
0

Constraint Solving via Fractional Edge Covers1

Martin Grohe, RWTH Aachen University, Lehrstuhl für Informatik 7, Aachen, Germany,

grohe@informatik.rwth-aachen.de

Dániel Marx, Computer and Automation Research Institute, Hungarian Academy of Sciences (MTA

SZTAKI), Budapest, Hungary, dmarx@cs.bme.hu. 2

Many important combinatorial problems can be modeled as constraint satisfaction problems. Hence iden-

tifying polynomial-time solvable classes of constraint satisfaction problems has received a lot of attention.
In this paper, we are interested in structural properties that can make the problem tractable. So far, the

largest structural class that is known to be polynomial-time solvable is the class of bounded hypertree width
instances introduced by Gottlob et al. [2002]. Here we identify a new class of polynomial-time solvable in-

stances: those having bounded fractional edge cover number.

Combining hypertree width and fractional edge cover number, we then introduce the notion of fractional
hypertree width. We prove that constraint satisfaction problems with bounded fractional hypertree width

can be solved in polynomial time (provided that a the tree decomposition is given in the input). Together

with a recent approximation algorithm for finding such decompositions [Marx 2010a], it follows that bounded
fractional hypertree width is now the most general known structural property that guarantees polynomial-

time solvability.

Categories and Subject Descriptors: F.2 [Theory of Computing]: Analysis of Algorithms and Problem
Complexity; G.2.2 [Mathematics of Computing]: Discrete Mathematics—Graph Theory

General Terms: Algorithms

Additional Key Words and Phrases: constraint satisfaction, hypergraphs, hypertree width, fractional edge
covers

1. INTRODUCTION

Constraint satisfaction problems form a large class of combinatorial problems that contains
many important “real-world” problems. An instance of a constraint satisfaction problem
consists of a set V of variables, a domain D, and a set C of constraints. For example,
the domain may be {0, 1}, and the constraints may be the clauses of a 3-CNF-formula.
The objective is to assign values in D to the variables in such a way that all constraints
are satisfied. In general, constraint satisfaction problems are NP-hard; considerable efforts,
both practical and theoretical, have been made to identify tractable classes of constraint
satisfaction problems.

On the theoretical side, there are two main directions towards identifying polynomial-
time solvable classes of constraint satisfaction problems. One is to restrict the constraint
language, that is, the type of constraints that are allowed (see, for example, [Bulatov 2006;
Bulatov 2011; Bulatov et al. 2001; Feder and Vardi 1998; Jeavons et al. 1997; Schaefer 1978]).
Formally, the constraint language can be described as a set of relations on the domain. The
other direction is to restrict the structure induced by the constraints on the variables (see,
for example, [Cohen et al. 2008; Dalmau et al. 2002; Dechter and Pearl 1989; Freuder 1990;
Kolaitis and Vardi 1998; Grohe et al. 2001; Grohe 2007]). The present work goes into this
direction; our main contribution is the identification of a natural new class of structurally
tractable constraint satisfaction problems.

The hypergraph of an instance (V,D,C) has V as its vertex set and for every constraint
in C a hyperedge that consists of all variables occurring in the constraint. For a class H of

1An extended abstract of the paper appeared in the Proceedings of the seventeenth annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2006).
2Research supported by the European Research Council (ERC) grant “PARAMTIGHT: Parameterized
complexity and the search for tight complexity results,” reference 280152.

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

ar
X

iv
:1

71
1.

04
50

6v
1

 [
cs

.D
S]

 1
3

N
ov

 2
01

7

0:2 M. Grohe, D. Marx

hypergraphs, we let Csp(H) be the class of all instances whose hypergraph is contained inH.
The central question is for which classes H of hypergraphs the problem Csp(H) is tractable.
Most recently, this question has been studied in [Chen and Dalmau 2005; Cohen et al. 2008;
Marx 2011; Marx 2010b; Gottlob et al. 2005]. It is worth pointing out that the corresponding
question for the graphs (instead of hypergraphs) of instances, in which two variables are
incident if they appear together in a constraint, has been completely answered in [Grohe
2007; Grohe et al. 2001] (under the complexity theoretic assumption FPT 6= W[1]): For a
class G of graphs, the corresponding problem Csp(G) is in polynomial time if and only if G
has bounded tree width. This can be generalized to Csp(H) for classes H of hypergraphs of
bounded hyperedge size (that is, classes H for which max{|e| | ∃H = (V,E) ∈ H : e ∈ E}
exists). It follows easily from the results of [Grohe 2007; Grohe et al. 2001] that for all
classes H of bounded hyperedge size,

Csp(H) ∈ PTIME ⇐⇒ H has bounded tree width (1)

(under the assumption FPT 6= W[1]).
It is known that (1) does not generalize to arbitrary classes H of hypergraphs (we will

give a very simple counterexample in Section 2). The largest known family of classes of
hypergraphs for which Csp(H) is in PTIME consists of all classes of bounded hypertree
width [Gottlob et al. 2002; Gottlob et al. 2003; Gottlob et al. 2000]. Hypertree width is a
hypergraph invariant that generalizes acyclicity [Berge 1976; Fagin 1983; Yannakakis 1981].
It is a very robust invariant; up to a constant factor it coincides with a number of other
natural invariants that measure the global connectivity of a hypergraph [Adler et al. 2007].
On classes of bounded hyperedge size, bounded hypertree width coincides with bounded tree
width, but in general it does not. It has been asked in [Chen and Dalmau 2005; Cohen et al.
2008; Gottlob et al. 2005; Grohe 2007] whether there are classes H of unbounded hypertree
width such that Csp(H) ∈ PTIME. We give an affirmative answer to this question.

Our key result states that Csp(H) ∈ PTIME for all classes H of bounded fractional
edge cover number. A fractional edge cover of a hypergraph H = (V,E) is a mapping
x : E → [0,∞) such that

∑
e∈E,v∈e x(e) ≥ 1 for all v ∈ V . The number

∑
e∈E x(e) is the

weight of x. The fractional edge cover number ρ∗(H) of H is the minimum of the weights
of all fractional edge covers of H. It follows from standard linear programming results
that this minimum exists and is rational. Furthermore, it is easy to construct classes H
of hypergraphs that have bounded fractional edge cover number and unbounded hypertree
width (see Example 4.2).

We then start a more systematic investigation of the interaction between fractional covers
and hypertree width. We propose a new hypergraph invariant, the fractional hypertree width,
which generalizes both the hypertree width and fractional edge cover number in a natural
way. Fractional hypertree width is an interesting hybrid of the “continuous” fractional edge
cover number and the “discrete” hypertree width. We show that it has properties that are
similar to the nice properties of hypertree width. In particular, we give an approximative
game characterization of fractional hypertree width similar to the characterization of tree
width by the “cops and robber” game [Seymour and Thomas 1993]. Furthermore, we prove
that for classes H of bounded fractional hypertree width, the problem Csp(H) can be solved
in polynomial time provided that a fractional hypertree decomposition of the underlying
hypergraph is given together with the input instance. We do not know if for every fixed
k there is a polynomial-time algorithm for finding a fractional hypertree decomposition of
width k. However, a recent result [Marx 2010a] shows that we can find an approximate
decomposition whose width is bounded by a (cubic) function of the fractional hypertree
width. This is sufficient to show that Csp(H) is polynomial-time solvable for classes H of
bounded fractional hypertree width, even if no decomposition is given in the input. There-
fore, bounded fractional hypertree width is the so far most general hypergraph property that

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

Constraint Solving via Fractional Edge Covers 0:3

tree width

Bounded

edge cover number

Bounded fractional

hypertree width

Bounded

Bounded fractional hypertree width

Fig. 1. Hypergraph properties that make CSP polynomial-time solvable.

makes Csp(H) polynomial-time solvable. Note that this property is strictly more general
than bounded hypertree width and bounded fractional edge cover number (see Figure 1).

