
Ephemerons: A New Finalization Mechanism

Barry Hayes’

ABSTRACT
Finalization occurs when a garbage collector informs an
application that an object is “almost collectable.” It is used to
help an application maintain its invariants. To make
finalization more useful, this paper defines “almost
collectable” in terms of a new class of objects, called
ephenlerons. Ephemerons are similar to weak pairs, but an
object in an ephemeron’s key field may be classed as “almost
collectable” even if it is reachable from the epehemeron’s
value fields.

Keywords
garbage collection, finalization, weak pointers, resource
management

INTRODUCTION
Languages with garbage collection have had ardent
followers since early Lisp systems, and forms of weak
references have been around since at least the early 1980’s
w84, Xer85J. Weak references allow a collector to free
certain objects, even when there are some bookkeeping
pointers to them, as will occur with object caching or
property associations.

Objects requiring type-specific clean-up activity at
deallocation benefit when finalization is added to the
collector. Finalization just requires that the collector notify
the application when designated objects are collected
[Rov85, Pargo].

Road map
In this paper, we first discuss garbage collection and
finalization in more detail, with a focus on using finalization
to manage external resources. Using a certain class of
finalization, involving non-resurrecting collectors, we show
a problem case where objects needing finalization are being
inappropriately retained by pointers contained in information
needed for their own finalization.

A variant of this problem, independent of resurrection, is
then demonstrated in implementations of property tables
using weak references. Simply associating an object with a
property is enough to keep it from being collected, based
only on the external semantics of property tables. Both of

Permission to make digital/hard copy of part or all this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, the copyright notice, the title of the publication and its date
appear, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers. or to
redistribute to lists, requires prior specific permission and/or a fee.
OOPSLA ‘97 IO/97 GA. USA
0 1997 ACM 0-89791~908-4/97/0010...$3.50

l.BHayes@placeware.com, 2037 Landings Drive, Mountain View, CA 94043 Phone 415 944 0900, Fax 415 944 0929

these problems are known in the garbage collection
community, but do not seem to have been discussed in the
literature.

Finally, we introduce ephemerons as a variant on weak pairs,
a traditional structure using weak references, and show how
the garbage collector can trace ephemerons to solve both of
the problems presented. A pseudo-code implementation of
an ephemeron-aware garbage collector is prescntcd at the
end of this paper.

For a comprehensive overview of uniprocessor garbage
collection and automatic memory management, see Paul
Wilson’s excellent survey article [wi192]. For an overview
of finalization, see [Hay92].

Clarification
The author of this paper is just that, and is not the inventor of
ephemerons. George Bosworth invented ephcmcrons and
designed the algorithms presented in this paper.

GARBAGE COLLECJXON
Dynamically garbage collected languages avoid many
common errors that occur when deallocation must be
explicit. There are situations where explicit deallocation
might be more efficient, clearer, or easier, but garbage
collection is becoming ever more common.

The concepts presented in this paper could be implemented
in a reference counting collector, but not with great ease. All
further discussion will assume that the garbage collector is
some variant of a tracing collector, perhaps generational
FTy69, LH83], and conservative @W88].

In one view, the garbage collector’s purpose is to supply
information of a global nature concerning how objects arc
connected to one another. The simple case is that it is being
asked to locate and deallocate those objects that have
become unreachable from some specified set of root objects.

Given the view of the collector as the source of topological
information, it’s natural to ask what other services can be
driven by this supply of information. As with simple garbage
collection, the information could be gathered by other
mechanisms, such as reference counting [Co160, DB76].
This discussion will assume that the collector is the only
source of the topology, and the goal is to find other services
that require the same sort of view of the global topology as
the garbage collector. In other words, we are looking for
problems that could be addressed by a solution like reference
counting, and trying to see if the garbage collector’s traversal

176

http://crossmark.crossref.org/dialog/?doi=10.1145%2F263700.263733&domain=pdf&date_stamp=1997-10-09

of memory can be used instead.

FINALIZATION
While garbage collection can handle the deallocation of
unneeded objects, there are situations where a little more
help from the garbage collector makes life much easier for
the designer of an application.

