Application Restructuring and Performance Portability on Shared Virtual
g Memory and Hardware-Coherent Multiprocessors

Check for
Updates

Dongming Jiang, Hongzhang Shan and Jaswinder Pal Singh

Department of Computer Science
35 Olden Street
Princeton University
Princeton, NJ 08544

{dj, shz, jps}@cs.princeton.edu

Abstract

The performance portability of parallel programs across a
wide range of emerging coherent shared address space sys-
tems is not well understood. Programs that run well on
efficient, hardware cache-coherent systems often do not per-
form well on less optimal or more commodity-based commu-
nication architectures. This paper studies this issue of per-
formance portability, with the commodity communication
architecture of interest being page-grained shared virtual
memory. We begin with applications that perform well on
moderate-scale hardware cache-coherent systems, and find
that they do not do so well on SVM systems. Then, we
examine whether and how the applications can be improved
for SVM systems —through data structuring or algorithmic
enhancements—and the nature and difficulty of the opti-
mizations. Finally, we examine the impact of the successful
optimizations on hardware-coherent platforms themselves,
to see whether they are helpful, harmful or neutral on those
platforms. We develop a systematic methodology to explore
optimizations in different structured classes. The results,
and the difficulty of the optimizations, lead insight not only
into performance portability but also into the viability of
SVM as a platform for these types of applications.

1 Introduction

Coherent shared address space multiprocessors provide an
attractive parallel programming model. Hardware cache-
coherent machines have been shown to deliver good par-
allel performance, at least at moderate scale, but they
are expensive to design and purchase. Many efforts have
therefore been made to support a coherent shared ad-
dress space using commodity-oriented parts for the com-
munication architecture—both the controller and the net-
work [8, 17]. One extreme in the spectrum is to support
the abstraction entirely in software on networks of commod-
ity workstations (or personal computers) with no additional
hardware. This approach, called shared virtual memory
(SVM), provides the coherent shared address space at page
granularity through virtual memory management. Applica-
tions may interact well or poorly with this large granularity,

and many techniques have been developed to alleviate poor
interactions like false sharing and fragmentation (transfer-
ring a page of data when only a fraction of it is needed).
Nevertheless, software communication and synchronization
costs can be high as can protocol overhead, and the per-
formance potential of this approach across a wide range of
applications is not well understood.

Previous research has studied parallel application per-
formance on particular shared memory systems [11, 12, 7,
5, 17, 2, 14, 20]. Studies on shared virtual memory have
largely used applications as they were written for hardware
cache-coherent machines. The performance evaluations so
far point out that SVM is very sensitive to data referencing
and communication patterns, and that for certain classes
of applications there is a large performance gap between
hardware cache-coherent and SVM systems. However, it
should be possible to modify or restructure applications to
interact better with page granularity and to reduce the fre-
quency of operations that particularly hurt performance on
SVM systems, perhaps at the cost of increasing other, less
important overheads. The modifications are not likely to
be traditional optimizations like tuning inner loops or in-
terchanging loops to change the traversal order, but rather
larger-scale restructurings of data structures and algorithms.
What these restructurings are, whether they improve per-
formance to a substantial extent, and if so their conceptual
and programming difficulty are not well understood. Nor
is the question of performance portability; that is, do the
modifications yield improvement on all types of shared ad-
dress space platforms or only on SVM, leaving performance
on other systems unchanged or even worse. These issues
have important implications for the success and viability of
SVM.

In this paper, we try to understand these programming
and performance issues for parallel applications with a range
of behaviors. We begin with well-written applications de-
signed for hardware cache-coherent machines, and apply to
them a set of systematic optimizations in different struc-
tured classes to improve their performance on SVM systems.
The optimizations include padding and alignment, reorga-
nization of major data structures, and algorithmic changes,
typically going from the simplest to the most difficult. In

http://crossmark.crossref.org/dialog/?doi=10.1145%2F263764.263792&domain=pdf&date_stamp=1997-06-21

particular, we are interested in answering four questions:

¢ Can application performance on SVM systems be im-
proved significantly by certain classes of optimizations?

How difficult are the optimizations that succeed, both
conceptually and in implementation?

How do these optimizations affect performance on
hardware cache-coherent multiprocessors, with both
centralized and distributed memory? That is, are the
optimizations “performance-portable”?

Are there any guidelines we can establish for program-
ming on SVM systems, beyond or as distinct from pro-
gramming for hardware cache-coherent shared mem-
ory?

We focus in this paper on relatively small-scale systems,
with 16 processors.

The next section introduces the experimental platforms
and applications we use. Section 3 describes the approach
and methodology of the study in more depth. In Section 4,
we present the classes of optimizations, what they translate
to for different applications, and the results on the SVM
platform. Section 5 explores the impact of the optimiza-
tions on hardware cache-coherent multiprocessors. Section
6 summarizes our results and some guidelines for program-
ming on SVM that we found useful, and section 7 outlines
future work.

2 Experimental Environment

This section introduces the platforms and applications we
use in this paper.

2.1 Platforms

We use an SVM platform, a cache-coherent shared address
space platform with physically distributed memory (a DSM
platform), and a cache-coherent platform with centralized
shared memory. Our SVM and DSM platforms are detailed
simulators of the corresponding systems. For SVM, this is
because we do not yet have available to us a real system with
the protocols we want and the performance characteristics
we consider realistic today. For DSM, simulation then allows
us to keep many of the important characteristics compara-
ble. (We have recently obtained an SGI Origin2000 system,
and early results on it seem to validate the qualitative con-
clusions based on the simulator). Our bus-base system is a
real machine, providing some realism, and we plan to do a
fuller evaluation on real systems for both SVM and DSM.
We use 16-processor systems in each case.

2.1.1 Shared Virtual Memory Platform

The shared virtual memory (SVM) platform we use sim-
ulates an all-software home-based lazy release consistency
(HLRC) protocol [13], which has memory overhead and scal-
ability advantages over non home-based protocols such as
that in TreadMarks [12]. HLRC has recently been shown
to equal or outperform non home-based LRC protocols as
well, at least on the platform studied [21]. The simulator
models an architecture of processing nodes connected by
a commodity interconnect that is modeled on Myrinet [1].
In our experiments, each node can be considered to have

218

a 200Mhz x86 processor running at 1 CPI (without mem-
ory effects). The data cache hierarchy consists of an 8KB
first-level direct mapped write-through cache and a 512KB
second-level 2-way set associative cache, each with a line
size of 32 bytes. The peak communication bandwidth is
400MB/sec for memory buses and 100MB/sec for I/O buses
(through which network packets flow). The page size is 4KB.
Buffering and contention are modeled in detail at all levels
except in the network links and routers themselves.

