The 7r-Calculus in Direct Style

Gérard Boudol

INRIA Sophia-Antipolis, BP 93
06902 SopHiA ANTIPOLIS CEDEX, FRANCE

email:

Abstract

We introduce a calculus which is a direct extension of both the
A and the 7 calculi. We give a simple type system for it, that
encompasses both Curry’s type inference for the A-calculus,
and Milner’s sorting for the n-calculus as particular cases of
typing. We observe that the various continuation passing style
transformations for A-terms, written in our calculus, actually
correspond to encodings already given by Milner and others
for evaluation strategies of A-terms into the w-calculus. Fur-
thermore, the associated sortings correspond to well-known
double negation translations on types. Finally we provide an
adequate CPS transform from our calculus to the w-calculus.
This shows that the latter may be regarded as an “assembly
language”, while our calculus seems to provide a better pro-
gramming notation for higher-order concurrency.

1. Introduction

Introducing his book on “Compiling with Continuations” [3],
Andrew Appel states that “The beauty of FORTRAN - and the
reason it was an improvement over assembly language - is
that it relieves the programmer of the obligation to make up
names for intermediate results”. We would like here to make a
similar step, smaller indeed, starting from Milner's r-calculus
[16,17,18], or more precisely from the very Core of PICT as
our assembly language.

There has been by now a number of experiments in com-
bining functional and concurrent features into a programming
language. Typical examples are CML ([22] and FaciLe [12],
that mix CCS and ML. Another trend is to build directly on
some version of the w-calculus, exploiting the fact that it is
expressive enough to encode higher-order features [17,23,24].
Examples of this are P1cT [20,28] and Oz [26]. This is the
approach we are interested in here. We wish to argue that
the m-calculus is perhaps not the best choice as a basis for a

This work has been partly supported by FRANCE TELECOM,
CT1-CNET 95-1B-182, Modélisation de Systémes Mobiles.

Permission to make digital/hard copies of all or part of this material for
personal or classrgom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear. and notice is

given that copyright is by permission of the ACM, Inc. To copy otherwise,

to rep.oulrlish. to post on servers or to redistribute to lists, requires specific
permission and/or fee.

POPL 97, Paris, France

© 1997 ACM 0-89791-853-3/96/01 ..$3.50

228

gbo®sophia.inria.fr

programming language (we are not concerned with implemen-
tation issues, like the ones which led Fournet and Gonthier
to develop the JOIN calculus [11]). The PICT programming
language of Pierce and Turner is built upon an asynchronous,
polyadic m-calculus, without sum and matching, given by the
following grammar:

Pu=avy o | w00 P | luwy,. ., P |
(P|P) | wwP

As we said, this simple basic calculus, where only names are
passed around, allows to encode the A-calculus, and more gen-
erally the higher-order 7-calculus of Sangiorgi [23,24]. This
may seem surprising, because higher-order calculi involve the
remarkably complex operation of substitution of “programs”
for variables.

To introduce our work, let us see this point in some de-
tail. A first step towards the encoding is taken by translating
the A-calculus into another one, which is both an enrichment
and a restriction. The restriction is that the argument in an
application must be a variable, not a compound term. The
enrichment consists in adding a “where” or “let” notation, as
in Landin’s swiM. We use a different syntax, however, namely
(def 2 = N in M), to emphasize the fact that such a declara-
tion is always recursive. Moreover, the let notation is usually
associated with a call-by-value evaluation mechanism, which
we do not follow. Here we deal with the weak, call-by-name
A-calculus (see [21] and [1]). That is, the reduction relation
M —¢ M’ on Aterms is given by the two rules:

(AzM)N -, [N/z)M
M -, M = MN—)I M'N

This is a “program passing” calculus, because in a substitution

[N/x)M, one replaces a variable by a term. The intermediate

calculus - let us call it A*, or the name passing A-calculus - is

described, rather informally, in Table 1. There are two basic

reduction rules:

(i) “small’ B-reduction, where a variable is instanciated with
another variable, not a compound term;

(ii) resource fetching, where a value for a variable z is fetched
whenever z occurs in the head position.

Now there is a simple translation from A to A*, given by

Launchbury in [14]:

=z
(AzM)* = dzM*

(MN)* = (defv = N* in (M*v)) (v fresh)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F263699.263726&domain=pdf&date_stamp=1997-01-01

Luzz | AL | (Lz) | (defz=Lin L)
z#2z = (defz =N inL)z=(def z= N in Lz)

(AzL)z = [2/z]L
(def .Hx=L v
Lo L' = (Lz) - (L'2)

inzyy - yn) = (def -z =L--

syntax
structural congruence

reduction

in Ly -+ Yn)
context rules

L—L = (defz=NinL)— (defz=NinL")

LaL &N=L = N->L

Notice that the definitions v = L used in this translation are
actually non recursive. This property is invariant by reduction.
For terms written with non recursive definitions, it makes sense
to define a “readback” mapping to A-terms, reading (def v =
N in M) as [N/y]|M. Then one can prove the following:

CORRECTNESS. For any closed A-term M, M has a A;-normal
form V (which is an abstraction AzN) if and only if M * has
a M-normal form W (which is a “closure”), and moreover in
this case W reads back to V.

This gives a precise meaning to the statement that the weak
call-by-name A-calculus is a “name-passing” calculus.

Now we can encode the A-calculus into the w-calculus us-
ing A* as an intermediate syntax. That is, assuming that the
set X of A-variables is contained in the set N of m-names, we
define a translation [-J: * = (M — 7) as follows:

[z]u = Zu
[MzL)u = wz, wL]}v
[Lz]u = ww)([L]v | Dzu)
[def z = N in L}u = wa)([L}u | tzw)[N]v)

This is a slight variation of Milner’s encoding [17,18]. The
interesting point to note here is that there is an exact, step
by step correspondence between reductions of L in A* and
reductions of [L]u in 7.

The trailing name u in the translation [M*Ju is somewhat
irritating. It prevents a direct representation of data, espe-
cially of higher-order kind: there is nothing like a “function”
in the 7-calculus, simply because everything must be “located”
at some input (or output) channel. Put in another way, there
is, as far as I know, no notion of type for 7-processes. The best
we can say is that a process is ok with respect to a sorting,
which assigns types to channel names, not to agents. As a mat-
ter of fact, a large part of the development of the n-calculus
as a programming language ([20]; see also (11]) consists in
introducing derived forms that get round the inconveniences
of a “continuation passing style”, and of the ubiquitous “result
channel”.

Our aim here is to design a direct model for higher-order,
untyped concurrency, that would have the same expressive
power as the 7-calculus, but would be more convenient as a
programming notation. The idea is very simple: we start from
A*, which is quite close to both X - as far as the syntax is con-
cerned - and 7 - regarding the reduction relation -, and we

229

Table 1: the Name Passing A-Calculus

relax its syntax to make it closer to the m-calculus. The calcu-
lus we will get, which we call the blue calculus, or 7*, contains
both the X and the (sorted) m calculi in a very direct and sim-
ple way. These direct embeddings deal with simple types and
simple sorts as well: we design a natural simple type system
for our calculus that extends both Curry’s type system for A
and Milner’s (simple) sorting system for 7. Furthermore, we
show that, assuming a simple discipline on the use of names,
there is a continuation passing style transform within our cal-
culus, whose target is actually the m-calculus, justifying our
claim that our calculus is “the w-calculus in direct style” — or
conversely, that = is a continuation passing calculus.

Let us briefly explain how we build the blue calculus out
of A*, using the 7-calculus as a guideline. The first step is to
break a term (def z = N in L) into two parts; one is the dec-
laration itself, which we write (x = N}, or in a more concrete
syntax (dect z = N), and the other one is the scope of the
name z, which is determined by a (vx) guard. Following the
chemical metaphor [4], this means that declarations are now
“molecules” which float in the same “soup” as the main agent
L, that is in parallel with it. Namely, (def £ = N in L) is now
written (vz)({z = N) | L). Incidentally, we have introduced
parallel composition as a construct of our model - this should
not be too surprising.