The garbage collector can be augmented to provide
information to the application, through a finafizarion
interface, to let the application know when an object of
interest is “almost collectable. ” The precise definition of the
finalization interface is directly linked to the definition of
“almost collectable.“’

One canonical example where finalization is useful is in
handling objects that are proxies for externally allocated
resources, like files supplied by an operating system. In this
case, the operating system has a protocol it expects users of
the file to follow: a file is opened, it is read and written, and
then it is closed.

If the garbage collector simply discards the proxy object that
represents this system resource, the protocol isn’t strictly
followed because the proxy might be discarded before the
file is closed. This may lead to unflushed buffers, files that
are unavailable to other processes, and may even cause the
operating system to run out of resources associated with
open files.

If the proxy object were somehow special, the garbage
collector could be modified to notice when a file was about
to be collected and close the file before the proxy’s memory
is deallocated. Some Lisp systems have explicitly allowed
files to have this behavior [AAB+91, RAM841, but without
generally making it available for other application objects.

The mechanisms in this paper are a variant of container-
bosenlfinalization.2 In these schemes, the proxy objects are
seen as special not because of any feature of their own, but
because they are in some special kind of container

recognized by the garbage collector.

For example, to make sure that all files are closed when the
application is done with them, the file manager could
maintain a special “open-file container,” known to the
collector and the file manager, but not to the file manager’s
clients. The file manager can put every file proxy into that
container when it is first opened, and pass a pointer to the
proxy back to the client opening the file.

As long as there is a client actively using the file, there will
be a pointer to the proxy other than the pointer in the open -
file container. When the client deletes the last pointer to the
proxy there will still be a pointer in the tile manager’s open-
file container. If the manager knew that the proxy was
“almost collectable,” by this definition, it could know to
close the file and free the resource, and could then collect the
proxy.

This is preyisely the kind of “global topology” information
that the garbage collector is in a position to discover and
communicate.

TEE PROBLEM
There are two actions that are indicated for an object that is
“almost collectable:” one is to run the specific code to free
the system resource, the other is to free the proxy. Some
collectors take the view that proxies should be collected first,
before the application is notified. The pointers to the proxy
from the special containers are replaced by some special
tombstone (or perhaps a null pointer) to avoid dangling
pointers to the deallocated proxy. Once the tombstones are in
place, there are no pointers to the object and it can be
deallocated. Only then will the application be notified. This
avoids having the “almost collectable” proxies resurrected,
since the “almost collectable” objects are collected before
the application is notified?

In the open-file example, the proxy Gould be freed by a non-
resurrecting garbage collector before the file manager would
be notified that the proxy was “almost collectable.” This
means that information needed to close the file (the file ID
number, for example) must be separate from the proxy itself,
since the proxy will have been deallocated by the time the
file manager is. notified that a file proxy was collected. The
information needed throughout the lifetime of the resource is
factored into the proxy and the executor, with the executor
holding the information that will be needed after the proxy
has been collected.

Proxies are known to the garbage collector, and are the
internal object representing some external resource.
Executors are not known to the garbage collector, but are a
conventional name used for an object that holds information
about an external resource that is needed to finalize the
external resource after the proxy has been garbage collected.

In most cases the factoring is simple, and a shallow copy of
the object can be used as its own executor. But if the object

1 .In modem collectors, not all unreachable and “al:
most collectable” objects will be detected by each
collection. This can happen due to the presence of
conservative pointers, data values which must be as-
sumed to be pointers, but might not be, as well as
generational collection, where not all objects are tar-
geted for collection at all times.
These collectors may assume that certain objects are
reachable when they are not, and unreachable and
“almost collectable” objects may be treated as live .
by the collector. Finalization is not prompt in that a
finalization action may be triggered long after the
event that made the object “almost collectable.”
2.As opposed to object-basedfinalization. In a sim-
ple form of object-based finalization, seen in Java,
the collector arranges that proxies receive a special
message when they become unreachable from the
roots [GJS96]. This also typically makes them
reachable again.

3. A non-resurrecting collector is supposed to make
it easier to form and check some invariants, but this
opinion is not universal.’

