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Abstract. The coherence mechanisms underlying most shared-memory systems work equally well—
or poorly—for regular and irregular programs. In both cases, data accesses go through a general-pur-
pose protocol, which provides the only communication primitive available to software. However, in
parts of many codes, compile-time information about data accesses could be used to transfer data more
efficiently than a standard coherence protocol, if the underlying system provided suitable primitives.
This paper demonstrates that for HPF programs running on fine-grain distributed shared memory [32],
cooperation between the compiler and the coherence protocol can produce significant performance
gains (upto 26%), while retaining the versatility and portability of coherent shared memory. This paper
also describes the design choices in our implementation and reports detailed experimental results.

1 Introduction

Parallel programs running on shared-memory multiprocessors often spend considerable time waiting for the
underlying memory system. This overhead is particularly acute when a program exhibits false sharing or poor
locality of reference. Another significant source of overhead is the fixed cache-coherence protocol used in a
multiprocessor—for example, a single piece of data may require four or more messages to move from the
writer to a reader processor [10]. A recent study by Torrie et al. [33] showed that such memory system over-
head could comprise more than 35% of the execution time on a suite of compiler-parallelized programs.
Moreover, conventional multiprocessors offer a fixed coherence protocol as the only general-purpose method
of communicating values between processors. In such systems, software cannot avoid the coherence overhead
per se, although several latency reducing and tolerating techniques have been proposed [13,24]. On systems
that implement shared memory Over a cluster of workstations [1,32], the higher communication latencies
make coherence overhead even more taxing.

Because of these problems, parallel shared-memory systems are starting to offer ways of optimizing data
transfer that range from new memory operations to the options of bypassing a coherence protocol. All-hard-
ware systems are limited to simpler operations, so a multiprocessor can provide memory system operations
such as poststore [30], co-operative prefetch [15], self-invalidate [15] and store-and-forward [19] that can be
used by a programmer or a compiler to optimize performance. Systems that implement coherence in software,
such as Typhoon [27], Flash [20] and Shasta [31], and most page-based systems [1,5], can go further and
offer message-passing like communication primitives or alternate protocols to an application. Emerging com-
mercial shared-memory multiprocessors, such as STING [22], now offer at least some support for data trans-
fer mechanisms beyond a fixed coherence protocol.
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This paper describes a compiler-directed approach to exploiting such communication mechanisms in the con-
text of HPF programs running on fine-grain distributed shared memory (DSM). The analyses developed for
compiling for message-passing machines [4,29,34] can also be used to identify opportunities for employing
more efficient value transfer mechanisms in shared-memory systems. Our compiler uses these analyses to
identify cache blocks for which short-cuts to the default coherence actions can be safely made. It then inserts
run-time calls that explicitly manage communication on these blocks. In program phases in which the neces-
sary preconditions on data accesses cannot be shown at compile-time, our system allows the default protocol
take over by first bringing all the blocks in a globally consistent state. A key contribution of this work is the
development of a contract between the compiler and the coherence protocol, so they can co-operate and
reduce data-transfer costs where static analysis permits it. Our techniques are suited for fine-grain shared-
memory systems because they bypass the default coherence mechanisms on fairly small chunks of data. Page-
based systems need a somewhat different approach (though the compiler analysis involved is quite similar).
We review two compiler-directed approaches for page-based systems [9,17] in related work (Section 2).

We modified a commercial HPF compiler—the Portland Group’s pghpf—to generate simple shared memory
code [6], and furthermore, to perform the communication analysis necessary to insert run-time calls to the
coherence protocol. Our target is the Tempest system [16], which implements distributed shared memory at
the granularity of cache blocks (e.g. 32-128 bytes) and allows user-code to provide its own coherence proto-
col or use an existing one. We performed our experiments on a Tempest implementation running on an 8-node
cluster of SparcStation20 workstations connected by Myricom’s Myrinet. Our results show that optimizations
reduce the overall execution times by 3%-26% on a suite of 6 applications; most of the optimized execution
times are competitive with pghpf’s message-passing backend. As previously demonstrated [6], the simnpler
shared-memory approach lets a wider class of HPF programs run far more efficiently than message passing—
those benefits remain undiminished in the current approach.