The only remaining ingredient is that of single resources.
In [6,8] we devised a A-calculus with resources that was in-
tended to model by A-calculus means the discriminating power
of the 7-calculus. There we found it useful to consider a vari-
ant of (z = P), that we denote (z < P) or (decl z <= P), which
means that P may be used only once as a value for z - by con-
trast, P is an “inexhaustible resource” for z in (z = P). The
construct {(z < P), together with branching features that we
briefly discuss in the conclusion, is useful to model processes
with a mutable state. To sum up, the syntax of 7* is:

Pi=z | Qo)P | (Px) | &a=P) | (z«= P} |
(P|P) | wpP

We write (\z)P, as Milner does in [18], to recall that this is
a “small” abstraction, where z stands for variables. Besides
the “small B-rule”, there is a “resource fetching” rule, whose
effect is

(IZ]-.'ZL.l(.’r(—_-R))—)Rzl...zk

Then we may describe our computational model as follows:

besides local -reduction that may produce values of
the form (Az)P, computing consists in sending asyn-
chronous messages zz, - - - z), that call for “resources”
or “services” R for z, which are found in the envi-
ronment in the form of declarations (z < R). This
results in the application Rz, --- z; of the service to
the arguments of the message.

This sounds perhaps more familiar than “computing by chan-
nel passing”, though everything written following this latter
style, or more precisely everything written in the m-calculus,
and in the A-calculus as well, can be read directly within our
model.

To conclude this introduction, let us see an example, il-
lustrating the difference with the “channel passing style” of
the 7-calculus. Milner in [18] introduced a representation of
lists of data, whose constructors may be declared, in the blue
calculus, in a global environment as follows:

{nil = (Ancyn)
(cons = (Aht)Ancicht)

Here it would be useful to have some syntactic sugar, writing
(cons(h,t) = (Anc)cht) for instance. Then this encoding of
lists may be understood as follows: a list is a function taking
as argument a pair, made of a “nil cell” n and a “cons cell” ¢,
and returning n in the case of nil, and the “cons” of the head
h and the tail ¢ otherwise. One should notice that the usual
“if-then-else” combinator of the A-calculus, that is

{cond = (Abzy) bxy)
is such that, garbage collecting inaccessible declarations:

T if €= nil

cond {zy reduces to {yht if €= conshit

Then the append function on lists may be defined as follows:

(append = (Azy)(vv)(cond zyv |
(v <= (Ahtywr)(cons hr |
(r <= append ty)))))

For the purpose of comparison with the w-calculus encoding
[18], we have compelled ourselves to write this in the core
syntax of our calculus, without using any syntactic sugar. We
think that even if this is a little verbose, our definition of
append looks like the one we are used to. Obviously, using
programming language notations like the “where” or “def in”
constructs would ease reading the term. We could also intro-
duce, as Milner does in [18], a case construct

case £ of :nil = P
:cons(h,t) = @

as a notation for

(wpg)(cond €pq |(p < P) |
(g = ARHQ))

230

Alternatively, we may also write, using the application con-
struct (PQ) of the A-calculus as an abbreviation for (wz)(Pz |

(z=Q)):
(append = (Azy)cond zy ((Aht)cons h(append ty)))

though we lose the explicit indication that the compound argu-
ments are to be used at most once. One would define similarly
a map function, taking a function f and a list ¢ as arguments,
and computing the list of applications of f to the items of ¢:

{map = (Aff)cond €€ ((Aht)cons (fh)(map)

This shows that our calculus supports the usual style of func-
tional programming. Moreover, we do not have to resort to
type encodings to provide nil, cons, append, and so on, with
the type they usually have.

2. The Computational Model

We assume given a denumerable set A of names, ranged over
by u, v, w... We sometimes use also z, ¥, z... when we have in
mind variables rather than names, though there is no formal
distinction here. For notational convenience, we distinguish
three syntactic categories in the grammar of our calculus:

Pa=A | D | (P|P)| wwP processes
Auzzwu | QuP | (Pu) agents
Du=(u<eP) | (u=P) declarations

where v € A is any name. Welet P, Q, R... range over pro-
cesses. We use the standard abbreviations from the A-calculus,
namely Pv,---v; for (- (Pv1)---v) and (Auy...u)P for
(Aug) ... (Aup) P, and similarly (vu; . .. u) P for (vuy)... (vug)P.
Sometimes we add some parentheses, as in ((Aw)P)v or in
{((vu)P)v, sometimes we omit the brackets {-), writing sim-
Ply v < P and u = P, to ease reading the terms. As usual,
(Au) binds u, and similarly u is bound in (vu)P, whereas it is
free in (u <= P) and (u = P). We denote by fn(P) and bn{P)
respectively the sets of free and bound names of P, and by
[v/u]P the result of substituting the name v for in P. This
may involve a-conversion, that is renaming bound names of
P, to avoid capturing v. We denote the congruence generated
by this kind of renaming by P =, Q.

A m*-context is a term written using the same syntax as
for m*-terms, plus a constant {J, the hole. We use boldface
capital letters A, B, C... to denote contexts. Filling the hole
in C with a w*-term P results in a 7*-term denoted C[P].
Notice that some free names of P may be bound by the context
in C[P]. The notion of substitution is extended to contexts in
the obvious way, namely [v/y][] =[] We shall use a particular
kind of contexts, which we call evaluation contexts, where the
hole does not occur within an abstraction or a declaration.
That is, the set £ of these contexts is given by the following
grammar:

Ez=0| (Euv) | (E|P) | (P|E) | wwE

structural equivalence:

reduction:

(P1Q)=(@Q|P)
(PI1Q)IR) = (P|(QIR)
(vwP | Q) = wu (P | Q)
(P|Qu= (Pu|Qu)
(vwyP)v = wu)(Pv)
Du=D
(u=P) = (u(P|{u=P))
P=Q = E[P|=E[Q

(u not free in Q)

(u # v)

(Awy Py = [v/u)P
(u|(u<sP))> P

P — P' = E[P] - E[P
PP &Q=P = QP

Table 2: Structure and Reduction

commutativity
associativity
scope migration
distributivity

duplication

B
¢ (resource fetching)
context rule

wuru)(Vi | | Vi [My | My | (= Ra) |- | (vr = Ri))
- AN AN L

—

abstractions messages named

-~

resources

Figure: Canonical Form

where P is any term. We use E, F... to range over £.

Regarding the operational semantics, we follow a CHAM
style [4). That is, we define a structural equivalence P = Q,
allowing us to regard each process as a “soup” or a “chemi-
cal solution”, and we define the reduction relation with this
intutitive representation in mind. The operational description
of the calculus is written in Table 2. We have omitted from
the table the rule stating that = is an equivalence, and that it
contains a-conversion. Together with the rule that structural
equivalence is compatible with evaluation contexts, the first
three rules allow us to write, for any term P

P = wu .. .u)(A1| - |An| D1 || Dy)

That is, any process is represented as a “chemical solution”
where the floating molecules are either agents A; or declara-
tions D;, and the scope of (top level) private names is global.
Then there are three further structural manipulations on ag-
ents, for pushing application to a name (Qu) through the
structure of Q, so that any term may be turned into an equiva-
lent one where the agents A; have a simple form, namely appli-
cations of abstractions or names to a series of arguments, i.e.
A = (A P)vy -+ vy OF Aj = uvy - Uy, what we call a mes-
sage. Accordingly, two kinds of reduction may occur, called (3)
and g in the Table 2. The small B-reduction P — Q, that is
the reduction without resource fetching, enjoys the following
properties:

LEMMA 2.1.

(i) the (B)-reduction satisfies the diamond property: if P =,
Py and P —, Pi then either Py = Py or Po =) P' and
P, =4, P’ for some P’

231

(ii) the (B)-reduction is (strongly) normalizing: for any P there
exists Q such that P 3, Q and Q is (B)-irreducible, that is
{Q1Q =, Q=0

For any term P we denote by nfg(P) the (3)-normal form of
P. Now, combining structural transformations together with
(8)-normalization, we get from any term P another one in
canonical form, shown in the figure above.