177

contains a pointer to itself the executor ends up with a
pointer to the proxy, and as long as the executor is reachable
the proxy will never be “almost collectable.” The path from
the executor to the proxy need not be short -- any indirect
path that leads from the proxy to itself will induce a path
from the executor to the proxy, and thwart finalization.

The factoring of proxies and executors can get complex. If
there are two finalizable objects, each may prevent the other
from being finalized by referring to the other’s proxy in its
executor. The factoring to avoid this may require more
global knowiedge that can easily be expressed in interfaces,
since an interface typically does not indicate that an object is
a proxy for an external resource that will require finalization
Loops of finalizable objects present difficult problems
outside the scope of this paper.’

Only non-resurrecting collectors force the issue of proxy/
executor factoring. In a collector that does not tombstone the
pointers from the special containers, the proxy and executor
can be collapsed.

The problems associated with factoring into proxies and
executors is associated with non-resurrecting collectors.
There is a more general problem involving circular
references to “almost collectable” objects that is present in
any collector supporting container-based finalization: freeing
of objects from property tables.

A BASIC WEAK CONTAINER
Container-based finalization requires special constructs
known to the collector in order to define “almost
collectable.” One early and elegant solution was to define
“almost collectable” in terms of a new construct called weak
pointers2 [RAM84, Xer85, ADH+89, PargO].

A weak pointer can be traversed just like any other pointer,
but is treated specially by the collector. When a collector
supporting finalization traces to find all reachable objects, it
traces in two phases, rather than one. The first phase does not
trace through weak pointers, but queues them for later
processing. The second phase starts at the enqueued pointers
and traces through all pointers. The objects that are not
reached in the first phase, but are reached in the second are
“almost collectable.” These are just those objects that can be

l.When a group of finalizable objects that point to
one another are all arc found to be “almost collect-
able” there is no general agreement as to which, if
any, should be informed. The difficulty is that one
may need another at finalization time, and if an in-
appropriate order is chosen, it may find that the
needed object has already been finalized. When the
connectivity among the objects contains cycles, the
collector needs extra information to make a reason-
able choice. Guardians [DBE93] are one attempt to
supply that information, but this approach has not
been widely accepted. -
2.Weak pointers have gone under many other
names, including xpointers, soft pointers, and
hashed pointers.

reached from the roots, but would be unrcachablc if all the
weak pointers were replaced by tombstones.

As a concrete example, consider implementing a weak pair
with a special Lisp cons cell where the cur (the first element
of the pair) is weak but the cdr (the second element) is not,
as in Figure 1. The double box is a cons cell, and the first
field, the car, is shaded to show that it contains a weak
pointer. If the weak pair in the figure is reached in the first
tracing phase, the tracing will continue along the cdr of the
pair, the second field, to the unshaded circle, but the car will
not be traced. In the second tracing phase, if the object
represented by the black circle has not been reached, that
object is “almost collectable.” The collector will notify the
application, and then tombstone the pointer or trace into and
through the object represented by the black circle.

Figure 1
A weak pair

The notification to the application may take many forms; the
method chosen is of no consequence in this paper.3 But the
notification must be exact enough that an application can
determine which objects are “almost collectable.” For
concreteness, we will assume that the collector sends a
message to a weak pair when it detects that its cur is not
reachable except via this link and other cars of weak pairs,
and we will also assume that the method invoked by that
message can be overridden to provide the particular behavior
needed by any particular weak pair.

Weak pairs can be used to build an open-file container that
allows management of proxies. In Figure 2, a group of weak
pairs is acting to create a weak collection. File proxies
(represented by the black circles) are chained on to this list
when they are opened by the file manager. When the last
client pointer to a proxy ,is dropped, the collector will send a
message to the weak pair, which can close the file, and
remove the weak pair from the collection.

Figure 2
A weak collection

S.Implementations differ in how they notify the ap-
plication to identify the set of “almost collectable”
objects. The notification must contain enough infor-
mation to identify a particular weak slot. For a weak
pair, having just one slot, the identity of the pair
would suffice. For a structure having many weak
slots, an object/index pair would be needed.