For classes H of hypergraphs of bounded fractional hypertree width, we also show that
all solutions of an instance of Csp(H) can be computed by a polynomial delay algorithm.
Closely related to the problem of computing all solutions of a Csp-instance is the problem
of evaluating a conjunctive query against a relational database. We show that conjunctive
queries whose underlying hypergraph is in H can be evaluated by a polynomial delay algo-
rithm as well. Finally, we look at the homomorphism problem and the embedding problem
for relational structures. The homomorphism problem is known to be equivalent to the CSP
[Feder and Vardi 1998] and hence can be solved in polynomial time if the left-hand side
structure has an underlying hypergraph in a class H of bounded fractional hypertree width.
This implies that the corresponding embedding problem, parameterized by the size of the
universe of the left-hand side structure, is fixed-parameter tractable. Recall that a problem
is fixed-parameter tractable (FPT) by some parameter k if the problem can be solved in time
f(k) · nO(1) for a computable function f depending only on k. In particular, if a problem is
polynomial-time solvable, then it is fixed-parameter tractable (with any parameter k).
Follow up work. Let us briefly discuss how the ideas presented in the conference version

of this paper [Grohe and Marx 2006] influenced later work. The conference version of this
paper posed as an open question whether for every fixed k there is a polynomial-time
algorithm that, given a hypergraph with fractional hypertree width k, finds a fractional
hypertree decomposition having width k or, at least, having width bounded by a function
of k. This question has been partially resolved by the algorithm of [Marx 2010a] that finds
a fractional hypertree decomposition of width O(k3) if a decomposition of width k exists.
This algorithm makes the results of the present paper stronger, as the polynomial-time
algorithms for CSPs with bounded fractional hypertree width no longer need to assume
that a decomposition is given in the input (see Section 4.3). The problem of finding a
decomposition of width exactly k, if such a decomposition exists, is still open. In the special
case of hypergraphs whose incidence graphs are planar, a constant-factor approximation
of fractional hypertree width can be found by exploiting the fact that for such graphs
fractional hypertree width and the tree width of the incidence graph can differ only by at
most a constant factor [Fomin et al. 2009].

A core combinatorial idea of the present paper is that Shearer’s Lemma gives an up-
per bound on the number of solutions of a CSP instance and we use this bound for the
subproblems corresponding to the bags of a fractional hypertree decomposition. This up-
per bound has been subsequently used by Atserias et al. [2008] in the context of database

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

0:4 M. Grohe, D. Marx

queries, where it is additionally shown that a linear programming duality argument implies
the tightness of this bound. We repeat this argument here as Theorem 3.7. An optimal
query evaluation algorithm matching this tight bound was given by Ngo et al. [2012]. The
bound was generalized to the context of conjunctive queries with functional dependencies
by Gottlob et al. [2012].

We show that ifH is a class of hypergraphs with bounded fractional hypertree width, then
Csp(H) is fixed-parameter tractable parameterized by the number of variables and, in fact,
polynomial-time solvable (using the algorithm of [Marx 2010a] for finding decompositions).
It is a natural question if there are more general fixed-parameter tractable or polynomial-
time solvable classes of hypergraphs. Very recently, Marx [2010b] gave a strictly more general
such class by introducing the notion of submodular width and showing that Csp(H) is fixed-
parameter tractable for classes H with bounded submodular width. Furthermore, it was
shown in [Marx 2010b] that there are no classes H with unbounded submodular width that
make Csp(H) fixed-parameter tractable (the proof uses a complexity-theoretic assumption
called Exponential Time Hypothesis [Impagliazzo et al. 2001]). However, with respect to
polynomial-time solvability, bounded fractional hypertree width is still the most general
known tractability condition and it is an open question whether there are classes H with
unbounded fractional hypertree width such that Csp(H) is polynomial-time solvable.

2. PRELIMINARIES

2.1. Hypergraphs

A hypergraph is a pair H = (V (H), E(H)), consisting of a set V (H) of vertices and a
set E(H) of nonempty subsets of V (H), the hyperedges of H. We always assume that
hypergraphs have no isolated vertices, that is, for every v ∈ V (H) there exists at least one
e ∈ E(H) such that v ∈ e.

For a hypergraph H and a set X ⊆ V (H), the subhypergraph of H induced by X is the
hypergraph H[X] = (X, {e∩X | e ∈ E(H) with e∩X 6= ∅}). We let H \X = H[V (H)\X].
The primal graph of a hypergraph H is the graph

H = (V (H),{{v, w} | v 6= w, there exists an

e ∈ E(H) such that {v, w} ⊆ e}).

A hypergraph H is connected if H is connected. A set C ⊆ V (H) is connected (in H) if the
induced subhypergraph H[C] is connected, and a connected component of H is a maximal
connected subset of V (H). A sequence of vertices of H is a path of H if it is a path of H.

A tree decomposition of a hypergraph H is a tuple (T, (Bt)t∈V (T)), where T is a tree and
(Bt)t∈V (T) a family of subsets of V (H) such that for each e ∈ E(H) there is a node t ∈ V (T)
such that e ⊆ Bt, and for each v ∈ V (H) the set {t ∈ V (T) | v ∈ Bt} is connected in T .
The sets Bt are called the bags of the decomposition. The width of a tree-decomposition
(T, (Bt)t∈V (T)) is max

{
|Bt|

∣∣ t ∈ V (t)}− 1. The tree width tw(H) of a hypergraph H is the
minimum of the widths of all tree-decompositions of H. It is easy to see that tw(H) = tw(H)
for all H.

It will be convenient for us to view the trees in tree-decompositions as being rooted and
directed from the root to the leaves. For a node t in a (rooted) tree T = (V (T), E(T)), we
let Tt be the subtree rooted at t, that is, the induced subtree of T whose vertex set is the
set of all vertices reachable from t.

We say that a class H of hypergraphs is of bounded tree width if there is a k such that
tw(H) ≤ k for all H ∈ H. We use a similar terminology for other hypergraph invariants.

2.2. Constraint satisfaction problems

A CSP instance is a triple I = (V,D,C), where V is a set of variables, D is a set called the
domain, and C is a set of constraints of the form 〈(v1, . . . , vk), R〉, where k ≥ 1 and R is a

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

Constraint Solving via Fractional Edge Covers 0:5

k-ary relation on D. A solution to the instance I is an assignment α : V → D such that for
all constraints 〈(v1, . . . , vk), R〉 in C we have (α(v1), . . . , α(vk)) ∈ R.

Constraints are specified by explicitly enumerating all possible combinations of values
for the variables, that is, all tuples in the relation R. Consequently, we define the size of
a constraint c = 〈(v1, . . . , vk), R〉 ∈ C to be the number ‖c‖ = k + k · |R|. The size of an
instance I = (V,D,C) is the number ‖I‖ = |V | + |D| +

∑
c∈C ‖c‖. Of course, there is no

need to store a constraint relation repeatedly if it occurs in several constraints, but this
only changes the size by a polynomial factor.

Let us make a few remarks about this explicit representation of the constraints. There are
important special cases of constraint satisfaction problems where the constraints are stored
implicitly, which may make the representation exponentially more succinct. Examples are
Boolean satisfiability, where the constraint relations are given implicitly by the clauses of
a formula in conjunctive normal form, or systems of arithmetic (in)equalities, where the
constraints are given implicitly by the (in)equalities. However, our representation is the
standard “generic” representation of constraint satisfaction problems in artificial intelli-
gence (see, for example, [Dechter 2003]). An important application where the constraints
are always given in explicit form is the conjunctive query containment problem, which plays
a crucial role in database query optimization. Kolaitis and Vardi [Kolaitis and Vardi 1998]
observed that it can be represented as a constraint satisfaction problem, and the constraint
relations are given explicitly as part of one of the input queries. A related problem from
database systems is the problem of evaluating conjunctive queries (cf. Theorem 4.14). Here
the constraint relations represent the tables of a relational database, and again they are
given in explicit form. The problem of characterizing the tractable structural restrictions of
CSP has also been studied for other representations of the instances: one can consider more
succinct representations such as disjunctive formulas or decision diagrams [Chen and Grohe
2010] or less succinct representations such as truth tables [Marx 2011]. As the choice of rep-
resentation influences the size of the input and the running time is expressed as a function
of the input size, the choice of representation influences the complexity of the problem and
the exact tractability criterion.

Observe that there is a polynomial-time algorithm deciding whether a given assignment
for an instance is a solution.

The hypergraph of the CSP instance I = (V,D,C) is the hypergraph HI with vertex set
V and a hyperedge {v1, . . . , vk} for all constraints 〈(v1, . . . , vk), R〉 in C. For every class H,
we consider the following decision problem:

Csp(H)
Instance: A CSP instance I with HI ∈ H.
Problem: Decide if I has a solution.

If the class H is not polynomial-time decidable, we view this as a promise problem, that is,
we assume that we are only given instances I with HI ∈ H, and we are only interested in
algorithms that work correctly and efficiently on such instances.

We close this section with a simple example of a class of hypergraphs of unbounded tree
width such that Csp(H) is tractable.

Example 2.1. Let H be that class of all hypergraphs H that have a hyperedge that
contains all vertices, that is, V (H) ∈ E(H). Clearly, H has unbounded tree width, because
the hypergraph (V, {V }) has tree width |V | − 1. We claim that Csp(H) ∈ PTIME.

To see this, let I = (V,D,C) be an instance of Csp(H). Let 〈(v1, . . . , vk), R〉 be a con-
straint in C with {v1, . . . , vk} = V . Such a constraint exists because HI ∈ H. Each tuple
d̄ = (d1, . . . , dk) ∈ R completely specifies an assignment αd̄ defined by αd̄(vi) = di for
1 ≤ i ≤ k. If for some i, j we have vi = vj , but di 6= dj , we leave αd̄ undefined.