We denote by P —, Q the reduction relation generated
by the resource fetching rule o. For instance, a message sent
to an inexhaustible resource is processed as follows:

(vwy - wp | (v=R))=(v|v<&(R|v=R)wr - w
=g (R|(v=R)w---wp
= (Rwr 1w, | (v = R))

Admittedly, using distributivity from right to left is just a
trick, and we could better assume that the resource fetching
rule is, as in A*:

(uvy vy | {(u< P)) = Pvy-o-vn

Indeed, we could then distinguish “heating” and “cooling”
structural manipulations, as in [4], since we mainly use the
rules (except commutativity and associativity) from left to
right, “heating” a process to prepare a reduction. We can
assume that (8)-normalization is performed as a preliminary
phase of evaluation, since we have:

LEMMA 2.2. Resource fetching and ()-reduction commute:
if P =, Py and P =, Py then Py =) P’ and P =, P’ for
some P'.

Clearly the resource fetching part of the reduction is responsi-
ble for the expressive power - this is perhaps why (3)-reduction

was neglected in the work of Milner [18] and Sangiorgi [23,24].

For instance resource fetching may not terminate. The sim-
plest example is given by the term

Q =gef wu)(u | (u = u))

Resource fetching, together with the commutativity of parallel
composition, is also responsible for introducing “critical pairs”,
or conflicts, like in

(P® Q) =aet wu)(u| (u=P)|{u=Q))
where u & fn(P) U fn(Q)

or (uvy v | uwy - wy | {u < R)). The first form of non-
determinism should be avoided (if a “service” does not work
properly, one should be able to locate the defective resource),
while the second one is inherent in asynchronous distributed
systems.

(A* C7n*) We announced in the introduction that our calcu-
lus contains the A-calculus in a direct way. This is very easy
to see: firstly, the A*-terms may be regarded as elements of a
subset of 7*, given by the grammar

Lu=z | Aol I (LIE) | (Vx)(L,(:B:L))

The structural law of A* is still valid in 7#* - it is now written
(ww)(P | D))v = wu)(Pv | D) if u # v -, and reducing a A*-
term is the same in both calculi, up to structural equivalence.
Then we can translate the A-calculus into the blue calculus in
the obvious way:

[z]==
[PzM] = Ox)[M]
[MN] = wu([M}v | (v = [N])) (v fresh)
The translation may be slightly optimized, if we define [MN]
to be [M]z whenever N is the variable z. Now we can re-
gard the A-calculus as a sub-calculus of 7*, using the notation
MN. More generally, we will use (PQ) as an abbreviation for
wv)(Pv | (v = Q)), provided that v does not occur in P or Q.
We may also use the standard notations for the usual combi-
nators, like for instance T = K = (Azy)z and F = (\zy)y for
the truth values.

In the blue calculus one can encode combinators that
are not A-definable, like the non-determinitic choice operator,
which may be written @ = Azy)(ww)(u | (u = z) | (u = p)).
Another example is the parallel or combinator. This is a func-
tion por that takes two arguments and returns “true” as soon
as one of them is true — and both of them are “boolean” in
the sense that they may either diverge or evaluate to a truth
value. In the blue calculus this may be defined as follows:

por =gef (Azy)Wif)(ztf |ytf |t <= T) | (f < (f < F)))

That this term fulfils its specification depends on the semantics
we have for the calculus. This is the topic of the next section.
One may notice the use of nested declarations u < u < - -- as
a synchronisation mechanism in the definition of por. One can

232

also use single resources to encode processes with a changing
state. For instance, denoting (vz)(z | = = P) by recz.P,
one can define a “one-slot buffer” that performs alternatively
“put” and “get” operations, as follows:

buff =ges rech.{put <= (Az)(get <= (z | b)))

The reader is invited to find out how (buff | put f | getwy ---v)
evaluates (see the conclusion for another, similar example).
(r C) To conclude with the examples, we indicate in
which sense the n-calculus may also be regarded as a sub-
calculus of 7* ~ the technical details will be treated of in a
next section. As a matter of fact, the containment of 7 into
7" is even more direct than for X. The idea is that a message
vy - -- v, sent on a channel u is just the application uv; - - - v,
of the name u to the sequence of arguments, and that an input
w(vy,...,)P on the communication channel u is a declara-
tion (u < (Av;...v;)P) - the reader may guess what is a
replicated input. Then the w-terms are the elements of the
subset of 7* given by the grammar

Pu=M | E | (P|P) | wuwP
M :=u | (Mu)

Ev=(ueF) | (u=F)
F:=P | QwF

The m-communication is achieved as a resource fetching act
followed by a sequence of (8)-reductions. However, this only
works properly — that is: as in the w-calculus - for well-sorted
processes, as we shall see. Nevertheless, we regard the -
calculus as a sub-calculus of 7*, and we may import most of
the derived forms of PICT with only minor syntactic changes.

3. Observational Semantics

Regarding the semantics of our calculus, we adopt the stan-
dard approach, namely Morris’ extensional preorder, also called
may testing. This is a preorder P C @, meaning that any test
that P passes successfully is also passed by Q. A test is a con-
text with exactly one occurrence of the hole. We denote by 7~
the set of tests — we still use A, B, C... to denote them. The
test C succeeds on P if C[P] has a value. Usually, a value is
a closed normal form with respect to some reduction strategy.
For instance, in the lazy A-calculus [1], a value is a (closed)
abstraction. Here, we may have several agents computing in
parallel, and therefore we regard as a value a term where at
least one component is an abstraction, as in [7]. That is, a
value is a (closed) term given by the following grammar:

Vi QuP | (V|P) | (P|V) | ww)V
where P is any term. The set of values is denoted V. It is easy
to see that this set is closed under structural manipulations
and reduction. We say that P converges, in notation P, if

P has a value, that is P = V for some V € V. The semantic
preorder is now defined as follows:

PEQ <« VCeT.C[PI4 = C[QN

This is obviously a precongruence. We denote by ~ the asso-
ciated equivalence, that is

P~Q&PCQ&LQCP

One may notice that we would get the same semantics by

allowing “free messages” to be values too. This is because, for

any finite set U of names and any P such that fn(P) C U, P

“converges” in the extended sense if and only if Kyy[P]{ where
Ky =wu...up)(01 (w1 =8) |- | (ux = E})

with E = wr)(r | (r = Azyr)) and {uq,...,u} =U.

Our aim now is to show that the observational semantics
may be determined using only some restricted kind of tests,
namely, that it is enough to use evaluation contexts to test the
processes. As a matter of fact, we also need to instantiate the
free names of the tested terms, therefore, using o to denote any
substitution, we define the corresponding testing semantics C¢
as follows:

PCfQ gt VEEEVo E[oPlI = E[0QlY
It is not difficult to check that
PP = gP-ooP

and therefore one can immediately see that reduction is de-
creasing with respect to the “ evaluation testing” preorder:

REMARK 3.1. PP = P CEP

Moreover, the semantics is preserved by (8)-conversion:
LEMMA 3.2. [u/z]P C¢ ((Ax)P)u and ((Az)P)u C¢ [u/z]P

The first ordering is given by the previous remark, and for the
converse one uses the Lemmas 2.1 and 2.2. A consequence
is that we could also define Cf exactly as the observational
semantics C, but using tests of the form

E[(Azy...z0))ur - uy]

To show that C and C¢ are actually the same, we first notice
the obvious fact that the latter is preserved by name substitu-
tion.

REMARK. PCEQ = oPCfoQ

LEMMA (the CONTEXT LEMMA) 3.3. PCEQ & PCQ

PROOF: the implication “<” is obvious. To establish the con-
verse “=", we define the depth of a test C € T, denoted h(C),
as the number of abstractions (Au) and declarations (u <=)
or {(u =) that one goes through to reach the hole. In par-
ticular, 2(C) = 0 if and only if C € £. Clearly, the depth is
preserved by structural manipulations (if we disallow the use
of the duplication rule (u = R) = (u < (R | {(u = R}))), to
avoid duplicating the hole). We show that if P Cf Q and
C{P]{ then C[Q]{ by induction on (k(C),{), w.r.t. the lexico-
graphic ordering, where [is the length of a reduction sequence
from C[P] to a value. We first observe that any test C may
be transformed using structural manipulations (without using

233

the duplication rule) into another one having a canonical form
6=(Vu1...uk)(A1{~--|A,.|D1|-~-|Dr) (*)

where the A;’s and the D,’s are respectively given by the gram-
mars:

A:=[]| u | QwB | (Au)

D:= (u<B) | (u=B)

where B is any context. Obviously, only one of the A;’s and
the D;’s contains the hole, and the others are terms, or dec-
larations. Moreover, each A; has the form Al -+ - vy, where
A is either the hole [], or a name u or an abstraction context
(Auw)B.

