/(2 - a).
But then, the number of subsets is at most equal to

the minimum root of the above polynomial. Thus

k< cr+p/2-&+P/2)2-w

P

This last inequality implies that k 5 CY/~. u

Note that the hypotheses of the above lemmacannot

be improved by a factor more than 2, because when

p 2 02, the number of possible subsets is unbounded,

i.e., it is an increasing function of IAI.

We will use the above lemma to give lower bound

of the average access overhead a as a function of the

redundancy T. But first, we need to prove the following

crucial lemma.

Lemma 2 Let a be the access overhead. For each x

and each query Q of dimensions x x (B/x), there is a

block S and a subset 0 of Q f~ S such that the points

of 0 belong to exactly x/a vertical lines and each one

of these vertical lines contains exactly B/(ax) points of

0.

Proof.

Consider a query Q of B points and dimensions x x

(B/x), for some x. Let L be a vertical line of Q. Since

the access overhead is a and Q has size B, Q, and conse-

quently L, is covered by at most a blocks. One of these

blocks, SL, must contain at least a fraction of l/a of the

points of L, that is, 5’~ must contain at least B/(ax)

points of L. Hence, with each vertical line L of Q, we

can associate a block St that covers at least B/(ax)

points of the line. Since at most a blocks cover B, there

is a block S that is associated with at least x/a verti-

cal lines. Therefore, Q n S contains x/a vertical lines

and each one of these vertical lines contains (at least)

B/(ax) points. !

For each query Q, there may be many possible sub-

sets Q, but we can fix once and for all one of them; we

will denote it by Q.

We now have all the necessary ingredients for the

main result of this subsection:

Theorem 2 The access overhead a and the redundancy

T must satisfy T - a2 log(2a2) 2 $ log B.

Proof. Let c 1 2 be a parameter to be fixed later.

For each j = 0, 1,, log, B, we Fan partition the n x n

space into queries Qi, Q?2, . . . , Q$,B of dimensions ci x

B/d. We will concentrate on the set of queries a, for

i=1,2 ,..., n2/Bandj=0,1 ,..., lo&B. Wewantto

show that “many” blocks are needed to cover all queries

a. Instead of arguing directly about the queries a, we

will argue about their subsets a. By Lemma 2, each

such subset belongs entirely into some block. It suffices

therefore to show that many blocks are required to have

all G’s as subsets. To do this, we show that no block

can contain many sets a.

Fix a block S and consider all e’s that are subsets

of S. We will use Lemma 1 to show that the number of

a’s that are subsets of S is small. Since by Lemma 2

each such subset has B/(xa) lines and each line has x/a

points, it follows all subsets have B/a2 points, and we

only need to upper bound the maximum size of their

pairwise intersection. We claim that this is at most

5. To see this, notice first that for all distinct i,i’:

I@ n @,I = 0, because @ and Q$ are members of a

partition of the whole space. Furthermore, when j < j’:

[a n @:I 5 3, because Lemma 2 assures us that a

has d/a vertical lines and every vertical line of C$ has

3 points.

Hence, we can apply Lemma 1 with cr = 3 and

P = 3. We can now fix the parameter c = 2a2, so that

the hypotheses of Lemma 1 are satisfied. Therefore, the

number of q’s that are subsets of block S is at most

a/p = 2a2.

There are g (1 + log, B) subsets @, in total. Each

block includes at most 2a2 of them. Thus, there are
at le& nll+log, blocks. It follows that the average

redundanzy iz> .w 2 w = 5=jz. !

An implicit assumption in the above calculations

is that n is sufficiently large: R(B2) (Bd for the d-

dimensional case). Furthermore, we assumed that cer-

tain quantities, such as log, B, are integers. It is easy

to see that this assumption does not affect the results

by more than a small constant factor when B is a large

constant.

Set workloads

Let us now concentrate on workloads in which the do-

main is the powerset of (1,2,. . . , n), and we have in-

clusion queries. We show that these workloads are far

worse than 2-dimensional queries; in fact, they have

worst-case access overhead regardless of the redundancy.

Theorem 3 FOT each redundancy T , there exists a set

inclusion workload such that the access overhead is B.