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

0:6 M. Grohe, D. Marx

Observe that I is satisfiable if and only if there is a tuple d̄ ∈ R such that αd̄ is (well-
defined and) a solution for I. As |R| ≤ ‖I‖, this can be checked in polynomial time.

3. A POLYNOMIAL-TIME ALGORITHM FOR CSPS WITH BOUNDED FRACTIONAL
COVER NUMBER

In this section we prove that if the hypergraph HI of a CSP instance I has fractional edge
cover number ρ∗(HI), then it can be decided in ‖I‖ρ∗(HI)+O(1) time whether I has a solution.
Thus if H is a class of hypergraphs with bounded fractional edge cover number (that is,
there is a constant r such that ρ∗(H) ≤ r for every H ∈ H), then Csp(H) ∈ PTIME.
Actually, we prove a stronger result: A CSP instance I has at most ‖I‖ρ∗(HI) solutions and
all the solutions can be enumerated in time ‖I‖ρ∗(HI)+O(1).

The proof relies on a combinatorial lemma known as Shearer’s Lemma. We use Shearer’s
Lemma to bound the number of solutions of a CSP instance; our argument resembles an
argument that Friedgut and Kahn [Friedgut and Kahn 1998] used to bound the number of
subhypergraphs of a certain isomorphism type in a hypergraph. The second author applied
similar ideas in a completely different algorithmic context [Marx 2008].

The entropy of a random variable X with range U is

h[X] := −
∑
x∈U

Pr(X = x)log Pr(X = x)

Shearer’s lemma gives an upper bound of a distribution on a product space in terms of its
marginal distributions.

Lemma 3.1 (Shearer’s Lemma [Chung et al. 1986]). Let X = (Xi | i ∈ I) be a
random variable, and let Aj, for j ∈ [m], be (not necessarily distinct) subsets of the index
set I such that each i ∈ I appears in at least q of the sets Aj. For every B ⊆ I, let
XB = (Xi | i ∈ B). Then

m∑
j=1

h[XAj
] ≥ q · h[X].

Lemma 3.1 is easy to see in the special case when q = 1 and {A1, . . . , Ap} is a partition
of V . The proof of the general case in [Chung et al. 1986] is based on the submodularity of
entropy. See also [Rhadakrishnan] for a simple proof.

Lemma 3.2. If I = (V,D,C) is a CSP instance where every constraint relation contains
at most N tuples, then I has at most Nρ∗(HI) ≤ ‖I‖ρ∗(HI) solutions.

Proof. Let x be a fractional edge cover of HI with
∑
e∈E(HI) x(e) = ρ∗(HI); it follows

from the standard results of linear programming that such an x exists with rational values.
Let pe and q be nonnegative integers such that x(e) = pe/q. Let m =

∑
e∈E(HI) pe, and let

A1, . . . , Am be a sequence of subsets of V that contains precisely pe copies of the set e, for
all e ∈ E(HI). Then every variable v ∈ V is contained in at least∑

e∈E(HI):v∈e

pe = q ·
∑

e∈E(HI):v∈e

x(e) ≥ q

of the sets Ai (as x is a fractional edge cover). LetX = (Xv | v ∈ V) be uniformly distributed
on the solutions of I, which we assume to be non-empty as otherwise the claim is obvious.
That is, if we denote by S the number of solutions of I, then we have Pr(X = α) = 1/S
for every solution α of I. Then h[X] = log S. We apply Shearer’s Lemma to the random
variable X and the sequence A1, . . . , Am of subsets of V . Assume that Ai corresponds to
some constraint 〈(v′1, . . . , v′k), R〉. Then the marginal distribution of X on (v′1, . . . , v

′
k) is 0

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

Constraint Solving via Fractional Edge Covers 0:7

on all tuples not in R. Hence the entropy of XAi
is is bounded by the entropy of the uniform

distribution on the tuples in R, that is, h[XAi
] ≤ log N . Thus by Shearer’s Lemma, we have∑

e∈E(HI)

pe · log N ≥
∑

e∈E(HI)

pe · h[Xe] =

m∑
i=1

h[XAi
] ≥ q · h[X] = q · log S.

It follows that

S ≤ 2
∑

e∈E(HI)(pe/q)·log N
= 2ρ

∗(HI)·log N = Nρ∗(HI).

We would like to turn the upper bound of Lemma 3.2 into an algorithm enumerating all
the solutions, but the proof of Shearer’s Lemma is not algorithmic. However, a very simple
algorithm can enumerate the solutions, and Lemma 3.2 can be used to bound the running
time of this algorithm. Starting with a trivial subproblem consisting only of a single variable,
the algorithm enumerates all the solutions for larger and larger subproblems by adding one
variable at a time. To define these subproblems, we need the following definitions:

Definition 3.3. Let R be an r-ary relation over a set D. For 1 ≤ i1 < · · · < i` ≤ r,
the projection of R onto the components i1, . . . , i` is the relation R|i1,...,i` which contains an
`-tuple (d′1, . . . , d

′
`) ∈ D` if and only if there is a k-tuple (d1, . . . , dk) ∈ R such that d′j = dij

for 1 ≤ j ≤ `.

Intuitively, a tuple is in R|i1,...,i` if it can be extended into a tuple in R.

Definition 3.4. Let I = (V,D,C) be a CSP instance and let V ′ ⊆ V be a nonempty
subset of variables. The CSP instance I[V ′] induced by V ′ is I ′ = (V ′, D,C ′), where C ′

is defined in the following way: for each constraint c = 〈(v1, . . . , vk), R〉 having at least
one variable in V ′, there is a corresponding constraint c′ in C ′. Suppose that vi1 , . . . , vi`
are the variables among v1, . . . , vk that are in V ′. Then the constraint c′ is defined as
〈(vi1 , . . . , vi`), R|i1,...,i`〉, that is, the relation is the projection of R onto the components
i1, . . . , i`.

Thus an assignment α on V ′ satisfies I[V ′] if for each constraint c of I, there is an
assignment extending α that satisfies c (however, it is not necessarily true that there is an
assignment extending α that satisfies every constraint of I simultaneously). Note that that
the hypergraph of the induced instance I[V ′] is exactly the induced subhypergraph HI [V

′].

Theorem 3.5. The solutions of a CSP instance I can be enumerated in time
‖I‖ρ∗(HI)+O(1).

Proof. Let V = {v1, . . . , vn} be an arbitrary ordering of the variables of I and let Vi
be the subset {v1, . . . , vi}. For i = 1, 2, . . . , n, the algorithm creates a list Li containing the
solutions of I[Vi]. Since I[Vn] = I, the list Ln is exactly what we want.

For i = 1, the instance I[Vi] has at most |D| solutions, hence the list Li is easy to construct.
Notice that a solution of I[Vi+1] induces a solution of I[Vi]. Therefore, the list Li+1 can
be constructed by considering the solutions in Li, extending them to the variable vi+1 in
all the |D| possible ways, and checking whether this assignment is a solution of I[Vi+1].
Clearly, this can be done in |Li| · |D| · ‖I[Vi+1]‖O(1) = |Li| · ‖I‖O(1) time. By repeating this
procedure for i = 1, 2, . . . , n− 1, the list Ln can be constructed.

The total running time of the algorithm can be bounded by
∑n−1
i=1 |Li| · ‖I‖O(1). Ob-

serve that ρ∗(HI[Vi]) ≤ ρ∗(HI): HI[Vi] is the subhypergraph of HI induced by Vi, thus
any fractional cover of the hypergraph of I gives a fractional cover of I[Vi] (for every edge
e ∈ E(HI[Vi]), we set the weight of e to be the sum of the weight of the edges e′ ∈ E(HI)

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

0:8 M. Grohe, D. Marx

with e′ ∩ Vi = e). Therefore, by Lemma 3.2, |Li| ≤ ‖I‖ρ
∗(HI), and it follows that the total

running time is ‖I‖ρ∗(HI)+O(1).

We note that the algorithm of Theorem 3.5 does not actually need a fractional edge cover:
the fact that the hypergraph has small fractional edge cover number is used only in proving
the time bound of the algorithm. By a significantly more complicated algorithm, Ngo et
al. [Ngo et al. 2012] improved Theorem 3.5 by removing the O(1) term from the exponent.

Corollary 3.6. Let H be a class of hypergraphs of bounded fractional edge cover num-
ber. Then Csp(H) is in polynomial time.

We conclude this section by pointing out that Lemma 3.2 is tight: there are arbitrarily
large instances I where every constraint relation contains at most N tuples and the number
of solutions is exactly Nρ∗(HI). A similar proof appeared first in [Atserias et al. 2008] in
the context of database queries, but we restate it here in the language of CSPs for the
convenience of the reader.