However, C[P] is not in general structurally equivalent
to C[P], because in transforming C[P] one may have to use
a-conversion, that is (vu)R = wv)[v/u]R with v not in R, to
perform some scope migration for instance. Nevertheless, we
have: given C and a finite set U of names, there exists C as
above (#), with 2(C) = h(C), and a substitution o such that

nm(R) CU = C[R] = C[oR]

Since for any R such that nm(R) C U (and we may take U
large enough, so that P and Q fulfil the condition), the terms
C[R] and C[oR] have the same reduction sequences, using the
previous remark we may assume for the proof that the tests
under consideration have the form (x).

(1) h(C) = 0. This case is trivial since it means C € £.

(2) H(C) > 0. Note that in this case, no A; may be[Jv; - - - vp.
(2.1) I = 0. There must be some 7 such that A;[oP] is an
abstraction. Then either A; does not contain the hole, or
A; = Aw)C'. In both cases, C[Q)] is a value too.

(2.2) I > 0. There exists R such that C[oP] —- R and R
converges in [— 1 steps. We examine the possible cases:
(2.2.1) A;[0P] ~+ P’ for some ¢ and some P’ such that

R=wuy...up)(Ay[oP]|--- | P'|-- | AuloP]]
Dy[oP]|--- | D,[oP])

(a) If A, does not contain the hole, then we let
C'=wu...up)(Ar |- | P |- |An|D1] - | Dy)

and we use the induction hypothesis on the length since h(C') =
h(C) and C[S]} = C'[S] for any S.

(b) If A, is a test, we have A; = (AwB)wv; - v, and P' =
([v1/u)(B[o P]))vz - - - vp. Thenit is easy to see that there exists
B’ and a substitution o' such that [v1/u)(B[S]) = B'[¢’S] for
any S, therefore if we let

C=wur... un(Ar]-- | Boa-ovp |- | Ay | Dy |-+ | Dy)

then we may use the induction hypothesis since A(C') < h(C)
and C[S]—»=C'[0'S] for any S.

(2.2.2) A;=uv; --v,and D; = (v < B) or D; = (u=B)
and the first reduction step consists in fetching B[o P] for u
in A;. The case where B does not contain the hole is similar
to (a) above: the reduction is independent from what we put
in the hole. Otherwise, the case of D; = (u < B) is similar
to the case (b) above. So let us assume that D; = (u = B),

uio,'FP:7

'FPio—-7,TFuo

Mu)=r
FkFu:r 'F\wP:o—r Tk (Pu):7
I'FP:7 , THQ:7 CFP:r
FE{(P|Q):7 Fub@uP:r
I'Q:o 'rQ:o
Mu)=0 —— Iw) =0
F'HF{u<=Q):7 Fr{u=Q):r

where B contains the hole. Then

R=wur... up Ay |- | (BlePlvy vy |-+ | An |
D, |- |Dj[oP]|---| D)
Let
C'=wur...up)(Ar | | (BloPDvr- vy |-+ | An |
D;| - |D,)

where the hole is in D;. Since C'[0P] = R we have C'[ocQ]|
by induction on the length. Now let

C'=wur...ux)Ar] |Bogovp |- | Ay |
D.| - D;ioQ) |- |D,)

(the hole is now in B). Clearly h(C") = h(C)-1, and C"[oP] =
C'[¢Q], hence C"[oP){}. Therefore using the induction hy-
pothesis on the depth we conclude C”[¢Q]{}, hence also C[Q]{
since C[Q]—=C"[¢Q] @

One may observe that an evaluation test E € £, applied to a
term P, can be transformed as follows:

E[P| = wu...un)({oP)vr--vp | A1 |- | An [D1 |-+ | Dy)

One may wonder whether one could further restrict the kind of
tests that are really needed to determine the semantics. Actu-
ally, one cannot go very far on this way. One may assume for
instance that the A;’s are messages: if A; is an abstraction,
then the test is useless, and if A; contains a (#)-redex then this
may be reduced locally. But messages in the testing environ-
ment of a process are nedeed to test the declarations. Without
these messages, we would not be able to detect a difference be-
tween (v < Q) and (u < (\v)v) for instance. Regarding the
declarations D;'s, we could assume that they do not involve
inexhaustible resources (v = R}, because only a finite amount
of resources is needed for the convergence of an evaluation.

The Context Lemma is very useful to prove some seman-
tical equalities or inequalities. We leave the following to the
reader:

EXERCISE 3.4.

(Yugm(P) = wuwyP~P &
(it) Auw)(P | Q) ~ (AwP | (Aw)@)
(iii) v £ v = Auwwv)P ~ wu)(du)P

wu(P|{u<R)~P

234

Table 3: the Simple Type System

One may also easily show that 7-expansion is valid, that is
P C (Au)(Pu) if u € fn(P). We shall not investigate in this
paper the question of what is the semantics induced on source
calculi by translations, as it is done in [25,8) for instance.
Nevertheless, regarding the semantics of the A-calculus within
7*, we believe that the result of [9] still holds, for it is easy to
encode the A-calculi with “multiplicities” and with “resources”
of [9,8) in 7*. For instance, a “bag” of resources R;,..., Rn
for z is represented by

(x<R |- -|z<R,)

One can also represent a “stack discipline” for resources, as
follows:
z< (R |-z« (Rus1 |z < Ry))

Regarding the case of 7 within 7*, some n-terms which are usu-
ally considered as equal, like recr.(Ax)P and 0, where 0 =ges
(vu)u, are obviously different in 7* (the first one converges),
but the case of well-sorted n-terms (see below) deserves further
investigations.

4. Typing the Blue Calculus

Since everything written in the A or 7 calculi may be read in
blue style, we get a very rich calculus. One usually imposes
some discipline on the use of higher-order values, or channel
names in the case of 7, to get some control over the programs
one is allowed to run. In this section and the following one,
we show that, not only 7* contains both X and =, but there
is a type discipline that encompasses both the simply typed
A-calculus and the well-sorted n-calculus. The types are the
same as for the simply typed A-calculus, namely

Tzt | (1o71)

where t is any type variable or constant. The (simple) type
system S deals with sequents I' - P: 7 where the assumption
I' is a mapping from a finite set of names to types. We de-
note by I'|» the mapping obtained from I" by removing u from
its domain. As usual u:7,T" is the assumption A such that
A(u) = 7 and Alx = I'. The rules of the system are given
in Table 3 (in this system we implicitly assume that we are
dealing with terms up to a-conversion, otherwise we could not
be able to type (Ax)yAz)z for instance).

The rules for declarations deserve some comment: a sequent
u:o, ' F P:7 means that if u is used in P, it is with the
type o. Therefore, if we have a term @ of appropriate type,
that is Q: o, we can use it as a resource for u in P, that is,
(P | (u <= Q)) should have type 7. This may be inferred using
the rule for parallel composition, since a declaration for u may
be assigned any type 7, provided the context I' declares u of
the same type as its declared value. Indeed, the following is a
proof in the system S:

'kFQ:o
THFu<sQ@):1

THF(Pl(ues@)):T
and similarly for (P | (¢ = Q)). The rule for parallel com-
position may be understood as follows: the assumption I in
a sequent I' - S: 7 provides some information on free names
that is shared by the components of the “distributed system”
S. Then, in particular, the components of S = (P | Q) must
agree on this information.

We denote by T' - P: 7 [S] the fact that this sequent may
be inferred using the rules of the system S. The following
property, stating in particular that weakening is valid in §, is
standard.