Proof. Let n be an integer larger than rB2 and con-

sider a workload where I consists of all singletons {l},

(21 , . . . , {n} and each query is a subset of {1,2,. . . , n}

that has exactly B elements. We claim that the access

overhead is B. To see this notice that each element can

be in the same block with at most rB other elements.

Therefore, there are at least n/(rB) 1 B elements such

that no two of them belong to the same block. So, a

query of B such elements cannot be covered by less than

B blocks. •I

253

It is interesting to note that the number of queries

involved in the proof of Theorem 3 is exponential in the

size of the instance I. In contrast, the number of range

queries is polynomial in the size of the instance I, with

the dimension appearing in the exponent of the polyno-

mial. It is hardly surprising that the trade-off between

redundancy and access overhead is, in general, worse

for workloads with a large number of queries. However,

it is easy to see that there are workloads with expo-

nential number of queries that have optimal trade-off.

Consider, for example, the workload where the queries

are unions of disjoint sets Sr, SZ, . . . , Sk, each of size B,

and I = U$‘i. Then the indexing scheme with blocks

Sl,S2,... ,Sk has redundancy r = 1, access overhead

a = 1, and the number of queries is CI = 2%. On the

other hand, notice that the instance I of a workload

may have elements that do not appear in any query

and consequently there are workloads with small num-

ber of queries (compared to the size of the instance) and

worst trade-off.

4 Discussion and open problems

We believe that our framework will result in a useful

theory of indexability and we provide here a detailed

research program towards such a theory. This program

spans the following directions:

Range queries. In this work, we consider mainly 2-

dimensional workloads. It seems that there is space for

improvement in the trade-off of Theorem 2, for large

access overhead a; we conjecture that the correct trade-

off is r 1 e. It is also useful to extend the results to

2-dimensional workloads that are not restricted to the

lattice. It seems possible that better lower bounds can

be shown for this case.

For higher dimensions the problem becomes quali-

tatively different. Theorem 1 of this paper provides a

lower bound for the non-redundant case for lattice d-

dimensional workloads. It is open whether a matching

upper bound is achievable, even for small d 2 3. Of

course, the more general problem of characterizing the

trade-off for the non-redundant case is more important.

One possible criticism of our lower bounds could be

that they occur at range queries that are “long and

narrow,” extreme in their aspect ratio. It seems that

our results can be extended to the case of queries with

aspect ratio A, by replacing B with A in the lower and

upper bound expressions. It will be also very interesting

to come up with upper bounds for these types of queries.

Set inclusion workloads. The type of set inclusion

queries that we consider here is too general and there-

fore the lower bound of Theorem 3 is only slightly infor-

mative. An interesting direction for future research is

to consider set inclusion workloads with restricted type

of queries. A natural way to do this is either to sim-

ply restrict the number of queries or to consider queries

where each element appears in a bounded number of

them.

In fact, any workload can be mapped to a set in-

clusion workload with restricted set of queries. In this

sense, the class of set workloads is universal. It will be

therefore very interesting to map the workloads of im-

portant indexing problems (such as range queries, simi-

larity queries, k-nearest neighbors queries, and k-closest

pairs queries) to set workloads and seek hidden common

characteristics.

As with any theory of computational limitations, our

results may help refocus research in indexing towards

directions such as formally understanding the (statisti-

cal, geometric, or other) properties of workloads which

empirically appear to defy our lower bounds. The frac-

tal dimension has been mentioned as a parameter with

some explanatory power in this regard [7, 31; however,

this does not address the impact of the set of queries

on the performance of indexing schemes.

Dynamic and on-line workloads. In this work, we

consider only static workloads. In practice, however,

the most important type of workloads are dynamic, i.e.,

elements are inserted or deleted from the instance I and

the set 8 of queries changes respectively. It is an in-

teresting open problem to extend our framework to the

dynamic case.

In practice also, the set of possible queries is not

completely known in advance. Consider an indexing

scheme that is allowed to be re-organized in response

to queries. The goal is to minimize the sum of the

m-organization cost and the access cost. This on-line

problem seems to capture the essence of many practical

indexing problems and it will be very interesting to seek

competitive algorithms for it 1131.

