
UC San Diego
Technical Reports

Title
Determining the idle time of a tiling

Permalink
https://escholarship.org/uc/item/6tn8504v

Authors
Hogstedt, Karin
Carter, Larry
Ferrante, Jean

Publication Date
1999-07-06
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6tn8504v
https://escholarship.org
http://www.cdlib.org/


Determining the Idle Time of a Tiling

Karin H�ogstedt, Larry Carter

�

, Jeanne Ferrante

y

Department of Computer Science and Engineering, UCSD

9500 Gilman Drive, La Jolla, CA 92093-0114

Abstract

This paper investigates the idle time associated with

a parallel computation, that is, the time that proces-

sors are idle because they are either waiting for data

from other processors or waiting to synchronize with

other processors. We study doubly-nested loops cor-

responding to parallelogram- or trapezoidal-shaped it-

eration spaces that have been parallelized by the well-

known tiling transformation. We introduce the notion

of rise r, which relates the shape of the iteration space

to that of the tiles. For parallelogram- shaped iteration

spaces, we show that when r � �2, the idle time is lin-

ear in P , the number of processors, but when r � �1, it

is quadratic in P . In the context of hierarchical tiling,

where multiple levels of tiling are used, a good choice of

rise can lead to less idle time and better performance.

While idle time is not the only cost that should be

considered in evaluating a tiling strategy, current ar-

chitectural trends (of deeper memory hierarchies and

multiple levels of parallelism) suggest it has increasing

importance.

1 Introduction

Tiling is a well-known transformation that has been

used for parallelism and to obtain better locality in the

memory hierarchy.

Tiling starts with the iteration space determined by

a perfectly nested loop in the program, and partitions

the iteration space into tiles of chosen size and shape.

The iterations represented by each tile are executed in

proximity: on a given processor, all the iterations of one

tile are executed before any iterations of the next tile.

In the parallel context, di�erent cost functions have

been used to evaluate di�erent tiling choices. For ex-

ample, [RS91] minimizes communication costs; [WL91]

maximizes the granularity of parallelism. None of this

previous work considers minimizing idle time, that is,

�

Also at San Diego Supercomputing Center.

y

email: fhogstedt, carter, ferranteg@cs.ucsd.edu. This work was

partly supported by NSF grant CCR-9504150.

the time a processor is idle because it is waiting for data

from another processor or to synchronize with other

processors.

Current architectural trends toward multiple levels

of parallelism and deeper memory hierarchies warrant a

closer look at idle time. Handling these multiple levels

entails recursively partitioning tiles into subtiles multi-

ple times; at each subdivision, the number of subtiles

per tile is roughly the ratio of the larger to the smaller

memory capacity. Because of the trend towards more

levels, this ratio is decreasing. Thus the number of sub-

tiles per tile is decreasing. This in turn means the idle

time can be a larger fraction of the total and should not

be ignored.

In hierarchical tiling [CFH95a, CFH95b], tiling is

done for each level of memory hierarchy and paral-

lelism. Typically, tiling for a given level corresponds

to introducing one to three levels of loop nesting. This

partitions the iteration space of the larger level into

smaller tiles. Thus, the tiles at a given level become

the iteration space at the next level, which is itself

tiled. The tiles are typically parallelograms, triangles,

or trapezoids (or their higher-dimensional equivalents),

and their size and shape is chosen by the tiling trans-

formation. This gives rise to a need to examine the

relationship of the size and shape of the iteration space

and tiles to the overall execution costs, and particularly

to the idle time.

In this paper, we de�ne the notion of rise, which

relates the shape of the iteration space to that of the

tiles. We show that the idle time depends on the rise,

and that large values of rise lead to larger idle time.

In hierarchical tiling, choosing the tile shape and size

for one level a�ects the possible values of the rise at the

next �ner level of granularity. The interaction of the

choices at di�erent levels must guide the best overall

choice. To evaluate the global solution it is important

to have a reasonably accurate and e�ciently computed

estimation of idle time. In the paper, we

� Give simple formulas that bound the idle time of

two-dimensional tilings of parallelogram-shaped it-

eration spaces. When the rise r is greater than or

equal to -1, the idle time is roughly proportional to

the square of the number processors P . The case

of r � �2 is more favorable, with the idle time be-

ing smaller and proportional to P . These formulas

hold for both block and block cyclic distribution of



iterations to processors. (We don't have a simple

formula for the case of �2 < r < �1).

� Show our formula is exact when r � �1 for \su�-

ciently high" iteration spaces.

� Derive bounds for the more general trapezoidal- or

triangular-shaped iteration spaces.

� Illustrate that a good choice of r can lead to better

performance.

To illustrate the idea behind the rise, consider the

three tilings of the same iteration space in Figure 5.

In this example, all tiles have identical height, width,

and communication times, but di�erent values of rise.

The result is vastly di�erent parallel execution times

due to di�erent idle times. The best execution times

corresponds to the tiling with negative rise, and the

worst to positive rise.

Because a given tiling choice determines the rise, we

can use our formula to advantage for multi-level tiling.

In particular, at a level with small number of proces-

sors, P (most notably P = 1), we can with only a small

penalty choose a tiling which slopes downward with re-

spect to the dependences, even though this results in

a (locally unfavorable) positive rise. Since this down-

wardly sloping tile is itself the iteration space for the

next level of tiling, it will allow a negative rise for its

subtiles, resulting in reduced idle time for this level.

This is illustrated in Figure 7.

2 Related Work

Iteration space tiling is an important and well-known

technique [JM86, GJG88, IT88, W87, RAP87, W89,

HA90, L90, LRW91, RS91, WL91, WL91b, B92, KM92]

used previously to achieve both parallelism and local-

ity for a given loop nest. Tiling partitions the iteration

space of a loop nest into uniform tiles of a given size and

shape (except at the boundaries of the iteration space)

which tessellate the iteration space. Tiling can often be

achieved by �rst strip mining and then interchanging

loops [W89].

Unimodular transformations [IT88, B92, WL91b] are

often used before tiling, for instance, to change the origi-

nal loop order. In two dimensions, unimodular transfor-

mations can skew the iteration space so that only rect-

angular (as opposed to parallelogram-shaped) tiles need

be considered. Our approach considers parallelepiped

shapes (the generalization of 2-dimensional parallelo-

grams).

The cost measures used by previous work on tiling

for parallelism all di�er from idle time. For instance,

[RS91] attempts to minimize communication time, and

[WL91] considers maximizing the granularity of paral-

lel loops. [KP93] shows how to estimate performance

factors such as parallelism granularity and number of

cache misses for transformations such as tiling. It does

not explicitly consider the number of wasted cycles.

3 Nomenclature and De�nitions

3.1 Tilings, Tiles and Iteration Spaces

In this paper, we give some non-standard but roughly

equivalent de�nitions to the optimizing compiler liter-

ature [IT88]. In our formulation, tiles are subsets of

<

K

, K-dimensional real space. This allows us to use

the tile's volume as a measure of execution time, and

thereby to avoid unimportant complications having to

do with there being a variable number of lattice points

per tile, depending on the alignment of the tile with re-

spect to the lattice points. Furthermore, it is easier to

make geometric arguments about the volume of partial

tiles than to compute the number of iterations involved.

De�nition 1 Let ~n be a vector in <

K

. The j-th half-

open hyperswath with normal ~n, denoted H

j

(~n),

is the set of points

f~x j j � 1 �

~x�~n

~n�~n

< jg.

Thus, H

j

(~n) is bounded by two hyperplanes orthogonal

to ~n.

Observe that the family F(~n) of half-open hyper-

swaths H

j

(~n) for integral j partitions <

K

into disjoint

pieces.

De�nition 2 Let ~n

1

; ~n

2

; :::; ~n

K

be a set linearly inde-

pendent vectors in <

K

. A tiling T is the K families of

hyperswaths F(~n

i

); 1 � i � K .

In the standard approach to tiling [W87, W89], the

set of iterations that a nested loop executes, and the

data dependences between them, are represented by an

iteration space graph (ISG). For the purposes of this pa-

per, the iteration space is simply a subset of <

K

, typi-

cally one bounded by a polygonal region. The intuition

behind our representation is that the lattice points of

the iteration space (those points with all coordinates

integral) are the iterations of the ISG. However, none

of our theorems are concerned with these lattice points;

instead in our model, the amount of computation is the

volume of the iteration space.

We assume the program's data dependences are iden-

tical at each iteration, and can be modeled by a �nite

set of dependence vectors in <

K

. These vectors provide

constraints on the allowable order of execution. Fur-

thermore, they dictate where communication is needed.

De�nition 3 Given an iteration space I, a tiling

F(~n

1

),...,F(~n

K

), and a sequence of K integers

i

1

; i

2

; :::; i

K

, the tile T

i

1

;i

2

;:::;i

K

is I \ H

i

1

(~n

1

) \ ::: \

H

i

K

(~n

K

).

When H

i

1

(~n

1

) \ ::: \H

i

K

(~n

K

) is a subset of I, then

T

i

1

;i

2

;:::;i

K

is called a full tile, otherwise it is either a

partial or empty (or non-existing) tile.

Figure 1 shows a tile in 2-dimensional space.

The full tiles are identical parallelepipeds, and it is

(relatively) easy to generate code that iterates through

the lattice points contained in the tile. Parallelepiped-

shaped tiles are su�ciently general to implement the

tiling methodologies presented in [IT88] and [WL91b],



n2

n1

Figure 1: A tile which is the intersection of the iteration space

(shown as a rectangle) and half-open hyperswaths with normals given

by ~n

1

and ~n

2

. The lattice points correspond to iterations; those

included in the tile are shown as �lled circles. Note that lattice points

on the upper and the right-hand lines are not included in the tile.

which consider unimodular transformations with skew-

ing. Some papers give a more general de�nition of a

tiling, including hexagonal-shaped tiles [RAP87] or tiles

of varying sizes. In particular, Flynn Hummel [H93]

uses tiles of decreasing sizes to improve load balancing.

Given a tiling, there are certain dependences be-

tween tiles inherited from the program. We say there is

a tile dependence from tile T

1

to tile T

2

if there is a path

of dependences from an iteration in T

1

to an iteration

in T

2

.

The data input to and output from the iterations

represented by a tile, referred to as the surface of the

tile, may need to be moved to or from the processor ex-

ecuting the tile. The volume of the tile intuitively rep-

resents the computational work of the tile. It is desir-

able to have a small surface to volume ratio so that the

computation time dominates the communication over-

head, and so that data movement can be overlapped

with computation.

In the remainder of this paper we will consider in de-

tail a common instance of tiling. We assume the original

program had the form:

for jj = 1 to n

for kk = a1*jj+a2 to a1*jj+a2+m

... loop body ...

where n, m, a1, and a2 are constants.

Note that the iteration space is a two-dimensional

parallelogram. Later in the paper we will also consider

triangular and trapezoidal iteration spaces, which arise

when the lines representing the upper and lower bound

on the second loop index (kk) have di�erent slopes.

A tiling of the parallelogram will partition it into

tiles fT

j;k

g, which are smaller parallelograms (plus some

partial tiles). It is well known that to ensure a legal

tiling (one that allows tiles to be executed atomically

in an order that satis�es the dependences), it is su�-

cient that ~n �

~

d � 0 for all hyperswath normals ~n and

dependence vectors

~

d [IT88].

1

Pictorially, a tiling is

certain to be legal if the lower left-hand angle of a tile

includes all dependence vectors. We will investigate the

desirability of using tiles with wider angles. To rule

out the uninteresting case of \embarrassingly parallel"

1

This condition is not a necessary condition.

problems, we assume there is a tile dependences from

T

j�1;k

to T

j;k

.

In our pictures (such as Figure 2), we draw the kk

axis vertically. We consider tiling where the �rst family

of hyperswaths are parallel to this axis. Let w be the

width of these swaths. Each swath will be assigned to

a processor. We consider two common ways of doing

this assignment: a block distribution, where there are

exactly P vertical swaths (one for each processor), and

a block cyclic distribution, where there are bP swaths

assigned P processors in a cyclic fashion (that is, swath

j is assigned to processor j modulo P ).

Each swath is partitioned into tiles via a second fam-

ily of swaths, each intersecting the �rst family h apart

as shown in Figure 2. Each full tile has area hw. In our

�gures, the vertical columns appear as a stack of tiles.

j-1,k

T
Tj-1,k-1

j,k-1

T
T

j,k

stack of tiles w

h

T
T

T

T

T

j,k+1

j+1,k-1

j+1,k

j+1,k+1

j-1,k+1

Figure 2: A typical picture of a 2-dimensional iteration space. The

regions between the vertical hyperplanes, are called stacks of tiles,

and are all of width w. The distance between the intersections of

the crossing hyperplanes and the vertical hyperplanes is called the

height h of a tile. The area of all full tiles is equal to hw. The arrows

in the picture corresponds to either the execution order or to tile

dependences between the tiles. Each tile is always dependent on the

tile to its left, and we execute the tiles in a stack from bottom to top.

Both the block distribution and the block cyclic dis-

tribution are very advantageous scheduling algorithms.

They reduce the number of memory accesses needed,

since consecutive tiles executed on a processor share a

surface (which increases locality), and limit the inter-

processor communication to the dependences that cross

the vertical cuts. They also allow pipelined execution

of tiles, and are furthermore simple to implement.

3.2 Idle time

The cost function for a tiling we use in this paper is the

total number of idle processor cycles that occur during

the execution of a program on P processors. This idle

time can occur for two di�erent reasons: (a) commu-

nication idle time when a processor is waiting for data

from another processor, or (b) synchronization idle time

where it has �nished all of the tiles assigned to it, and

is waiting at a barrier for all other processors to �nish

their tiles.

We model communication by assuming that a pro-

cessor sends its output surface as soon as the sender has



�nished computing it, and the data is queued by the re-

ceiving processor. This strategy is desirable (though not

optimal [VSM96]) in that the receiver will never unnec-

essarily wait for data, and also the sender can occupy

itself with useful work while it itself is waiting for data.

The time spent both sending and receiving the data are

considered to be necessary work and not counted as idle

time.