LEMMA 4.1.
wugf(P) = CFP:7(S] & uio,[FP:7[S5]

Our typing system S extends in a direct manner Curry's type
system for the A-calculus. Let us recall that the latter has the
same types, and the following inference rules - still using I' to
denote an assumption that holds for variables from X

_— T'u)=o0o
I'+P:1

r:o, FM:T

Iz)=r B ——
TFAMM:o—T
I't+M:c—-7,FN:o

'-MN:r1

We write I' - M : 7 [C] to mean that this sequent is provable
using Curry’s system. We recall that [-] denotes the transla-
tion from X to 7*. Then we have:

PROPOSITION 4.2. IfT'+ M:r [C] then T + [M]:7 [S].
Conversely if T + [M):7 [S] then A+ M:7 [C] with A =
Clu....v» where vy,..., v are the names occurring in T and
not in M.

The proof, using the Lemma 4.1, is easy. One can also see
that the optimized version of the translation, where [Mz] is
[M]z, also preserves the typing.

Given this result, we may use the ordinary typing rule for
(PQ) =qer wv)(Pv | v = Q) where v is fresh. For instance,
the following inference holds in S:

I'ktz:7

firo=ao,fix:(c o 0o)rot f(fixf):o

fix: (0 =+ 0) o+ ANHf(fixf)i(c »0) >0

fix: (0 = o) = ok (fix = AHf(fixf)): 7

235

Similarly, one can use a derived (def z = R in P) construct,
that stands for (vz)(P | £ = R), together with the typing:

A+R:0 , z:0,TFP:T
L+ (defz=Rin P):1

(*)

() where A = T or A = z:0,. Then, denoting | the
identity (Az)z, one could prove for instance that the term
(def fix = (Af) f(fixf) in (fix})) has any type. Since the system
S can handle recursion directly, it does not enjoy the strong
normalization property. A simple counter-example is provided
by Q = (vu)(u | u = u) that can be given any type. Another
fact is that typability does not imply confluence. For instance,
the reader may check that - &: 7 — 7 — 7, and that typabil-
ity does not preclude the non-determinism due to transmission
delays, as in (uv; - v juwy ---we | (w < R)).

Nevertheless, the system S has the desirable property that
types are preserved during evaluation. That is, our typing
system enjoys the well-known “subject reduction property”.
To show this point, we first prove that typing is preserved by
structural manipulations. A preliminary observation is that,
since there is exactly one rule for each construct of the calculus,
the relation “to have the same types” is obvioulsy a congruence
(which contains a-conversion).

LEMMA43. THP:7& Q=P = THQ:7
PROOF: we proceed by induction on the definition of =. The

proof is straightforward, therefore we only examine some cases,
leaving the remaining ones to the reader.

(1) (Po| P)u= (Pou| Piu) and T+ (Pou | Piu): 7 [S].

This sequent can only be proved as follows:

Iy , I

I‘I-(PnulPlu):'r

with

T(u) =0y

'rP:ioi—rT 'u:o;
' Pu:r

Since 09 = ['(v) = o1, we have '+ (Py | Py):0; — 7, hence
r+ (P() | Pl)u:r.

(2) (u=P)=Q where @ = (u <= (P | (v = P})), and
I'+ Q: 7. This must be inferred as follows:

syntax:

Puz v | w@P | Ww@®P | (P|P) | ww)P

structural equivalence:

(P1Q)=(Q]P)

(PIQ)IR)=(P|(Q|R))

(vwP | Q) = wu(P|Q)

reduction:

(3@ | u®P) — [W/7)P
w@®P) - ([©/F)P | lu@® P)

(aw

(u not free in Q)

PoP = (P|Q)-> (P|Q)
P3P = wwP > wuP
PP &Q=P = Q- P

hence ' (u = P):7 [S] since T+ P:o [S]and I'(u) =0 &

One may remark that the “sharing rule” (P | Q)u = (Pu | Qu)
seems to leave little room for a possible polymorphic extension
of §: a name can only be used polymorphically in the head
position, not as an argument. However, one should not forget
that this structural manipulation is mainly used from left to
right.

PROPOSITION (SUBJECT REDUCTION) 4.4.
'P:7r& PP =TFP:7

PROOF: by induction on the inference of P — P’. If this is
proved using a context rule, then we use the fact that the proof
of I'F P: 7 may be decomposed according to the structure of
P, and we use the induction hypothesis. In the case where we
use structural transformations on P to prove P — P', then
we use the previous lemma and the induction hypothesis. We
are then left with the cases of () and o.

(1) If P=((MwR)v and P’ = [v/y)R, then T F (AuyR)v: 7
can only be inferred from w:o, I' - R: 7 [§], with ['(v) = 0.
It is easy to check that this implies I' - [v/y)R: T [S].

(2) If P=(u|(u< P')) then the proof of I' P: 7 must
be

TFP:o

Fu)=r _—
FF{us P):r

I'u)=0a
'Fu:r

F'F|{(useP)):r

therefore ' P': 7 [S]sinceo =T'(v) =7 @

The proof of the subject reduction property is remarkably sim-
ple. This is because the granularity of reduction in the blue
calculus is quite fine. One should notice that to get this prop-
erty, it is required that in the typing of (v < R) (and of
(v = R)), R has the same type as the one declared for u: we
cannot predict which resource will be used for a particular oc-
currence of the name u, therefore to ensure a correct typing,
these resources must all have the same type.

236

Table 4: the n-Calculus

5. The =n-Calculus

We assume that -calculus names are also names for 7. We
summarize in Table 4 the syntax and reduction of the (asyn-
chronous) version of the m-calculus that we use, where % de-
notes a tuple of names (we have omitted the rule that struc-
tural transformations may be used in parallel and restriction
contexts). In the communication rules, @ and ¥ are supposed
to be tuples of names of the same length. In Section 2 we
sketched a translation from # to the blue calculus. Here it is:

[avy - ve] = wvy - - v
[uv, ..., v)P] = (u < Qv ... op[P])
[twvi, ..., v P] = (u = vy ... o0 [P])
[P1Ql=(P1IIQD
[ovwP] = ww[P]

It should be clear that reductions in the w-calculus are mim-
icked in the following way:

LEMMA 5.1. Let P be a n-term.

If P >, P’ then [P] =, <, [P].

For instance one has

(2@ | w@® P} = (v@w | u <= AH[P])
= (u] v < AD[P])@
—+ (AO)[P])w
—"w)[’r’/i][Pll = [[w/%)P]

This shows that even if the -calculus is a “name-passing”
calculus, it is also in a somewhat hidden manner a higher-
order calculus: in the head position, that is as the channel
on which a message is sent, a name stands for a process, or
more generally for an abstraction. It should also be clear that,
conversely, reductions of [P] in the blue calculus do not always
correspond to reductions of P in 7 - in the example above,
¥ and @ need not have the same length for a reduction to
occur. However, an exact operational correspondence between
m-terms and their translation holds for well-sorted terms.

v:(,uzcn((), X - @0

7:C,u:cn((), > P

5:Z,u:Ch((~),E>P

u: Ch({), T > u®P

E»P,E>Q
- (P1Q)

As for the sorting, we deal with a simple version of Milner’s
system [18], where sorts are not recursive. Such a system
has been considered by Vasconcelos and Honda [29], and by
Turner in his thesis [28]. The sorts are built as follows:

Cu=t] Cn(Cry.--iCn)

The sort Ch{(1,...,(s) is that of a channel that carries a tuple
of names of sorts (1, . ..,(n. The (simple) sorting system deals
with judgements of the form X > P, where P is a 7-term and
¥ is a sort assumption, that is a mapping from a finite set of
names to sorts. We read £ » P as “P is well-sorted under
the assumption X", or respects £. This is also sometimes
written £ + P:o, or L + P:ok. Turner’s system, adapted
to our asynchronous version of the m-calculus, is recalled in
Table 5. The following lemma, together with the preceding
one, states that for well-sorted processes, 7-calculus reduction
—, is essentially the same as reduction in the blue calculus:

LEMMA 5.2. Let P be a n-term. If P is well-sorted, that is
T > P for some L, and [P} — Q then [P] =, @ and there
exists P’ such that P —, P’ and [P'] = nf3(Q).