The HLRC protocol assigns each page to a home node.
To alleviate the false-sharing problem at page granularity,
HLRC implements a multiple-writer protocol based on using
“twins” and “diffs”. After an acquire operation, each writer
of a page is allowed to write into its local copy once a clean
version of the page {twin) has been created. Changes are
detected by comparing the current (dirty) copy with the
clean version (twin) and recorded in a structure called a diff.
At a release operation, diffs are propagated to the designated
home of the page (not to the other sharers). The home
copy is thus kept up to date. Upon a page fault following a
causally related acquire operation, the entire page is fetched
from the home [21].

2.1.2 SGI Challenge

The SGI Challenge is a bus-based, symmetric shared-
memory multiprocessor with centralized main memory. The
machine we use has sixteen 150Mhz processors, each with
separate 16KB first-level instruction and data caches and a
unified 1MB second-level cache. The second-level cache line
size is 128 bytes, and the bus bandwidth is 1.2GB/sec.

2.1.3 Distributed Shared Memory Platform

Our detailed DSM simulator models an aggressive cache-
coherent shared multiprocessor with physically distributed
memory and one 300Mhz processor per node. Every pro-
cessor has separate direct-mapped 16KB first-level instruc-
tion and data caches and a unified 4-way set associative
1MB second-level cache. Caches are kept coherent across
nodes by a distributed directory protocol [4]. The second-
level cache line size is 64 bytes. Peak node-to-network com-
munication bandwidth is 400MB/sec. Buffering and con-
tention are modeled everywhere except the network links
and routers.

We choose speedup (over the best sequential version) as
our performance metric. The speedup of a particular ap-
plication of P processors is defined as its execution time on
P processors divided by its execution time on uniproces-
sor. When different classes of optimizations are applied, the
speedup of an optimized version is measured with respect to
the uniprocessor execution time of the original version the
optimization starts with.

Given the differences in the platforms, we do not com-
pare performance or even speedup directly across them
(though we do collocate the results initially to illustrate that
speedups are much worse on SVM for the original applica-
tions). Rather, we focus on the value of the optimizations
within a platform. Of course, these too are affected by plat-
form parameters, but our choices of reasonable modern pa-
rameters and the magnitudes of the effects we observe make
this not a significant problem for the effects we are studying.

2.2 Applications

We choose applications to obtain good coverage along sev-
eral axes. First we use both regular and irregular appli-
cations. Second, we explore applications with a range of
behaviors: different inherent communication and data ref-
erencing patterns, and different access granularities to data
that interact with SVM page granularity to produce differ-
ent “induced” sharing patterns [14]. By fine-grained access
we mean that the accesses to data by a process are not
highly spatially contiguous, which usually implies that ac-
cesses from different processes (at least compared to page
size) are interleaved at quite fine granularity in the address
space. As per the classification in [14], we are also con-
cerned with how many processors write (produce) and read
{consume) a unit of communication or coherence. Third, we
choose applications from different domains of computation.
Our application suite contains 7 applications, each with sev-
eral versions. Six are originally from the SPLASH-2 [18]
suite, and one is a recently published parallel shear-warp
volume rendering program [9, 15] that is also described in
another paper in these proceedings [3]. Let us briefly de-
scribe the access patterns in the original applications. De-
tails of the applications themselves can be found in [18] and
the references there.

2.2.1 Regular Applications

LU performs the blocked LU factorization of a dense ma-
trix. We begins with the non-contiguous version of LU,
which uses the natural 2-d arrays to represent the 2-d ma-
trix. Its inherent data sharing pattern {at word granularity)
is one producer with multiple consumers. Read and write
accesses are both fine-grained. Since a page spans multiple
sub-rows from different blocks, it suffers false sharing and
fragmentation.

Ocean simulates eddy currents in an ocean basin. It con-
sists largely of nearest neighbor calculations on regular grids.
Both its inherent and induced (at page granularity) data ref-
erencing patterns are generally one producer with one con-
sumer. Read and write accesses are both coarse grained
internally to a partition and along row-oriented partition
boundaries, but fine grained along column-oriented bound-
aries; i.e. when a process reads a word from its neighbor
along a column-oriented boundary, because of the way mem-
ory is laid out, it reads only a single word on each page.
Thus, there is significant fragmentation in communicating
remote data in pages at column boundaries.

2.2.2 lrregular Applications

Volrend renders three-dimensional volume data into an im-
age using a ray casting method. Its inherent data referenc-
ing pattern on data that are written (task queues and image
data) is migratory, while its induced pattern at page granu-
larity is multiple producers with multiple consumers. Both
the read accesses to the read-only volume and the write ac-
cesses to task queues and image data are fine grained, so it
suffers both fragmentation and false sharing.

Shear-Warp renders three-dimensional volume data into
an image using a shear-warp factorization algorithm. There
are two phases in the rendering (see Figure 1) [15, 9]. First,
the run-length encoded volume (not shown) is composited

219

intermediate

W

a chunk of
scanlines:
atask in the
compositing
phase (a unit
of stealing)

a processor’s
partition
in warping final image
phase plane
—1 atile:
a task in the
warp phase

Figure 1: Shear-warp volume rendering algorithm.

into an intermediate image, by traversing the volume in
scanline order slice by slice and writing the image. This
is done by partitioning the intermediate image plane into
chunks of scanlines assigned to processors in an interleaved
manner, and having the processor traverse the appropriate
scanlines of the volume so that only one processor writes a
given scanline of the image. After the (distorted) interme-
diate image has been composited, it is warped into a final
image. In the original application, the warping phase par-
titions the final image into blocks of tiles that are assigned
to processors. Shear-Warp’s accesses to volume data are
much coarser grained since they follow along scanlines, but
it suffers similar problems to Volrend particularly on image
data.

Raytrace renders complex scenes in computer graphics us-
ing an optimized ray tracing method. Its sharing pattern is
very similar to that of Volrend, but less predictable.

Barnes simulates the interaction of a system of bodies in
three dimensions over a number of time-steps, using a hi-
erarchical N-body method. Both its inherent and induced
data referencing patterns for at least some data and phases
(for example, tree building) are multiple-producer multiple-
consumer. The read and write accesses are both fine grained,
thus it suffers high false sharing and fragmentation. It also
has a lot of lock-based synchronization when building its
shared tree, which is very expensive on SVM systems.