The rest of the paper is organized as follows. Section 2 discusses related work in the area of modifying the
coherence behavior by compiler techniques. Section 3 provides the relevant background material on coher-
ence protocols and discusses the opportunities for coherence optimizations in the context of fine-grain distrib-
uted shared memory. Section 4 describe our compilation model and the interface to the coherence protocol.
Section 5 presents our experimental setup. Section 6 presents detailed experimental evaluation of our tech-
nique. Section 7 concludes the paper.

2 Related Work

Our techniques closely resemble those used by Dwarkadas et al. [9] to optimize coherence overhead on a
page-based DSM system. Both works exploit the well-developed techniques for static analysis on arrays to
make data transfer cheaper by reducing coherence overhead and performing sender-initiated transfers. How-
ever, Dwarkadas’s techniques are targeted at page based DSMs (TreadMarks[1]). In TreadMarks, detecting
and preparing for writes (twinning) are high overhead operations. Not surprisingly, their most profitable opti-
mization is to prevent write-faults from occurring at run-time. They found that sender-initiated transfer in
their system accrues Very minor benefit. In fine-grain DSM systems, such as ours, the cost of gaining write-
ownership is far smaller, so we optimize for the delays incurred in true sharing, i.e. a Cross processor depen-
dence that exercises the coherence protocol.

Furthermore, Dwarkadas’s compiler analysis requires and uses only localized access information between
barriers. This is appropriate when dealing with a phase in an explicitly parallel program, but it does not
exploit global access information that might be available. By contrast, this work is applicable to compiler-par-
allelized codes, where the loop distribution is usually fixed for a program—work distribution is determined at
compile-time, typically following the owner-computes rule [29] (although our scheme can handle other com-
putation distributions as well). This leads to two important observations: first, only blocks that contain array
elements involved in producer-consumer relationships1 pay coherence overheads—the other “inner” cache

1. A memory location is written by one processor (producer) and subsequently read by another processor (consumer).
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blocks are brought once and for ever in to the local memory and pay no further overhead (assuming no cache-
replacement, as is the case in our system). Dwarkadas’s scheme must validate all the pages accessed by a pro-
cessor before each parallel loop, even if the “remote” data accessed in the loop is small. Second, we exploit
the availability of access permissions to reduce the overhead of coherence-manipulating calls to a protocol.
While these calls may not comprise a large overhead on a page-based system, fine-grain systems have many
more transfer units (cache blocks), so reducing run-time calls can improve performance.

Keleher and Tseng [17] reduce miss time on their page-based DSM by flushing modified pages to prospective
readers, as opposed to having readers fetch them on a miss. They also use compiler analysis to mark the set of
pages that are communicated in a stable pattern, although the actual detection of the producers and consumers
is left to the run-time system (they observe this could be done by the compiler). In contrast with Dwarkadas’s
and our work, their work does not relax the system’s coherence and permit the compiler to take control of all
accesses to shared data. We use precise compiler analysis (where applicable) to identity the set of blocks that
need to be propagated from a writer to the readers and bypass coherence where appropriate.

Another class of machines require software involvement to maintain coherence [25]. In software cache coher-
ence, the difficult problems are to identify exactly how long to keep a value in the programmable cache and
when to fetch a new value. Several researchers have studied compiler techniques for this problem [8,7]. How-
ever, these schemes must be conservative and work for all data accesses—rather than the selected ones we
focus on—so they often suffer from excessive invalidations and re-fetch. In our case, the default protocol
would automatically fetch the newest value at a read: we only seek to make this transfer more efficient.