Idle time of type (a) occurs when a sender has not

initiated sending the data early enough to eliminate all

waiting time by the receiver. In a typical computer

system, in order to achieve the most e�cient commu-

nication, it is necessary for the sender to initiate the

send operation some number L of cycles before the re-

ceiver has completed the previous tile. We will call L

the lead time of the communication system. One can

think of L as the amount of time it takes the �rst bit

of a message to travel from the sender to the receiver,

but in fact, there are many more complicated factors

(such as operating system overheads and the ability of

a system to overlap communication with computation)

that contribute to L, and L is usually a function of the

message length.

We de�ne the parameter c= L=hw. Thus, c is the

lead time amortized over the computation of a full tile.

Generally c is between 0 and 1, and we will assume

2

that c > 0.

Another delicate modeling question concerns the lead

time needed to prevent idle cycles when the data cor-

responds to a partial tile. In this paper, we make the

simplifying assumption that the lead time needed for

a partial tile is proportional to the height of the tile's

output surface (i.e., to the amount of data being trans-

ferred). Although beyond the scope of this paper, mod-

ifying this assumption would have little e�ect on our

results.

Our assumption that computation time is propor-

tional to the area of the tile is also inaccurate for sev-

eral reasons: �rst, it doesn't accurately account for the

communication overheads of partial tiles; second, there

may be more computation overhead for the irregularly

shaped partial tiles; third, the �rst and last stack of tiles

have reduced communication costs; and fourth, there

may be varying numbers of iterations in a given area,

depending on the alignment of lattice points. Neverthe-

less our approximation is relatively accurate for large

tiles.

Idle time is not the only cost that must be considered

in evaluating a choice of tile size and shape. Other

important factors are the total number of messages, and

the total size of all the messages. These costs have been

considered by many other papers that use a latency-

bandwidth model of communication cost. But for �xed

width w and height h tiles, both the number of messages

and their total length will be constant. This allows us to

isolate the e�ect of tile shape (as given by the direction

of the second family of swaths) on idle time.

3.3 Notation

We now de�ne the notation that will be used in the rest

of the paper.

2

In fact, it is possible to design a system that has negative c,

though we know of no such real system.

The set of tiles is fT

j;k

j1 � j � bPg. The �rst

non-empty tile in the �rst stack is numbered T

1;1

. De-

pending on the relationship between the slope of the

iteration space and the slope of the tiles, the lowest

non-empty tile of other stacks might have any integer

as its second subscript. Let l

j

be the smallest integer

such that T

j;l

j

is non-empty.

For each (j; k) pair, we de�ne S

j;k

to be the union

of of the tiles T

j;m

with m � k, that is, all tiles up to

the k-th in the j-th stack.

Let A

T

j;k

denote the area, which represents the ex-

ecution time, of tile T

j;k

. If T

j;k

is a full tile of width w

and height h, then A

T

j;k

= hw.

Similarly, we de�ne A

S

j;k

to be the area of S

j;k

, and

A

S

j

to be the total area of the j-th stack.

F

T

j;k

will denote the �nishing time of tile T

j;k

, that

is, the elapsed time from the start of execution of T

1;1

to the end of execution of tile T

j;k

(including sending

its output surface) by the processor assigned to it.

Let y

T

j;k

denote the height of the right-hand output

surface of T

j;k

. As described in the discussion of lead

time, we assume that tile T

j+1;k

cannot begin execution

until cwy

T

j;k

after tile T

j;k

is completed.

Tile T

j;k

must wait for tile T

j�1;k

to its left, and tile

T

j;k�1

below. Any other tile dependences will be from

tiles that �nished earlier than these two, and so will not

further delay the �nishing time of T

j;k

. This gives the

following formula:

Formula 1

F

T

j;k

= A

T

j;k

+max(F

T

j;k�1

; F

T

j�1;k

+ cwy

T

j�1;k

)

F

T

j;k

= 0 if j < 1 or k < l

j

The next observation follows from the monotonicity

of plus and max.

Observation 1 Decreasing the �nishing times of any

number of tiles can never increase the �nishing time of

any other tile.

The execution time of an application, E, is the max-

imum �nishing time of all tiles.

The idle time of processor p

j

, denoted I

p

j

, is E mi-

nus the the sum of A

T

m;k

for all tiles T

m;k

that are

executed on processor p

j

. If I

p

1

= ::: = I

p

P

we refer

to the processor idle time by I

p

. The de�nition of idle

time includes both types of idle time, the communica-

tion idle time I

c

p

j

that p

j

spends waiting for data from

other processors, and the synchronization idle time I

s

p

j

after it has �nished its last tile and before the applica-

tion has �nished.

It will turn out that when a processor is executing a

stack of tiles, it may have idle time at the lowest tiles

in the stack and additional idle time for the highest

tiles in the stack, but if the stack is su�ciently high

(in a technical sense de�ned later), the tiles in between

will be executed in a \wavefront" with no additional

idle time. We will write I

c

p

j

= I

c

p

j

bottom

+ I

c

p

j

top

to

di�erentiate the communication idle time incurred by

processor p

j

at the stacks' bottoms from that at the

stacks' tops.



De�nition 4 The idle time of an application, I

a

, is

the sum of the idle times of the individual processors.

Tile boundary

S1

S2

a)

c) d)

b)

h

w
Iteration

boundary
space

1.5h
-h

r hb

Figure 3: a) Illustration of the rise r

b

=

w

h

(s

1

� s

2

), where s

1

is the slope of the iteration space and s

2

is the slope of the tile.

Geometrically r

b

is the number of tile heights that the iteration space

boundary rises in the width of one tile. The rise turns out to greatly

a�ect the processor idle time. b) r

b

= 0. c) r

b

= 1:5. d) r

b

= �1.

Tile boundary

Iteration

boundary
space

S1

S2

w

h
rt h

Figure 4: Rise r

t

at the top of the iteration space.

P = 2 Execution Time

r = 1 (14 + 5c)hw

r = 0 max(13 + c; 9 + 5c)hw

r = �1 max(12 + c; 4 + 4c)hw

P = 3 Execution Time

r = 1 (14 + 5c)hw

r = 0 max(10 + 2c; 9 + 5c)hw

r = �1 max(8 + 2c; 4 + 4c)hw

P = 6 Execution Time

r = 1 (14 + 5c)hw

r = 0 (9 + 5c)hw

r = �1 (4 + 4c)hw

Table 1: Total execution times for varying values of r. The rise

a�ects the execution time up to a factor of 3, depending on the values

of c (chw is the �nishing time of one full surface of length h) and P

(the number of processors).

An important concept relating the iteration space to

a tiling is the rise.

De�nition 5 The rise r is

w

h

(s

1

� s

2

), where w and

h are the dimensions of the tile, and s

1

and s

2

are the

a)

11.5+5c

12.5+5c

13.5+5c

14+5c12+4c

11.5+4c

10.5+4c

9.5+4c

8+4c 10+5c6+3c

7.5+3c

8.5+3c

9.5+3c

10+3c8+2c

7.5+2c

6.5+2c

5.5+2c

4+2c2+c0.5

1.5

2.5

3.5

4 6+c

5.5+c

4.5+c

3.5+c

w

h

8+4c

7+4c

6+4c

5+4c4+3c

5+3c

6+3c

7+3c4

3

2

1 2+c

3+c

4+c

5+c

7+5c

6+5c

8+5c

9+5c

4+2c

5+2c

6+2c

3+2c

b)w

h

0.5

1.5

2.5

3.5

4

0.5

1.5+c

2.5+c

3.5+c

4+c

0.5

2.5+2c

3.5+2c

4+2c

1.5+c

0.5

4+3c

3.5+3c

1.5+c

2.5+2c

0.5

4+4c

1.5+c

2.5+2c

3.5+3c

0.5

1.5+c

2.5+2c

3.5+3c

4+4c

c)

h

w

Figure 5: This picture illustrates the importance of choosing a

tiling with a good value of r. The numbers inside the tiles are the

�nishing times for a normalized area = hw = 1 and P = 6. The

iteration space and tiles in all three examples have the same area.

Each tile depends on the tiles below it and to the left of it. In (a)

r = 1, (b) r = 0, and (c) r = �1. Table 1 has the execution times for

other values of P .

slopes of the iteration space and the tile respectively.

If the top and bottom slope of an iteration space are

not the same, we distinguish between the bottom rise r

b

(Figure 3) and the top rise r

t

(Figure 4).

Figures 3 and 4 gives some examples of di�erent val-

ues of rise. Geometrically r is the number of tile heights

that the iteration space boundary rises in the width of

one tile.

The following two observations, easy to see geomet-

rically, are central to our proofs.

Observation 2 When r

b

� �1, A

T

j;k

� A

T

j�1;k+1

Observation 3 When r

b

� �1, A

T

j;k

� A

T

j�1;k+1

4 Preview of Results

It turns out that the execution time varies signi�cantly

with the rise, as illustrated in Figure 5(a), (b), and (c),

where the rise is equal to 1, 0, and �1 respectively. The

number written inside each tile is the �nishing time,

given at least six processors. Table 1 contains the exe-

cution times for 2, 3, and 6 processors.

The �rst processor in Figure 5(a) for example, can

execute the �ve tiles in its �rst stack (two half tiles,

and three whole) in 4 time steps. The second processor

on the other hand, has to wait for the �rst processor,

both before starting executing its �rst tile and also later,

before executing its second tile, in order to receive the

output values sent from the �rst processor.

For typical values of c in our example with P = 6,

the total execution time for the tiling in Figure 5(a) is



In�nite iteration spaces

r

b

� �1 I

c

p

j

bottom

= (j � 1)(1 + r

b

+ c)hw

r

b

� �2 I

c

p

j

bottom

� max((c �

1�r

2

b

2r

b

)hw; 0)

Parallelogram-shaped iteration spaces

Block distribution

r � �1 I

a

= P (P � 1)(1 + r + c)hw

r � �2 I

a

� max((c�

1�r

2

2r

)Phw; 0)�

rPhw

2

Parallelogram-shaped iteration spaces

Block cyclic distribution

r � �1 (A

S

j

� Phw(1 + r + c)) I

a

= P (P � 1)(1 + r + c)hw

r � �2 I

a

� max((c�

1

2r

)bPhw;

�rbPhw

2

)

Trapezoidal iteration spaces r

b

< r

t

Block distribution

r

b

� �1 I

a

= P (P � 1)(1 +

r

t

+r

b

2

+ c)hw

r

b

� �2 < �1 � r

t

I

a

� max(c�

1�r

2

2r

)Phw; 0) + P (P � 1)

r

t

+r

b

2

hw

r

b

< r

t

< �1; r

b

� �2 I

a

� max(c�

1�r

2

2r

)Phw; 0) + P (P � 1)

r

t

+r

b

2

hw �

r

t

Phw

2

Trapezoidal iteration spaces r

t

< r

b

Block distribution

�1 � r

t

< r

b

I

a

= P (P � 1)(1 +

r

t

+r

b

2

+ c)hw

�(1 + c) � r

t

< �1 � r

b

I

a

� P (P � 1)(1 +

r

t

+r

b

2

+ c)hw �

r

t

Phw

2

r

t

� �(1 + c) < �1 � r

b

I

a

� �P (P � 1)

r

t

�r

b

2

hw �

r

t

Phw

2

r

t

< r

b

� �2 I

a

� max(c�

1�r

2

2r

)Phw; 0)� P (P � 1)

r

t

�r

b

2

hw �

r

t

Phw

2

Table 2: Summary of results.

about three times longer than for the tiling shown in

Figure 5(c). This is because in 5(a), each processor

needs to wait while two tiles are executed at the previ-

ous processor, whereas in 5(c) all processors can start

at the same time. Furthermore we see in Figure 5(b)

that a tiling using rectangular tiles (r = 0) results in

an execution time that is about twice as long as when

r = �1.

Table 2 is a summary of the results that will be pre-

sented in the rest of the paper. We look at �ve tiling sce-

narios as given by the table headings. The case of \in-

�nite iteration space" examines the idle time I

c

p

j

bottom

that occurs at the bottom of P su�ciently tall stacks.

It will be shown that, although there may be idle time

for several tiles at the bottom of each stack, once a

processor reaches a row that contains only full tiles, it

will incur no additional idle time (until the stack top is

encountered). The next two cases are for parallelogram-

shaped iteration spaces with block and block cyclic dis-

tributions. The last cases examine trapezoidal (which

includes triangular) iteration spaces with block distri-

bution, with di�erent cases depending on whether suc-

cessive stacks are becoming taller or shorter.

Each of these cases are further divided into subcases,

depending on the rise(s). For parallelograms, the reason

there are two intervals of the rise is that when r

b

�

�2, the only possible communication idle time for a

stack of tiles is waiting for the �rst two messages at the

bottom of the stack, whereas in the case when r

b

� �1,

messages never arrive ahead of when they are needed.

When �2 < r

b

< �1, neither statement is necessarily

true, but depend on the where the bottom edge of the

iteration space intersects the stack. This complicates

the formulas considerably and we will not cover this

interval of r

b

in this paper.

It is convenient, because of this di�erent behavior in

the two cases, to de�ne a constant v that in some cases

gives the slope of the \wavefront" of parallel execution

of tiles.

De�nition 6 We de�ne v to be �(1 + c)

h

w

when r

b

�

�1 and v = r

b

h

w

when r

b

� �2.

Section 5 examines in�nitely high iteration spaces,

parallelograms are covered in Section 6.1, and trape-

zoids and triangles are covered in Section 6.2. Because

of space limitations, only the proofs of the �rst lemmas

are included here. The full set of proofs can be found

in the technical report [HCF96].

5 In�nite iteration spaces

5.1 Total processor idle time for r

b

� �1

Assume that we extend the iteration space to in�nity

towards the top edge of the original iteration space. We

will start by obtaining a formula for the �nishing time

for any tile T

j;k

in a row where all tiles to its left are

full tiles.



Since it isn't well de�ned what a block cyclic dis-

tribution for an in�nite iteration space is, we are only

covering block distribution in this section.