The (easy) proof is omitted. To relate the sorting of m-terms
with the typing of their interpretation in 7*, let us assume
given a type o (or ok). Then we translate the sorts into types
as follows:

[=t
uCh(Ch'"’(k) = (‘[Cl] had ([CLI - 0))

For instance, the translation of the sort Ch(Ch(),Ch()) of the
“boolean channels” in the n-calculus (see [28])is 0 — 0 — 0.
A sorting assumption X is translated into a typing assumption
[Z] in the obvious way. A fact is that sorting is a particular
case of typing:

PROPOSITION 5.3. If £ > P then [T} F [P]:0 [S].

In [18,28] a rule is given regarding the well-sortedness of a
replicated process !P. If we define !P as recr.(P | 7), that is
wr(r | r = (P | r)) where r ¢ fn(P), then it is easy to see
that !'P has type 7 whenever P has type 7, thus generalising
the sorting rule.

Clearly one can give types to m-terms that are more gen-
eral than sortings. Then the blue calculus appears to be more
flexible than the w-calculus. For instance, a recursive agent
rec 7.(Az)P = [(wr)(F | Ir(z)P)] cannot be well-sorted in the #-
calculus, while in 7* it has the type of (Az)P. Another example
is provided by the typing of the “rPcC-like” facility of PIcCT,
denoted (tet Z1,...,z, = f(a1,...,am) in P) by Turner [28],

237

Table 5: Sorting the w-Calculus

u:Ch(¢), T > lwwP

X»P
Blu > vu)P

which is a notation for (vr)(fay ---amr | T <= (A\z1...Z)P).
In our calculus, this may be given the type 7, provided P
has type ¢ under the assumption z;:01,...,Z,: 0y, and the
environment supplies f with type:

fin=2tmo(1 - on o) 2T

and the arguments a; have type 7;. In the m-calculus, we
may only type this term if ¢ = 0 = r. A particular case of
this “rRPc-like” facility is the synchronous send 3vy - - - v. P of
the original 7-calculus [16,18], which may be regarded as an
abbreviation for

wr)(svy - -wr | r < P) (r fresh)
together with the synchronous input s(zy,...,zt).Q, which is
8 ALy...T)AN(Q | 7) (7 fresh)

As we noted in [5), synchronous message passing has the
flavour of a process passing construct, where the continuation
P is passed in an output 3v; - - - v.P ~ this is clear if we write
it as sv; - - - vp P. The encoding of the synchronous n-calculus
into the blue calculus we just sketched is also well-behaved
with respect to sorts (as given in [28]) and types, though
with a different translation [.J’, mapping ch((y,...,(x) onto
Y =&Y —o—o

6. CPS Transforms

The technique of continuations is widely used in the seman-
tics of functional programing languages and control operators.
Here we are specifically interested into continuation passing
style transformations, that map programs written in one lan-
guage into another — though by “language” one should un-
derstand “evaluation strategy” rather than syntax. The best
known of these transforms is the simulation of call-by-value
by call-by-name in the A-calculus, studied by Plotkin in [21]
(see [27] for earlier references). If we compose this simulation
with the translation (optimized or not) from A into 7* given
in Section 2, we get the following mapping, where we use &, h,
j ... for “continuations”:

[z}° = dbwo (kv | (v =x)) or
= (Ak)kz
zM]* = Akww(kv | (v = AD[M]*))
[MN]® = dbwn([M]* | (v = Ahow)([N]*w
[{w = Anhjk))))

To state the correctness of this transformation, one actually

needs to compose it with the application to a “continuation”

argument, thus dealing with [M]*k. Now if we perform the
following operations:

(i) (B-normalize [M]°k,

(ii) make an 7-expansion on [M]*® in [AzM]® (which is harm-
less, since [M]* is always an abstraction), and also on z
in [z]* (though this is optional)

then we get:

[z]°k =), woM(kv | {v = (AR)zh)) or
= kz
Az M}*k =44, wo)(kv | (v = Az AR [M]°h))
MNPk =, wo)([M]*v | (v = Ayww)([N]*w
[(w = Ajhjk})))

One can see that these are terms written in the w-calculus,
provided that we regard [M]k as a meta-application. Further-
more, this transformation is strikingly close to the encodings
for the call-by-value A-calculus into the w-calculus one finds
in the literature. Milner in the preliminary version of [17]
considered the two encodings, though written in the monadic,
synchronous n-calculus, and allowing to compute [N]*w con-
currently with {M]*v in [MN]*u (see (28] and [2] for the
“optimized” version we presented here, further slightly im-
proved by replacing (v =--) with (v < --) in [MN]*u).

Regarding types and sorts, we can use a remark of Meyer
and Wand [15]. They noticed that there is a transformation
on types that parallels the CcPs transform of call-by-value into
call-by-name, which is:

t* =1t
(e=27)=0"2((r* = 0) > 0)

We may also denote (7 — o) as ~°r (see [19]). Then, given
our Proposition 4.2, we can reformulate Meyer and Wand’s
remark as follows, denoting by I'* the assumption that is the
composition of I' with [-]*:
LEMMA 6.1. T+ M:7 [C] = T*F [M]*:-=r* [S] =
k:i=r® , T*F [M]*k:0 [S]

Notice that, given our previous interpretation of sorts as types,
the ® transformation on types is formally the same as a trans-
formation of types into sorts (see [2]):

t* =t

(o = 7)° =[ch(e®,cn(r*))]

Then, considering [M]*k as a n-term, and viewing a continua-
tion as a monadic channel, this lemma is the same as Turner’s
Proposition 6.13 [28] relating the types of call-by-value A-
terms with the sorts of their encoding (all the encodings con-
sidered by Turner in the Chapter 6 of his Thesis [28] actually
use the asynchronous 7-calculus as a target).

The cps transform of call-by-name into call-by-value, also
studied by Plotkin in [21], is less well-known. Written in
blue style, it provides us with another encoding of X into 7*.
This may actually be extended to the whole blue calculus, as a
function [-]° that may be regarded as mapping 7* into V' — 7,

238

thus justifying our claim that 7* is “the w-calculus in direct
style”. This mapping is given as follows, where k is a variable
standing for “continuation”:

[¥]° = Okuk
[Oa)P]° = dkbywpkp | (p = An)[P])
[Pu]° = Ak ([P)p | (p = (Az)2uk))
[PiQr = (IP1° 1 [QI°)
lvwP]° = ww[P]°
[r <= P]° = ky{r < [P]°)
[r=P]° = Ok(r=[P]°)

where the introduced names k, z and p are fresh (and distinct).
One can check that, as far as A-terms are concerned, this is
indeed Plotkin’s simulation of call-by-name by call-by-value,
written in blue style (with an n-expansion on the translation
of variables, but in the call-by-value setting, a variable z is a
value, therefore n-conversion on z is valid, i.e. z =, Ak.zk).
Furthermore, it can be seen that, up to the same manipulations
as above, [M]°k corresponds to an encoding of the call-by-
name A-calculus into the w-calculus given by Ostheimer and
Davie (see [28]. The connection with CPs is mentioned by
Fournet and Gonthier in [11], where they give essentially the
same encoding). More generally, [P]°k may be regarded as a
w-term, up to innocuous 7-expansion.

Before discussing the correctness of this cPs transform,
we first examine how types are correspondingly transformed
(cf. [13,19]). Recall that we assumed given a type o, and that
we denoted (7 — 0) by =°7. Then the (-)° translation on types
is:

to p— _|0__|0t

(0 = 7)°=="-%(c® = 7°)

By definition, for any 7 there exists a ¢ such that 7° = —9-9.,
The following lemma extends Murthy’s observation on call-by-
name translation [19] and Turner’s Proposition 6.18 [28].
LEMMA 6.2. T+ P:7 [§] = TI°+ [P]°:7° [§] =
k: =% ,I°F [P]°k:0[S] where 10 = —°-%,

The (straightforward) proof is omitted.

The cps transform [-]° is only correct if we impose a
restriction, namely that a declared name should not be ab-
stracted. Typically, a term like (Au){u 4« R) does not fulfil
this requirement. The only example I know that disobeys this
discipline, in a polyadic calculus, is Milner's encoding of the
call-by-name A-calculus [18] that we recalled in the introduc-
tion ~ and that we do not need anymore, since A C #* in a
direct manner. Moreover, in a recent paper [10] Boreale has
shown that one can embed the full 7-calculus into the subset
of terms satisfying the restriction.