Larus et al. [21] have used compiler-controlled incoherence for efficiently implementing the semantics ofa
data-parallel language. They implement fine-grain copy-on-write on especially marked blocks in the coher-
ence protocol instead of paying high copying overhead necessitated by conservative static analysis. By con-
trast, we use compiler-controlled incoherence to make statically identifiable communication more efficient.

3 Coherence Overhead and Optimization

A typical coherence protocol provides two functions. First, it satisfies a load by shipping the current value of
the requested address to the faulting node, in a manner transparent to the program. Second, it maintains cur-
rency of values by either invalidating, or updating existing cached copies when new values are written. Vari-
ous details, such as how soon a reader can expect to see a newly written value, vary according to the
consistency model implemented by a coherence protocol. However, coherence protocols generally cannot
make any further assumptions on a program’s memory accesses.

Consider a producer-consumer relation in which a block of data is written by processor p and subsequently
read by processor g. For the moment, assume that the block’s size is one word, equal to the size of the value
being transmitted. Furthermore, assume an invalidation-based protocol (general update-based protocols have
analogous problems, but the details are omitted for brevity). Figure 1(a) shows the coherence actions that this
transfer can expect to undergo. Note that at all times, the directory (a data structure at the home node) must be
aware of the state of the block, because any other processor r is free to join the fray and access the shared
memory location. Figure 1(a) also serves to illustrate the working of our default protocol1 at a high-level; the
figure caption gives additional detail on messages.

Typically, in many programs, p and ¢ perform this communication repeatedly, say in a time-step loop.
Assume that the memory location in question is neither read, nor written by any other processor. In this situa-
tion, p can directly send its value to g, provided such a primitive is available. While p and g engage in direct
communication, and no other processor accesses the same location, the directory need not track the current
state of the block, or the up-to-date contents of the block. See Figure 1(b). At the end of this phase, processors
p and g must make their state consistent with the directory information.

1. We try to hide some of the write latency by implementing a release-consistent memory modei [11].
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Figure 1: (a) Default coherence scheme. Notice the number of messages required to transfer one block.
The messages are as follows: 1. read-request 2. put-data-request 3. put-data-response 4. read-response 5.
write-request 6. invalidation 7. acknowledgement, and 8. write-grant. (b) Direct update message to the
reader. Note the reduction in the messages. A final step is required to ensure coherence.

i readonly

The preceding discussion is somewhat over-simplified for explanatory purposes; we describe in detail the
contract between our compiler and the protocol in Section 4.2. For the present, we briefly mention the Tem-
pest features that allow us to implement explicit coherence control. Tempest allows a coherence protocol to
be written as user-level code, by exposing the following primitives. (1) Locally mapping remote pages in the
shared segment, so the program can use global virtual addresses. (2) Fine-grain access control, which allows
user code to put invalid, readonly or readwrite protection on individual blocks. An access to invalid
block, or write access to a readonly block invokes a user-specified fault handler. (3) Messaging at fine-gran-
ularity, i.e., sending active messages with optionally a block worth of data in them. Ordinary protocols that
implement transparent shared memory, use all three mechanisms to implement the desired consistency model.
Our compiler inserts calls that directly invoke the fine-grain access control and messaging primitives, in order
to bypass the default coherence protocol in certain cases.

In principle, we should be able to completely bypass the default coherence when perfect information on the
readers and writers of memory locations is available in a particular application. However, some practical
problems must be addressed. First, any DSM system maintains coherence on finite-sized blocks that are typi-
cally larger than one word. Hence, a particular block can hold a range of array indices, even straddling dimen-
sions, e.g. a(513,1) and a(1,2) could be in the same block for a 513x513 array. In such a case, it is not always
possible to draw conclusions about the usage of all elements that compose a cache block. For example, the
compiler may assert that it can orchestrate all communication for a(513,1). However, it cannot ask the run-
time to manipulate access permissions to the block on which a(513,1) resides, because it may not have any
guarantees about the accesses to a(1,2). Note that this problem does not manifest itself for compilers targeting
message-passing machines, as they synthesize a global space from private memories; there is no notion of
two array locations lying on the same shared-memory block. Second, the compiler and the coherence protocol
must share a simple representation that summarizes blocks under compiler control; explicit listing of all such
blocks can introduce high runtime overhead. This summary can also introduce imprecision. In the subsequent
sections, we will discuss the design choices we made to address these issues.
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4 Compiler-Orchestrated Incoherence