Lemma 1 When r

b

� �1 and T

j;k

is a tile in row k

(for j; k � 1) where all tiles T

l;k

are full (for 1 � l � j),

then

F

T

j;k

= A

S

1;k

+ (j � 1)(c+ 1)hw

Proof: See appendix. 2

The lemma shows that after the k-th row, the �n-

ishing time of the tiles in the j-th stack are a constant

larger than the corresponding area of the �rst stack.

Since all tiles are full above the k-th row, this means

both the work and the �nishing time of tiles in the j-

th stack are increasing by hw. Thus no additional idle

time is introduced above the k-th row. This justi�es

the earlier discussion of the de�nition of I

c

p

j

bottom

where

\su�ciently high" means \above row k". We have:

Corollary 1 When r

b

� �1,

I

c

p

j

bottom

= (j � 1)(1 + r

b

+ c)hw

Proof: See appendix. 2

5.2 Total processor idle time for r

b

� �2

h

w

Figure 6: Iteration space for r

b

� �2. The shaded area correspond

to the computation that can be executed immediately without waiting

for data from another processor.

When the rise is less than �2 we see in Figure 6 that

all processors can start executing at the same time; not

only their �rst tile but also the second and, depending

on the rise, maybe more. (The shaded areas in Figure 6

correspond to these tiles.) This changes the formula

considerably, since now more of the time that otherwise

would be spent waiting for earlier processors is being

overlapped by computation. We will show that the total

idle time for an arbitrary stack up to and including its

�rst full tile is given by the following formula in an

in�nite iteration space.

I

c

p

j

bottom

� max((c�

1� r

2

b

2r

b

)hw; 0)

Lemma 2 When r

b

� �2, j � 2, and T

j;k

is a full tile,

then

F

T

j;k

� A

S

j;k

+max((c�

1�r

2

b

2r

b

)hw; 0)

Proof: See appendix. 2

Corollary 2 When r

b

� �2 and j � 2,

I

c

p

j

bottom

� max((c�

1� r

2

b

2r

b

)hw; 0)

Proof: See appendix. 2

It can be shown that this approximation is o� by at

most

hw

4

.

6 Finite iteration spaces

We have so far derived formulas for the idle time in in�-

nite iteration spaces, but we need now to derive similar

formulas for �nite iteration spaces. Removing compu-

tation from the in�nite iteration space to make it �nite

will in some cases introduce extra idle time at the top

of each stack.

The idle time that occur at the top of the l-th stack

in an iteration space can occur for two reasons. The

processor executing the l-th stack might be idle while

it still have computation left to do in the l-th stack.

We call this idle time I

c

l

top

. If l is the last stack to

be executed by processor p

j

, then there might also be

idle time due to synchronization after l has been ex-

ecuted. The following two lemmas state the formulas

for these two idle times. (The proofs for these lemmas,

and all subsequent lemmas and theorems can be found

in [HCF96].)

Lemma 3

I

c

l

top

�

= 0 (for r

t

� �1)

�

�r

t

hw

2

(for r

t

< �1)

Lemma 4

I

s

p

j

=

�

hw(r

t

� v

w

h

)(P � j) (for r

t

� v

w

h

)

�hw(r

t

� v

w

h

)(j � 1) (for r

t

� v

w

h

)

where r

t

is the top rise and v is the wavefront constant.

We are now ready to derive formulas for the idle

time. These formulas all come from the de�nition of

I

p

j

= I

c

p

j

bottom

+I

c

p

j

top

+I

s

p

j

, where I

c

p

j

top

=

P

l = j mod P

I

c

l

top

.

The formulas concerning block distribution are then

all obtained straightforwardly using lemmas 3, 4 and

Corollary 1 or 2. In the case of block cyclic distribu-

tion, I

c

p

j

bottom

might also di�er from the formulas in

Corollary 1 and 2 (see proofs of Lemma 7 and 8).

6.1 Parallelogram shaped iteration spaces

When the iteration space is a parallelogram, all stacks

have the same height, and assuming that they also have

the same width, all processors will therefore perform

the same amount of computation. According to the

de�nition of processor idle time we can conclude that

I

p

1

= ::: = I

p

P

= I

p

. The total idle time, I

a

, therefore

becomes equal to PI

p

.



6.1.1 Block Distribution for r � �1

We claim that the idle time for the processor executing

the j-th stack is given by the following lemma.

Lemma 5 Let r � �1 and assume that there exists a

row k, such that for all stacks, there is a full tile in k.

3

The total processor idle time for the processor executing

the j-th stack is then given by the following formula.

I

p

= (P � 1)hw(1 + r + c)

where h and w are the height and width of a tile, chw

is the time is takes to communicate one tile surface of

height h, and r is the rise.

The next theorem follows from this lemma using the

fact that the idle time of an application is the sum of

the idle times of the individual processors.

Theorem 1 Let r � �1. If there are P stacks dis-

tributed one per processor, and there exists a row which

includes full tiles in every stack, then the total idle time

will be

I

a

= P (P � 1)hw(1 + r + c)

where h is the height and w the width of the tiles, chw

is the communication time for one tile surface of length

h, and r is the rise.

6.1.2 Block Distribution for r � �2

The total idle time for an arbitrary stack is given by

the following lemma.

Lemma 6 If r � �2 and each processor only executes

one stack, then the following formula is an upper bound

on the total idle time for one processor.

I

p

� max((c�

1

2r

)hw;

�rhw

2

)

where w is the width and h the height of the tile, chw

is the time it takes to communicate one tile surface of

length h, and r is the rise.

As before, this lemma gives the following theorem.

Theorem 2 If r � �2 and there are P stacks, then

I

a

� max((c�

1

2r

)Phw;

�rPhw

2

)

is an upper bound on the total idle time.

3

Here and in subsequent sections we assume that if the stacks are

so short that there is no row with a full tile in each stack, then we

will assume that the stacks are higher and the results that we derive

will then be an upper bound on the idle time. This follows from

Observation 1.

6.1.3 Block Cyclic Distribution for r � �1

In the case of block cyclic distribution, we assume there

are P processors executing bP stacks, such that p

j

ex-

ecutes stack numbers j mod P . As before we assume

the stacks to be \su�ciently high" (there is at least one

row of full tiles), but in the block cyclic case we also

need the assumption that they have an area of at least

Phw(1 + r + c). This last assumption turns out to be

su�cient to assure that a processor can start execut-

ing the next stack immediately after the �nishing its

current stack.

We claim that the idle time is given by the following

lemma.

Lemma 7 Let r � �1 and p

j

be the processor that

executes stack numbers j; j +P; j +2P; :::; j + (b� 1)P .

Let all stacks have an area of at least Phw(1 + r + c),

and let there exist a row in which all tiles are full.

I

p

= (P � 1)(1 + r + c)hw

Theorem 3 If r � �1 and there are bP stacks as de-

scribed in Lemma 7, then the total idle time is given

by

I

a

= P (P � 1)(1 + r + c)hw

6.1.4 Block Cyclic Distribution for r � �2

When r � �2 we do not need to make any assumptions

on the height of the stacks.

Lemma 8 Let r � �2 and p

j

be the processor that

executes stack numbers j; j +P; j +2P; :::; j + (b� 1)P .

I

p

� max((c�

1

2r

)bhw;

�rbhw

2

)

Theorem 4 If r � �2 and there are bP stacks, then

the total idle time is given by

I

a

� max((c�

1

2r

)bPhw;

�rbPhw

2

)

6.2 Trapezoidal iteration spaces

6.2.1 Block Distribution for �1 � r

b

< r

t

We claim that the idle time for the processor executing

the j-th stack is given by the following lemma.

Lemma 9 Let r

t

> r

b

� �1 and assume that there

exists a row k such that for all stacks there is a full

tile in k. The total processor idle time for the processor

executing the j-th stack is then given by the following

formula.

I

p

j

= hw((j � 1)(1 + r

b

+ c) + (r

t

+ 1 + c)(P � j))

where h and w are the height and width of a tile, chw

is the time is takes to communicate one tile surface of

height h, and r is the rise.



Theorem 5 If there are P stacks distributed one per

processor, and there exist a row which includes full tiles

in every stack, then the total idle time for �1 � r

b

< r

t

will be

I

a

= P (P � 1)hw(1 + c+

r

t

+ r

b

2

)

where h is the height and w the width of the tiles, chw

is the communication time for one tile surface of length

h, and r

b

and r

t

are the bottom and top rise.

6.2.2 Block Distribution for r

b

� �2, r

b

< r

t

The total idle time for the processor executing the j-th

stack is given by the following lemma.

Lemma 10 If r

b

� �2 and each processor only exe-

cutes one stack, then the following formula is a upper

bound on the total idle time for one processor.

For r

b

� �2 < �1 � r

t

:

I

p

j

� max((c �

1�r

2

b

2r

b

)hw; 0) + hw(r

t

� r

b

)(P � j)

For r

b

< r

t

< �1; r

b

� �2:

I

p

j

� max((c�

1�r

2

b

2r

b

)hw; 0)+

+hw(r

t

� r

b

)(P � j)�

r

t

hw

2

where w is the width and h the height of the tile, chw

is the time it takes to communicate one tile surface of

length h, r

b

is the rise at the bottom of the iteration

space and r

t

is the rise at the top.

Theorem 6 If r

b

� �2, r

b

< r

t

and there are P stacks,

then

For r

b

� �2 < �1 � r

t

:

I

a

� max(P (c�

1�r

2

b

2r

b

)hw; 0) + P (P � 1)hw

r

t

�r

b

2

For r

b

< r

t

< �1; r

b

� �2:

I

a

� max(P (c�

1�r

2

b

2r

b

)hw; 0)+

+P (P � 1)hw

r

t

�r

b

2

�

r

t

hwP

2

is an upper bound on the total idle time.

6.2.3 Block Distribution for r

b

> r

t

, r

b

� �1

We claim that the idle time for the processor executing

the j-th stack is given by the following lemma.

Lemma 11 Let r

b

� �1 and assume that there exists

a row k, such that for all stacks, there is a full tile in k.

The total processor idle time for the processor executing

the j-th stack is then given by the following formula.

For �1 � r

t

< r

b

:

I

p

j

= hw((j � 1)(1 + r

b

+ c)+

+(P � j)(1 + r

t

+ c))

For �(1 + c) � r

t

< �1 � r

b

:

I

p

j

� hw((j � 1)(1 + r

b

+ c)+

+(P � j)(1 + r

t

+ c)�

r

t

2

)

For r

t

� �(1 + c) < �1 � r

b

:

I

p

j

� �hw((j � 1)(r

t

� r

b

) +

r

t

2

)

where h and w are the height and width of a tile, chw

is the time is takes to communicate one tile surface of

height h, and r

b

is the rise at the bottom of the iteration

space and r

t

is the rise at the top.

Theorem 7 Let r

b

� �1. If there are P stacks dis-

tributed one per processor, and there exist a row which

includes full tiles in every stack, then the total idle time

will be

For �1 � r

t

< r

b

:

I

a

= P (P � 1)hw(1 + c+

r

t

+r

b

2

)

For �(1 + c) � r

t

< �1 � r

b

:

I

a

� P (P � 1)hw(1 + c+

r

t

+r

b

2

)�

r

t

Phw

2

For r

t

� �(1 + c) < �1 � r

b

:

I

a

� �P (P � 1)hw(

r

t

�r

b

2

)�

r

t

Phw

2

where h is the height and w the width of the tiles, chw

is the communication time for one tile surface of length

h, and r

b

and r

t

are the bottom and top rise.

6.2.4 Block Distribution for r

t

< r

b

� �2

The total idle time for the processor executing the j-th

stack is given by the following lemma.

Lemma 12 If r

t

< r

b

� �2 and each processor only

executes one stack, then the following formula is an up-

per bound on the total idle time for one processor.

I

p

j

� max((c �

1� r

2

b

2r

b

)hw; 0)�

�hw(r

t

� r

b

)(j � 1)�

r

t

hw

2

where w is the width and h the height of the tile, chw

is the time it takes to communicate one tile surface of

length h, and r

b

and r

t

are the bottom and top rise.

Theorem 8 If r

t

< r

b

� �2 and there are P stacks,

then

I

a

� max(P (c�

1� r

2

b

2r

b

)hw; 0)�

�P (P � 1)hw(

r

t

� r

b

2

)�

Pr

t

hw

2

7 Idle time tradeo�s for multilevel tiling

This section will illustrate how paying attention to idle

time can be important in the context of tiling for mul-

tiple levels of memory and parallelism hierarchy.

In Figure 7 an iteration space with vertical and hor-

izontal dependences is partitioned into tiles and these

tiles are again partitioned into subtiles. We will as-

sume that the original iteration space and the subtiles

are rectangular and consider the e�ect of the shape of

the intermediate tiles. In Figure 7a) we use a square

intermediate tile whereas in b) we use a sloping paral-

lelogram. Conventional tiling techniques would choose

the tiling of Figure 7a). We argue that in some circum-

stances the tiling in b) is more desirable.

Suppose for example the intermediate tiles are brought

in from disk to main memory and the subtiles are ex-

ecuted on individual processors. Since there is only a

single main memory, i.e. P = 1 for the coarse granu-

larity tiles, there is no idle time at this level. However,



the idle time to execute each subtile using multiple pro-

cessors is signi�cant. In the case of square tiles in Fig-

ure 7a) each tile incur a substantial idle time penalty.

However for the sloping tiles, even though there is a

similar penalty for the partial tiles, the full tiles will be

able to execute without idle time.

tile

subtile

b)

a)

Figure 7: This �gure shows two di�erent two level tilings of an

iteration space. The �rst has rise of zero in both cases, whereas the

second has negative rise for subtiles and positive for tiles. Which of

the two is more e�cient depends on the degree of parallel execution

at the two levels.