Theorem 3.7. Let H be a hypergraph. For every N0 ≥ 1, there is a CSP instance
I = (V,D,C) with hypergraph H where every constraint relation contains at most N ≥ N0

tuples and I has at least Nρ∗(H) solutions.

Proof. A fractional independent set of hypergraph H is an assignment y : V (H)→ [0, 1]
such that

∑
v∈e y(v) ≤ 1 for every e ∈ E(H). The weight of y is

∑
v∈V (H) y(H). The

fractional independent set number α∗(H) is the maximum weight of a fractional independent
set of H. It is a well-known consequence of linear-programming duality that α∗(H) = ρ∗(H)
for every hypergraph H, since the two values can be expressed by a pair of primal and dual
linear programs [Schrijver 2003, Section 30.10].

Let y be a fractional independent set of weight α∗(H). By standard results of linear
programming, we can assume that y is rational, that is, there is an integer q ≥ 1 such
that for every v ∈ V (H), y(v) = pv/q for some nonnegative integer pv. We define a CSP
instance I = (V,D,C) with V = V (H) and D = [Nq

0] such that for every e ∈ E(H) where
e = {v1, . . . , vr}, there is a constraint 〈(v1, . . . , vr), Re〉 with

Re = {(a1, . . . , ar) | ai ∈ [Npv
0] for every 1 ≤ i ≤ r}.

Let N = Nq
0 . We claim that Re contains at most N tuples. Indeed, the number of tuples in

Re is exactly ∏
v∈e

Npv
0 = N

∑
v∈e pv

0 = N
q·
∑

v∈e pv/q

0 = (Nq
0)

∑
v∈e y(v) ≤ Nq

0 = N,

since y is a fractional independent set. Observe that α : V (H)→ D is a solution if and only
if α(v) ∈ [Npv

0] for every v ∈ V (H). Hence the number of solutions is exactly∏
v∈V (H)

Npv
0 = N

∑
v∈V (H) pv

0 = N
q·
∑

v∈V (H) pv/q

0 = (Nq
0)α

∗(H) = Nα∗(H) = Nρ∗(H),

as required.

The significance of this result is that it shows that there is no “better” measure than frac-
tional edge cover number that guarantees a polynomial bound on the number of solutions,
in the following formal sense. Let w(H) be a width measure that guarantees a polynomial
bound: that is, if I is a CSP instance where every relation has at most N tuples, then I has
at most Nw(H) solutions for some function f . Then by Theorem 3.7, we have ρ∗(H) ≤ w(H).
This means the upper bound on the number of solutions given by w(H) already follows from
the bound given by Lemma 3.2 and hence ρ∗(H) can be considered a stronger measure.

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

Constraint Solving via Fractional Edge Covers 0:9

4. FRACTIONAL HYPERTREE DECOMPOSITIONS

Let H be a hypergraph. A generalized hypertree decomposition of H [Gottlob et al. 2002] is
a triple (T, (Bt)t∈V (T), (Ct)t∈V (T)), where (T, (Bt)t∈V (T)) is a tree decomposition of H and
(Ct)t∈V (T) is a family of subsets of E(H) such that for every t ∈ V (T) we have Bt ⊆

⋃
Ct.

Here
⋃
Ct denotes the union of the sets (hyperedges) in Ct, that is, the set {v ∈ V (H) |

∃e ∈ Ct : v ∈ e}. We call the sets Bt the bags of the decomposition and the sets Ct the
guards. The width of (T, (Bt)t∈V (T), (Ct)t∈V (T)) is max{|Ct| | t ∈ V (T)}. The generalized
hypertree width ghw(H) of H is the minimum of the widths of the generalized hypertree
decompositions of H. The edge cover number ρ(H) of a hypergraph is the minimum number
of edges needed to cover all vertices; it is easy to see that ρ(H) ≥ ρ∗(H). Observe that the
size of Ct has to be at least ρ(H[Bt]) and, conversely, for a given Bt there is always a
suitable guard Ct of size ρ(H[Bt]). Therefore, ghw(H) ≤ r if there is a tree decomposition
where ρ(H[Bt]) ≤ r for every t ∈ V (T).

For the sake of completeness, let us mention that a hypertree decomposition of H is a
generalized hypertree decomposition (T, (Bt)t∈V (T), (Ct)t∈V (T)) that satisfies the following
additional special condition: (

⋃
Ct) ∩

⋃
u∈V (Tt)

Bu ⊆ Bt for all t ∈ V (T). Recall that Tt
denotes the subtree of the T with root t. The hypertree width hw(H) of H is the minimum
of the widths of all hypertree decompositions of H. It has been proved in [Adler et al.
2007] that ghw(H) ≤ hw(H) ≤ 3 ·ghw(H) + 1. This means that for our purposes, hypertree
width and generalized hypertree width are equivalent. For simplicity, we will only work with
generalized hypertree width.

Observe that for every hypergraph H we have ghw(H) ≤ tw(H) + 1. Furthermore, if H
is a hypergraph with V (H) ∈ E(H) we have ghw(H) = 1 and tw(H) = |V (H)| − 1.

We now give an approximate characterization of (generalized) hypertree width by a game
that is a variant of the cops and robber game [Seymour and Thomas 1993], which character-
izes tree width: In the robber and marshals game on H [Gottlob et al. 2003], a robber plays
against k marshals. The marshals move on the hyperedges of H, trying to catch the robber.
Intuitively, the marshals occupy all vertices of the hyperedges where they are located. In
each move, some of the marshals fly in helicopters to new hyperedges. The robber moves on
the vertices of H. She sees where the marshals will be landing and quickly tries to escape,
running arbitrarily fast along paths of H, not being allowed to run through a vertex that is
occupied by a marshal before and after the flight (possibly by two different marshals). The
marshals’ objective is to land a marshal via helicopter on a hyperedge containing the vertex
occupied by the robber. The robber tries to elude capture. The marshal width mw(H) of a
hypergraph H is the least number k of marshals that have a winning strategy in the robber
and marshals game played on H (see [Adler 2004] or [Gottlob et al. 2003] for a formal
definition).

It is easy to see that mw(H) ≤ ghw(H) for every hypergraph H. To win the game
on a hypertree of generalized hypertree width k, the marshals always occupy guards of a
decomposition and eventually capture the robber at a leaf of the tree. Conversely, it can be
proved that ghw(H) ≤ 3 ·mw(H) + 1 [Adler et al. 2007].

Observe that for every hypergraph H, the generalized hypertree width ghw(H) is less than
or equal to the edge cover number ρ(H): hypergraph H has a generalized hypertree decom-
position consisting of a single bag containing all vertices and having a guard of size ρ(H).
On the other hand, the following two examples show that hypertree width and fractional
edge cover number are incomparable.

Example 4.1. Consider the class of all graphs that only have disjoint edges. The tree
width and hypertree width of this class is 1, whereas the fractional edge cover number is
unbounded.

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

0:10 M. Grohe, D. Marx

Example 4.2. For n ≥ 1, let Hn be the following hypergraph: Hn has a vertex vS for
every subset S of {1, . . . , 2n} of cardinality n. Furthermore, for every i ∈ {1, . . . , 2n} the
hypergraph Hn has a hyperedge ei = {vS | i ∈ S}.

Observe that the fractional edge cover number ρ∗(Hn) is at most 2, because the mapping
x that assigns 1/n to every hyperedge ei is a fractional edge cover of weight 2. Actually, it
is easy to see that ρ∗(Hn) = 2.

We claim that the hypertree width of Hn is n. We show that Hn has a hypertree de-
composition of width n. Let S1 = {1, . . . , n} and S2 = {n + 1, . . . , 2n}. We construct a
generalized hypertree decomposition for Hn with a tree T having two nodes t1 and t2. For
i = 1, 2, we let Bt1 contain a vertex VS if and only if S ∩Si 6= ∅. For each edge ej ∈ E(Hn),
there is a bag of the decomposition that contains ej : if j ∈ Si, then Bti contains every
vertex of ej . We set the guard Cti to contain every ej with j ∈ Si. It is clear that |Cti | = n
and Cti covers Bti : vertex vS is in Bti only if there is a j ∈ S ∩ Si, in which case ej ∈ Cti
covers vS . Thus this is indeed a generalized hypertree decomposition of width n for Hn and
ghw(Hn) ≤ n follows.

To see that ghw(Hn) > n − 1, we argue that the robber has a winning strategy against
(n− 1) marshals in the robber and marshals game. Consider a position of the game where
the marshals occupy edges ej1 , . . . , ejn−1

and the robber occupies a vertex vS for a set S
with S∩{j1, . . . , jn−1} = ∅. Suppose that in the next round of the game the marshals move
to the edges ek1 , . . . , ekn−1

. Let i ∈ S \ {k1, . . . , kn−1}. The robber moves along the edge ei
to a vertex vR for a set R ⊆ {1, . . . , 2n} \ {k1, . . . , kn−1} of cardinality n that contains i. If
she plays this way, she can never be captured.