178

PROPERTY TABLES
Weak pairs can also be used to construct tables of key/value
pairs to add arbitrary properties to arbitrary objects. The
added benefit of using weak pointers to build these tables is
that in most cases adding a property to an object does not
change the time when it is garbage collected. When the
property tables act in concert with the collector, the added
property can work more or less as an added instance variable
as far as reasoning about objects’ lifetimes.

For a concrete implementation, we could have a property
table use two cons cells per entry, one containing a key in a
weak slot and the other containing a value in a strong slot, as
in Figure 3. When a queried object is found in the “key”
position, the probe returns the value from the associated
“value” cell. This will make a perfectly respectable property
table.

Kevs 9 T

Figure 3
A property table

If all of the pointers in the property table were strong
pointers, then simply entering a key/value pair in the table
would ensure that they would never be garbage collected
without extra effort. When the keys are held by weak pairs,
finalization lets the table purge itself of keys and values that
arc no longer useful.’

If the only pointers to some key are from the weak pairs of
property tables, the garbage collector will not find the key in
phase one, but will find it in phase two. The weak pair will
be notified that the key is “almost collectable” and can
arrange that the key and value be removed from the table.
The key is released when the garbage collector discovers that
no client external to the tables will be able to get the key, and
thus no query on the tables with that key is possible.

A problem
The problem comes about when the “values” slot of some
entry contains a direct or indirect reference to a key. An
object might have itself as the property value, as do the first
two cells in Figure 4. The implementation of a property with
a value still works -- when the object is queried in the
property table, it returns itself as its value. But when all other
references to the object are deleted, the reference from the
“value” slot lets the garbage collector find the key in phase
one of the trace. The definition of “almost collectable” is not
quite what is wanted, since the presence of an object in a

l.This presupposes what it means to be “useful.” In
particular, we assume that there is no way to ask the
table for the keys. So, for example, there is no
“which keys have this value” operator.

value slot makes the object uncollectable.

Figure 4
Some problems with weak pairs

Making the “value” slots weak doesn’t help either. If some
object only exists as a value in a property table, the table
must keep that entry, since the key that maps to that value
may not have been collected, and so a query on that key is
still possible.

Other Weak Variants
Weak pairs and this implementation of property tables were
chosen as a simple way to get weak pointers and notification
into the system, and there are many variants we could have
chosen instead. Perhaps some other simple variant of
weakness would not have this problem.

Unfortunately, the problem is inherent in two-phase tracing
and the definition of “almost collectable” that it imposes.
Without considering the implementation of property tables,
we can discuss their characteristics. For example, given a
property table and a key, there must be a “get value”
operation to recover the key’s value, if it has one.

Likewise, the relationship to garbage collection can be well
defined. We would like a key/value pair to be collected when
no series of “get value” operations starting with an object
reachable without the tables could reach the key. In these
situations, no application can reach the key, even though it is
in a table. ’

But how can a two-phase collector trace property tables to
construct proofs that a key/value pair should be collected?
Consider an object that has itself as its own property value,
when there are no other pointers to the object. This object
should be “almost collectable.” If the table’s values are
traced in the first phase, then this object would not be
“almost collectable,” as desired.

If the table’s values are not traced in the first phase, consider
an object which is a value in a property table when there are
no other pointers to it. This object should not be “almost
collectable” but would not be traced in the first phase.

The definition of “almost collectable” that two-phase tracing
generates doesn’t jibe with how property tables should be
garbage collected.

EPFIEMERONS
The case where a property table contains the same object as ,
its key and value fields, and the object is not stored
anywhere else, is one example of an unreachable property.
This is an abstract quality of properties independent of
implementation.

179

Another example is two properties, each with the other’s key
as its value, as in the second two properties in Figure 5. In
general, if a property’s key is only reachable through
unreachable properties, it is an unreachable property.

An implementation of property tables would like to know it
may free an association when the property it represents is
unreachable. “Almost reachable”‘needs to be refined to take
these unreachable properties into account.

E’hen&~~s are a refinement of weak pairs that solve this
“unreachable property” prb)lem. ., The f+st slot of an
ephemeron is used to hold the key of a property, while the
second slot holds the value, but the slots are neither “weak”
nor “strong” in the previous sense.