We have observed the importance of idle time in ac-

tual programs [CFHAG96]. The �rst example is a PDE-

like nested loop, tiled for both cache and registers on

the IBM RS/6000. Conventional tiling would produce

rectangular cache tiles and an unrolled loop (which can

be considered to be a very small rectangular "register

tile"). Hierarchical tiling would also choose rectangu-

lar cache tiles; however, because of the pipelined func-

tional unit of depth 2 in the RS/6000, which is mod-

eled as two-way parallelism, register tiles are chosen to

be parallelograms with rise of +1 with respect to the

cache tiles. Since there is only one set of registers per

cache, having a positive rise doesn't lead to any idle

time. However, each register tile is further partitioned

into "instruction tiles". The choice of register tile shape

makes the instruction tiles have rise of -1, which gives

greater instruction level parallelism. The code produced

by hierarchical tiling ran 64% faster than the conven-

tionally tiled code on the RS/6000, taking an average

of 3.23 cycles per iteration point compared to 5.31. The

second example is a protein matching code with a sim-

ilar set of considerations. In this example on the IBM

SP2, the inner loop code with rectangular register tiles

ran at 8.0 cycles per iteration, whereas a register tile a

parallelogram with rise of -1 ran at 6.37 cycles per it-

eration, i.e., 26% faster. The di�erence in performance

on these two codes illustrates that idle time can have a

signi�cant e�ect on real performance.

References

[B92] Banerjee, U., \Unimodular Transformations of Double Loops",

in Advances in Languages and Compilers for Parallel Process-

ing, A. Nicolau and D. Padua, editors, MIT Press, 1992.

[CFH95a] Carter, L., J. Ferrante and S. Flynn Hummel, \E�cient

Parallelism via Hierarchical Tiling," Proc. of SIAM Conference on

Parallel Processing for Scienti�c Computing, (February, 1995).

[CFH95b] Carter, L., J. Ferrante and S. Flynn Hummel, \Hierar-

chical Tiling for Improved Superscalar Performance," Ninth In-

ternational Parallel Processing Symposium, Santa Barbara, CA,

April 1995.

[CFHAG96] Carter, L., J. Ferrante, S. Flynn Hummel, B.

Alpern, K. S. Gatlin, \Hierarchical Tiling: A Method-

ology for High Performance," UCSD Computer Science

and Engineering Technical Report, available at http://www-

cse.ucsd.edu/users/carter/ppbib.html.

[CK92] Carr, S. and K. Kennedy, \Compiler Blockability of Numeri-

cal Algorithms," Proc. of Supercomputing, November, 1992.

[GJG88] Gannon, D., W. Jalby and K. Gallivan, \Strategies for

Cache and Local Memory Management by Global Program Trans-

formation," Journal of Parallel and Distributed Computing, Vol.

5, No. 5, October 1988, pp. 587-616.

[HCF96] H�ogstedt, K., L. Carter and J. Ferrante, \Determining the

Idle Time of a Tiling," UCSD Computer Science and Engineering

Technical Report, no. CS96-489, 1996, available at http://www-

cse.ucsd.edu/users/carter/ppbib.html.

[HA90] Hudak, D. E. and S. G. Abraham, \Compiler Techniques for

Data Partitioning of Sequentially Iterated Parallel Loops," IEEE

Transactions on Parallel and Distributed Systems, Vol. 2 No. 3,

July, 1991, pp. 318-328.

[H93] Hummel, S. F., \Fractiling: A Method for Scheduling Parallel

Loops on NUMA Machines", IBM RC 18958, June 1993.

[IT88] Irigoin, F. and R. Triolet, \Supernode Partitioning," Proc.

15th ACM Symp. on Principles of Programming Languages,

January 1988, pp. 319-328.

[JM86] Jalby, W. and U. Meier, \Optimizing Matrix Operations on

a Parallel Multiprocessor with a Hierarchical Memory System,"

Proc. International Conference on Parallel Processing, August

1986, pp. 429-432.

[KM92] Kennedy, K. and K. S. Mc Kinley, \Optimizing for Paral-

lelism and Data Locality," Proc. International Conference on

Supercomputing, July 1992, pp. 323-334.

[KP93] Kelly, W. and W. Pugh, \Determining Schedules based on

Performance Estimation," Technical report, Dept. of Computer

Science, University of Maryland, College Park UMIACS-TR-93-

67, December 1993.

[LRW91] Lam, M, E. Rothberg, and M. Wolf, \The Cache Perfor-

mance and Optimization of Blocked Algorithms," Proc. ASPLOS,

April 1991, pp. 63-74.

[L90] Lee, F. F., \Partitioning of Regular Computation on Multipro-

cessor Systems," Journal of Parallel and Distributed Computing,

Vol. 9, 1990, pp. 312-317.

[RS91] Ramanujam, J. and P. Sadayappan, \Tiling Multidimensional

Iteration Spaces for Nonshared Memory Machines," Proceedings

of Supercomputing, November, 1991, pp. 111-120.

[RAP87] Reed, D. A., L. M. Adams and M. L. Patrick, \Stencil and

Problem Partitionings: Their In
uence on the Performance of

Multiple Processor Systems," IEEE Transactions on Computers,

July, 1987, pp. 845-858.

[VSM96] Van der Wijngaart, R.F., S.R. Sarukkai, and P. Mehra,

\The E�ects of Interrupts on Software Pipeline Execution on

Message-passing Architectures," International Conference on

Supercomputing, May, 1996.

[WL91] Wolf, M. E. and M. S. Lam, \A Data Locality Optimiz-

ing Algorithm," Proceedings of the ACM SIGPLAN Conference

on Programming Language Design and Implementation, June,

1991, pp. 30-44.

[WL91b] Wolf, M. E. and M. S. Lam, \A Loop Transformation The-

ory and an Algorithm to Maximize Parallelism," IEEE Transac-

tions on Parallel and Distributed Systems, Vol. 2, No. 4, Octo-

ber, 1991, pp. 452-471.

[W87] Wolfe, M., \Iteration Space Tiling for Memory Hierarchies,"

Parallel Processing for Scienti�c Computing, G. Rodrigue (Ed),

SIAM 1987, pp. 357-361.

[W89] Wolfe, M., \More Iteration Space Tiling ," Proceedings of Su-

percomputing, November, 1989, pp. 655-664.



Appendix

In�nite iteration spaces

Lemma 1 When r

b

� �1, j; k � 1 and T

j;k

is a tile in row k where all tiles T

l;k

, l � j are full, then

F

T

j;k

= A

S

1;k

+ (j � 1)(c+ 1)hw

Proof of Lemma 1: We �rst need two additional lemmas (13 and 14).

Lemma 13 Let T

j;k

be a tile in row k such that T

l;k

; l � j are full tiles.

F

T

j;k

� F

T

j�1;k+1

+ chw (for j � 2)

Proof of Lemma 13:

Induction Hypothesis:

F

T

j;k

� F

T

j�1;k+1

+ chw (for j � 2)

for all tiles within the iteration space boundaries. F

T

j;k

= 0 otherwise.

Base Case (j + k = 2):

A

T

j;k

= 0:

Formula 1 states that the �nishing time of a non-existing tile is equal to 0, and the induction hypothesis is

therefore trivially true in this case.

A

T

j;k

6= 0:

F

T

j;k

= max(F

T

j�1;k

+ cwy

T

j�1;k

; F

T

j;k�1

) +A

T

j;k

(Form: 1)

Now, Formula 1 says that the �nishing time for non-existing tiles is equal to 0, and when r

b

� �1 we know that

both T

j�1;k

and T

j;k�1

do not exist. We therefore have that

F

T

j;k

� max(0 + 0; 0) +A

T

j;k

(r

b

� �1;Form: 1)

� max(0 + 0; 0) +A

T

j�1;k+1

(Obs: 2)

� max(F

T

j�2;k+1

+ cwy

T

j�2;k+1

; F

T

j�1;k

) +A

T

j�1;k+1

� F

T

j�1;k+1

(Form: 1)

� F

T

j�1;k+1

+ chw

for j + k = 2.

Induction Step: Suppose the induction hypothesis holds for j + k = x� 1, show it also holds for j + k = x.

F

T

j;k

= max(F

T

j�1;k

+ cwy

T

j�1;k

; F

T

j;k�1

) +A

T

j;k

(Form: 1)

� max(F

T

j�1;k

+ chw; F

T

j;k�1

) +A

T

j;k

� max(F

T

j�1;k

+ chw; F

T

j�1;k

+ chw) +A

T

j;k

(Induction hypothesis)

� F

T

j�1;k

+ chw +A

T

j;k

� F

T

j�1;k

+ chw +A

T

j�1;k+1

(Obs. 2)

� F

T

j�1;k+1

+ chw

since F

T

j�1;k+1

� F

T

j�1;k

+A

T

j�1;k+1

by the de�nition of �nishing time (Form 1). We have now proved the induction

hypothesis and lemma.

End of Proof of Lemma 13 2

Lemma 14 Let T

j;k

be a tile in row k such that T

l;k

; l � j are full tiles.

F

T

j;k

= F

T

j�1;k

+ (c+ 1)hw (for j � 2)

Proof of Lemma 14

F

T

j;k

= max(F

T

j�1;k

+ cwy

T

j�1;k

; F

T

j;k�1

) +A

T

j;k

(Form: 1)

= max(F

T

j�1;k

+ chw; F

T

j;k�1

) +A

T

j;k

(A

T

j�1;k

= hw)

= F

T

j�1;k

+ chw +A

T

j;k

(Lemma 13)

= F

T

j�1;k

+ chw + hw (A

T

j;k

= hw)

= F

T

j�1;k

+ (c+ 1)hw

End of Proof of Lemma 14 2

We are now ready to complete the proof of Lemma 1.

F

T

j;k

= F

T

j�1;k

+ (c+ 1)hw (for j � 2) (Lemma 14)

= F

T

1;k

+ (j � 1)(c+ 1)hw (for j � 1) (by simple induction)

= A

S

1;k

+ (j � 1)(c+ 1)hw (by simple induction)

End of Proof of Lemma 1 2

Corollary 1

I

c

p

j

bottom

= (j � 1)(1 + r

b

+ c)hw



h(j-1)

a)

b h(j-1)

Tj,k

br

j,kT

r-

b)

Figure 8: Iteration spaces showing that the di�erence between the area of stack 1 and stack j up to a certain level always di�ers with

r

b

h(j � 1)w. This fact is used in the proof of Corollary 1.

when r

b

� �1.

Proof of Corollary 1: The idle time for p

j

in an in�nite iteration space is given by the �nishing time of a tile T

j;k

in row k such that T

l;k

; l � j are full tiles, minus the amount of computation p

j

has executed before F

T

j;k

Using the notation in Figure 8, and Lemma 1, we have that

I

c

p

j

bottom

= F

T

j;k

�A

S

j;k

(for j � 1)

= A

S

1;k

+ (j � 1)(c+ 1)hw �A

S

j;k

(Lemma 1)

= (A

S

1;k

�A

S

j;k

) + (j � 1)(c+ 1)hw

= r

b

h(j � 1)w + (j � 1)(c+ 1)hw (Figure 8)

= (j � 1)(1 + r

b

+ c)hw

where A

S

j;k

is the area of the j-th stack up to, and including row k.

End of Proof of Corollary 1 2

Lemma 2 When r

b

� �2, j � 2 and T

j;k

is a full tile, then

F

T

j;k

� A

S

j;k

+max((c+

1�r

2

b

2r

b

)hw; 0)

Proof of Lemma 2: We �rst need to prove the following lemma.

Lemma 15

F

T

j;k

� F

T

j�1;k+1

+ chw (for j � 2; k � f

j

)

where f

j

is the value of k such that T

j;k

is the �rst full tile in stack j.

Proof of Lemma 15:

Induction Hypothesis:

F

T

j;k

� F

T

j�1;k+1

+ cwy

T

j�1;k+1

(for j � 1)

for all tiles within the iteration space boundaries. F

T

j;k

= 0 otherwise.

Base Case (j + k = l

bP

+ 1, where l

bP

is the lowest value of k such that T

bP;k

exists.):

A

T

j;k

= 0:

Formula 1 states that the �nishing time of a non-existing tile is equal to 0, and the induction hypothesis is

therefore trivially true in this case.

A

T

j;k

6= 0:

F

T

j;k

= max(F

T

j�1;k

+ cwy

T

j�1;k

; F

T

j;k�1

) +A

T

j;k

(Form: 1)

Now, Formula 1 says that the �nishing time for non-existing tiles is equal to 0, and when r

b

� �2 we know that

both T

j�1;k

and T

j;k�1

do not exist when j + k = l

bP

+ 1. We therefore have that

F

T

j;k

= max(0 + 0; 0) +A

T

j;k

(r

b

� �2;Form: 1)

� max(0 + 0; 0) +A

T

j�1;k+1

(Obs: 3)

� max(F

T

j�2;k+1

+ cwy

T

j�2;k+1

; F

T

j�1;k

) +A

T

j�1;k+1

(A

T

j�2;k+1

= A

T

j�1;k

= 0)

� F

T

j�1;k+1

(Form: 1)

� F

T

j�1;k+1

+ cwy

T

j�1;k+1

(A

T

j�1;k+1

= 0)

Induction Step: Suppose the induction hypothesis holds for j + k = x� 1, show it also holds for j + k = x.

F

T

j;k

= max(F

T

j�1;k

+ cwy

T

j�1;k

; F

T

j;k�1

) +A

T

j;k

(Form: 1)

� max(F

T

j�1;k

+ cwy

T

j�1;k

; F

T

j�1;k

+ cwy

T

j�1;k

) +A

T

j;k

(Induction hypothesis)

� F

T

j�1;k

+ cwy

T

j�1;k

+A

T

j;k

� F

T

j�1;k

+ cwy

T

j�1;k

+A

T

j�1;k+1

(Obs: 3)

� max(F

T

j�2;k+1

+ cwy

T

j�2;k+1

; F

T

j�1;k

) + cwy

T

j�1;k

+A

T

j�1;k+1

(Induction hypothesis)

� F

T

j�1;k+1

+ cwy

T

j�1;k

Now we have shown that F

T

j;k

� F

T

j�1;k

+ cwy

T

j�1;k

for all tiles. We want to show F

T

j;k

� F

T

j�1;k

+ cwh for k � f

j

and this is trivially true since when T

j;k

is full, y

T

j�1;k

= h, and we have now proved the lemma.