For a hypergraph H and a mapping γ : E(H)→ [0,∞), we let

B(γ) = {v ∈ V (H) |
∑

e∈E(H),v∈e

γ(e) ≥ 1}.

We may think of B(γ) as the set of all vertices “blocked” by γ. Furthermore, we let
weight(γ) =

∑
e∈E γ(e).

Definition 4.3. Let H be a hypergraph. A fractional hypertree decomposition of H is
a triple (T, (Bt)t∈V (T), (γt)t∈V (T)), where (T, (Bt)t∈V (T)) is a tree decomposition of H and
(γt)t∈V (T) is a family of mappings from E(H) to [0,∞) such that for every t ∈ V (T) we
have Bt ⊆ B(γt).

We call the sets Bt the bags of the decomposition and the mappings γt the (fractional)
guards.

The width of (T, (Bt)t∈V (T), (γt)t∈V (T)) is max{weight(γt) | t ∈ V (T)}. The fractional
hypertree width fhw(H) of H is the minimum of the widths of the fractional hypertree de-
compositions of H. Equivalently, fhw(H) ≤ r if H has a tree decomposition where ρ∗(Bt) ≤ r
for every bag Bt.

It is easy to see that the minimum of the widths of all fractional hypertree decompositions
of a hypergraph H always exists and is rational. This follows from the fact that, up to an
obvious equivalence, there are only finitely many tree decompositions of a hypergraph.

Clearly, for every hypergraph H we have

fhw(H) ≤ ρ∗(H) and fhw(H) ≤ ghw(H).

Examples 4.1 and 4.2 above show that there are families of hypergraphs of bounded frac-
tional hypertree width, but unbounded fractional edge cover number and unbounded gen-
eralized hypertree width.

It is also worth pointing out that for every hypergraph H,

fhw(H) = 1 ⇐⇒ ghw(H) = 1.

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

Constraint Solving via Fractional Edge Covers 0:11

To see this, note that if γ : E(H)→ [0,∞) is a mapping with weight(γ) = 1 and B ⊆ B(γ),
then B ⊆ e for all e ∈ E(H) with γ(e) > 0. Thus instead of using γ as a guard in a
fractional hypertree decomposition, we may use the integral guard {e} for any e ∈ E(H)
with γ(e) > 0. Let us remark that ghw(H) = 1 if and only if H is acyclic [Gottlob et al.
2002].

4.1. The robber and army game

As robbers are getting ever more clever, it takes more and more powerful security forces
to capture them. In the robber and army game on a hypergraph H, a robber plays against
a general commanding an army of r battalions of soldiers. The general may distribute his
soldiers arbitrarily on the hyperedges. However, a vertex of the hypergraph is only blocked
if the number of soldiers on all hyperedges that contain this vertex adds up to the strength
of at least one battalion. The game is then played like the robber and marshals game.

Definition 4.4. Let H be a hypergraph and r a nonnegative real. The robber and army
game on H with r battalions (denoted by RA(H, r)) is played by two players, the robber and
the general. A position of the game is a pair (γ, v), where v ∈ V (H) and γ : E(H)→ [0,∞)
with weight(γ) ≤ r. To start a game, the robber picks an arbitrary v0, and the initial position
is (0, v0), where 0 denote the constant zero mapping.

In each round, the players move from the current position (γ, v) to a new position (γ′, v′)
as follows: The general selects γ′, and then the robber selects v′ such that there is a path
from v to v′ in the hypergraph H \ (B(γ) ∩B(γ′)

)
.

If a position (γ, v) with v ∈ B(γ) is reached, the play ends and the general wins. If the
play continues forever, the robber wins.

The army width aw(H) of H is the least r such that the general has winning strategy for
the game RA(H, r).

Again, it is easy to see that aw(H) is well-defined and rational (observe that two positions
(γ1, v) and (γ2, v) are equivalent if B(γ1) = B(γ2) holds).

Theorem 4.5. For every hypergraph H,

aw(H) ≤ fhw(H) ≤ 3 · aw(H) + 2.

The rest of this subsection is devoted to a proof of this theorem. The proof is similar
to the proof of the corresponding result for the robber and marshal game and generalized
hypertree width in [Adler et al. 2007], which in turn is based on ideas from [Reed 1997;
Seymour and Thomas 1993].

Let H be a hypergraph and γ, σ : E(H)→ [0,∞). For a set W ⊆ V (H), we let

weight(γ|W) =
∑

e∈E(H)
e∩W 6=∅

γ(e).

A mapping σ : E(H)→ [0,∞) is a balanced separator for γ if for every connected component
R of H \B(σ),

weight(γ|R) ≤ weight(γ)

2
.

Lemma 4.6. Let H be a hypergraph with aw(H) ≤ r for some nonnegative real r. Then
every γ : E(H)→ [0,∞) has a balanced separator of weight r.

Proof. Suppose for contradiction that γ : E(H) → [0,∞) has no balanced separator
of weight r. We claim that the robber has a winning strategy for the game RA(H, r).
The robber simply maintains the invariant that in every position (σ, v) of the game, v is
contained in the connected component R of H \B(σ) with weight(γ|R) > weight(γ)/2.

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

0:12 M. Grohe, D. Marx

To see that this is possible, let (σ, v) be such a position. Suppose that the general moves
from σ to σ′, and let R′ be the connected component of H \ B(σ′) with weight(γ|R′) >
weight(γ)/2. Then there must be some e ∈ E(H) such that e ∩ R 6= ∅ and e ∩ R′ 6= ∅,
because otherwise we had

weight(γ) = weight(γ)/2 + weight(γ)/2 < weight(γ|R) + weight(γ|R′) ≤ weight(γ),

which is impossible. Thus the robber can move from R to R′ via the edge e.

Let H be a hypergraph and H ′ an induced subhypergraph of H. Then the restriction of
a mapping γ : E(H)→ [0,∞) to H ′ is the mapping γ′ : E(H ′)→ [0,∞) defined by

γ′(e′) =
∑

e∈E(H)
e∩V (H′)=e′

γ(e).

Note that weight(γ′) ≤ weight(γ) and B(γ′) = B(γ) ∩ V (H ′). The inequality may be
strict because edges with nonempty weight may have an empty intersection with V (H ′).
Conversely, the canonical extension of a mapping γ′ : E(H ′)→ [0,∞) to H is the mapping
γ : E(H)→ [0,∞) defined by

γ(e) =
γ′(e ∩ V (H ′))

|{e1 ∈ E(H) | e1 ∩ V (H ′) = e ∩ V (H)}|
if e∩V (H ′) 6= ∅ and γ(e) = 0 otherwise. Intuitively, for every e′ ∈ E(H ′), we distribute the
weight of e′ equally among all the edges e ∈ E(H) whose intersection with V (H ′) is exactly
e′. Note that weight(γ) = weight(γ′) and B(γ′) = B(γ) ∩ V (H ′).

Proof (of Theorem 4.5). Let H be a hypergraph. To prove that aw(H) ≤ fhw(H),
let (T, (Bt)t∈V (T), (γt)t∈V (T)) be a fractional hypertree decomposition of H having width
fhw(H). We claim that the general has a winning strategy for RA(H, r). Let (0, v0) be the
initial position. The general plays in such a way that all subsequent positions are of the
form (γt, v) such that v ∈ Bu for some u ∈ V (Tt). Intuitively, this means that the robber is
trapped in the subtree below t. Furthermore, in each move the general reduces the height
of t. He starts by selecting γt0 for the root t0 of T . Suppose the game is in a position (γt, v)
such that v ∈ Bu for some u ∈ V (Tt). If u = t, then the robber has lost the game. So let
us assume that u 6= t. Then there is a child t′ of t such that u ∈ V (Tt′). The general moves
to γt′ . Suppose the robber escapes to a v′ that is not contained in Bu′ for any u′ ∈ Tt′ .
Then there is a path from v to v′ in H \ (B(γt) ∩ B(γt′)) and hence in H \ (Bt ∩ Bt′).
However, it follows easily from the fact that (T, (Bt)t∈T) is a tree decomposition of H that
every path from a bag in Tt′ to a bag in T \ Tt′ must intersect Bt ∩ Bt′ . This proves that
aw(H) ≤ fhw(H).

For the second inequality, we shall prove the following stronger claim:

Claim: Let H be a hypergraph with aw(H) ≤ r for some nonnegative real r. Furthermore,
let γ : E(H)→ [0,∞) such that weight(γ) ≤ 2r+2. Then there exists a fractional hypertree
decomposition of H of width at most 3r + 2 such that B(γ) is contained in the bag of the
root of this decomposition.

Note that for γ = 0, the claim yields the desired fractional hypertree decomposition of
H.