The compiler has three tasks in our approach. First, it performs analysis to calculate the read and write sets
for arrays accessed in parallel loops. Second, it generates calls to the coherence protocol, so certain data
transfers can take place more efficiently—this forms the core of our technique. Third, it can optimize the
placement of these calls.

4.1 Access Information

We need to determine the sections of arrays that are read and written in each parallel loop, so we can find the
communication involved in executing the loop. This computation takes into account the distribution of the
arrays (as specified in the user directives) and the computation distribution of the parallel loop. The data dis-
tribution determines the owner relation: an array element a(i,j) is owned by a processor p, if it logically
resides on the processor p. It is important to bear in mind that a(i,/) may have its home on any processor in the
system, since the home is not necessarily the same as owner. We currently make a simplifying assumption on
data distributions: only the last dimension of a global array is distributed (either blockwise or cyclically) on a
linear arrangement of processors. The computation distribution is usually owner-computes, but this is not a
restriction in our scheme. The compiler can use the programmer-supplied INDEPENDENT directive to divide a
loop in any fashion, e.g. blockwise by loop-index, or according to an ON HOME directive.

Based on the data and computation distributions, the compiler computes access sets. For each distributed
array accessed in a parallel loop, it computes the non-owner-read and non-owner-write sets by taking the set
difference of the array sections that a processor reads or writes and the array sections it owns. If these sets are
null, no values need be transmitted. In a fine-grain DSM, the only communication that would then take place
is due to false sharing caused by multiword blocks—in most cases, this occurs at the boundary elements of
array columns!. We do not optimize for these boundary cases. By contrast, in page-based DSMs, due to large
size of the coherence unit, significant communication can be expected due to false sharing, and it is important
to optimize for it [9].

In our implementation, we use Maryland’s Omega library [26] to compute these sets. Although the kind of
sections we optimize could be represented by traditional regular section descriptors (RSD) [3], the Omega
library enabled us to avoid the significant implementation effort required to build a robust RSD package. In
addition, the Omega library handles symbolic variables that appear in our test cases, as well as keep access
sets parametric with respect to processor number, without extra effort. To obtain succinct representations of
the blocks that we may wish to take under compiler control, we address our optimizations only to those array
sections that can be shown, at compile-time, to form contiguous virtual addresses. We also allow two-dimen-
sional sections, represented as contiguous ranges separated by a fixed stride. Omega library can be directed to
generate C code as a static representation describing such sets: at run-time we invoke these code-fragments
with the values of symbolic variables to obtain the bounds of the corresponding access sets.

4.2 Overriding the Default Protocol

In this section, we describe the run-time calls generated by our compiler, based on the information collected
in the first phase. We first post-process this information to determine contiguous ranges of cache blocks that
can be taken under compiler control. Recall from Section 3, that due to multi-word block size, we have to be
careful when taking a particular block under compiler control. Therefore if the array section a(m:n) is a can-
didate for optimizations, we select the subset a(m:np), such that m; > m and n; < n, and a(m)) and a(n;) fall
within closest fitting block boundaries. For two-dimensional transfers, we have to do this subsetting by iterat-
ing over the higher dimension. We take the blocks thus determined under explicit compiler control, leaving
the boundary cases to the default protocol—our default protocol is a standard invalidation-based protocol as

1. Itis possible to specify data distributions in which under owner-computes rule there will be significant false-sharing, e.g. (CYCLIC.*) with
column major addressing. We do not address that problem here. Anderson et al.[2] present one approach to mitigate that effect.
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described in Section 3. These boundary cases could also be optimized by advisory primitives, such as self-
invalidate and co-operative prefetch [15], and may be a worthwhile optimization where the data set size is
small. It is also possible that there are no accesses to the off-section elements residing at the boundary blocks.
Compile-time analysis to determine this must make assumptions about starting addresses of arrays and the
block size. We have not explored this option yet.