Radix sorts a series of integer keys in ascending order. Its
inherent data referencing pattern is one producer with one
consumer, but its induced pattern at page granularity (in the
permutation phase of the sort) is multiple producers with
one consumer. Read accesses are coarse grained but write
accesses are fine grained and scattered. It suffers substantial
false sharing at page granularity.

3 Methodology

We begin with the applications as they appear in the
SPLASH-2 suite (and for Shear-Warp as it appears in [9)).
They are all quite well tuned for hardware cache-coherence.
We perform data distribution on the SVM and DSM plat-
forms as suggested in SPLASH-2. For LU and Ocean,
we start from the “non-contiguous” versions that use 2-
dimensional arrays to represent the 2-d matrix and grids.
For Barnes, we in fact begin with the most natural data
structures as used in SPLASH—not SPLASH-2—version.
In this version, a processor’s pointers to its particles and
cells are maintained contiguously in the shared array but
the particles/cells themselves are not.

We use problem sizes that are as large as or larger than
the defaults in SPLASH-2, but that can be reasonably sim-
ulated. In particular, we run LU on a 1024 x 1024 matrix,
Ocean on 514 x 514 grids, Volrend and Shear-Warp on a
256 x 256 x 225 Computed Tomography head, Raytrace on
the car data set with a 128 x 128 resolution image, Barnes
on 16K particles, and Radix on 4M integers.

o 0B
1 1

S
alaius

Speedup (16 processors)

Application

Figure 2: Speedups for the original versions across the
shared address space multiprocessors.

To motivate this study, Figure 2 shows the speedups ob-
tained by the applications on the different platforms. While
the speedups cannot be fairly compared directly, since the
platforms have different node parameters, the differences be-
tween SVM and others are clear. Generally speaking, all
the applications have good to reasonable performance across
the hardware cache-coherent systems, whether bus-based or
with physically distributed memory. Performance on the
SVM platform, however, is a different story. Many of the
applications, like Volrend, Shear-Warp, Barnes, and Radix,
do not perform very well. Moreover, applications like LU,
Ocean, and Raytrace perform even worse than a uniproces-
sor. This implies that parallel applications written for cache-
coherent multiprocessors often may not be ported directly
to SVM and achieve good performance automatically. The
challenge is to improve the parallel performance on SVM
substantially, and understand what kinds of techniques this
takes.

While classifying programming improvements is difficult,
since they can be quite ad hoc, we use structured classes of
optimizations starting from the simplest to the most chal-
lenging, improved by the structure used in {2]. Specifically,
we divide optimizations into three classes:

e Padding and Alignment is the simplest optimization.
It involves padding and aligning data structures (both
major and minor, as appropriate) to the granularity of
communication and/or coherence—cache line size for

220

hardware cache-coherent machines and page size for
SVM systems—so as to reduce false sharing and frag-
mentation of communication.

Reorganization of Major Data Structures. This is
harder to implement than just padding/alignment.
Examples include moving from two-dimensional to
four-dimensional arrays to represent two-dimensional
grids [11], organizing records of particles by field rather
than by particle, etc. The changes are performed to
increase spatial locality, and thus to decrease fragmen-
tation and false sharing.

Algorithm Redesign is usually the most challenging op-
timization. It may involve performing synchronization
differently, changing the partitioning method, chang-
ing the basic sequential algorithm for specific phases of
the computation, or even changing the entire algorithm
used to solve the problem.

The optimizations are usually applied cumulatively, one
after the other. If the simple optimizations like padding
and alignment are successful in improving the performance
on SVM, that sends a very different message for the suc-
cess of SVM than if it requires major programming or al-
gorithmic enhancements beyond those needed for hardware
CC-NUMA machines.

4 Improving Performance on Shared Virtual Memory

In this section we present the results for each application
as it undergoes the classes of optimizations. For each ap-
plication, we describe the specific optimizations that each
class translates to, and analyze their impact on SVM perfor-
mance. We also discuss the difficulties of diagnosing the per-
formance problems that lead to the need for optimization,
conceptualizing a solution, and implementing the solution.
Finally, we describe the remaining bottlenecks in SVM per-
formance even after all optimizations have been performed.
We begin with the regular, predictable applications, whose
performance is relatively easier to diagnose, and then move
on to the irregular applications. The rest of this section is
organized based on the fact that we have described the basic
data accessing patterns and algorithmic properties of all the
original applications in section 2.2, so here, we start from
optimization steps for each application directly.

4.1 Regular Applications
411 LU

Padding and Alignment: The matrix allocated as a 2-d ar-
ray is the main data structure in LU. Padding and aligning
each sub-row within a block to a page would eliminate false
sharing. However, there is little performance improvement
since this change does not reduce fragmentation in communi-
cation (i.e. fetching more data than needed). This padding
is also very inefficient storage-wise since even with the 32
by 32 blocks, we use only 32 x 8 or 256 bytes out of each
4KB page. Finally, it greatly complicates the indexing of
elements in the 2-d array when padding is inserted within
each array dimension.

Data Structure: To eliminate false sharing and fragmen-
tation, this optimization uses an alternative data structure

i

|

design, allocating the matrix as a 4-d array so that each
block can be allocated contiguously in the address space (the
“contiguous” version in SPLASH-2). Performance improves
dramatically, and achieves a super-linear speedup of 18.7 for
16 processors. Figure 3, however, indicates that there is still
a remaining bottleneck in data communication experienced
by processor 10, though it is known that this overhead is
very small on hardware cache-coherent machines. This bot-
tleneck indicates that the high super-linear speedup is par-
tially due to a reduction in local capacity or conflict misses
compared to a uniprocessor execution, since speedups are
being measured with respect to a uniprocessor 2-d array
version which has much more conflict misses than with the
optimized data structure. The high data waiting time for
processor 10 is partly due to the barrier implementation in
the SVM system, and partly due to the program’s data ac-
cessing pattern. Processor 10 is chosen as the manager of
the most important barrier in this application, and is re-
sponsible for dealing with the protocol related actions for
that barrier. Being the first one to pass that barrier, it may
not be able to fetch the data pages it needs from other pro-
cessors until they pass the barrier as well. Processor 10 also
fetches more pages than others, which turns out to be due to
page alignment problems. By aligning the contiguous blocks
assigned to the processors to page boundaries, we eliminate
this bottleneck. The new data structure makes LU finally
achieve a speedup as high as 20.6 for 16 processors.