End of Proof of Lemma 15 2



Using Lemma 15 we now have

F

T

j;k

= max(F

T

j�1;k

+ cwy

T

j�1;k

; F

T

j;k�1

) +A

T

j;k

(Form: 1)

= F

T

j;k�1

+A

T

j;k

(for k > f

j

) (Lemma 15) (1)

To calculate the �nishing time for k > f

j

we now need to calculate the �nishing time for T

j;k

, the �rst full tile in

stack j.

Lemma 16 Let T

j;f

j

be the �rst full tile in stack j. Then

F

T

j;f

j

� max((c�

1�r

2

b

2r

b

)hw; 0) +A

S

j;f

j

(for j � 2)

Proof of Lemma 16 Let us �rst calculate the �nishing time for the �rst full tiles neighboring tiles.

F

T

j�1;f

j

= max(F

T

j�2;f

j

+ cwy

T

j�2;f

j

; F

T

j�1;f

j

�1

) +A

T

j�1;f

j

(Form: 1)

= max(F

T

j�2;f

j

+ cwy

T

j�2;f

j

; A

T

j�1;f

j

�1

) +A

T

j�1;f

j

(A

T

j�2;f

j

�1

= A

T

j�1;f

j

�2

= 0 when r

b

� �2)

= max(0 + 0; A

T

j�1;f

j

�1

) +A

T

j�1;f

j

(A

T

j�2;f

j

= 0)

= A

T

j�1;f

j

�1

+A

T

j�1;f

j

= A

S

j�1;f

j

(2)

F

T

j;f

j

�1

= max(F

T

j�1;f

j

�1

+ cwy

T

j�1;f

j

�1

; F

T

j;f

j

�2

) +A

T

j;f

j

�1

(Form: 1)

= max(F

T

j�1;f

j

�1

+ cwy

T

j�1;f

j

�1

; A

S

j;f

j

�2

) +A

T

j;f

j

�1

(l

j�1

> f

j

� 2 whenr

b

� �2)

= max(A

T

j�1;f

j

�1

+ cwy

T

j�1;f

j

�1

; A

S

j;f

j

�2

) +A

T

j;f

j

�1

(A

T

j�2;f

j

�1

= A

T

j�1;f

j

�2

= 0 when r

b

� �2)

= max(cwy

T

j�1;f

j

�1

� (A

S

j;f

j

�2

�A

T

j�1;f

j

�1

); 0) +A

S

j;f

j

�2

+A

T

j;f

j

�1

= max(cwy

T

j�1;f

j

�1

� (A

S

j;f

j

�2

�A

T

j�1;f

j

�1

); 0) +A

S

j;f

j

�1

(3)

Now we can calculate the �nishing time for the �rst full tile T

j;k

in stack j using these two formulas.

F

T

j;f

j

= max(F

T

j�1;f

j

+ cwy

T

j�1;f

j

; F

T

j;f

j

�1

) +A

T

j;f

j

(Form: 1)

= max(A

S

j�1;f

j

+ cwy

T

j�1;f

j

; F

T

j;f

j

�1

) +A

T

j;f

j

(eqn: 2)

= max(A

S

j�1;f

j

+ cwy

T

j�1;f

j

;

max(cwy

T

j�1;f

j

�1

� (A

S

j;f

j

�2

�A

T

j�1;f

j

�1

); 0) +A

S

j;f

j

�1

) +A

T

j;f

j

(eqn: 3)

= max(cwy

T

j�1;f

j

� (A

S

j;f

j

�1

�A

S

j�1;f

j

);

max(cwy

T

j�1;f

j

�1

� (A

S

j;f

j

�2

�A

T

j�1;f

j

�1

); 0)) +A

S

j;f

j

�1

+A

T

j;f

j

= max(cwy

T

j�1;f

j

� (A

S

j;f

j

�1

�A

S

j�1;f

j

); cwy

T

j�1;f

j

�1

� (A

S

j;f

j

�2

�A

T

j�1;f

j

�1

); 0) + A

S

j;f

j

= max(chw � (A

S

j;f

j

�1

�A

S

j�1;f

j

); cwy

T

j�1;f

j

�1

� (A

S

j;f

j

�2

�A

T

j�1;f

j

�1

); 0) +A

S

j;f

j

= max(D

1

; D

2

; 0) +A

S

j;f

j

(4)

where D

1

= chw � (A

S

j;f

j

�1

�A

S

j�1;f

j

) and D

2

= cwy

T

j�1;f

j

�1

� (A

S

j;f

j

�2

�A

T

j�1;f

j

�1

).

Now let us write out the formulas for D

1

and D

2

. Using the notation in Figure 9a) and 9b) respectively we get

the following expressions for j � 2.

D

1

= chw � (A

2

+A

3

�A

1

)

= chw � (A

2

)

= chw � ((y + v)w �

vx

2

)

= chw � ((y + v)w �

vwv

�2r

b

h

) (

x

w

=

v

�r

b

h

)

= chw � ((y + (�r

b

h� z))w �

w(�r

b

h�z)

2

�2r

b

h

) (v = �r

b

h� z)

= chw � ((y + (�r

b

h� h� y))w �

w(�r

b

h�h�y)

2

�2r

b

h

) (z = h+ y)

= chw � ((�r

b

h� h)w +

w(r

b

h+h+y)

2

2r

b

h

)

= chw �

w

2r

b

h

((r

b

h+ h+ y)

2

� 2r

2

b

h

2

� 2r

b

h

2

)



-r

h

h

boundary

Iteration
space w

b

Last partial tile

First full tile

A2

y

z

z

v

A3

A1

x

a)

w
boundary

Iteration
space

bh-r

h

Last partial tile

First full tile

A2

A1

A3 y

y

t

u

v

x
b)

Figure 9: Iteration space for r

b

� �2.

D

2

= cwy

T

j�1;f

j

�1

� (A

2

�A

1

)

= cwy � (

ux

2

�

yv

2

)

= cwy � (

uwu

�2r

b

h

�

yv

2

) (

x

w

=

u

�r

b

h

)

= cwy � (

wu

2

�2r

b

h

�

ywy

�2r

b

h

) (

v

w

=

y

�r

b

h

)

= cwy � (

wy

2

2r

b

h

�

wu

2

2r

b

h

)

= cwy � (

wy

2

2r

b

h

�

w(�r

b

h�t)

2

2r

b

h

) (u = �r

b

h� t)

= cwy � (

wy

2

2r

b

h

�

w(�r

b

h�(h�y))

2

2r

b

h

) (t = h� y)

= cwy � (

w

2r

b

h

(y

2

� (�r

b

h� (h� y))

2

))

= cwy �

w

2r

b

h

(y

2

� (�r

b

h� h+ y)

2

)

We see that D

2

is a linear function of y, and since 0 � y � h, we know that the maximum value of D

2

is

max(D

2

[y = h]; D

2

[y = 0]). D

1

on the other hand is a parabola, but taking the second derivative with respect to y,

we see it is concave and the maximum value of D

1

is therefore bounded by max(D

1

[y = h]; D

1

[y = 0]).

Going back to the expression for F

T

j;f

j

we have for j � 2

F

T

j;f

j

= max(D

1

; D

2

; 0) +A

S

j;f

j

(eqn: 4)

� max(D

1

[y = h]; D

1

[y = 0]; D

2

[y = h]; D

2

[y = 0]; 0) +A

S

j;f

j

� max(chw �

w

2r

b

h

((r

b

h+ h+ h)

2

� 2r

2

b

h

2

� 2r

b

h

2

);

chw �

w

2r

b

h

((r

b

h+ h)

2

� 2r

2

b

h

2

� 2r

b

h

2

);

chw �

w

2r

b

h

(h

2

� (�r

b

h� h+ h)

2

);�

w

2r

b

h

(�(�r

b

h� h)

2

); 0) +A

S

j;f

j

� max(chw �

hw

2r

b

((r

b

+ 2)

2

� 2r

2

b

� 2r

b

); chw �

hw

2r

b

((r

b

+ 1)

2

� 2r

2

b

� 2r

b

);

chw �

hw

2r

b

(1� r

2

b

);

hw

2r

b

(r

b

+ 1)

2

; 0) +A

S

j;f

j

� max(chw �

hw

2r

b

(r

2

b

+ 4r

b

+ 4� 2r

2

b

� 2r

b

); chw �

hw

2r

b

(1� r

2

b

);

chw �

(1�r

2

b

)

2r

b

hw;

(r

b

+1)

2

2r

b

hw; 0) +A

S

j;f

j

� max(chw �

hw

2r

b

(1� r

2

b

+ 2r

b

+ 3); chw �

(1�r

2

b

)

2r

b

hw;

(r

b

+1)

2

2r

b

hw; 0) +A

S

j;f

j

� max(chw �

1�r

2

b

2r

b

hw �

2r

b

+3

2r

b

hw; chw �

1�r

2

b

2r

b

hw;

(r

b

+1)

2

2r

b

hw; 0) +A

S

j;f

j

� max(chw �

1�r

2

b

2r

b

hw;

(r

b

+1)

2

2r

b

hw; 0) +A

S

j;f

j

(�

2r

b

+3

2r

b

< 0)

� max(chw �

1�r

2

b

2r

b

hw; 0) +A

S

j;f

j

(

(r

b

+1)

2

2r

b

< 0)

End of Proof of Lemma 16 2

We are now ready to complete the proof of Lemma 2.

F

T

j;k

= F

T

j;k�1

+A

T

j;k

(for k > f

j

; j � 2) (eqn. 1)

= F

T

j;f

j

+ (k � 1� f

j

)hw +A

T

j;k

(by simple induction)

� max((c�

1�r

2

b

2r

b

)hw; 0) +A

S

j;f

j

+ (k � 1� f

j

)hw +A

T

j;k

(Lemma 16)

� max((c�

1�r

2

b

2r

b

)hw; 0) +A

S

j;k

and we have now proven the lemma.

End of Proof of Lemma 2 2



Corollary 2

I

c

p

j

bottom

� max((c�

1�r

2

b

2r

b

)hw; 0) (for j � 2)

when r

b

� �2.

Proof of Corollary 2: The idle time for p

j

in an in�nite iteration space is given by the �nishing time of a full tile

T

j;k

in stack j, minus the amount of computation p

j

has executed before F

T

j;k

. In other words,

I

c

p

j

bottom

= F

T

j;k

�A

S

j;k

� A

S

j;k

+max((c+

1�r

2

b

2r

b

)hw; 0)�A

S

j;k

(for j � 2) (Lemma 2)

� max((c+

1�r

2

b

2r

b

)hw; 0)

End of Proof of Corollary 2 2

Finite parallelogram-shaped iteration spaces

ht-r

stack j

Iteration
space

boundary

Figure 10: Iteration space for r

t

� �2. Light shaded areas at each stack correspond to added idle time if that stack �nishes last.

Iteration
space

boundary

stack j-1 stack j

Figure 11: Upper right corner of iteration space with r

t

� �1. The shaded area correspond to the computation that is removed from the �rst

partial tile in each stack when making the in�nite iteration space �nite.

Lemma 3

I

c

l

�

�

�r

t

hw

2

(for r

t

< �1)

= 0 (for r

t

� �1)

Proof of Lemma 3: If r

t

< �1, the amount of time a processor can be forced to be idle even though it still has

computation left to do, is less than or equal to the shaded area in Figure 10, j being an arbitrary stack. Since

this area varies in size from processor to processor, the processors will not �nish at the same time. The maximum

amount of area that will be added to the execution time of a single processor

4

is equal to

�r

t

hw

2

.

If on the other hand r

t

� �1, the j-th stack will not have to wait for the (j � 1)-th processor since the amount

of computation removed from the j-th stack always will be smaller or equal to the amount of computation removed

in the (j � 1)-th stack. (See the shaded areas in Figure 11.) The (j � 1)-th processor will therefore always have the

data ready for p

j

at the time p

j

needs it, and I

c

p

j

will be equal to 0.

End of Proof of Lemma 3 2

4

The processor that �nishes last will not necessarily be the P -th processor.



Lemma 4

I

s

p

j

=

�

hw(r

t

� v

w

h

)(P � j) (for r

t

� v

w

h

)

�hw(r

t

� v

w

h

)(j � 1) (for r

t

� v

w

h

)

where r

t

is the top rise and v is the wavefront constant.

Proof of Lemma 4: The amount of time p

j

will be idle after it has �nished all its computation is given by the

following cases in the case of block distribution.

rt

rt

Iteration space boundary

Wavefront

stack 1 stack 2 stack Pstack P-1

h(P-1)

h
-vw

-vw(P-1)

Figure 12: Top of iteration space. The shaded area correspond to the computation that p

1

is going to be idle after having executed its stack.

Case 1 (v

w

h

� r

t

): After p

1

has �nished executing, it will be idle during the time p

P

executes the shaded area

in Figure 12 (follows from the de�nition of wavefront), i.e. during (�vw(P � 1) + r

t

h(P � 1))w time. The j-th

processor, will similarly be idle during (�vw(P � j) + r

t

h(P � j))w time.

space
boundary

(P-1)(-r t h-(-vw))
-r t h(P-1)

Iteration

wavefront
-vw(P-1)

Figure 13: Top of iteration space. The shaded area correspond to the computation that p

P

is going to be idle after having executed its stack.

Case 2 (r

t

� v

w

h

): After p

P

has �nished executing, it will be idle during the time p

1

executes the shaded area in

Figure 13 (follows from the de�nition of wavefront), i.e. during (P � 1)(�r

t

h� (�vw))w time. The j-th processor,

will similarly be idle during (j � 1)(�r

t

h� (�vw))w time.

The additional idle time after p

j

has �nished computing its stack is thus equal to

(�vw(P � j) + r

t

h(P � j))w = hw(r

t

� v

w

h

)(P � j) (for v

w

h

� r

t

)

(j � 1)(�r

t

h� (�vw))w = �hw(r

t

� v

w

h

)(j � 1) (for r

t

� v

w

h

)

In the case of block cyclic distribution we need to note that the only synchronization idle time for p

j

occurs after

p

j

has executed all its stacks. Since the amount of time p

j

needs to wait at this point will be the same as in the

block distribution case, we have proven the lemma also for block cyclic distribution.