Complexity of indexing schemes. Our framework sup-

presses important aspects of indexing by focusing on

the trade-off between redundancy and access overhead.

However, it may also help us to refocus our research on

the complexity of indexability. More precisely, it allows

to separate the two sources of complexity of indexing

schemes. The first one is the complexity of designing

an indexing scheme: Given a workload, find a set of

blocks with a given redundancy that have minimum ac-

cess overhead. The second one is the time and, perhaps

more importantly, the space complexity of answering a

query: Given a set of blocks and a query, find a mini-

mum set of blocks (or a set of Q blocks) that covers the

query.

A possible approach to reduce the complexity of in-

dexing schemes is to use randomization. Consider for

example a random indexing scheme, i.e, the set of blocks

are drawn randomly from a given distribution. For such

a scheme we are interested in the expected redundancy

and the expected access ratio. Or, we can fix the redun-

dancy and ask for the expected access overhead. The

main advantage of using randomized indexing schemes

is that the complexity of designing them may be sub-

stantially lower than that of designing a deterministic

indexing scheme. Similarly, it may sometimes be easier

to show that a randomized indexing scheme has a good

trade-off.

There is also an interesting direction for extending

our models and results, motivated by some “new com-

putational paradigms”. One can imagine a situation

where queries are %zzy; and need not be answered

exactly. One might have a probabilistic distribution of

queries, instead of a set, while each query is a weighted

subset of the dataset, with weights representing rele-

vance. We are interested in efficient access methods

that return a large portion of the weight of each query,

with high probability.

Varying size B of blocks. Our model of block size

presupposes that all items of a domain have the same

storage requirements. This is clearly a simplification

in the case of set workloads, and indeed even in the

case of simpler workloads such as those of the B-tree,

which typically use “key compression” schemes when

possible [4]. Even if all items require the same storage,

most structures allow some empty space in the blocks.

For most index structures, blocks are required to have

between B/2 and B items.

An immediate extension of our work is to consider

workloads where each element of the domain has a an

associate weight (size), and the sum of weights in each

block is bounded by some constant B. This gives rise

to interesting weighted versions even for the problems

studied in this paper.

Acknowledgments

The authors wish to thank the reviewers for their feed-

back.

References

[l] A. V. Aho, J. E. Hopcroft, J. D. Ullman. Data

Structures and Algorithms. Addison Wesley, 1983.

[2] R. Bayer and C. McCreight. Organization and

Maintenance of Large Ordered Indexes. Acta In-

formatica 1(3):173-189, 1972.

[3] A. Belussi and C. Faloutsos. Estimating the Se-

lectivity of Spatial Queries Using the ‘Correlation’

Fractal Dimension. In PTOC. dlst Intemata’onal

Conference on Very Large Data Bases, pages 299-

310, Zurich, September 1995.

[4] D. Comer. The Ubiquitous B-Tree. Computing

Surveys, 11(2):121-137, June 1979.

PI

PI

171

PI

PI

PO1

Pll

P21

[I31

P4

[I51

R. A. Finkel and J. L. Bentley. Quad-Trees: A

Data Structure For Retrieval On Composite Keys.

Acta Informatica, 4(1):1-g, 1974.

C. Faloutsos. Searching Multimedia Databases By

Content. Kluwer Academic, 1996.

C. Faloutsos and I. Kamel. Beyond Uniformity

and Independence: Analysis of R-trees Using the

Concept of Fractal Dimension. In PTOC. 13th ACM

SIGACT-SIGMOD-SIGART Symposium on Prin-

ciples of Database Systems, pages 4-13, Minneapo-

lis, May 1994.

C. Faloutsos and V. Gaede. Analysis of n-

Dimensional Quadtrees using the Hausdorff Frac-

tal Dimension. In Proc. ,%!nd International Confer-

ence on Ve y Large Data Bases, Mombai(Bombay),

pages 40-50, September 1996.

C. Faloutsos, Y. Matias and A. Silberschatz. Mod-

eling Skewed Distribution Using Multifractals and

the ‘80-20’ Law. In Proc. 22nd International

Conference on Very Large Data Bases, Mom-

bai(Bombay), pages 307-317, September 1996.