Figure 2 shows the run-time calls that our compiler generates to modify the default protocol behavior for a
non-owner read reference. These calls are generated for each non-owner reference in the loop. Like calls for
all references are grouped together, so they can share the synchronization requisites between these calls. The
first run-time call, shmem_1imits, establishes the restricted limits as described in the previous paragraph,
and returns a communication descriptor (Figure 2A). We also pass the values of symbolic variables in these

Owner Reader & Home for page i Owner Reader&  Home for page i
Home for page (i+1) Home for page (i+1)
7 g
a(m)] 2 lidte] 2 [Idle]
~ [almy) V] lidle] l [Excl(owner)]
Yoagei | lloiocks in / '
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A Initial State, and shmem_1imits. Annotations next to D. After send and ready_recv
blocks at the home nodes, e.g. [Idle], denote directory state.
--------- LOOP COMPUTATION---------
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Legend: | linvalid readwriteg

Figure 2: The run-time calls and their effect on block states.
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run-time calls, so they can be used in the analytical expressions generated by the Omega library. The remain-
ing calls and the rationale for the additional synchronization are described in the following paragraphs.

Our goal is to make the non-owner blocks available before a parallel loop, so no access fault occurs while
executing the loop. For the moment, ignore non-owner writes. We designate owners to send the relevant
blocks to the readers. The senders and the receivers need to make certain preparations before this transfer can
take place:

(1) Since the owner is not necessarily the home node, there is no guarantee that at this point in the execution,
the owner has a copy of the block it has to send to the potential reader(s). Therefore, all senders must first
bring the relevant blocks to readable state in their caches.! In anticipation that eventually the senders will
write new values, we bring all the relevant blocks in writable state before initiating the transfer. An important
side effect of this step is that the directory information for these blocks reflects that the owner has the current
(and only) valid copy, thus relieving the actual home, if it is not owner, of carrying a valid copy. We will
employ this observation momentarily.

(2) In Tempest, readers require readwrite permission to store the incoming data (as is the requirement for
any store). In ordinary coherence protocols on Tempest, a read-miss handler makes a block readwrite for
the purpose of receiving the incoming data, then switches the access permission back to readonly after the
data has been stored. In compiler-controlled coherence, however, we have established that the blocks being
brought over are under explicit control, and the compiler can keep them in whichever state it likes. Therefore,
the we direct all the blocks to be received to have readwrite access, even though no data resides in them
until written in. After the parallel loop has executed, the compiler promises to invalidate such blocks.

There is an ordering requirement between steps 1 and 2. Since a reader may be the home node of a block, step
2 may destroy the only copy in the system. However, step 1 guarantees that the owner processor has the only
valid copy of the block: we only need to enforce that step 1 has completed before starting step 2. A barrier
synchronization enforces this ordering.

Step 1 is achieved by a mk_writable call on an specified range of blocks (see Figure 2B). The protocol
interprets this call as if a write fault is incurred for all the blocks in the specified range, except in a pipelined
fashion. The second step, after the synchronization, is achieved by an implicit_writable call to the pro-
tocol (Figure 2C). This call sets the access permissions of all blocks in the specified range to readwrite.

Another synchronization after step 2 guarantees that the senders and receivers are both ready for the transfer.
The senders ship the relevant blocks over to the receivers by calling a send operation on a range of addresses,
and destination ids, which the underlying protocol complies by sending the blocks in a specially tagged data
message to each recipient. Each receiver posts a ready_to_recv call, which holds down a counting sema-
phore until all the blocks have arrived. As a further optimization, we group contiguous blocks and transfer
them in larger payloads than a single block size. This optimization gives us the benefit of using larger block
sizes, and is evaluated in Section 6. At the conclusion of this data transfer, our goal of providing non-owner
read data in (at least) readable state before the loop is achieved (Figure 2D).