End of Proof of Lemma 4 2

Lemma 5 Let r � �1 and assume that there exists a row k, such that for all stacks, there is a full tile in k. The

total processor idle time for the processor executing the j-th stack is then given by the following formula.

I

p

= (P � 1)hw(1 + r + c)



where h and w are the height and width of a tile, chw is the time is takes to communicate one tile surface of height

h, and r is the rise.

Proof of Lemma 5:

I

p

j

= I

c

p

j

+ I

s

p

j

(by de�nition)

= I

c

p

j

bottom

+ I

c

p

j

top

+ I

s

p

j

(by de�nition)

= (j � 1)(1 + r

b

+ c)hw +

P

l = j mod P

I

c

l

top

+ (P � j)(r

t

� v

w

h

)hw (by de�nition)

= (j � 1)(1 + r

b

+ c)hw + 0 + (P � j)(r

t

� v

w

h

)hw (Cor. 1, Lemma 3 and 4)

= (j � 1)(1 + r + c)hw + (P � j)(r � (�(1 + c)))hw (v

w

h

= �(1 + c))

= (j � 1)(1 + r + c)hw + (P � j)(1 + r + c)hw

= (P � 1)(1 + r + c)hw

Since (P � 1)(1+ r+ c)hw is independent on j, I

p

= I

p

j

= (P � 1)(1+ r+ c)hw, and we have proven the lemma.

End of Proof of Lemma 5 2

Theorem 1 Let r � �1. If there are P stacks distributed one per processor, and there exists a row which includes

full tiles in every stack, then the total idle time will be

I

a

= P (P � 1)hw(1 + r + c)

where h is the height and w the width of the tiles, chw is the communication time for one tile surface of length h,

and r is the rise.

Proof of Theorem 1: Follows directly from Lemma 5

End of Proof of Theorem 1 2

Lemma 6 If r � �2 and each processor only executes one stack, then the following formula is an upper bound on

the total idle time for one processor.

I

p

� max((c�

1

2r

)hw;

�rhw

2

)

where w is the width and h the height of the tile, chw is the time it takes to communicate one tile surface of length

h, and r is the rise.

Proof of Lemma 6:

I

p

j

= I

c

p

j

+ I

s

p

j

(by de�nition)

= I

c

p

j

bottom

+ I

c

p

j

top

+ I

s

p

j

(by de�nition)

= I

c

p

j

bottom

+ I

c

p

j

top

� (j � 1)(r

t

� v

w

h

)hw (Lemma 4)

= I

c

p

j

bottom

+ I

c

p

j

top

� 0 (v

w

h

= r

b

= r

t

)

= I

c

p

j

bottom

+

P

l = j mod P

I

c

l

top

(by de�nition)

� max((c�

1�r

b

2r

b

)hw; 0) +

�r

t

hw

2

(Cor. 2 and Lemma 3)

� max((c�

1�r

2r

)hw; 0) +

�rhw

2

� max((c�

1

2r

)hw;

�rhw

2

)

Since max((c �

1

2r

)hw;

�rhw

2

) is independent on j, I

p

= I

p

j

= max((c �

1

2r

)hw;

�rhw

2

), and we have proven the

lemma.

End of Proof of Lemma 6 2

Theorem 2 If r � �2 and there are P stacks, then

I

a

� max((c�

1

2r

)Phw;

�rPhw

2

)

is an upper bound on the total idle time.

Proof of Theorem 2: Follows directly from Lemma 6.

End of Proof of Theorem 2 2



Lemma 7

Let r

b

� �1 and p

j

be the processor that executes stack numbers j mod P . Let all stacks have an area of at least

Phw(1 + r + c), and let there exist a row in which all tiles are full.

I

p

= (P � 1)(1 + r + c)hw

Proof of Lemma 7:

Let us �rst note that

I

p

j

= I

c

p

j

+ I

s

p

j

(by de�nition)

= I

c

p

j

bottom

+ I

c

p

j

top

+ I

s

p

j

(by de�nition)

= I

c

p

j

bottom

+

P

l = j mod P

I

c

l

top

+ I

s

p

j

(by de�nition)

I

c

l

top

and I

s

p

j

are given by Lemma 3 and 4, but we need to derive a formula for I

c

p

j

bottom

in the case of block

cyclic distribution.

Let I

c

j

bottom

be the amount of time the processor executing S

j

would be idle before starting executing S

j

if S

j

was the �rst stack to be executed on that processor. (This amount of idle time is given by Corollary 1.)

Since S

j�1

and S

j

are executed in lock step and all stacks take the same amount of time to execute since they

are all of the same area, S

j+P�1

and S

j+P

also execute in lock step. Data calculated in S

j+P�1

will therefore not

delay the execution of S

j+P

any more than already accounted for in I

c

j+P

bottom

.

An very course estimation of I

c

p

j

bottom

would be to say it is the sum of all I

c

l

bottom

where l is a stack executed

by p

j

. But if p

j

can overlap I

c

l

bottom

for some stack S

l

with useful computation, then I

c

l

bottom

will not be part of

I

c

p

j

bttom

. Overlapping can occur if

I

c

j+P

bottom

� F

S

j

where F

S

j

is the �nishing time of the j-th stack.

So if we can show that I

c

j+P

bottom

� F

S

j

then we know that I

c

j+P

bottom

can be fully overlapped by the computation

of S

j

and will therefore not be added to I

c

p

j

bottom

. Inductive reasoning can then be used to show that I

c

p

j

bottom

will

infact only consist of I

c

j

bottom

.

F

S

j

= I

c

j

bottom

+ I

c

j

top

+A

S

j

(by de�nition)

= (j � 1)(1 + r + c)hw + 0 +A

S

j

(Cor. 1 and Lemma 3)

� (j � 1)(1 + r + c)hw + Phw(1 + r + c) (by assumption)

� (j + P � 1)(1 + r + c)hw

� I

c

j+P

bottom

(Cor. 1)

So we have

I

c

p

j

bottom

= I

c

j

bottom

= (j � 1)(1 + r + c)hw (Cor. 1)

I

p

j

= I

c

p

j

+ I

s

p

j

(by de�nition)

= I

c

p

j

bottom

+ I

c

p

j

top

+ I

s

p

j

(by de�nition)

= I

c

p

j

bottom

+ 0 + hw(r

t

� v

w

h

)(P � j) (Lemma 3 and 4)

= I

c

p

j

bottom

+ hw(r � (�(1 + c)))(P � j) (v

w

h

= �(1 + c))

= (j � 1)(1 + r + c)hw + hw(1 + r + c)(P � j) (from above)

= (P � 1)(1 + r + c)hw

and we have proven the lemma.

End of Proof of Lemma 7: 2

Theorem 3 If r � �1 and there are bP stacks, then the total idle time is given by

I

a

= P (P � 1)(1 + r + c)hw

Proof of Theorem 3: Follows directly from Lemma 7.

End of Proof of Theorem 3 2

Lemma 8

Let r

b

� �2 and p

j

be the processor that executes stack numbers j; j + P; j + 2P; :::; j + (b� 1)P .

I

p

� max((c�

1

2r

)bhw;

�rbhw

2

)



Proof of Lemma 8: For p

j

I

c

p

j

top

will be b

�rhw

2

(Lemma 3), since p

j

will need to wait for communication at the top

of all stacks. I

s

p

j

is by Lemma 4 equal to 0, since r

t

= r

b

= v

w

h

. I

c

p

j

bottom

will be less or equal to bmax((c�

1�r

b

2r

b

)hw; 0)

(Corollary 2).

5

We therefore have

I

p

j

= I

c

p

j

+ I

s

p

j

(by de�nition)

= I

c

p

j

bottom

+ I

c

p

j

top

+ I

s

p

j

(by de�nition)

� bmax((c�

1�r

2

b

2r

b

)hw; 0) + b

�r

t

hw

2

+ 0 (Cor. 2, Lemma 3 and 4 (v

w

h

= r

b

= r

t

)

� bmax((c�

1�r

2

2r

)hw; 0) + b

�rhw

2

(v

w

h

= r

b

= r

t

)

� max((c�

1�r

2

2r

)bhw; 0)�

rbhw

2

� max((c�

1

2r

)bhw;

�rbhw

2

)

End of Proof of Lemma 8 2

Theorem 4 If r � �2 and there are bP stacks, then the total idle time is given by

I

a

� max((c�

1

2r

)bPhw;

�rbPhw

2

)

Proof of Theorem 4:

I

a

�

P

P

j=1

max((c�

1

2r

)hw;

�rbhw

2

) (Lemma 8)

� Pmax((c�

1

2r

)hw;

�rbhw

2

)

� max((c �

1

2r

)bPhw;

�rbPhw

2

)

End of Proof of Theorem 4 2

Finite trapezoidal iteration spaces

Lemma 9 Let r

b

� �1 and assume that there exists a row k, such that for all stacks, there is a full tile in k.

The total processor idle time for the processor executing the j-th stack is then given by the following formula.

I

p

j

= hw((j � 1)(1 + r

b

+ c) + (r

t

+ 1 + c)(P � j)) (for �1 � r

b

< r

t

)

where h and w are the height and width of a tile, chw is the time is takes to communicate one tile surface of height

h, and r is the rise.

Proof of Lemma 9:

I

p

j

= I

c

p

j

+ I

s

p

j

(by de�nition)

I

p

j

= I

c

p

j

bottom

+ I

c

p

j

top

+ I

s

p

j

(by de�nition)

I

p

j

= I

c

p

j

bottom

+ I

c

p

j

top

+ (P � j)(r

t

� v

w

h

)hw (Lemma. 4)

I

p

j

= I

c

p

j

bottom

+ I

c

p

j

top

+ (P � j)(1 + r

t

+ c)hw (v

w

h

= �(1 + c))

I

p

j

= (j � 1)(1 + r

b

+ c)hw + I

c

p

j

top

+ (P � j)(1 + r

t

+ c)hw (Cor. 1)

I

p

j

= (j � 1)(1 + r

b

+ c)hw + 0 + (P � j)(1 + r

t

+ c)hw (Lemma 3)

I

p

j

= (j � 1)(1 + r

b

+ c)hw + (P � j)(1 + r

t

+ c)hw

End of Proof of Lemma 9 2

Theorem 5 If there are P stacks distributed one per processor, and there exist a row which includes full tiles in

every stack, then the total idle time will be

I

a

= P (P � 1)hw(1 + c+

r

t

+r

b

2

) (for �1 � r

b

< r

t

)

where h is the height and w the width of the tiles, chw is the communication time for one tile surface of length h,

and r

b

and r

t

are the bottom and top rise.

Proof of Theorem 5: Let �1 � r

b

< r

t

.

5

This step is really only true for j > 2 since the �rst processor will not be delayed waiting for communication from an earlier processor,

whereas the second processor will. But even though p

1

does not have to wait at the beginning of the execution of the �rst stack, it has to wait

the same amount of time after the execution of its last stack. This means that we can, without losing accuracy in our calculations, assume that

p

1

is in fact being idle at the beginning of the execution of the �rst stack.



I

a

=

P

P

j=1

hw((j � 1)(1 + r

b

+ c) + (r

t

+ 1 + c)(P � j)) (Lemma 9)

= hw(1 + r

b

+ c)

P

P

j=1

(j � 1) + hw(r

t

+ 1 + c)

P

P

j=1

(P � j)

= hw(1 + r

b

+ c)

P (P�1)

2

+ hw(r

t

+ 1 + c)

P (P�1)

2

= hw(2 + r

t

+ r

b

+ 2c)

P (P�1)

2

= P (P � 1)hw(1 + c+

r

t

+r

b

2

)

End of Proof of Theorem 5 2

Lemma 10 If r

b

� �2 and each processor only executes one stack, then the following formula is a upper bound on

the total idle time for one processor.

I

p

j

� max((c�

1�r

2

b

2r

b

)hw; 0) + hw(r

t

� r

b

)(P � j) (for r

b

� �2 < �1 � r

t

)

I

p

j

� max((c�

1�r

2

b

2r

b

)hw; 0) + hw(r

t

� r

b

)(P � j)�

r

t

hw

2

(for r

b

< r

t

< �1, r

b

� �2)

where w is the width and h the height of the tile, chw is the time it takes to communicate one tile surface of length

h, r

b

is the rise at the bottom of the iteration space and r

t

is the rise at the top.

Proof of Lemma 10:

For r

b

� �2 < �1 � r

t

:

I

p

j

= I

c

p

j

+ I

s

p

j

(by de�nition)

= I

c

p

j

bottom

+ I

c

p

j

top

+ I

s

p

j

(by de�nition)

= I

c

p

j

bottom

+ I

c

p

j

top

+ (P � j)(r

t

� v

w

h

)hw (Lemma 4)

= I

c

p

j

bottom

+ I

c

p

j

top

+ (P � j)(r

t

� r

b

)hw (v

w

h

= r

b

)

= I

c

p

j

bottom

+ 0 + (P � j)(r

t

� r

b

)hw (Lemma 3)

� max((c�

1�r

2

b

2r

b

)hw; 0) + (P � j)(r

t

� r

b

)hw (Cor. 2)

For r

b

< r

t

< �1, r

b

� �2:

I

p

j

= I

c

p

j

+ I

s

p

j

(by de�nition)

= I

c

p

j

bottom

+ I

c

p

j

top

+ I

s

p

j

(by de�nition)

= I

c

p

j

bottom

+ I

c

p

j

top

+ (P � j)(r

t

� v

w

h

)hw (Lemma 4)

= I

c

p

j

bottom

+ I

c

p

j

top

+ (P � j)(r

t

� r

b

)hw (v

w

h

= r

b

)

� I

c

p

j

bottom

+

�r

t

hw

2

+ (P � j)(r

t

� r

b

)hw (Lemma 3)

� max((c�

1�r

2

b

2r

b

)hw; 0)�

r

t

hw

2

+ (P � j)(r

t

� r

b

)hw (Cor. 2)

End of Proof of Lemma 10 2

Theorem 6 If r

b

� �2, r

b

< r

t

and there are P stacks, then

I

a

� max(P (c�

1�r

2

b

2r

b

)hw; 0) + P (P � 1)hw(

r

t

�r

b

2

) (for r

b

� �2 < �1 � r

t

)

I

a

� max(P (c�

1�r

2

b

2r

b

)hw; 0) + P (P � 1)hw(

r

t

�r

b

2

)�

r

t

hwP

2

(for r

b

< r

t

< �1; r

b

� �2)

is an upper bound on the total idle time.