The reason why we need to have this distinction between
variables and references is interesting: we have to ensure a
well-known “property of replication” (see [18,23]), which is,
roughly, that a local declaration (def r = R in ---) may be
distributed over parallel components, provided that r is not
defined elsewhere. Moreover, the restricted calculus is better-
behaved in many other respects (see the conclusion).

Instead of considering only a part of the set of terms, we intro-
duce a restricted syntax, assuming that the set A of names is
the disjoint union of X, the denumerable set of variables z, ¥,
z..., and R, the denumerable set of references p, ¢, 7... and
that only variables may be abstracted, while only references
may be declared (a similar restriction is adopted in Oz (26],
and also in the JOIN calculus [11], where a declared name is
bound by a restriction). Therefore the grammar is:

U= | r names
P:=A | D | (P|P)]| wwP processes
Auz=u | An)P | (Pu) agents
Du=(r«<P)| (r=P) declarations

The substitutions are assumed to respect the distinction be-
tween names, in the sense that a reference can only be renamed
for a-conversion purposes. For terms P, Q written in this syn-
tax, we have the following adequacy result:

THEOREM 6.3. kg m(P|Q) & [P’k ~[Q)°k = P~Q

For lack of space, we only provide a sketch of the proof.

(1) A first step is to give to the CPs a technically more con-
venient form. To this end, we notice that n-expansion is valid
on translated terms:

LEMMA 6.4. j € f(P) = Oh([P]%) ~ [P]°

The proof, by induction on P, uses the Exercise 3.4 and the
Lemma 3.2. Now let us define the mapping K: 7* x N = =*
as follows:

K(u, k) = uk
K(Az)P, k) = wpy(kp | {(p = QAnyAHK(P,)
K(Pu,k) = wp)(K(P,p) | (p = A2)zuk))
K(P|Q,k) = (K(P,k) | K(Q,k))
K(wwP, k) = vwK(P, k)
K(r < Pk) = (r € AHK(P, 7))
K(r = P k)= (r = AHK(P, 7))

An immediate consequence of the Lemma 3.2 and of the pre-
vious lemma is:

COROLLARY 6.5. k¢ f(P) = K(Pk)~[P}°k

Then to prove the Theorem amounts to show:
kgm(P|Q) & K(Pk)~K(Q,k) = P=Q

(2) Our improved CPs transform X almost preserves struc-
tural equivalence, but not quite. We need to take into ac-
count two new laws: one is that inaccessible resources may be
garbage collected, the other is that shared inexhaustible re-
sources may be cloned. To state this more formally, we denote
by deci(P) C R the set of (free) declared names of P - de-
fined in the obvious way, that is decl(r < P) = {r} U decl(P),
decl((vr)P) = decl(P) — {r}, and so on. It is easy to see that,
in our restricted calculus, evaluation cannot create declared
names, since decl{((Az)P)r) = decI(P), that is:

LEMMA 6.6. P — P' = dec(P') C decl(P)

239

Now let us define ¢ as the least equivalence that satisfies the
same laws as =, plus the following two - recall that we denoted
wr(P|r=R) by (def z= R in P):

wr(P|l{r<R)=P (*)

(defr=Rin P|Q) = (defr = Rin P) |
(defr=Rin Q) (%)

(*) 7 not free in P
(+2) r ¢ deci(P | Q | R)

The second law is a well-known “property of replication”
(see [18]. Our syntactic requirement is slightly more liberal
than the hypothesis required in (18], since here a declared
name, i.e. an “input channel”, can be passed as argument).
These two laws are quite natural — for instance the first one
could be incorporated into the operational semantics. We can
then state how structural equivalence is transformed by the
CPS:
LEMMA 6.7. k¢gt(P)& P=Q = K(Pk)=K(Q,k)

(3) Now we aim at establishing an operational correspon-
dence between P and K(P,k). Roughly, we would like to
show that K(P,k) converges exactly whenever P converges.
Let us first examine how the reductions of P are transformed.
As usual, we have to manage “administrative reductions” (see
[21]). These are either (3)-reductions, or fetching an inex-
haustible resource for a name which is uniquely (and locally)
declared. That is, if we define the reduction relation P> P’ as
follows:

P P'if and only if either P =, P’ or

P=wuy...up)(uvy - v | (wi = R) |), with

i€ {l,...,n} and u; & decl(S), and

P =wu...up{(Rvy- v | {ui = R) | S).
then administrative reductions are particular cases of P P'.
Clearly P> P! = E[P]o E[P') for any evaluation context E.
Moreover, these reductions commute with any other ones:

LEMMA 6.8.

PDP()&P—)PI = PlEPUOI‘BP'. P1I>P’&P(]—‘)P’
Let us denote by ~ the equivalence generated by > U 2. A first
part of the operational correspondence concerns (()-reduction:
LEMMA 6.9. P = P = K(P k)~ K(P',k)

In particular, if P is converted into a canonical form Q:

P=4p Q=wuy...un)(Vi| |Vl
M| | M|
T1<=R1|---|1‘k<=Rk)

then X(P, k) ~ K(Q, k). This allows us to prove another part
of the operational correspondence, regarding resource fetching:

LEMMA 6.10. P —, P' = K(Pk) ~—,~ K(P',k)

To establish the converse correspondence, we use the fact that
~ is a kind of bisimulation:

LEMMA 6.11.

i)P~Q& PP = PaQordQ.Q—-Q &P ~Q
(i) P~Q& Py = QU

Assume that (P, k) performs some reduction, and that P has
a canonical form @ as above. Then, since K{P, k) ~ K(Q, k),
the reduction from K(P, k) is either “absorbed” in this trans-
formation, or still may be performed from K(Q, k). That is,
we have:

LEMMA 6.12.
K(Pky—-S = S~K(Pk)or3PP. P3P &S~ K(P', k)

In particular, this implies:
K(Pk)3S = 3P. P53 P & S~ K(P',k)

Finally we can prove the main lemma, relating the conver-
gence of P with that of K(P, k). Notice that an abstraction is
transformed by X in a free message on k, therefore we have to
use the context

Vi =wh(] |k < dol)

(formally one should also restrict the free names of P).

LEMMA (COMPUTATIONAL ADEQUACY) 6.13. k & fn(P) =
Pl e Vi [K(P k)

The Theorem is an easy consequence of this lemma. The cps
transform is not fully abstract, that is, the converse of the
Theorem does not hold. The situation is similar to the one
of A encoded into 7 (see [8,9]1), namely 7-expansion is not
preserved for instance: we have seen that z T (Ay)xy but
the encodings applied to k are distinguished, by means of the
context C = (wkywz)([| z < Al).

7. Conclusion

‘We have presented the blue calculus, which could serve as a ba-
sis for the design of a programming language combining func-
tional (i.e. higher-order) and concurrent features. The calculus
smoothly integrates both the A-calculus and the r-calculus, to-
gether with their typing and sorting systems. We think that
the inclusion = C 7* sheds new light on the meaning of the n-
calculus primitives. It has occurred to several researchers that
a message is an application, and that the name of an input pre-
fix may be regarded as the location of a resource, rather than
a channel, but this intuitive interpretation was not formalized.
Similarly, it was figured by some people that the w-calculus en-
codings of evaluation strategies in the A-calculus correspond to
CPs transforms, but again these remained intuitive analogies.

We think that the relationships between the two calculi
are more clearly demonstrated in the unifying framework of
the blue calculus. The understanding we get of the n-calculus
from within 7* may be summarized as follows: a main theme of
the “process algebra” approach to concurrency was, quoting
Milner [181, that “if naming is involved in communicating
(...) and in locating and modifying data, then we look for a
way of treating data-access and communication as the same
thing’. This led him, as early as in cCs, to “viewing data
as a special kind of process.” In n* we rather took the view
that communication is a special kind of data-access - though
obviously they are both formally the same.

The 7*-calculus and its type system is clearly, as we pre-
sented it in this paper, at an early stage of existence, and we

240

are further developing it, working on more refined type sys-
tems and syntax extension to deal with “higher-order concur-
rent object programming”. To conclude this work, let us just
discuss a little the syntax. We think that the restricted syntax
introduced in the last section, based on a distinction between
variables and references, is worth promoting as the right one.
For instance, it allows us to define a notion of closed term
which is stable by reduction, namely P is closed if it contains
no free variable and no free declared reference, i.e. deci(P) = 0
- it may still contain free names, that refer to resources which
are not yet defined.