Scr08
4008
o108
20400
tos08

L Y T AJ ¥ T M ¥ T ¥

1 2 3 4 5 6 7 8

Precessor

[l CPU-Cache Saall Time
(@2 Haadier Compute Time
[Basticr Wiit Time

K ook Wait Time

5] Dats Wait Time

3 Computc Time

0 9 10 11 12 13 W 15

Figure 3: Execution time breakdown of LU contiguous ver-
sion without padding/alignment. In this figure, and other
figures in the rest of this section, Compute Time is the time
the processor spends actually executing application instruc-
tions. Data Wait Time is the time spent waiting for data
to arrive at remote page faults, i.e. the time spent wait-
ing for communication. Barrier and Lock Wait Time are
the time spent waiting at barriers and locks, respectively,
including both the wait time and the overhead of the syn-
chronization events. Handler Compute Time is the time
the processor spends in protocol processing on incoming or
outgoing transactions, including the time spent computing
and applying diffs. CPU-Cache Stall Time is the time the
processor spends stalled waiting for local cache misses to be
satisfied. All times are in cycles.

Algorithm: A possible alternative partitioning algorithm is
to assign blocks to each processor in a more complex and
less structured way to improve load balancing; i.e. not to
use the standard 2-d interleaved scatter decomposition of
blocks. However, this compromises communication a lot,
which is expensive, and turns out to be not beneficial for
performance on SVM.

Summary: LU performs very well on SVM once the appro-
priate data structure is used and is padded and aligned to
page boundaries. It is easy to understand the performance

221

bottleneck and conceptualize the data restructuring. The
implementation of the data restructuring into a 4-d array is
painful, but it is also known to be very useful on hardware
cache-coherent machines. In fact, the “contiguous” version
of the SPLASH-2 LU uses this data structure. While simply
padding and aligning the original 2-d array data structure is
not enough, once the data structure is altered the access pat-
terns become coarse-grained, padding and alignment helps
SVM performance significantly. Algorithm redesign of LU
to improve the performance further on SVM turns out to be
difficult but unnecessary.

4.1.2 Ocean

Padding and Alignment: The grids allocated as 2-d arrays
are the main data structures in Ocean. Like LU, the square-
like sub-grids assigned to a processor are mot contiguous
in the address space, so there is a lot of false sharing and
fragmentation. Simply padding and aligning each sub-row
within a sub-grid does not reduce fragmentation and has
all the same problems as in LU. Padding and aligning other
more minor data structures is not very useful to performance
either.

Data Structure: Using 4-d arrays to represent 2-d grids—
with the first two dimensions specifying the partition (pro-
cessor) and the next two identifying the particular grid point
within the partition—allows partitions to be allocated con-
tiguously, greatly reducing false sharing and fragmentation.
It also allows the sub-grid assigned to a processor to be allo-
cated in its local memory, reducing remote access and arti-
factual communication. The result is a speedup of 8.5 for 16
processors. This is much improved from the non-contiguous
data structure, but is still not satisfactory. Figure 4 reveals
that the time spent waiting at barriers is high, and the data
communication overhead is both high and imbalanced across
processors. Barriers are in general expensive in SVM with
relaxed comsistency models, since a lot of protocol activity
and information exchange occur as part of them, and this
application has many barriers. However, there is room to
improve the data wait time.

B CPU-Cacko Stall Twne
{8 Handice Compute Time
(Il Barrier Wait Tiee

£Y Lock Wait Time

[Compute Tine

Figure 4: Execution time breakdown of Ocean contiguous
version.

Algorithm: We mentioned in section 2.2 that near-neighbor
accesses in Ocean are coarse-grained at row boundaries, but
fine-grained at column-oriented boundaries. Figure 4 shows
that even with 4-d arrays, processors that own partitions
that share two column-oriented boundaries with other pro-
cessors fetch almost twice as many remote pages than those
having only one column-oriented boundary. To eliminate
communication at the column boundaries, an alternative
partitioning method is to assign blocks of n/p contiguous
whole rows to each processor instead of square-shaped sub-
grids. Although this has a worse inherent near-neighbor

communication to computation ratio than with square sub-
grids, now the only communication in grids is coarse-grained
along row-oriented boundaries. There is little fragmenta-
tion, and page-grained communication is in fact useful due
to prefetching. An added substantial benefit is that parti-
tions are now contiguous in the address space even with a
two-dimensional array representation, so this much easier-
to-program data structure does not cause false sharing. Fig-
ure 5 shows that data communication is quite balanced
across processors with this partitioning method, and data
wait time is no longer a major performance bottleneck. The
speedup with 16 processors increases from 8.5 to 13.2, which
is quite satisfactory (In both these cases too, local cache
misses are reduced substantially compared to the uniproces-
sor execution, which is the 2-d non-contiguous version that
has a lot of conflict misses, so speedup as we measure it is
high despite its large barrier time). The major remaining
bottleneck is the barrier cost.

B CPU-Cache Sul) Time
@ Hasdier Compute Time
[Burier Wakt Time

KN Lock Wait Time

53 Dats Wait Time

{7 Computc Time

Figure 5: Execution time breakdown of Ocean row-wise ver-
sion.

Summary: Ocean also achieves good performance on SVM
after different classes of optimizations are explored. Like
LU, understanding the performance bottlenecks in the orig-
inal program and conceptualizing the data restructuring is
quite easy, but the implementation of the data restructuring
is painful. The algorithmic change was a little less obvious to
come to, but in fact reduces programming effort greatly and
is the most important optimization by far. Ocean demon-
strates that SVM is very sensitive to data referencing and
communication patterns, and that interactions with page
granularity are often far more important than inherent al-
gorithm properties like communication to computation ra-
tio. It also reinforces that padding and alignment are in
themselves not enough to improve performance, but can be
important once more substantial problems have been solved.

4.2 {irregular Applications
4.2.1 Voirend

Padding and Alignment: In Volrend, the task queues con-
stitute one important write-shared data structure, as dif-
ferent processors enqueue and dequeue entries. To decrease
false sharing on task queues, each queue entry is padded and
aligned to a page. This turns out not to be very beneficial.
False sharing is reduced, but fragmentation is increased sub-
stantially and prefetching reduced when remote task queues
are accessed.