Proof of Theorem 6:

I

a

�

P

P

j=1

(max((c�

1�r

2

b

2r

b

)hw; 0) + hw(r

t

� r

b

)(P � j)) (for r

b

� �2 < �1 � r

t

)

(Lemma 10)

� Pmax((c�

1�r

2

b

2r

b

)hw; 0) + hw(r

t

� r

b

)

P

P

j=1

(P � j)

� Pmax((c�

1�r

2

b

2r

b

)hw; 0) + hw(r

t

� r

b

)

P (P�1)

2

� max(P (c�

1�r

2

b

2r

b

)hw; 0) + P (P � 1)hw(

r

t

�r

b

2

)

I

a

�

P

P

j=1

(max((c�

1�r

2

b

2r

b

)hw; 0) + hw(r

t

� r

b

)(P � j)�

r

t

hw

2

) (for r

b

< r

t

< �1; r

b

� �2)

(Lemma 10)

� Pmax((c�

1�r

2

b

2r

b

)hw; 0) + hw(r

t

� r

b

)

P

P

j=1

(P � j)�

r

t

hwP

2

)

� max(P (c�

1�r

2

b

2r

b

)hw; 0) + hw(r

t

� r

b

)

P (P�1)

2

�

r

t

hwP

2

� max(P (c�

1�r

2

b

2r

b

)hw; 0) + P (P � 1)hw(

r

t

�r

b

2

)�

r

t

hwP

2

End of Proof of Theorem 6 2



Lemma 11 Let r

b

� �1 and assume that there exists a row k, such that for all stacks, there is a full tile in k. The

total processor idle time for the processor executing the j-th stack is then given by the following formula.

I

p

j

= hw((j � 1)(1 + r

b

+ c) + (P � j)(1 + r

t

+ c)) (for �1 � r

t

< r

b

)

I

p

j

� hw((j � 1)(1 + r

b

+ c) + (P � j)(1 + r

t

+ c)�

r

t

2

) (for �(1 + c) � r

t

< �1 � r

b

)

I

p

j

� �hw((j � 1)(r

t

� r

b

) +

r

t

2

) (for r

t

� �(1 + c) < �1 � r

b

)

where h and w are the height and width of a tile, chw is the time is takes to communicate one tile surface of height

h, and r

b

is the rise at the bottom of the iteration space and r

t

is the rise at the top.

Proof of Lemma 11:

For �1 � r

t

< r

b

:

I

p

j

= I

c

p

j

+ I

s

p

j

(by de�nition)

= I

c

p

j

bottom

+ I

c

p

j

top

+ I

s

p

j

(by de�nition)

= I

c

p

j

bottom

+ I

c

p

j

top

+ (P � j)(r

t

� v

w

h

)hw (Lemma 4)

= I

c

p

j

bottom

+ I

c

p

j

top

+ (P � j)(1 + r

t

+ c)hw (v

w

h

= �(1 + c))

= I

c

p

j

bottom

+ 0 + (P � j)(1 + r

t

+ c)hw (Lemma 3)

= (j � 1)(1 + r

b

+ c)hw + (P � j)(1 + r

t

+ c)hw (Cor. 1)

For �(1 + c) � r

t

< �1 � r

b

:

I

p

j

= I

c

p

j

+ I

s

p

j

(by de�nition)

= I

c

p

j

bottom

+ I

c

p

j

top

+ I

s

p

j

(by de�nition)

= I

c

p

j

bottom

+ I

c

p

j

top

+ (P � j)(r

t

� v

w

h

)hw (Lemma 4)

= I

c

p

j

bottom

+ I

c

p

j

top

+ (P � j)(1 + r

t

+ c)hw (v

w

h

= �(1 + c))

� I

c

p

j

bottom

+

�r

t

hw

2

+ (P � j)(1 + r

t

+ c)hw (Lemma 3)

� (j � 1)(1 + r

b

+ c)hw �

r

t

hw

2

+ (P � j)(1 + r

t

+ c)hw (Cor. 1)

For r

t

� �(1 + c) < �1 � r

b

:

I

p

j

= I

c

p

j

+ I

s

p

j

(by de�nition)

= I

c

p

j

bottom

+ I

c

p

j

top

+ I

s

p

j

(by de�nition)

= I

c

p

j

bottom

+ I

c

p

j

top

� (j � 1)(r

t

� v

w

h

)hw (Lemma 4)

= I

c

p

j

bottom

+ I

c

p

j

top

� (j � 1)(1 + r

t

+ c)hw (v

w

h

= �(1 + c))

� I

c

p

j

bottom

+

�r

t

hw

2

� (j � 1)(1 + r

t

+ c)hw (Lemma 3)

� (j � 1)(1 + r

b

+ c)hw �

r

t

hw

2

� (j � 1)(1 + r

t

+ c)hw (Cor. 1)

� �(j � 1)

r

t

�r

b

2

hw �

r

t

hw

2

End of Proof of Lemma 11 2

Theorem 7 Let r

b

� �1. If there are P stacks distributed one per processor, and there exist a row which includes

full tiles in every stack, then the total idle time will be

I

a

= P (P � 1)hw(1 + c+

r

t

+r

b

2

) (for �1 � r

t

< r

b

)

I

a

� P (P � 1)hw(1 + c+

r

t

+r

b

2

)�

r

t

Phw

2

(for �(1 + c) � r

t

< �1 � r

b

)

I

a

� �P (P � 1)hw(

r

t

�r

b

2

)�

r

t

Phw

2

(for r

t

� �(1 + c) < �1 � r

b

)

where h is the height and w the width of the tiles, chw is the communication time for one tile surface of length h,

and r

b

and r

t

are the bottom and top rise.

Proof of Theorem 7:



I

a

=

P

P

j=1

(hw((j � 1)(1 + r

b

+ c) + (P � j)(1 + r

t

+ c))) (for �1 � r

t

< r

b

) (Lemma 11)

= hw(1 + r

b

+ c)

P

P

j=1

(j � 1)+

+hw(1 + r

t

+ c)

P

P

j=1

(P � j)

= hw(1 + r

b

+ c)

P (P�1)

2

+ hw(1 + r

t

+ c)

P (P�1)

2

= P (P � 1)hw(1 + c+

r

t

+r

b

2

)

I

a

�

P

P

j=1

(hw((j � 1)(1 + r

b

+ c) + (P � j)(1 + r

t

+ c)�

r

t

2

)) (for �(1 + c) � r

t

< �1 � r

b

) (Lemma 11)

� hw(1 + r

b

+ c)

P

P

j=1

(j � 1)+

+hw(1 + r

t

+ c)

P

P

j=1

(P � j)�

Pr

t

hw

2

� hw(1 + r

b

+ c)

P (P�1)

2

+ hw(1 + r

t

+ c)

P (P�1)

2

�

Pr

t

hw

2

� P (P � 1)hw(1 + c+

r

t

+r

b

2

)�

r

t

Phw

2

I

a

�

P

P

j=1

(�hw((j � 1)(r

t

� r

b

) +

r

t

2

)) (for r

t

� �(1 + c) < �1 � r

b

) (Lemma 11)

� �hw(r

t

� r

b

)

P

P

j=1

(j � 1)�

Pr

t

hw

2

� �hw(r

t

� r

b

)

P (P�1)

2

�

Pr

t

hw

2

� �P (P � 1)hw(

r

t

�r

b

2

)�

Pr

t

hw

2

End of Proof of Theorem 7 2

Lemma 12 If r

t

< r

b

� �2 and each processor only executes one stack, then the following formula is an upper

bound on the total idle time for one processor.

I

p

j

� max((c�

1� r

2

b

2r

b

)hw; 0)� hw(r

t

� r

b

)(j � 1)�

r

t

hw

2

where w is the width and h the height of the tile, chw is the time it takes to communicate one tile surface of length

h, and r is the rise.

Proof of Lemma 12:

I

p

j

= I

c

p

j

+ I

s

p

j

(by de�nition)

= I

c

p

j

bottom

+ I

c

p

j

top

+ I

s

p

j

(by de�nition)

= I

c

p

j

bottom

+ I

c

p

j

top

� (j � 1)(r

t

� v

w

h

)hw (Lemma 4)

= I

c

p

j

bottom

+ I

c

p

j

top

� (j � 1)(r

t

� r

b

)hw (v

w

h

= r

b

)

� I

c

p

j

bottom

+

�r

t

hw

2

� (j � 1)(r

t

� r

b

)hw (Lemma 3)

� max((c�

1�r

2

b

2r

b

)hw; 0)�

r

t

hw

2

� (j � 1)(r

t

� r

b

)hw (Cor. 2)

End of Proof of Lemma 12 2

Theorem 8 If r

t

< r

b

� �2 and there are P stacks, then

I

a

� max(P (c�

1�r

2

b

2r

b

)hw; 0)� P (P � 1)hw(

r

t

�r

b

2

)�

Pr

t

hw

2

is a tight upper bound on the total idle time.

Proof of Theorem 8:

I

a

�

P

P

j=1

(max((c�

1�r

2

b

2r

b

)hw; 0)� hw(r

t

� r

b

)(j � 1)�

r

t

hw

2

) (Lemma 12)

� Pmax((c�

1�r

2

b

2r

b

)hw; 0)� hw(r

t

� r

b

)

P

P

j=1

(j � 1)�

Pr

t

hw

2

� max(P (c�

1�r

2

b

2r

b

)hw; 0)� hw(r

t

� r

b

)

P (P�1)

2

�

Pr

t

hw

2

� max(P (c�

1�r

2

b

2r

b

)hw; 0)� P (P � 1)hw(

r

t

�r

b

2

)�

Pr

t

hw

2

End of Proof of Theorem 8 2



New proofs

Lemma 17 is to replace Lemma 2. Changes need to be propagated to all places where Lemma 2 is directly or indirectly

used, namely in Corollary 2, Lemma 6, 8, 10, 12, Theorem 2, 4, 6 and 8.

Lemma 17 When r

b

� �2, j � 2 and k � f

2

, then

F

T

j;k

� A

S

j;k

+max((c+

1�r

2

b

2r

b

)hw; 0) +max((j � 2)(1 + r

b

+ c)hw; 0)

Proof of Lemma 17: We �rst need to prove a couple of lemmas (18, 19, 20 and 21). Each lemma determines the

�nishing time for tiles in each of the shaded areas in Figure 14.

Stack j

Tj-1 f j-1

Tj f j

Stack j-1

PSfrag replacements

Lemma 18

Lemma 19

Lemma 20 and 21

Figure 14: The tiles in the shaded areas are the tiles for which the corresponding lemmas determine the �nishing time.

Lemma 18 Let f

j

be the value of k such that T

j;k

is the �rst full tile in stack j.

F

T

j;k

= F

T

j;f

j

+ (k � f

j

)hw (for j � 1; f

j

� k < f

j�1

� 1)

Proof of Lemma 18:

Induction Hypothesis:

F

T

j;k

= F

T

j;f

j

+ (k � f

j

)hw (for j � 1; f

j

� k < f

j�1

� 1)

Base Case (k = f

j

): Trivially true.

Induction Step: Suppose the induction hypothesis holds for k, show it also holds for k + 1.

F

T

j;k+1

= max(F

T

j�1;k+1

+ cwy

T

j�1;k+1

; F

T

j;k

) +A

T

j;k+1

(Form: 1)

= max(F

T

j�1;k+1

+ chw; F

T

j;k

) + hw (A

T

j;k+1

= hw when k + 1 � f

j

)

= max(max(F

T

j�2;k+1

+ cwy

T

j�2;k+1

; F

T

j�1;k

) +A

T

j�1;k+1

+ chw;

F

T

j;k

) + hw (Form: 1)

= max(F

T

j�1;k

+A

T

j�1;k+1

+ chw; F

T

j;k

) + hw (A

T

j�2;k+1

= 0 when k + 1 < f

j�1

)

= max(F

T

j�1;k

+A

T

j�1;k+1

+ chw; F

T

j;f

j

+ (k � f

j

)hw) + hw (Induction hypothesis)

We know that F

T

j�1;k

< F

T

j�1;f

j

+ (k � f

j

)hw since the j-th stack consists of partial tiles between row f

j

and

f

j�1

and k < f

j�1

� 1. We also know that F

T

j�1;f

j

+ chw + hw < F

T

j;f

j

from Formula 1. So we have that

F

T

j�1;k

< F

T

j;f

j

+ (k � f

j

)hw � hw � chw and therefore F

T

j�1;k

+ A

T

j�1;k+1

+ chw < F

T

j;f

j

+ (k � f

j

)hw. This is

used to complete the proof.

F

T

j;k

= max(F

T

j�1;k

+A

T

j�1;k+1

+ chw; F

T

j;f

j

+ (k � f

j

)hw) + hw

= F

T

j;f

j

+ (k � f

j

)hw + hw (Reasoning above)

= F

T

j;f

j

+ (k + 1� f

j

)hw

End of Proof of Lemma 18 2

Lemma 19 Let f

j

be the value of k such that T

j;k

is the �rst full tile in stack j.

F

T

l;k

= F

T

l;f

j

+ (k � f

j

)hw (for j � 1; l � j; f

j

� k < f

j�1

� 1)

Proof of Lemma 19:

Induction Hypothesis:

F

T

l;k

= F

T

l;f

j

+ (k � f

j

)hw (for j � 1; l � j; f

j

� k < f

j�1

� 1)

Base Case (l = j):

F

T

j;k

= F

T

j;f

j

+ (k � f

j

)hw (Lemma 18)



Induction Step: Suppose the induction hypothesis holds for l, show it also holds for l + 1.