‘ikacing Ephemerons in the Garbage Collector
An ephemeron-aware collector traces objects in three phases
rather than two. The first phase traces up to ephemerons, but
traces none of their fields. The second phase repeatedly
traces ephemerons that can be classed as not maintaining
unreachable properties. At the end of the second phase, the
remaining ephemerons all represent unretichable properties.
The third phase traces all rem&ing reachable objects (or
tombstones the pointers to them).

Ephemerons are classed by ,the ‘garbage collector as either
maintaining a “reachable property” or not. When an
ephemeron is encountered in the course of the first phase of a
garbage collector trace, the collector does not immediately
trace eitherfielo! in the ephepleron, but puts it on a queue.
Ephemerons in this queue might maintain reachable or
unreachable properties.

In the second phase, the collector scans the queue of delayed
ephemerons. Any ephemeron that has a key that has already
been reached maintains a property that could be requested --
the ephemeron is reachable, arid the key is reachable, so
some code might ask for the value. These are classed as
“reachable properties.”

Any ephemeron that has a key that has not been reached may
or may not maintain a reachable propycy _-- that remains to
be seen. These ephemerons are reqtieued for future
inspection.

The first group of ephemerons, those maintaining reachable
properties, are now traced in then same way that any non-
ephemeron would be. Since the key’is known to have already
been reached, it has been traced, and only the value field
needs to be traced.

But tracing these value fields may make it clear that some
ephemeron in the queue maintains a reachable property.
Ephemerons on the queue must be inspected again to see if
they now can be clearly classified as maintaining a reachable
property, Also, more ephemerons may be discovered as the
value fields are traced. When they are discovered, they are
added to the queue.

This continues until the queue contains only ephemerons that
have keys that have not yet been reached. This is a set of
ephemerons that maintain unreachable properties. It is not
possible to request the value field of one of these

ephemerons without first having the key or value field of
some other ephemeron in the set. At this point the collector
arranges that all of these ephemerons in the set will be
notified. If the ephemerons are maintaining a collection of
property tables, deleting all of these ephemerons will release
the storage associated with the unreachable properties, just
as if the properties had been added as instance variables,

In the third phase, the collector traces the remaining objects,
beginning at the ephemerons still on the queue. Any
ephemerons encountered in this phase are treated as ordinary
objects, and all fields traced’.

The portidn of the algorithm presented ‘that traces
ephemerons adds running time O(d) where n is the number
of ephemerons and d is the length of the longest chain of
ephemerons. In practice, d is small and the algorithm is
linear in the number of ephem&ons2.

Managing External Resources with Ephemerons
Ephemerons solve a sticky problem in property tables, but
surprisingly they also solve the problem in managing
external resources using proxies and executors.

Recall that information needed to return a resource to its
external manager may be kept in an executor rather than a
proxy. When this occurs, the split between executor and
proxy must be carefully managed. With only weak pairs, the
executor cannot keep a strong reference to the proxy itself or
any indirect path that leads to-the proxy, since that would
cause the collector to find the proxy in phase one of the trace.

If the executor is in a value field of an ephemeron that has
the proxy as its key, it may contain references to the proxy
without interfering with the finalization. The proxy in the
key field guards the executor in the value field. The collector
will not trace the executor unless the proxy is rcachable
anyway. The value fields are traced only after the key is
shown to be otherwise reachable, in which case finalization
should not occur, or after the collector has decided that the
ephemeron maintains an unreachable property, in which case
the application will be notified to finalize the resources.

Further Variants of Ephemerons
A simple extension to ephemcrons is to allow flexibility in
the number of “value” fields. The first field of an ephcmcron
is the “key,” and all other fields are treated the same way as
the “value” field in a simple ephemeron3.

This extension applies even if there is only a single field. A
one-field Ephemeron simply has the “key” slot, and is a one-
element weak container. It can be used to mimic traditional

l.It is unclearif,they should also be sent a message.
Strictly speaking, they are maintaining unrcachablc
properties, and if they had been discovered in phase
one or two, because of a conservative pointer for ex-
ample, they would not effect the results of the tmce,
but would have been included in the set. Of course,
if in addition their keys had been discovered due to
another conservative pointer, they would not have
been so notified.