A. Guttman. R-Trees: A Dynamic Index Structure

For Spatial Searching. In Proc. ACM-SIGMOD

International Conference on Management of Data,

pages 47-57, Boston, June 1984.

J. M. Hellerstein, J. F. Naughton and A. Pfeffer.

Generalized Search Trees for Database Systems. In

Proc. 2lst International Conference on Very Large

Data Bases, Zurich, September 1995.

L. Hellerstein, P. Klein, R. Wilber. On the Time-

Space Complexity of Reachability Queries for Pre-

processed Graphs. Information Processing Letters,

25, pages 261-267,199O.

S. Irani, A. Karlin. Online Computation. Chapter

in Approximation Algorithms for NP-hard Prob-

lems, edited by D. Hochbaum. PWS Publishing,

pages 261-267,1996.

H. V. Jagadish. Linear Clustering of Objects With

Multiple Attributes. In Proc. ACM-SIGMOD In-

ternational Conference on Management of Data,

Atlantic City, May 1990, pages 332-342.

P. C. Kanellakis, S. Ramaswamy, D. E. Vengroff,

J. S. Vitter. Indexing for Data Models with Con-

straints and Classes. In Proe. 12th ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of

255

I --

Database Systems, pages 233-243, Washington,

D.C., May 1993. (Recent version available from the

www.)

[16] D. E. Knuth. The Art of Computer Programming;

Volume III: Searching and Sorting. Addison Wes-

ley, 1973.

[17] L. Lov&z. Combinatorial Problems and Exercises.

North-Holland, Amsterdam, 1979.

[18] D. B. Lomet and B. Salzberg. The hB-Tree: A

Multiattribute Indexing Method. ACM Tkansac-

tions on Database Systems, 15(4), December 1990.

[19] K. Mehlhorn. Data Structures and Algorithms

3: Multidimensional Searching and Computational

Geometry. Springer-Verlag, Berlin, 1984.

[20] J. Nievergelt, H. Hinterberger, and K. C. Sevcik.

The Grid File: An Adaptable, Symmetric Multikey

File Structure. ACM Transactions On Database

Systems, 9(1):38-71, 1984.

[21] M. H. Nodine, M. T. Goodrich, and J. S. Vitter.

Blocking for External Graph Searching. Algorith-

mica, 16 (2):181-214, August .1996.

[22] B.-U. Pagel, H.-W. Six, H. Toben, and P. Wid-

mayer. Towards an Analysis of Range Query Per-

formance in Spatial Data Structures. In Proc. 12th

ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems, pages 214-221,

Washington, D. C., May 1993.

[23] S. Ramaswamy, P. C. Kanellakis. OODB Indexing

by Class Division. In Proc. 12th ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of

Database Systems, pages 233-243,1993.

[24] J. T. Robinson. The k-D-B-Tree: A Search Struc-

ture for Large Multidimensional Dynamic Indexes.

In Proc. ACM-SIGMOD International Conference

on Management of Data, pages 10-18, Ann Arbor,

April/May 1981.

[25] S. Ramaswamy, S. Subramanian. Path Caching:

A Technique for Optimal External Searching.

In Proc. 13th ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems,

Minneapolis, 1994.

[26] M. H. M. Smid, M. H. Overmars. Maintaining

Range Trees in Secondary Memory. Part II: Lower

Bounds. Acta Informatica 27(5):453-480, 1990.

[27] S. Subramanian, S. Ramaswamy. The p-range

Tree: A Data Structure for Range Searching in Sec-

ondary Memory. Proc. 6th SODA, 1995.

[28] T. Sellis, N. Roussopoulos, and C. Faloutsos.

The R-i-Tree: A Dynamic Index For Multi-

Dimensional Objects. In Proc. 19th International

Conference on Very Large Data Bases, pages 607-

518, Brighton, September 1987.

[29] R. E. Tarjan. Data Structures and Network Algo-

rithms. SIAM, 1983.

[30] D. E. Vengroff, J. S. Vitter. Efficient 3-d Searching

in External Memory. Proc. 28th STOC, pages 191-

201,1996.

[31] A. C.-C. Yao. Should Tables Be Sorted? J,ACM

28, pages 625-628,198l.

256