Induction Hypothesis:

F

T

l+1;k

= F

T

l+1;f

j

+ (k � f

j

)hw (for j � 1; l+ 1 � j; f

j

� k < f

j�1

� 1)

Base Case (k = f

j

): Trivially true.

Induction Step: Suppose the induction hypothesis holds for k, show it also holds for k + 1.

F

T

l+1;k+1

= max(F

T

l;k+1

+ cwy

T

l;k+1

;

F

T

l+1;k

) +A

T

l+1;k+1

(Form: 1)

= max(F

T

l;k+1

+ chw;

F

T

l+1;k

) + hw (A

T

l+1;k+1

= hw)

= max(F

T

l;f

j

+ (k + 1� f

j

)hw + chw;

F

T

l+1;k

) + hw (1st induction hypothesis)

= max(F

T

l;f

j

+ (k + 1� f

j

)hw + chw;

F

T

l+1;f

j

+ (k � f

j

)hw) + hw (2nd induction hypothesis)

= max(F

T

l;f

j

+ (k + 1� f

j

)hw + hw + chw;

F

T

l+1;f

j

+ (k + 1� f

j

)hw)

= F

T

l+1;f

j

+ (k + 1� f

j

)hw (Form. 1)

End of Proof of Lemma 19 2

Lemma 20 Let f

j

be the value of k such that T

j;k

is the �rst full tile in stack j.

F

T

l;f

j

= max(F

T

j;f

j

+ (l � j)(c+ 1)hw; F

T

l;f

j+1

+ (f

j

� f

j+1

)hw) (for j � 1; l > j)

Proof of Lemma 20:

Induction Hypothesis:

F

T

l;f

j

= max(F

T

j;f

j

+ (l � j)(c+ 1)hw; F

T

l;f

j+1

+ (f

j

� f

j+1

)hw) (for j � 1; l > j)

Base Case (l = j + 1):

F

T

j+1;f

j

= max(F

T

j;f

j

+ cwy

T

j;f

j

; F

T

j+1;f

j

�1

) +A

T

j+1;f

j

(Form. 1)

= max(F

T

j;f

j

+ chw; F

T

j+1;f

j

�1

) + hw (A

T

j+1;f

j

= hw)

= max(max(F

T

j�1;f

j

+ cwy

T

j�1;f

j

; F

T

j;f

j

�1

) +A

T

j;f

j

+ chw;

F

T

j+1;f

j

�1

) + hw (Form. 1)

= max(max(F

T

j�1;f

j

+ cwy

T

j�1;f

j

; F

T

j;f

j

�1

) +A

T

j;f

j

+ chw;

max(F

T

j;f

j

�1

+ cwy

T

j;f

j

�1

; F

T

j+1;f

j

�2

) +A

T

j+1;f

j

�1

) + hw (Form. 1)

= max(max(F

T

j�1;f

j

+ cwy

T

j�1;f

j

; F

T

j;f

j

�1

) +A

T

j;f

j

+ chw;

F

T

j+1;f

j

�2

+ hw) + hw (A

T

j+1;f

j

�1

= A

T

j;f

j

= hw)

= max(F

T

j;f

j

+ chw; F

T

j+1;f

j

�2

+ hw) + hw (Form. 1)

= max(F

T

j;f

j

+ chw; F

T

j+1;f

j+1

+ (f

j

� 2� f

j+1

)hw + hw) + hw (Lemma 18)

= max(F

T

j;f

j

+ (j + 1� j)(c+ 1)hw; F

T

j+1;f

j+1

+ (f

j

� f

j+1

)hw)

Induction Step: Suppose the induction hypothesis holds for l, show it also holds for l + 1.

F

T

l+1;f

j

= max(F

T

l;f

j

+ cwy

T

l;f

j

; F

T

l+1;f

j

�1

) +A

T

l+1;f

j

(Form: 1)

= max(F

T

l;f

j

+ cwy

T

l;f

j

;

max(F

T

l;f

j

�1

+ cwy

T

l;f

j

�1

; F

T

l+1;f

j

�2

) +A

T

l+1;f

j

�1

) +A

T

l+1;f

j

(Form: 1)

= max(max(F

T

l�1;f

j

+ cwy

T

l�1;f

j

; F

T

l;f

j

�1

) +A

T

l;f

j

+ cwy

T

l;f

j

;

max(F

T

l;f

j

�1

+ cwy

T

l;f

j

�1

; F

T

l+1;f

j

�2

) +A

T

l+1;f

j

�1

) +A

T

l+1;f

j

(Form: 1)

= max(max(F

T

l�1;f

j

+ cwy

T

l�1;f

j

; F

T

l;f

j

�1

) +A

T

l;f

j

+ cwy

T

l;f

j

;

F

T

l+1;f

j

�2

+A

T

l+1;f

j

�1

) +A

T

l+1;f

j

(A

T

l;f

j

= A

T

l+1;f

j

�1

= hw)

= max(F

T

l;f

j

+ cwy

T

l;f

j

; F

T

l+1;f

j

�2

+A

T

l+1;f

j

�1

) +A

T

l+1;f

j

(Form: 1)

= max(F

T

l;f

j

+ chw; F

T

l+1;f

j

�2

+ hw) + hw (A

T

l+1;f

j

= A

T

l+1;f

j

�1

= hw)

= max(max(F

T

j;f

j

+ (l � j)(c+ 1)hw; F

T

l;f

j+1

+ (f

j

� f

j+1

)hw)

+chw; F

T

l+1;f

j

�2

+ hw) + hw (Induction hypothesis)

= max(max(F

T

j;f

j

+ (l � j)(c+ 1)hw; F

T

l;f

j+1

+ (f

j

� f

j+1

)hw)

+chw; F

T

l+1;f

j+1

+ (f

j

� 2� f

j+1

)hw + hw) + hw (Lemma 19)

= max(F

T

j;f

j

+ (l + 1� j)(c+ 1)hw; F

T

l;f

j+1

+ (f

j

� f

j+1

)hw

+(c+ 1)hw; F

T

l+1;f

j+1

+ (f

j

� f

j+1

)hw)

= max(F

T

j;f

j

+ (l + 1� j)(c+ 1)hw; F

T

l+1;f

j+1

+ (f

j

� f

j+1

)hw) (Form: 1)

End of Proof of Lemma 20 2



Lemma 21 Let f

j

be the value of k such that T

j;k

is the �rst full tile in stack j.

F

T

l;f

j

� max((c�

1�r

2

b

2r

b

)hw; 0) +max((1 + r

b

+ c)(l � j)hw; 0) +A

S

l;f

j

(for j � 1; l � j)

Proof of Lemma 21:

Induction Hypothesis:

F

T

l;f

j

� max((c�

1�r

2

b

2r

b

)hw; 0) +max((1 + r

b

+ c)(l � j)hw; 0) +A

S

l;f

j

(for j � 1; l � j)

Base Case (j = J where J is the last stack): When j = J we also know l = j = J , since l � j and J is the

maximum value of both l and j.

F

T

J;f

J

� max((c�

1�r

2

b

2r

b

)hw; 0) +A

S

J;f

J

(Lemma 16)

� max((c�

1�r

2

b

2r

b

)hw; 0) +max((1 + r

b

+ c)(J � J)hw; 0) +A

S

J;f

J

Induction Step: Suppose the induction hypothesis holds for j + 1 show it also holds for j.

Case l = j:

F

T

j;f

j

� max((c�

1�r

2

b

2r

b

)hw; 0) +A

S

j;f

j

(Lemma 16)

� max((c�

1�r

2

b

2r

b

)hw; 0) +max((1 + r

b

+ c)(j � j)hw; 0) +A

S

j;f

j

Case l > j:

F

T

l;f

j

= max(F

T

j;f

j

+ (l � j)(c+ 1)hw; F

T

l;f

j+1

+ (f

j

� f

j+1

)hw) (Lemma 20)

� max(max((c �

1�r

2

b

2r

b

)hw; 0) +A

S

j;f

j

+ (l � j)(c+ 1)hw;

F

T

l;f

j+1

+ (f

j

� f

j+1

)hw) (Lemma 16)

� max(max((c �

1�r

2

b

2r

b

)hw; 0) + (l � j)(c+ 1)hw +A

S

l;f

j

+(l � j)r

b

hw; F

T

l;f

j+1

+ (f

j

� f

j+1

)hw) (A

S

j;f

j

�A

S

l;f

j

= (l � j)r

b

hw)

� max(max((c �

1�r

2

b

2r

b

)hw; 0) + (l � j)(c+ 1)hw +A

S

l;f

j

+(l � j)r

b

hw;max((c�

1�r

2

b

2r

b

)hw; 0)

+max((1 + r

b

+ c)(l � j � 1)hw; 0) +A

S

l;f

j+1

+ (f

j

� f

j+1

)hw) (Induction hypothesis)

� max(max((c �

1�r

2

b

2r

b

)hw; 0) + (l � j)(1 + r

b

+ c)hw;

max((c�

1�r

2

b

2r

b

)hw; 0) +max((1 + r

b

+ c)(l � j � 1)hw; 0)

�(f

j

� f

j+1

)hw + (f

j

� f

j+1

)hw) +A

S

l;f

j

(A

S

l;f

j

�A

S

l;f

j+1

= (f

j

� f

j+1

)hw)

� max((c�

1�r

2

b

2r

b

)hw; 0) +A

S

l;f

j

+max((l � j)(1 + r

b

+ c)hw; (1 + r

b

+ c)(l � j � 1)hw; 0)

� max((c�

1�r

2

b

2r

b

)hw; 0) +A

S

l;f

j

+max((l � j)(1 + r

b

+ c)hw; 0) (l � j � 1 � 0)

End of Proof of Lemma 21 2

Now we can continue to prove Lemma 17, using a doubly nested induction proof.

Induction Hypothesis:

F

T

j;k

� max((c�

1�r

2

b

2r

b

)hw; 0) +max((1 + r

b

+ c)(j � 2)hw; 0) +A

S

j;k

(for j � 2; k � f

2

)

Base Case (k = f

2

):

F

T

j;f

2

� max((c �

1�r

2

b

2r

b

)hw; 0) +A

S

j;f

2

+max((j � 2)(1 + r

b

+ c)hw; 0) (Lemma 21)

Induction Step: Suppose the induction hypothesis holds for k � 1, show it also holds for k.

Induction Hypothesis:

F

T

j;k

� max((c�

1�r

2

b

2r

b

)hw; 0) +max((1 + r

b

+ c)(j � 2)hw; 0) +A

S

j;k

(for j � 2; k > f

2

)

Base Case (j = 2):

F

T

2;k

= max(F

T

1;k

+ chw; F

T

2;k�1

) + hw (Form. 1)

= max(A

S

1;k

+ (c+ 1)hw; F

T

2;k�1

+ hw)

� max(A

S

1;k

+ (c+ 1)hw;max((c�

1�r

2

b

2r

b

)hw; 0)

+max((1 + r

b

+ c)(2� 2)hw; 0) +A

S

2;k�1

+ hw) (Induction hypothesis)

� max(A

S

1;k

+ (c+ 1)hw;max((c�

1�r

2

b

2r

b

)hw; 0) +A

S

2;k

) (A

S

2;k

= A

S

2;k�1

+ hw)

� max((1 + r

b

+ c)hw;max((c �

1�r

2

b

2r

b

)hw; 0)) +A

S

2;k

(A

S

1;k

�A

S

2;k

= r

b

hw)

� max((1 + r

b

+ c)hw; (c�

1�r

2

b

2r

b

)hw; 0) +A

S

2;k

� max((c�

1�r

2

b

2r

b

)hw; 0) +A

S

2;k

(1 + r

b

+ c � c�

1�r

2

b

2r

b

)

� max((c�

1�r

2

b

2r

b

)hw; 0) +max((2� 2)(1 + r

b

+ c)hw; 0) +A

S

2;k



Induction Step: Suppose the induction hypothesis holds for j � 1, show it also holds for j.

F

T

j;k

= max(F

T

j�1;k

+ chw; F

T

j;k�1

) + hw (Form. 1)

� max(max((c �

1�r

2

b

2r

b

)hw; 0) +max((1 + r

b

+ c)(j � 2� 1)hw; 0)

+A

S

j�1;k

+ chw; F

T

j;k�1

) + hw (2nd induction hypothesis)

� max(max((c �

1�r

2

b

2r

b

)hw; 0) +max((1 + r

b

+ c)(j � 2� 1)hw; 0)

+A

S

j�1;k

+ chw;max((c �

1�r

2

b

2r

b

)hw; 0)

+max((1 + r

b

+ c)(j � 2)hw; 0) +A

S

j;k�1

) + hw (1st induction hypothesis)

� max(max((c �

1�r

2

b

2r

b

)hw; 0) +max((1 + r

b

+ c)(j � 3)hw; 0)

+A

S

j�1;k

+ (c+ 1)hw;max((c �

1�r

2

b

2r

b

)hw; 0)

+max((1 + r

b

+ c)(j � 2)hw; 0) +A

S

j;k

)

� max(max((c �

1�r

2

b

2r

b

)hw; 0) +max((1 + r

b

+ c)(j � 3)hw; 0)

+(1 + r

b

+ c)hw;max((c �

1�r

2

b

2r

b

)hw; 0)

+max((1 + r

b

+ c)(j � 2)hw; 0)) +A

S

j;k

(A

S

j�1;k

�A

S

j;k

= r

b

hw)

� max(max((c �

1�r

2

b

2r

b

)hw; 0) +max((1 + r

b

+ c)(j � 2)hw;

(1 + r

b

+ c)hw);max((c �

1�r

2

b

2r

b

)hw; 0)

+max((1 + r

b

+ c)(j � 2)hw; 0)) +A

S

j;k

� max((c�

1�r

2

b

2r

b

)hw; 0) +max((1 + r

b

+ c)(j � 2)hw; 0) +A

S

j;k

End of Proof of Lemma 17 2