180

two-phase weak tracing.

Three-phase tracing and ephemerons offer a slight variation
s on what most container-based finalization systems already

do, and so most variants of two-phase tracing can be retooled
for three-phase tracing. The ephemeron’s references may be
tombstoned rather than traced, the notification to the
application may be synchronous, and so on.

CONCLUSIONS
Ephemeron tracing, as is implemented with the three-phase
algorithm described, solves some long-standing problems
with finalization.

l Packages responsible for management of external
resources can maintain pointers to the proxies for those
resources without interfering with the collector’s ability
to decide when a proxy indicates a resource that needs to
be returned to its external manager.

l Objects can be removed from property tables when they
are no longer useful, even if they are used as values of
properties of other objects.

LEGAL NOTICX
I am not a lawyer, and this section should not be taken as
legal advice.

Ephemerons have been a trade secret in some Digitalk and
PamPlace-Digitalk products shipped more than one -year
ago, and PamPlace-Digitalk has allowed publication of this
paper, making this trade secret public knowledge. It is my
understanding that because more than a year has passed
since shipping those products, a valid United States patent
for ephemerons would not be issued to the inventor.

I do not know if any other obstacles, such as foreign patent
rights, should discourage anyone else from implementing
ephemerons.

Java, VisualWorks, and VisualSmalltalk, are trademarks.

2.Ephemerons can be recovered in time strictly pro-
portional to the number of ephemerons. To do this,
build distinct delay queues for each unique key that
has not yet been visited. When the trace encounters
an ephemeron, if the key has already been traced,
there will be no delay queue, and’the ephemeron
should be traced immediately. If the key has not
been traced, there will be a delay queue and the
ephemeron should be enqueued.
When any object which is a key for some delayed
ephemerons is found to be reachable, its associated
queue of delayed ephemerons should be traced at
that time, and the queue deleted.
Any ephemeron that is left on any queue after this
single trace phase maintains an unreachable proper-
ty. These ephemerons need to be traced in a second
phase.
3.This extension is allowed in VisualWorks’s and
VisualSmalltalk’s implementation of ephemerons.

ACKNOWLEDGMENTS
Ephemerons were developed by employees of Digitalk, Inc,
and this paper was written with the support of many people
at PamPlace-Digitalk, Inc.

Ephemerons were designed by George B osworth. They were
first implemented for VisualSmalltalk by Roger Thayer.
Barry Hayes implemented them for VisualWorks.

REFERENCES
[AAB+91] H. Abelson, N. I. Adams IV, D. H. Bartley, G.
Brooks, R. K Dybvig, D. P Friedman, R. Halstead, C.
Hanson, C. T. Haynes, E. Kohlbecker, D. Oxley, K. M.
Pitman, G. J. Rozas, G. L. Steele JR., G. J. Sussman, and M.
Wand. Revised(4) Report on the Algorithmic Language
Scheme. ACM Lisp Pointers, N(3), November 1991.

[ADH+89] R. Atkinson, Alan Demers, Carl Hauser,
Christian Jacobi, Peter Kessler, and Mark Weiser.
Experiences creating a portable Cedar. SIGPLAN Notices,
24(7):261-269, July 1989.

[SW881 Hans-Juergen Boehm and Mark Weiser. Garbage
collection in an uncooperative environment. Software
Practice ancl Experience, 18(9):807-820,1988.

[COL60] George E. Collins. A method for overlapping and
erasure of lids. Conmunications of the ACM, 3(12):655-657,
December 1960.

[DB76] L. Peter Deutsch and Daniel G. Bobrow. An efficient
incremental automatic garbage collector. Communications
of the ACM, 19(9):522-526, September 1976.

IpBE93] R. Kent Dybvig, Carl Bruggeman, and David Eby.
Guardians in a generation-based garbage collector. In
Proceedings of SIGPLAN’93 Conference on Progranming
Languages Design and Implementation, volume 28(6):207-
216 of ACM SIGPLAN Notices, Albuquerque, New Mexico,
June 1993. ACM Press.