Data Structure: Another source of the false sharing in Vol-
rend is the final image plane: When a processor computes a
task, it writes the image pixels corresponding to that task.
The image plane is divided into p blocks or partitions which

222

contain small square-like tiles of pixels. Each block is as-
signed to a processor, and a tile is the unit of stealing. The
image is not very large, so as in LU and Ocean each page
contains parts of the partitions belonging to different pro-
cessors. By using a 4-d array to represent the 2-d image,
we can ensure that the pixels initially assigned to a proces-
sor partition are contiguous in the address space. By then
padding and aligning each partition to a page, we expect
to reduce false sharing while not increasing fragmentation
much. Surprisingly, this new data structure hurts perfor-
mance, resulting in a speedup of only 6.27 down from the
original 7.09 for 16 processors. The reason is that new data
structure increases the cost of accessing the pixels, which
interacts with task stealing to imbalance the computation a
little more.

Figure 6 illustrates that data communication and lock-
based synchronization are substantial bottlenecks in the
original version. There is a lot of false sharing and frag-
mentation due to the image plane partitioning and dynamic
tasking: The writes to different pixel tiles are separated by
accesses to task queues, which are synchronized, so the false
sharing is visible to the SVM protocol despite delaying co-
herence actions to synchronization points. The most inter-
esting observation is that unlike on hardware cache-coherent
machines, task stealing does not seem to help by reducing
load imbalance across processors. The main reason is that
the cost of the synchronization needed in stealing tasks is
very high. This is because of the inherent cost of synchro-
nization through explicit messages and the fact that coher-
ence protocol activity is incurred at synchronization points,
but especially because page misses within critical sections
dilate them artificially, increasing serialization at the locks
dramatically. (To diagnose the latter, we pretended in the
simulator that the page faults within the critical sections are
free, and saw the speedups rise to be almost perfect). The
result is that by the time a processor succeeds in synchroniz-
ing to steal a task from a task queue, the owning processor
is likely to have completed most of its (quite small) tasks,
leaving little to steal. What we need is a better initial par-
titioning algorithm for dividing tasks among processors, so
there is little need for stealing.

[l CPU-Cache Stall Tiene
(28 Haadier Compute Time
(B Basricr Wait Time
(Y Lock Wit Time

ES Date Wait Time

(O compee T

Figure 6: Execution time breakdown of Volrend for the
SPLASH-2 version.

Algorithm: We break up the task blocks or partitions into
smaller pieces (a few tiles each) and adopt a round-robin
partitioning of blocks to processors to assign more, smaller
blocks to each processor in an interleaved manner. This im-
proves the initial load balance and achieves a speedup of
11.42 for 16 processors, more than 60% more efficient than
the original algorithm. Computations are more balanced,
stealing is reduced, and hence so is the synchronization over-
head. Figure 7 demonstrates this effect.

To see the impact of stealing on SVM further, we elimi-
nate stealing in Volrend with the new, more balanced task

!
3

150408) CPU-Cache Sull Time
Handier Compute Time
les08 I Buvier Wait Time:
Lock Wait Time
So+07 7] Deta Wait Time

[compute Time
0

d 1 2 2 4 5 6 7 8 9
Proomser

011 12 13 s

Figure 7: Execution time breakdown of Volrend with a more
balanced task partition algorithm and stealing.

partitioning. This increases load imbalance and hence the
time spent waiting at barriers, but reduces the time spent
waiting at lock synchronizations. The two effects balance
each other improving performance a little for this platform
and data set. The speedup is now 11.70 for 16 processors.
Figure 8 clearly shows that now the dominant overhead in
execution time is the wait time at barriers with no task steal-
ing, instead of at locks with stealing. At the same time,
turning off task stealing decreases data wait time further,
and increase the overall performance.

150008) CPU-Cache Sull Time

[Handler Comgpare Time
[Bacrier Wait Time.
KN Lock Wait Time

E Data Wait Time

] Coenpuse Time

lo+OR

Se+07

[} t 2 3 4 5 6 7 4
Precesser

9 10t 12 13 14 15

Figure 8: Execution time breakdown of Volrend with a more
balanced task partition algorithm and no stealing.

Summary: Volrend shows that due to the high cost of syn-
chronization in SVM systems, task stealing is not nearly
so effective as it is on hardware cache-coherent machines.
Particularly when tasks are relatively small, an initial task
partitioning to get load balance and reduce task stealing
to a minimum is very important on SVM systems. Under-
standing the performance bottleneck of Volrend on SVM was
difficult. Without looking at the detailed execution time
breakdowns obtained from the simulator it was tempting
to believe that the problem was in poor interactions with
page granularity in accessing the volume data, which has
poor spatial locality. However this turns out to be a negligi-
ble problem compared to task queues and the image plane.
Diagnosing that the problem with lock synchronization is
caused mostly by dilation of small critical sections due to
page faults required that we instrument the simulator to
separate out the time waiting for the lock to become avail-
able from the overhead of actually fetching the lock and
performing the associated protocol actions (or that we pre-
tend that the page faults within the critical sections were
free). In this application too, the image plane data restruc-
turing optimization is more difficult to implement than the
algorithmic optimization of changing the initial assignment,
once the latter was diagnosed and conceptualized, while the
algorithmic optimization is far more important. Improving
performance further appears difficult. It requires further
reducing the need for synchronization on task queues by im-
proving the initial assignment of tasks to processors, which
is difficult for unpredictable applications and data sets that
are encountered in computer graphics. Or it requires reduc-

223

ing the cost of remote page faults.

4.2.2 Shear-Warp

Padding and Alignment: The main data structures written
in Shear-Warp are the intermediate and final image planes.
It is difficult to pad and align the final image plane be-
cause the tiles are assigned in an interleaved rather than
contiguous manner. However, because the tasks in the com-
positing phase are chunks of entire intermediate image scan-
lines, padding and aligning the intermediate image plane to
page boundaries is more efficient. However, since the tasks
(scanline chunks) are quite small due to run-length encoding
and are assigned in an interleaved manner for load balance,
padding increases fragmentation and the performance im-
provement is only about 10%.

Algorithm: No data structure reorganization optimization
is used. The breakdown of execution time in Figure 9 shows
that the original algorithm has high data communication
overhead and synchronization wait time at barriers. These
two overheads are related. The data communication over-
head is high due to the redistribution of intermediate image
data between the phase of compositing the intermediate im-
age and that of warping the intermediate image into the final
image. Due to the different partitioning strategies adopted
in these two phases for load balancing, most of the data
that a processor reads in the warp phase are data written
by other processors in the compositing phase.

[l CPU-Cache Sl Time
[Maadiec Compese Time
[l Bacrier Wit Time
BN Lock Wait Time

EY Dew Wait Time

[Compuse Time

Figure 9: Execution time breakdown of original Shear-Warp.