After the parallel loop executes, the directory for a compiler-controlled block believes that the block is in
exclusive state at the processor designated as sender (Figure 2E). This information does not reflect the correct
state of affairs, because the readers have a writable copy of those blocks as well. With no further information
about future data accesses, we need to invalidate the readers. This is achieved via the
implicit_invalidate call to the protocol (Figure 2F). A final barrier assures that things are consistent
again with the information at the directory.

Let us now address the issue of non-owner writes. In this case, the owner has to send the block to the writer,
just as in the non-owner read case. The only difference is that at the end of the loop, the writer has to £1lush
its changes back to the owner, and implicitly invalidate, so the scenario at the end is that the owner has the
only latest (writable) copy of the block, and directory correctly reflects this information.

{. There is no replacement from this cache—this is software managed remote data in main memory.
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4.3 Reducing the Run-time Overhead

There are two types of overheads introduced by the basic scheme described in Section 4.2. First, all run-time
calls need not be repeatedly executed. If a subsequent parallel loop has the same computation distribution, the
owners already have the blocks in writable condition (assuming no intervening read exercised default coher-
ence actions). Therefore the mk_writable call can be eliminated for the second loop. Similar arguments
hold for the implicit_invalidate call. Second, this scheme does not take into account the availability
[14,12] of data. If there is no intervening write to the same non-owner read data between two loops, it need
not be re-communicated at the second loop. In fact, the default coherence protocol will not communicate a
block twice, unless it is invalidated by a write.

Both these problems naturally fall in the framework of partial redundancy elimination(PRE) [23]. Research-
ers have already established how to avoid redundant communication (second problem mentioned in the previ-
ous paragraph) using variants of PRE [12,14,18]. The first problem, viz. the placement of calls, can also be
cast as a PRE problem by formulating the availability of access permissions as a flow problem. Unfortunately,
we require interprocedural analysis to draw full benefit from this framework, as most of the codes are (justifi-
ably) written in terms of subroutines.

A simple run-time scheme partially addresses the call overhead problem under the following “whole pro-
gram” assumptions: (1) the computation distribution is strictly owner-computes, (2) the program has no non-
owner reads to un-initialized memory locations, and (3) all non-owner reads are under explicit compiler con-
trol. Fortunately, all these conditions hold in our current benchmark suite. Indeed, to our knowledge, all com-
pilers targeting message-passing machines work under assumptions 1 and 3. If the preceding assumptions are
true, we can eliminate the mk_writable calls, as the owner nodes are guaranteed to have the blocks in
writable state by the effect of the default protocol. Consequently the barrier after the mk_writable call
can also be eliminated. The implicit_invalidate after the loop can also be eliminated (as there are no
non-owner writes, and all non-owner reads are realized by the compiler). The matching
implicit_writable call can be made faster: we only need to change access permissions if it is the first
time around that a range of blocks is asked to do implicit writable. At subsequent times the call need
only do the test and nothing more, as long as it is the same range of blocks (there is some extra work required
for dealing with overlapping ranges; we omit the details).

We are implementing an intra-procedural version of PRE to systematically reduce both types of overhead. We
intend to compare the PRE-based approach with the run-time scheme.

5 Experimental Platform

As mentioned earlier, our experimental platform is a Tempest implementation on a 8-node cluster of
SparcStation20 workstations, connection by the Myricom Myrinet. The default coherence protocol (written
completely in software as unprivileged code) is an eager-invalidate multiple-writer release consistency proto-
col—it attempts to hide write latency by not waiting for the write ownership grant from the home node. At
synchronization points, a node waits for all pending transactions to complete. We have angmented the proto-
col to support the primitives mention in Section 4.2; the primitives are called only after waiting for all out-
standing transactions. The Tempest implementation used in this study accelerates access control functions by
using a customn memory-bus device [28]. Tempest implementations that do not use this device exist, but are
somewhat slower. Since our workstation nodes are dual-processor, there is an option of either dedicating a
processor for protocol processing, or interleaving protocol processing with computation on the same proces-
sor (ignoring the second cpu altogether—computation is always done only on one cpu). We report results on
both configurations to evaluate the overhead reductions of our scheme on two reasonable system design
points. Some details on various components of the system are summarized in Table 1.
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Table 1: Some details of the cluster configuration used.