I
lFY69] Robert R. Fenichel and Jerome C. Yochelson. A Lisp
garbage collector for virtual memory computer systems.
Communications of the ACM, 12(11):611-612, November
1969.

[GSJ96] James Gosling, Bill Joy, and Guy Steele. The Java
Language Specification, Addison -Wesley, August, 1996.

[Hay921 Barry Hayes “Finalization in the Collector
Interface” in Menwry Management, Proceedings of The
International Workshop on Memory Management, 1992, St.
Malo, France, Septernbec 1992, Y. Bekkers and J. Cohen,
editors, LNCS 637:277-298, Springer-Verlag.

[LH83] Henry Lieberman and Carl E. Hewitt. A real-time
garbage collector based on the lifetimes of objects.
Communications of the ACM, 26(6):419-29, 1983. Also
report TM-184, Laboratory for Computer Science, MIT,
Cambridge, MA, July 1980 and AI Lab Memo 569,198l.

iI%r90] ParcPlace Systems. ObjectWorkdSn~alltalk User’s
Guide, Release 4. ParcPlace Systems, Inc, Mountain View,
CA, 1990.

iRAM Jonathan A. Rees, Norman I. Adams, and James

181

R. Mecchan. The T Manual. Technical report,. Yale
University, January 1984.

[RovSS] Paul Rovner. On adding garbage collection and
runtime types to a strongly-typed, statically-checked,
concurrent language. Technical Report CSL-84-7, Xerox
PARC, Palo Alto, CA, July 1985.

pNi192] Paul R. Wilson. “Uniprocessor Garbage Collection
Techniques” in Memory Management, Proceedings of The
International Workshop on Memory Management, 1992, St.
Malo, France, September, 1992, Y. Bekkers and J. Cohen,
editors, LNCS 637: l-42, Springer-Verlag. 1

Ber85J Xerox Corporation. Jnterlisp Reference Manual,
Volume 1. Xerox Corporation, Palo Alto, CA, October 1985.

182

EPHEMERON COLLECTION CODE

Send the mark message to every object that’s reachable from the roots.
Mark all of the objects reachable from this pointer, paying no attention to
ephemerons.

Heap::garbageCollectMark
self markPhase1.
self markPhase2.
self markPhase

Mark all of the objects from the roots up to any ephememns. Place the
ephememns in the global collection EphemeronQueue.

Heap::markPhasel
EphemeronQueue makeEmpty.
self enumerateRoots: [:rootPointer j

rootpointer tracePointerQueueingEphemerons]

Pointer::tracePointer
self deref isMarked

return.

self deref markobject.
self deref enumeratePointers: [:pointer j

pointer tracepoiner]

Mark all of the objects reachable from this pointer. queueing all of the
ephemerons encountered.

Pointer:AracePointerQueueingEphemerons
self deref isMarked

return.

self deref markobject.
self deref isEphemeron

EphemeronQueue add: self.

else
self deref enumeratepointers: [:pointer j

pointer tracePointerQueueingEphemerons1

Identify a set of ephememns with reachable keys, and trace them. Since that
might cause other ephemerons’ keys to become reachable, recurs@ until all the
ephememns on the queue have unreachable keys.

Heap::markPhase2
j reachableProperties OtherProperties j

OtherProperties <- Collection new.
reachableProperties <- Collection new.
EphemeronQueue enumerate: [:ephemeron j

ephemeron deref key isMarked
reachableProperties add: ephemeron.

else
OtherProperties add: ephemeron].

EphemeronQueue -z- OtherProperties.

reachableProperties empty not
reachableProperties enumerate: [:reachableProperty j

j value j
value <- reachableProperty deref valueField.
value tracePointerQueueingEphemerons1.

self markPhase

The queue contains a collection of ephememns that maintain unreachable
pmperlies. Notify the ephememns, and trace through.

Heap::markPhase3
EphemeronQueue enumerate: [:ephemeron j

ephemeron deref signal: almostCollectable.
ephemeron deref keyField tracepointer.
ephemeron deref valueField tracepointer]

183