This communication causes significant contention (the
simulator shows that the cost per page fault is significantly
higher than the unloaded cost) and is quite imbalanced in
cost across processors (if not in actual number of page faults
encountered), leading to large imbalances at barriers. The
new algorithm totally changes the task partitioning scheme.
It partitions the intermediate image initially into p (number
of processors) contiguous blocks of scanlines not interleaved
small chunks of scanlines as earlier. It uses the same par-
titions of the intermediate image for the compositing and
warping phases. In the warp, a processor reads its partition
of the intermediate image (which it itself wrote) and writes
the relevant portions of the final image. Load balancing
is accomplished by a combination of dynamic profiling of
scanline costs to determine the initial partitions, and then
stealing small chunks of scanlines if necessary. How this is
done is beyond the scope of this paper but it relies on ap-
plication insight. It is described in another paper in these
proceedings [3].

The result is that redistribution of intermediate im-
age data is greatly reduced, the expensive barrier be-
tween the two phases can in fact be eliminated, and write-
synchronization on the final image during the warp can be

eliminated by the use of local host rows at partition bound-
aries {(one of the two adjacent processors is designated to
warp the boundary rows, instead of each writing both). This
greatly improves the speedup on SVM, from 3.47 to 9.21 on
16 processors. Figure 10 shows the breakdown of execution
time for the new Shear-Warp algorithm.

[} Hasdiee Compute Time
[Barmice Wait Time
EY Lock Wit Time

53 Dot Wit Time

O compote Time

Figure 10: Execution time breakdown of optimized Shear-
‘Warp.

Summary: Shear-Warp is an example in which restructur-
ing the application can improve performance tremendously
due to communication and memory system interactions,
but it requires major changes to this parallel algorithm as
well as insight into the application and not just the algo-
rithms (for profile-based load balancing) [3]. It also demon-
strates how contention invoked by expensive communication
and synchronization causes load imbalance. Understanding
the performance battlenecks in Shear-Warp was difficult—
particularly since the warp phase is relatively insignificant
in sequential execution—as was conceptualizing and imple-
menting the optimizations {3].

4.2.3 Raytrace

Padding and Alignment: Like Voirend, padding and align-
ing the write-shared task queues does not help much in Ray-
trace.

Data Structure: Like Volrend, the final image plane is de-
composed into small square tiles of pixels. Unlike Volrend
however, Raytrace uses round-robin rather than contiguous
task assignment of tiles to begin with, so it is difficult to im-
plement a new data structure to have all the tiles assigned
to a processor allocated in a contiguous region and padded
and aligned to reduce false sharing. Since this didn't help
so much in Volrend anyway, we skip this optimization here.

Algorithm: While Raytrace is expected to perform well in
parallel, the original SPLASH-2 version of Raytrace per-
forms the worst on SVM of all the applications in our suite.
The reason is not the poor interaction of the irregularly ac-
cessed scene data with page granularity, nor the false-sharing
on the image plane. Figure 11 shows that what kills perfor-
mance is synchronization overhead. Since the initial assign-
ment of tasks is round-robin, task stealing should not be
enough to cause such dramatic synchronization problems.
It turns out that variables that keep track of some global
program statistics in the algorithm are protected by locks,
and the frequent accesses to them (e.g. once per ray) in-
troduce the high lock overheads. The overhead of this syn-
chronization is relatively insignificant on hardware-coherent
platforms, where locks are cheap and are simply locks, but
on SVM the locks cause a lot of expensive protocol commu-
nication, as well as tremendous serialization due to dilation

224

é
[l CPU-Cache Stall Time 1ov09

of the critical section by page faults. By simply eliminating
this lock, the performance jumps from “speedup” of 0.5 to
a speedup of 11.05 for 16 processors.

il CPU-Cacte Stall Tune
@ Haadies Compuse Time
1 Barricr Wait Tune

8 Lock Wait Time

] Do Wait Time

{7 Compate Tine

Figure 11: Execution time breakdown of Raytrace for the
splash?2 version.

Even with round-robin partitioning, the load imbalance
can become somewhat high, since the behavior of the rays
is much more unpredictable and varied than in Volrend as
they bounce around striking objects. This imbalance evokes
task stealing. Because of the greater unpredictability, it is
not enough to simply turn off the task stealing as we finally
did in Volrend. However, stealing does cause substantial
synchronization overhead and contention at the task queues.
To further reduce the synchronization cost, we split the task
queues of each processor into two—one for local access and
the other for potential stealing by other processors—and
manage the movement of tasks between them. In this way,
we eliminate the locks for local task queues, and at the same
time diminish the contention for the shared task queues.
This finally makes Raytrace achieve a speedup up to 11.72
for 16 processors.

The resulting breakdown in Figure 12 shows an interest-
ing effect. Computation and data wait time are distributed
almost evenly across processors, except for processor 0. Pro-
cessor 0 has far less data wait time because a much greater
fraction of its accesses are satisfied in its local memory.
Pages are allocated in a round-robin manner. However, pro-
cessor 0 is the one that initializes the scene data structures
by reading them in from the scene description file, so it ends
up with copies of many of the pages that were not initially
allocated to it in the round-robin allocation (initialization
time is serial, and is not counted in execution time). Since
it therefore performs its tasks faster, it steals more and ends
up doing more work. This data-access induced imbalance is
the remaining bottleneck in Raytrace.

[l CPU-Cache Sull Tiese
@] Hasdier Cormpete Time
[l Barrier Wait Time
N Lock Wait Time

3 Data Wait Time

[compuse Timme

Figure 12: Execution time breakdown of optimized Ray-
trace.

Summary Raytrace also reveals that synchromization is
very expensive on SVM, so using locks frequently for non-
critical aspects like statistics gathering is very dangerous
even though it doesn’t matter on hardware cache-coherent
machines. It also reinforces the much greater need for good
initial partitioning when using task stealing, and for manag-
ing task queues more carefully on SVM to reduce synchro-

nization and contention. Since the synchronization bottle-
neck experienced in Raytrace on SVM platforms was very
unexpected, identifying it required help from performance
tools. Once it was diagnosed, however, it was trivial to fix,
though at the cost of some accuracy in statistics gathering.
The subsequent, relatively small, improvement from chang-
ing the task queue structure was in fact much more difficult
to implement. Imbalance in data communication cost is the
main overhead to reduce for further performance improve-
ment. This is difficult due to the unpredictable bouncing
rays and the reasons discussed above.