Processor 66 MHz HyperSPARC (2)

Network Interface Myricom’s Myrinet

Minimum roundtrip latency

for short (4 bytes) message 40ps
Network bandwidth 20 MB/s
Read miss processing time 93 s

for 128 byte block (2 cpu)

6 Results

We present results on six HPF applications listed in Table 2 with their problem sizes and memory usage.

!

Table 2: Application Suite

Application Source of HPF version Problem Size Memory(Mb)
. grid size 128, 40 iters
pde Genesis. HPF by PGI (RELAX routine only) 56
shallow NCAR. HPF by PGI 1025x513 grid, 100 iters 28
grav HPF by Syracuse grid size 128, 5 iters 17
lu Stanford. HPF by authors 1024x1024 matrix (5 runs) 4
180x360 matrix, converges
cg HPF by MIT 1630 iters 4.6
Jjacobi HPF by authors 2048x2048 matrix, 100 iters 32

For each application, we present speedups on our 8-node cluster, both for single-cpu and dual-cpu configura-
tion of the Tempest implementation. We also present speedups obtained by directly porting the PGI's mes-
sage-passing run-time to use Tempest messages. Note that all the applications in this suite are parallelized
well by the message-passing compiler—however the messaging layer does not perform well on some applica-
tions. All speedups are calculated relative to a uniprocessor run on a similar workstation albeit with more (96
M) physical memory, so none of the applications page. While the uniprocessor codes do not have any runtime
parallelism overhead, they are not blocked for cache performance [35], which explains the superlinear speed-
ups that we obtain on some programs. We report timings for 5 iterations of application [u, because for the
problem size used, it spends significant fraction of its time in mapping remote pages during the first iteration.

Figure 3 shows the overall speedup improvements in the six applications. Overall improvements in the speed-
ups are quite encouraging. All our optimized versions, except grav, show good speedups on 8 nodes. As
expected, the single-cpu shared-memory versions run somewhat slower than the dual-cpu versions, and there-
fore show proportionately higher improvements with the compiler optimizations. We reiterate that the dual-
cpu versions use the second cpu only for protocol processing purposes: the computation is still done only on
one cpu in all versions—thus there are overall 8 computation threads in all versions. The message-passing
version has a performance advantage over all shared-memory versions only in [u. Surprisingly, in all other
examples, message-passing perform somewhat slower than dual-cpu shared-memory versions, particularly so
in cg. We believe this is due to some (as yet unidentified) performance bottlenecks in PGI's messaging run-
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Figure 3: Speedups with various configurations. Compiler-directed protocol optimizations improve shared
memory speedups in all cases.

time, or in our adaptation of PGI's primitives to use the Tempest dual-cpu communication facilities well—
this is under further investigation.

Table 3 shows detailed timing breakups and event counts that allow us to analyze the performance results.

Table 3: Reduction in miss count and communication time.