The restriction that references should not be abstracted
seems also useful if we want to extend the calculus to deal
with records. To this end we could add the matching construct
[u = v]P (see [16]). Then, since a record R is just a mapping
from a set of names {¢,...4,} to values, it can obviously
be represented in the calculus as follows - assuming that the
values themselves are encoded into 7*:

R=o([z=4]R, |--- | [z = €, R,) (z fresh)

so that field selection is just the application (R£). Then we
would expect that
R&' ~ Ri

However, in general these two terms can be separated by first
putting them into ((A¢;)[])¢;. Clearly, we need to ensure that
the field names of a record are constants, and a way to do this is
to regard these names as references, and to forbid abstracting
them.

To deal with “objects” we also need to represent “exten-
sible” records. We could then add the mismatching construct
[u # v]P, or a form of conditional branching, which is oper-
ationally equivalent to ([u = v]P | [u # v]Q) - though for
typing purposes it would be better to introduce a new con-
struct, denoted {Ju = v]P, @} for instance, whose operational
meaning is given by the rules

{fu=1uP,Q} > P
{r=sPQ}->Q

Let us just give an example showing how we can model objects
with changing state. Suppose we want to define a “celi” object,
that accepts methods read, for accessing the current value,
and write, updating the content of the cell. The specification
requires that performing a write operation, we get the same cell
with a new value, or a reincarnation of it, not an updated copy.
Then the cell must be a recursive object, though not duplicated
upon invocation of the write operation. Let C be the following
declaration, where we use [u = v]P as an abbreviation for
{lu = V)P, vuy{u < 0)}:

nSER, r#s

C =gef cell <= (Am){{m = write]c,

[m = read](v | cv)}
Then we may let
Cell =qe5 rec c.(A)C =quf (vO)(c | {c = M) (*)
so that Cellu evaluates in a deterministic way:

cely =3 woy({c = (A)C) | [¢/v]C)

It can be checked that these two terms are in fact semantically
the same, and therefore we have

(Cellu | (cell write)w) 3 Cell w

(Cetiu | (cel read)v; - - v Do (Cellu | uvy - - o)

Now suppose that we want to have a “global” declaration of
a cell object, that we could instantiate into a local storage
object s. The easiest way to perform the renaming of s into
cell would be to abstract cell from Cell, but this violates our
convention about declared names. Another way, frequently
used in the m-calculus to encode values, is to pass cell around
as a private name, argument of a message “make_cell” (denoted
n below). In the same message, one may pass a private name
init on which the local Celt will receive an initial value. Then
we write the cell object as follows:

(cell_obj = (An)(vcell)(winit)(n cell init | init <= Celt))

(here Cell is not a reference, but a meta-variable that stands
for the definition (*) above, otherwise (vceil) would have no
effect). A local copy of this object for a process P, with initial
value v, is created as follows:

ws)(P | wny(cellobjn | n <= (Apr)((s = p) | rv)))

This style of programming, although very close to the one in
force in the m-calculus, exploits the higher-order character of
7*: Cell is a higher-order process, and it may contain higher-
order values, as shown by the use of the read operation.

REFERENCES

[1] S.ABRAMsSKY, C.-H.L.ONG, Full abstraction in the
lazy lambda-calculus, Information and Computation 105
(1993) 159-267.

[2] R. AMaDIO, L. LETH, B. THOMSEN, From a concurrent
X-calculus to the m-calculus, FCT’95, Lecture Notes in
Comput. Sci. 965 (1995) 106-115.

(3] A.AppEL, Compiling with Continuations, Cambridge
University Press (1992).

(41 G.BERRY, G. Boubpot, The chemical abstract machine,
Theoretical Comput. Sci. 96 (1992) 217-248.

{5] G.BoupoL, Asynchrony and the w-calculus, INRIA Res.
Report 1702 (1992).

{6 G.BoupoL, The A-calculus with multiplicities, INRIA
Res. Report 2025 (1993).

[71 G.BoupoL, Lambda-calculi for (strict) parallel func-
tions, Information and Computation 108 (1gg4) 51-127.

{81 G.BoupoL, C. LANEVE, A-Calculus, multiplicities and
the m-calculus, INRIA Res. Report 2581 (1995).

{93 G.BoupoLr, C.LaNEVE, The discriminating power of

multiplicities in the A-calculus, Information and Com-

putation 126 (1996) 83-102.

M. BoREALE, On the expressiveness of internal mobility

in name-passing calculi, CONCUR’96, Lecture Notes in

Comput. Sci. 1119 (1996} 163-178.

C.FOURNET, G. GONTHIER, The reflexive CHAM, and

the join calculus, POPL’96 (1996) 372-385.

[10]

[11]

241

(12]

[13]

(14]

[15]

(161

(17

(1831

[19]

(201

(21]

[22)

23]

[24]

[25]

(261

27]

(28]

[29]

A. GIACALONE, P. MISHRA, S. PRASAD, FACILE: asym-
metric integration of concurrent and functional program-
ming, TAPSOFT’89, Lecture Notes in Comput. Sci. 352
(198g) 184-209.

R. HARPER, M. LILLIBRIDGE, Polymorphic type assign-
ment and CPS conversion, LISP and Symbolic Compu-
tation 6 (1993) 361-380.

J. LAUNCHBURY, A natural semantics for lazy evalua-
tion, POPL’93 (1993) 144-154.

A.R. MEYER, M. WAND, Continuation semantics in ty-
ped lambda-calculi, Lecture Notes in Comput. Sci. 193
(1985) 219-224.

R. MILNER, J. PARROW, D. WALKER, A calculus of mo-
bile processes, Information and Computation 100 (1992)
1-77.

R. MILNER, Functions as processes, Math. Struct. in
Comp. Science 2 (19g92) 119-141. Preliminary version
in INRIA Res. Report 1154.

R. MiLNER, The polyadic n-calculus: a tutorial, Te-
chnical Report ECS-LFCS-91-180, Edinburgh Univer-
sity (1991) Reprinted in Logic and Algebra of Specifica-
tion, F. Bauer, W. Brauer and H Schwichtenberg, Eds,
Springer Verlag, 1993, 203-246.

C. MURTHY, A computational analysis of Girard’s trans-
lation and LC, LICS’92 (1992) 90-101.

B. PIERCE, Programming in the w-calculus — An exper-
iment in concurrent language design, available electron-
ically, Computer Lab. Cambridge (1995).

G. PLOTKIN, Call-by-name, call-by-value and the A-cal-
culus, Theoret. Comput. Sci. 1 (1g975) 125-159.

J.H. Reppry, CML: a higher-order concurrent language,
ACM SIGPLAN’91 PLDI Conference, SIGPLAN No-
tices 26 (1991) 293-305.

D. SANGIORG!I, Expressing Mobility in Process Alge-
bras: First-Order and Higher-Order Paradigms, PhD
Thesis, Department of Computer Science, The Univer-
sity of Edinburgh (1993).

D. SANGIORGI, From w-calculus to higher-order w-calcu-
lus - and back, TAPSOFT"93, Lecture Notes in Com-
put. Sci. 668 (19g3) 151-166.

D. SANGIORGI, The lazy lambda-calculus in a concur-
rency scenario, Information and Computation 120 (1994)
120-153.

G.SMOLKA, A foundation for higher-order concurrent
constraint programming, in Constraints in Computa-
tional Logics, Lecture Notes in Comput. Sci. 845 (1994)
50-72.

C. TaLcoTT, Ed., Special Issue on Continuations, LISP
and Symbolic Computation 6 & 7 (1993).

D. TurNER, The Polymorphic Pi-calculus: Theory and
Implementation, Ph.D. Thesis, University of Edinburgh
(1995)-

V. VascoNcELOS, K. HONDA, Principal typing schemes
in a polyadic m-calculus, CONCUR’93, Lecture Notes in
Comput. Sci. 715 (1993) 524-538.