4.2.4 Barnes

Padding and Alignment: We first padded and aligned the
contiguous partitions (sub-arrays) of cell and particle point-
ers for each processor, as well as the data structures from
which cells are allocated. This in itself does not help perfor-
mance much. An alternative is to pad each particle, cell and
leaf separately (recall that in this version the particles, cells
or leaves assigned to a processor are not contiguous in the
address space as the computation evolves). However, this is
a huge waste of memory since the individual data structures
are small. It also eliminates prefetching benefits.

Data Structure: The SPLASH-2 version of Barnes restruc-
tures the data to ensure that the cells and leaves assigned
to a process are always in its local memory (they are allo-
cated out of a local heap as the tree is built). This reduces
fine-grained communication at least on data assigned to a
processor. However, even this does not improve performance
much: The speedup increases from 2.76 to 2.94 for 16 pro-
cessors.

Algorithm: Figure 13 shows that even with the new data
structure, Barnes still has high communication and synchro-
nization overhead on SVM. The very fine-grained commu-
nication in the algorithm raises false sharing and fragmen-
tation, but there is also a huge number of locks used. For
16k particles, for example, it uses almost 66k remote locks
in 2 steps, i.e. 57 remote locks per processor. It turns out
that the problem is not due to the irregular accesses in the
major, force-calculation phase, but due to locks and irreg-
ular access in the phase of building a shared tree as well.
This induces contention and imbalances in communication.
In fact, compared to only about 2% of the execution time
on a uniprocessor and a few percent on a hardware cache-
coherent system, the tree-building phase takes 43% of the
time with this algorithm under SVM.

{8 Bamicr Wait Time
Y Lock Wait Time:
3 Dot Wit Tiene
[Compete Time

Figure 13: Execution time breakdown of Barnes for splash2
version.

To improve performance, it is necessary to change the
way trees are built in parallel, particularly to reduce the
frequency of locking. One algorithm, called Update-Tree,

) CPU-Cache Stall Tene
{3 Handier Computs Tine:

225

incremently updates the tree every time step instead of re-
building it, by starting from the tree as it was in the previous
time-step and moving only those particles that have crossed
cell boundaries. Since the distribution evolves slowly, the
hope is that not many particles will have to be moved. How-
ever, moving a particle needs to access remote data and
acquire locks, and is expensive. This algorithm achieves a
speedup of 5.56 for 16 processors for the whole application,
which is substantially better than the original algorithm but
still not good enough.

An alternative tree-building algorithm to reduce lock-
ing further, called Partree, operates by first determining the
global extent of the distribution as before, then having each
processor construct a local tree out of only its own parti-
cles, and finally merging the trees recursively. The merging
algorithm is somewhat complicated, and we shall not de-
scribe it here. The building of local trees does not require
any locking, though the merging does. The merging is also
highly imbalanced; for example, the first processor to merge
into the empty global root just redirects the root pointer,
while later processors to reach the merge phase do succes-
sively more work (including locking) since more of the global
tree is already there to be merged into. This imbalance in
work, and particularly in locking increases the synchroniza-
tion wait time at the barrier at the end of the tree building
phase. Building local trees and then merging them also in-
volves some extra computation compared to simply building
a shared tree, but this is relatively a negligible effect. Due to
the increased load imbalances, this algorithm obtains only a
little better performance than Update-Tree, increasing the
application speedup to 5.65 for 16 processors.

The tree construction phase is still the major synchro-
nization and communication bottleneck. It still takes about
30% of the total execution time with the Partree algorithm,
since the merging is too expensive. The final algorithm we
examine is to change the partitioning used for tree-building.
Instead of using the same partitioning of particles as in the
force calculation to build the tree in parallel, we ignore this
partitioning for the tree building phase instead we partition
the domain spatially and assign the sub-spaces, instead of
particles, to each processor. Each processor first builds the
sub-tree only within its partitioned (equal) subspace, with-
out synchronization, like in Partree. The difference is that
when the global tree merging finally happens, little commu-
nication and synchronization is needed, since disjoint spaces
are being merged is equal rather than particles and cells
that may overlap. Each processor is required to obtain the
particles that belong to its sub-space from the particle data
structure (since some of these particles may have been as-
signed to other processors for the force calculation phase),
but this cost is far less than the data communication and
synchronization overhead in building the tree on SVM.

Note that since equal subspaces are assigned, the load
imbalance in building local trees can be significant for
nonuniform particle distributions. However, this is a negligi-
ble effect in comparison to the benefit. This Barnes-Spatial
algorithm reduces the tree construction time significantly,
leading to the speedup of 10.5 for the application on 16
processors. Figure 14 shows that overall computation time
is quite balanced across processors. The main remaining
bottleneck is that some processors have much higher data
waiting time than others. This turns out to be due to con-
tention in remote page access, since the number of pages
fetched by different processors is actually quite balanced.
As we have seen, such contention-induced imbalance is a

frequent problem given the large granularity and high com-
munication overheads on SVM systems.

9 10 11 12 13 14 15

Figure 14: Execution time breakdown of Barnes for spatial
version.

Summary: Through series of algorithm redesigns, Barnes
finally performs quite well on SVM. The differences among
the tree building algorithms implies that reducing locking as
much as possible always helps performance due to the high
overhead and serialization at locks, even at the cost of some
imbalance or extra work. Barnes turned out to be a diffi-
cult application to optimize on SVM, from the viewpoints
of understanding that the problem lay in synchronization in
tree building and not in irregular access in force calculation,
designing the algorithmic solutions, and implementing the
improved algorithms. Improving performance further seems
to require reducing barrier cost, perhaps partitioning the
space less equally for late buildings and finding ways to re-
duce contention on remote page faults. (We experimented
with simulating 32K particles instead of 16K, but the differ-
ences in speedup were small.)

4.2.5 Radix

Padding and Alignment: The main data structures that
are write-shared in Radix are the global histogram and the
arrays that are the destinations of the global permutation
of keys in an iteration. It is very difficult to pad and align
these data structures appropriately, due to the highly scat-
tered and unpredictable remote writes to them by proces-
sors. Therefore, padding and alignment has little impact on
performance in Radix.

Data Structure: For the same reasons, it is also difficult

to adopt a new data structure to reduce false sharing and

communication without modifying the algorithm, so we do
not do this.