Proof of the claim: The proof is by induction on the cardinality of V (H) \B(γ).
By Lemma 4.6, there is a balanced separator of weight at most r for γ in H. Let σ be such

a separator, and define χ : E(H)→ [0,∞) by χ(e) = γ(e) +σ(e). Then weight(χ) ≤ 3r+ 2,
and B(γ) ∪B(σ) ⊆ B(χ).

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

Constraint Solving via Fractional Edge Covers 0:13

If V (H) = B(χ) (this is the induction basis), then the 1-node decomposition with bag
V (H) and guard χ is a fractional hypertree decomposition of H of width at most 3r + 2.

Otherwise, let R1, . . . , Rm be the connected components of H \B(χ). Note that we cannot
exclude the case m = 1 and R1 = V (H) \B(χ).

For 1 ≤ i ≤ m, let ei be an edge of H such that ei ∩ Ri 6= ∅, and let Si be the unique
connected component of H \B(σ) with Ri ⊆ Si. Note that weight(γ|Si) ≤ r+ 1, because σ
is a balanced separator for γ. Let χi : E(H)→ [0,∞) be defined by

χi(e) =

1 if e = ei,

σ(e) + γ(e) if e 6= ei and Si ∩ e 6= ∅,
σ(e) otherwise.

Then

weight(χi) ≤ 1 + weight(σ) + weight(γ|Si) ≤ 2r + 2

and B(χi) \Ri ⊆ B(χ) (as ei cannot intersect any Rj with i 6= j). Let Hi = H[Ri ∪B(χi)]
and observe that

V (Hi) \B(χi) ⊆ Ri \ ei ⊂ Ri ⊆ V (H) \B(γ)

(the first inclusion holds because χi(ei) = 1). Thus the induction hypothesis is applica-
ble to Hi and the restriction of χi to Hi. It yields a fractional hypertree decomposition
(T i, (Bit)t∈V (T i), (γ

i
t)t∈V (T i)) of Hi of weight at most 3r+ 2 such that B(χi) is contained in

the bag Bi
ti0

of the root ti0 of T i.

Let T be the disjoint union of T 1, . . . , Tm together with a new root t0 that has edges to
the roots ti0 of the T i. Let Bt0 = B(χ) and Bt = Bit for all t ∈ V (T i). Moreover, let γt0 = χ,
and let γt be the canonical extension of γit to H for all t ∈ V (T i).

It remains to prove that (T, (Bt)t∈V (T), (γt)t∈V (T)) is a fractional hypertree decomposition
of H of width at most 3r+2. Let us first verify that (T, (Bt)t∈V (T)) is a tree decomposition.

— Let v ∈ V (H). To see that {v ∈ V (T) | v ∈ Bt} is connected in T , observe that {t ∈
V (T i) | v ∈ Bti} is connected (maybe empty) for all i. If v ∈ Ri for some i, then
v 6∈ V (Hj) = Rj ∪ B(χj) for any i 6= j (as Ri and Rj are disjoint and we have seen that
B(χj) \ Rj ⊆ B(χ)) and this this already shows that {t ∈ V (T) | v ∈ Bt} is connected.
Otherwise, v ∈ B(χi) \ Ri ⊆ B(χ) = Bt0 for all i such that v ∈ V (Hi). Again this shows
that {v ∈ V (T) | v ∈ Bt} is connected.

— Let e ∈ E(H). Either e ⊆ B(χ) = Bt0 , or there is exactly one i such that e ⊆ Ri ∪B(χi).
In the latter case, e ⊆ Bt for some t ∈ V (T i).

It remains to prove that Bt ⊆ B(γt) for all t ∈ T . For the root, we have Bt0 = B(γt0). For
t ∈ V (T i), we have Bt ⊆ B(γit) = B(γt) ∩ V (Hi) ⊆ B(γt). Finally, note that weight(γt) ≤
3r + 2 for all t ∈ V (T). This completes the proof of the claim.

Remark 4.7. With respect to the difference between hypertree decompositions and gener-
alized hypertree decompositions, it is worth observing that the fractional tree decomposition
(T, (Bt)t∈V (T), (γt)t∈V (T)) of width at most 3r + 2 constructed in the proof of the theorem
satisfies the following special condition: B(γt) ∩

⋃
u∈V (Tt)

Bu ⊆ Bt for all t ∈ V (T). This

implies that a hypergraph of fractional hypertree width at most r has a fractional hypertree
decomposition of width at most 3r + 2 that satisfies the special condition.

4.2. Finding decompositions

For the algorithmic applications, it is essential to have algorithms that find fractional hy-
pertree decompositions of small width. The question is whether for any fixed r > 1 there
is a polynomial-time algorithm that, given a hypergraph H with fhw(H) ≤ r, computes

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

0:14 M. Grohe, D. Marx

a fractional hypertree decomposition of H of width at most r or maybe of width at most
f(r) for some function f . Similarly to hypertree width, one way of obtaining such an al-
gorithm would be through the army and robber game characterization. The idea would be
to inductively compute the set of all positions of the game from which the general wins in
0, 1, . . . rounds. The problem is that, as opposed to the robber and marshals game, there is
no polynomial bound on the number of positions.

Using a different approach (approximately solving the problem of finding balanced sep-
arators with small fractional edge cover number), Marx [2010a] gave an algorithm that
approximates fractional hypertree width in the following sense:

Theorem 4.8 ([Marx 2010a]). For every r ≥ 1, there is an nO(r3) time algorithm
that, given a hypergraph with fractional hypertree width at most r, finds a fractional hypertree
decomposition of width O(r3).

The main technical challenge in the proof of Theorem 4.8 is finding a separator with bounded
fractional edge cover number that separates two sets X, Y of vertices. An approximation
algorithm is given in [Marx 2010a] for this problem, which finds a separator of weight O(r3)
if a separator of weight r exists. This algorithm is used to find balanced separators, which
in turn is used to construct a tree decomposition (by an argument similar to the proof of
the second part of Theorem 4.5).

It is shown in [Marx 2010a; Fomin et al. 2009] that deciding whether H has fractional
hypertree width r is NP-hard if r is part of the input. However, the more relevant question
of whether for every fixed r, a fractional hypertree decomposition of width r can be found in
polynomial-time (i.e., if the width bound O(r3) in Theorem 4.8 can be improved to r) is still
open. Given that it is NP-hard to decide whether a hypergraph has generalized hypertree
width at most 3 [Gottlob et al. 2009], it is natural to expect that a similar hardness result
holds for fractional hypertree width as well.

4.3. Algorithmic applications

In this section, we discuss how problems can be solved by fractional hypertree decompo-
sitions of bounded width. First we give a basic result, which formulates why tree decom-
positions and width measures are useful in the algorithmic context: CSP can be efficiently
solved if we can polynomially bound the number of solutions in the bags. Recall that HI

denotes the hypergraph of a CSP instance I. If (T, (Bt)t∈V (T)) is a tree decomposition of
HI , then I[Bt] denotes the instance induced by bag Bt, see Definition 3.4.

Lemma 4.9. There is an algorithm that, given a CSP instance, a hypertree decompo-
sition (T, (Bt)t∈V (T)) of HI , and for every t ∈ V (t) a list Lt of all solutions of I[Bt],

decides in time C · ‖I‖O(1) if I is satisfiable (and computes a solution if it is), where
C := maxt∈V (T)|Lt|.

Proof. Define Vt :=
⋃
t∈V (Tt)

Bt. For each t ∈ V (T), our algorithm constructs the list

L′t ⊆ Lt of those solutions of I[Bt] that can be extended to a solution of I[Vt]. Clearly, I
has a solution if and only if L′t0 is not empty for the root t0 of the tree decomposition.

The algorithm proceeds in a bottom-up manner: when constructing the list L′t, we assume
that for every child t′ of t, the lists L′t′ are already available. If t is a leaf node, then Vt = Bt,
and L′t = Lt. Assume now that t has children t1, . . . , tk. We claim that a solution α of
I[Bt] can be extended to I[Vt] if and only if for each 1 ≤ i ≤ k, there is a solution αi of
I[Vti] that is compatible with α (that is, α and αi assign the same values to the variables
in Bt ∩ Vti = Bt ∩Bti). The necessity of this condition is clear: the restriction of a solution
of I[Vt] to Vti is clearly a solution of I[Vti]. For sufficiency, suppose that the solutions αi
exist for every child ti. They can be combined to an assignment α′ on Vt extending α in a
well-defined way: every variable v ∈ Vti ∩Vtj is in Bt, thus αi(v) = αj(v) = α(v) follows for

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

Constraint Solving via Fractional Edge Covers 0:15

such a variable. Now α′ is a solution of I[Vt]: for each constraint of I[Vt], the variables of
the constraint are contained either in Bt or in Vti for some 1 ≤ i ≤ k, thus α or αi satisfies
the constraint, implying that α′ satisfies it as well.