Compute | Comm time % Comm time P Miss %
Application time dual-cpu | reduction | single-cpu | reduction Count | reduction
(seconds) (seconds) with opt (seconds) with opt (K) with opt
pde 33.6 26.1 58.6% 56.5 61.9% 293.8 74.6%
shallow 35.2 10.9 45.9% 21.5 50.2% 55.8 85.7%
grav 12.0 11.6 5.5% 17.8 9% 42.5 38.2%
[ 511 27 53% 329 47.4% 85.8 85%
cg 13.6 9.8 24.4% 18.4 27.7% 57.9 68.7%
Jjacobi 31 4.3 33% 9.5 30.5% 22.5 96.7%

Communication times report the spent in the unoptimized versions waiting for servicing misses and for syn-
chronization. Communication time in the optimized case (not explicitly shown) includes the time spent in
various protocol calls. Miss counts are the average number of misses per-node encountered in the unopti-
mized programs (same for single and dual-cpu). The percentage reduction columns give the reduction in the
corresponding quantity with the optimizations enabled. Note that the reduction in miss count does not propor-
tionately reduce the communication time, because data transfer and synchronization costs may differ in each

case.

In all applications except grav, we see a significant decrease in the number of misses, which shows our
approach is quite effective in capturing most of the communication under compiler control—the remaining
misses arise due to first access (cold miss) and due to the edge cases in each array section that we omit by our
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shmem_1limits call. Grav shows a shortcoming of our approach, in that a significant fraction of misses are
not removed (only 38% are removed). This is because the array extents in grav are rather small (129x129
reals and 129x 129x129 reals), and thus the edge effects are pronounced at 128-bytes blocksize. Grav executes
a large number of SUM reductions, which, while efficiently implemented using low-level messages, ulti-
mately limit speedups in both shared memory and message passing.

Lu performs LU-decomposition, in which during each iteration a pivotal column is broadcast to all proces-
sors. Since it is a triangular loop, the size of this column decreases with successive iterations, and in the later
columns the edge effects limit the efficacy of our optimizations. Although the overall miss counts decrease by
85%. and communication costs by about 50%, we are still not as fast as message-passing on this application.

The rest of the applications are regular stencil based computations, with relatively large columns shared
between processors in a producer-consumer relationship. Our techniques are ideally suited for such cases, and
we get good speedups. We were able to eliminate a large fraction of the misses and significantly decrease
communication costs. Shallow, pde, and cg show opportunities for redundant communication elimination,
which should increase performance even further.

Finally, Figure 4 shows the contribution of performing larger-payload transfer of contiguous blocks (bulk
transfer) and run-time overhead elimination (Section 4.3) in reducing total execution time for dual-cpu case
(the single-cpu case is qualitatively similar). The base optimizations bar shows the reduction in execution
time relative to unoptimized version, when only sender-initiated transfers (Section 4.2) are performed. The
next two bars shows further improvements when bulk transfers and run-time overhead elimination are also
performed. As evident from this data, both these optimizations are important to gather the most benefit from
our scheme (however bulk transfer is the more important optimization).

7 Conclusion

We described a method for optimizing communication costs for regular HPF programs on a fine-grain distrib-
uted shared memory system. Qur method uses analyses similar to those used in compilers targeting message-
passing machines, to identify cache blocks that are candidates for protocol optimizations. We described how
to handle the problem of multi-word cache blocks, and also presented a contract between a compiler and a
coherence protocol that makes use of incoherence for performance advantages. With bulk-transfer of contigu-
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Figure 4: Benefits of bulk-transfer and run-time overhead elimination.
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ous blocks, and eliminatiori of run-time overhead, we get substantial performance improvements on this suite
of applications.

Our techniques should directly apply to other systems that implement fine-grain shared memory in software,
such as Flash[20] and Shasta[31]. In fact, from the compiler’s perspective, the full generality of customizing
coherence protocols is not required for optimizing regular communication: following the discussion in
Section 4.2, we only need certain primitives to be able to bypass the general coherence protocol. We believe
that most emerging commercial parallel systems will provide fine-grain shared memory (there is no going
back from the SMP programming model), and optionally provide escapes to bypass global coherence. This
work has shown a compiler-directed approach to exploit such escapes.

In the future, we intend to incorporate PRE based analysis to systematically reduce overheads as discussed in
Section 4.3. We also plan to include more benchmarks in our workload, particularly those that show a mix of
simple affine array subscript and indirect array subscripts, and are not amenable to purely message-passing
approaches.
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