Therefore, L′t can be determined by first enumerating every solution α ∈ Lt, and then for
each i, checking whether L′ti contains an assignment αi compatible with α. This check can
be efficiently performed the following way. Recall that solutions α and αi are compatible
if their restriction to Bt ∩ Bti is the same assignment. Therefore, after computing L′ti , we
restrict every αi ∈ L′ti to Bt ∩ Bti and store these restrictions in a trie data structure for
easy membership tests. Then to check if there is an αi ∈ L′ti compatible with α, all we
need to do is to check if the restriction of α to Bt ∩ Bti is in the trie corresponding to
L′ti , which can be checked in ‖I‖O(1). Thus L′t (and the corresponding trie structure) can

be computed in time |Lt| · ‖I‖O(1). As every other part of the algorithm can be done in
time ‖I‖O(1), it follows that the total running time can be bounded by C · ‖I‖O(1). Using
standard bookkeeping techniques, it is not difficult to extend the algorithm such that it
actually returns a solution if one exists.

Lemma 4.9 tells us that if we have a tree decomposition where we can give a polynomial
bound on the number of solutions in the bags for some reason (and we can enumerate all
these solutions), then the problem can be solved in polynomial time. Observe that in a
fractional hypertree decomposition every bag has bounded fractional edge cover number
and hence Theorem 3.5 can be used to enumerate all the solutions. It follows that if a
fractional hypertree decomposition of bounded width is given in the input, then the problem
can be solved in polynomial time. Moreover, if we know that the hypergraph has fractional
hypertree width at most r (but no decomposition is given in the input), then we can use brute
force to find a fractional hypertree decomposition of width at most r by trying every possible
decomposition and then solve the problem in polynomial time. This way, the running time
is polynomial in the input size times an (exponential) function of the number of variables.
This immediately shows that if we restrict CSP to a class of hypergraphs whose fractional
hypertree width is at most a constant r, then the problem is fixed-parameter tractable
parameterized by the number of variables. To get rid of the exponential factor depending
on the number of variables and obtain a polynomial-time algorithm, we can replace the brute
force search for the decomposition by the approximation algorithm of Theorem 4.8 [Marx
2010a].

Theorem 4.10. Let r ≥ 1. Then there is a polynomial-time algorithm that, given a CSP
instance I of fractional hypertree width at most r, decides if I is satisfiable (and computes
a solution if it is).

Proof. Let I be a CSP instance of fractional hypertree width at most r, and let
(T, (Bt)t∈V (T), (γt)t∈V (T)) be the fractional hypertree decomposition of HI of width O(r3)
computed by the algorithm of Theorem 4.8. By the definition, the hypergraph of I[Bt] has
fractional edge cover number O(r3) for every bag Bt. Thus by Theorem 3.5, the list Lt of

the solutions of I[Bt] has size at most ‖I‖O(r3) and can be determined in time ‖I‖O(r3).

Therefore, we can find a solution in time ‖I‖O(r3) using the algorithm of Lemma 4.9.

In the remainder of this section, we sketch further algorithmic applications of fractional
hypertree decompositions. As these results follow from our main results with fairly standard
techniques, we omit a detailed and technical discussion.

It is has been observed by Feder and Vardi [1998] that constraint satisfaction problems
can be described as homomorphism problems for relational structures (see [Feder and Vardi
1998] or [Grohe 2007] for definitions and details). A homomorphism from a structure A
to a structure B is a mapping from the domain of A to the domain of B that preserves
membership in all relations. With each structure A we can associate a hypergraph HA whose

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

0:16 M. Grohe, D. Marx

vertices are the elements of the domain of A and whose hyperedges are all sets {a1, . . . , ak}
such that (a1, . . . , ak) is a tuple in some relation of A. For every class H of hypergraphs,
we let Hom(H) be the problem of deciding whether a structure A with HA ∈ H has a
homomorphism to a structure B. As an immediate corollary to Theorem 4.10, we obtain:

Corollary 4.11. Let H be a class of hypergraphs of bounded fractional hypertree width.
Then Hom(H) is solvable in polynomial time.

An embedding is a homomorphism that is one-to-one. Note that there is an embedding
from a structure A to a structure B if and only if B has a substructure isomorphic to A.
Analogously to Hom(H), we define the problem Emb(H) of deciding whether a structure
A with HA ∈ H has an embedding into a structure B. Observe that Emb(H) is NP-
complete even if H is the class of paths, which has fractional hypertree width 1, because
the Hamiltonian Path problem is a special case. However, we obtain a fixed-parameter
tractability result for Emb(H) parameterized by the size ||A|| of the input structure A:

Theorem 4.12. Let H be a class of hypergraphs of bounded fractional hypertree width.
Then Emb(H) parameterized by the size of the input structure A is fixed-parameter tractable.
More precisely, there is an algorithm that, given a structure A with HA ∈ H and a structure

B, decides if there is an embedding of A into B in time 2||A||
O(1) ||B||O(1).

This follows from Corollary 4.11 with Alon, Yuster, and Zwick’s [Alon et al. 1995] color
coding technique.

In some situations it is necessary to not only decide whether a CSP-instance has a solution
or to compute one solution, but to enumerate all solutions. As the number of solutions may
be exponential in the instance size, we can rarely expect a polynomial-time algorithm for
this problem. Instead, we may ask for a polynomial-delay algorithm, which is required to
compute the first solution in polynomial time and after returning a solution is required to
return the next solution (or determine that no other solution exists) in polynomial time.
Polynomial-delay algorithms for CSPs have been studied more systematically in [Bulatov
et al. 2012].

Theorem 4.13. Let r ≥ 1. Then there is a polynomial-delay algorithm that, given a
CSP instance I of fractional hypertree width at most r, enumerates all solutions of I.

Proof (sketch). Given an instance I, the algorithm first computes a fractional hyper-
tree decomposition (T, (Bt)t∈V (T), (γt)t∈V (T)) of HI of width O(r3) using the algorithm of
Theorem 4.8. Then it orders the nodes of T by a preorder traversal and then orders the
variables of I in such a way that if v ∈ Bt and w ∈ Bu \ Bt and t comes before u in the
preorder traversal, v is smaller than w. For every node t of T the algorithm computes a list
of all solutions for I[Bt] and sorts it lexicographically. It is easy to modify the algorithm of
Lemma 4.9 to compute the lexicographically first solution and, for every given solution, the
lexicographically next solution.

A problem closely related to the problem of enumerating all solutions to a given CSP-
instance is the problem of computing the answer for a conjunctive query in a relational
database (see [Kolaitis and Vardi 1998]). To be precise, answering conjunctive queries is
equivalent to computing projections of solution sets of CSP-instances to a given subset V ′

of variables. With each conjunctive query, we can associate hypergraph in a similar way
as we did for CSP-instances. Then answering queries with hypergraphs in H is equivalent
to computing projections of solution sets of Csp(H)-instances. We define the fractional
hypertree width of a conjunctive query to be the fractional hypertree width of its hypergraph.

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

Constraint Solving via Fractional Edge Covers 0:17

Theorem 4.14. Let r ≥ 1. Then there is a polynomial-delay algorithm that, given a
conjunctive query Q of fractional hypertree width at most r and a database instance D,
computes the answer Q(D) of Q in D.

The proof is a straightforward refinement of the proof of the previous theorem.

5. CONCLUSIONS

In this paper we have considered structural properties that can make a constraint satis-
faction problem polynomial-time solvable. Previously, bounded hypertree width was the
most general such property. Answering an open question raised in [Chen and Dalmau 2005;
Cohen et al. 2008; Gottlob et al. 2005; Grohe 2007], we have identified a new class of
polynomial-time solvable CSP instances: instances having bounded fractional edge cover
number. This result suggests the definition of fractional hypertree width, which is always
at most as large as the hypertree width (and in some cases much smaller). It turns out that
CSP is polynomial-time solvable for instances having bounded fractional hypertree width, if
the hypertree decomposition is given together with the instance. This immediately implies
that CSP is fixed-parameter tractable parameterized by the number of variables for hyper-
graphs with bounded fractional hypertree width. Furthermore, together with the algorithm
of [Marx 2010a] finding approximate fractional hypertree decompositions, it also follows
that CSP is polynomial-time solvable for this class. Currently, bounded fractional hyper-
tree width is the most general known structural property that makes CSP polynomial-time
solvable.

The most natural open question we leave open regarding fractional hypertree width is
whether for every fixed r there is a polynomial-time algorithm that decides if a hypergraph
has fractional hypertree width at most r (and if so, constructs a decomposition). As the
analogous problem for generalized hypertree width is NP-hard for r = 3, we expect this to
be the case for fractional hypertree width as well.

Another open question is whether there are polynomial-time solvable or fixed-parameter
tractable families of CSP instances having unbounded fractional hypertree width. Very
recently, [Marx 2010b] showed that, under suitable complexity assumptions, bounded sub-
modular width (a condition strictly more general that bounded fractional hypertree width)
exactly characterizes the fixed-parameter tractability of the problem. However, the exact
condition characterizing polynomial-time solvability is still an open problem. In light of the
results of [Marx 2010b], one needs to understand the complexity of the problem for classes
that have bounded submodular width, but unbounded fractional hypertree width.

REFERENCES

Adler, I. 2004. Marshals, monotone marshals, and hypertree-width. Journal of Graph Theory 47, 275–296.

Adler, I., Gottlob, G., and Grohe, M. 2007. Hypertree width and related hypergraph invariants. Eur.
J. Comb. 28, 8, 2167–2181.

Alon, N., Yuster, R., and Zwick, U. 1995. Color-coding. Journal of the ACM 42, 844–856.

Atserias, A., Grohe, M., and Marx, D. 2008. Size bounds and query plans for relational joins. In 49th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2008). 739–748.

Berge, C. 1976. Graphs and Hypergraphs. North Holland.

Bulatov, A. A. 2006. A dichotomy theorem for constraint satisfaction problems on a 3-element set. J.
ACM 53, 1, 66–120.

Bulatov, A. A. 2011. Complexity of conservative constraint satisfaction problems. ACM Trans. Comput.
Log. 12, 4, 24.

Bulatov, A. A., Dalmau, V., Grohe, M., and Marx, D. 2012. Enumerating homomorphisms. J. Comput.
Syst. Sci. 78, 2, 638–650.

Bulatov, A. A., Krokhin, A. A., and Jeavons, P. 2001. The complexity of maximal constraint languages.
In Proceedings of the 33rd ACM Symposium on Theory of Computing (STOC 2001). 667–674.

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

0:18 M. Grohe, D. Marx

Chen, H. and Dalmau, V. 2005. Beyond hypertree width: Decomposition methods without decompositions.
In Principles and Practice of Constraint Programming (CP 2005), P. van Beek, Ed. Lecture Notes in
Computer Science Series, vol. 3709. Springer Berlin / Heidelberg, 167–181.

Chen, H. and Grohe, M. 2010. Constraint satisfaction with succinctly specified relations. Journal of
Computer System Sciences 76, 847–860.

Chung, F., Frankl, P., Graham, R., and Shearer, J. 1986. Some intersection theorems for ordered sets
and graphs. Journal of Combinatorial Theory, Series A 43, 23–37.

Cohen, D. A., Jeavons, P., and Gyssens, M. 2008. A unified theory of structural tractability for constraint
satisfaction problems. J. Comput. Syst. Sci. 74, 5, 721–743.

Dalmau, V., Kolaitis, P. G., and Vardi, M. Y. 2002. Constraint satisfaction, bounded treewidth, and
finite-variable logics. In Proceedings of the 8th International Conference on Principles and Practice of
Constraint Programming (CP 2002), P. V. Hentenryck, Ed. Lecture Notes in Computer Science Series,
vol. 2470. Springer-Verlag, 310–326.

Dechter, R. 2003. Constraint Processing. Morgan Kaufmann.

Dechter, R. and Pearl, J. 1989. Tree clustering for constraint networks. Artificial Intelligence 38, 353–
366.

Fagin, R. 1983. Degrees of acyclicity for hypergraphs and relational database schemes. Journal of the
ACM 30, 3, 514–550.

Feder, T. and Vardi, M. 1998. The computational structure of monotone monadic SNP and constraint
satisfaction: A study through datalog and group theory. SIAM Journal on Computing 28, 57–104.

Fomin, F. V., Golovach, P. A., and Thilikos, D. M. 2009. Approximating acyclicity parameters of sparse
hypergraphs. In 26th International Symposium on Theoretical Aspects of Computer Science (STACS
2009), S. Albers and J.-Y. Marion, Eds. Leibniz International Proceedings in Informatics (LIPIcs)
Series, vol. 3. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 445–456.

Freuder, E. 1990. Complexity of k-tree structured constraint satisfaction problems. In Proceedings of the
8th National Conference on Artificial Intelligence. 4–9.

Friedgut, E. and Kahn, J. 1998. On the number of copies of a hypergraph in another. Israel Journal of
Mathematics 105, 251–256.

Gottlob, G., Grohe, M., Musliu, N., Samer, M., and Scarcello, F. 2005. Hypertree decompositions:
Structure, algorithms, and applications. In Graph-Theoretic Concepts in Computer Science (WG 2005),
D. Kratsch, Ed. Lecture Notes in Computer Science Series, vol. 3787. Springer Berlin / Heidelberg, 1–15.

Gottlob, G., Lee, S. T., Valiant, G., and Valiant, P. 2012. Size and treewidth bounds for conjunctive
queries. J. ACM 59, 3, 16:1–16:35.

Gottlob, G., Leone, N., and Scarcello, F. 2000. A comparison of structural CSP decomposition meth-
ods. Artif. Intell. 124, 2, 243–282.

Gottlob, G., Leone, N., and Scarcello, F. 2002. Hypertree decompositions and tractable queries. Jour-
nal of Computer and System Sciences 64, 579–627.

Gottlob, G., Leone, N., and Scarcello, F. 2003. Robbers, marshals, and guards: Game theoretic and
logical characterizations of hypertree width. Journal of Computer and System Sciences 66, 775–808.

Gottlob, G., Miklós, Z., and Schwentick, T. 2009. Generalized hypertree decompositions: NP-hardness
and tractable variants. J. ACM 56, 6.

Grohe, M. 2007. The complexity of homomorphism and constraint satisfaction problems seen from the
other side. J. ACM 54, 1.

Grohe, M. and Marx, D. 2006. Constraint solving via fractional edge covers. In Proceedings of the sev-
enteenth annual ACM-SIAM symposium on Discrete algorithm (SODA 2006). ACM Press, New York,
NY, USA, 289–298.

Grohe, M., Schwentick, T., and Segoufin, L. 2001. When is the evaluation of conjunctive queries
tractable? In Proceedings of the 33rd ACM Symposium on Theory of Computing (STOC 2001). 657–
666.

Impagliazzo, R., Paturi, R., and Zane, F. 2001. Which problems have strongly exponential complexity?
J. Comput. System Sci. 63, 4, 512–530.

Jeavons, P., Cohen, D. A., and Gyssens, M. 1997. Closure properties of constraints. Journal of the
ACM 44, 4, 527–548.

Kolaitis, P. and Vardi, M. 1998. Conjunctive-query containment and constraint satisfaction. In Proceed-
ings of the 17th ACM Symposium on Principles of Database Systems (PODS 1998). 205–213.

Marx, D. 2008. Closest substring problems with small distances. SIAM Journal on Computing 38, 4,
1382–1410.

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

Constraint Solving via Fractional Edge Covers 0:19

Marx, D. 2010a. Approximating fractional hypertree width. ACM Trans. Algorithms 6, 2, 1–17.

Marx, D. 2010b. Tractable hypergraph properties for constraint satisfaction and conjunctive queries. In
Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC 2010). 735–744.

Marx, D. 2011. Tractable structures for constraint satisfaction with truth tables. Theory of Computing
Systems 48, 444–464.

Ngo, H. Q., Porat, E., Ré, C., and Rudra, A. 2012. Worst-case optimal join algorithms. In Proceedings
of the 31st symposium on Principles of Database Systems (PODS 2012). ACM, New York, NY, USA,
37–48.

Reed, B. 1997. Tree width and tangles: A new connectivity measure and some applications. In Surveys in
Combinatorics, R. Bailey, Ed. LMS Lecture Note Series Series, vol. 241. Cambridge University Press,
87–162.

Rhadakrishnan, J. Entropy and counting. Available at http://www.tcs.tifr.res.in/∼jaikumar/mypage.html.

Schaefer, T. 1978. The complexity of satisfiability problems. In Proceedings of the 10th ACM Symposium
on Theory of Computing (STOC 1978). 216–226.

Schrijver, A. 2003. Combinatorial optimization. Polyhedra and efficiency. Algorithms and Combinatorics
Series, vol. 24. Springer, Berlin.

Seymour, P. and Thomas, R. 1993. Graph searching and a min-max theorem for tree-width. Journal of
Combinatorial Theory, Series B 58, 22–33.

Yannakakis, M. 1981. Algorithms for acyclic database schemes. In 7th International Conference on Very
Large Data Bases (VLDB 1981). 82–94.

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

	1 Introduction
	2 Preliminaries
	2.1 Hypergraphs
	2.2 Constraint satisfaction problems

	3 A Polynomial-time algorithm for CSPs with bounded fractional cover number
	4 Fractional hypertree decompositions
	4.1 The robber and army game
	4.2 Finding decompositions
	4.3 Algorithmic applications

	5 Conclusions