Algorithm: Figure 15 illustrates the major performance
problems in Radix. We see that there is a very high syn-
chronization overhead at barriers. Data communication is
expensive as well, and is very imbalanced across processors.
However, the number of pages fetched by each processor is
quite balanced, indicating that the problem is contention
due to the high data and control traffic (not synchroniza-
tion) arising from scattered writes to remote data in the
permutation phase. To reduce scattered remote writes, an
alternative algorithm is to have a processor first write the
output of its permutation into a local buffer, thus gather-
ing the changes into consecutive subsequences of keys locally
before writing them to the global output array in a less scat-
tered way [18]. This improves the speedup from 1.4 to 2.24
on 6 processors, but it is still terrible.

Improving the performance of sorting seems to require a
completely different algorithm that can use more contiguous

226

B CPU-Cache Stait Tine
{20 Handies Compute Tume
) Borrier Wait Time
BN Lock Wit Time

E3 Dea Wit Time

[Compute Time

Figure 15: Execution time breakdown of Radix for splash2
version.

patterns of access (e.g. sample sorting) or a very much larger
number of keys to reduce false sharing and page granularity
in the permutation [18]. As we will see later, Radix turns
out to be a challenge for hardware cache-coherent machines
as well.

Summary: Radix is a difficult application on SVM due to
the high communication traffic and contention. Understand-
ing the exact source of the performance bottleneck is difficult
since contention is difficult to diagnose. The “solution”, such
as it is, is relatively simple to implement (if a little harder to
arrive at), but is not very successful. The major outstanding
problems are still communication volume and contention.
In all, we have developed versions of many of the appli-
cations that greatly improve performance on SVM. Let us
now turn to the performance portability to other platforms.

5 Performance Portability to SMP and DSM Platforms

As discussed in the introduction, the same optimized pro-
grams that were developed for SVM were also run on
hardware-coherent SMP and DSM systems—namely the
SGI Challenge and a detailed simulator of a CC-NUMA
DSM machine—to study the portability of the performance
optimizations. Figure 16 summarizes the effects of differ-
ent optimization classes across applications on the different
shared address space platforms. Let us look at the perfor-
mance impact of these classes of optimizations on hardware
cache-coherent machines.

5.1

Generally speaking, the optimizations used for SVM either
deliver the same performance as the original programs on
the SGI Challenge, or just a little better but not enough
to really be worthwhile. The reason for some super-linear
speedups (e.g. Ocean) was discussed earlier. This is due to
the high memory stall overhead in the uniprocessors execu-
tion for the original “non-contiguous” version. Local misses
decrease even in the parallel original version (for cache ca-
pacity reason) and more so with the optimized data struc-
ture where conflict misses are less problem. Note that on the
hardware cache-coherent platforms, Ocean performs best
with the square partitions and the 4-d array data structures,
rather than with the row-wise partitions.

Impact on the SMP Platform

5.2 Impact on the CC-NUMA DSM Platform

On the CC-NUMA platform, the performance advantages of
the optimizations are more pronounced than on the SMP.
Note that data distribution is performed in all cases where it
is reasonably allowed by the algorithms and data structures,
and is not treated as an optimization in itself. Nonetheless,

Speedup (16 processors)

- #—- HW-DSM Simulator
---+ SGI Challenge
~—¢— SVM Simulator

0 - -
Odg P/A DS Alg
(¢) Volrend
'§ 30 303 30 30
£ 204 20 20 20 -
-]
- 1 iaaeeee F Ixe-eeieiieiieneiee X ¥ Rt
= Xeeemeepomots ST i AR, S Tl
g 0de-- 04* " 045" 103
i e
Ix------ Yooomooooomes ¥

@ i, v v 034 ' v : 01+ v v v 01— = v .

Oig PIA DS Alg Og PA DS Alg Oig PIA DS Alg Oig PA DS Al

(d) Shear-Warp (e) Raytrace (f) Barnes (2) Radix

Figure 16: Performance with different optimization classes across shared-address-space multiprocessors. Here, Orig means
the original algorithm we began with; P/A means optimizations with padding/alignment; DS means optimization with data
structure reorganization; Alg means optimization with algorithmic change.

the performance improvements are much smaller than on
SVM systems, and are sometimes insignificant. Other than
efficient support for finer granularity and reduced overhead
per communication, one major difference is that synchro-
nization is much cheaper on CC-NUMA systems: Synchro-
nization does not involve coherence protocol activity—which
happens at access time—and cache misses that occur inside
critical sections do not dilate the critical sections anywhere
near as much as page faults. Thus, unlike on SVM, dynamic
task queues and task stealing turn out to be quite inex-
pensive and hence very effective in providing load balance.
Starting from the SPLASH-2 applications, load balance of-
ten turns out to be the most important performance issue on
hardware coherent machines. To compare the effect of task
stealing on the CC-NUMA platform with that on SVM, we
can look at Volrend as an example in Figure 17. Running on
both platforms of the application here uses the algorithmic
optimization; one uses task stealing, the other does not {the
tradeoff for SVM was discussed earlier).

To summarize, the optimizations that are beneficial on
SVM are generally portable to hardware cache-coherent ma-
chines (in the sense that they do not hurt but usually
help performance), but they have dramatically smaller im-
pact. “Optimizations” for SVM that compromise load bal-
ance to improve communication and synchronization behav-
ior can hurt performance on hardware cache-coherent ma-
chines, since communication and synchronization costs are
much smaller in the latter so load balance matters more.
The Radix sorting application does not perform well across
all platforms, especially on SMP and SVM platforms. The
heavy communication and capacity traffic in Radix hurt its
performance on bus-based cache-coherent machines due to
the bus bandwidth limitation, while the large remote data
referencing and communication (and especially the associ-

227

g
§ 10—
Y BB Stealing
= =8 No Stealing
(-
i
[
0
SVM CC-NUMA DSM
Patforms

Figure 17: Speedups of Volrend with the algorithmic opti-
mization with and without stealing on SVM and CC-NUMA
DSM simulators.

ated contention at home nodes due to both data and coher-
ence messages) hurt its performance on DSM machines.

6 Discussion and Conclusion

Through this study, we have found that many applica-
tions that perform well on moderate-scale hardware cache-
coherent machines do not initially port well to SVM plat-
forms. In addition to the expected differences due to gran-
ularity and overhead, aspects of performance such as syn-
chronization that are not paid much attention to in hard-
ware cache coherent machines matter a lot more in SVM,
and phases of the computation that are not significant on
moderate-scale CC-NUMA machines can become dominant
under SVM. This is particularly true of irregular applica-
tions. The good news is that through algorithmic or pro-

gramming effort, it appears that most of the applications
can be made to perform quite well on SVM systems of the
(relatively small) scale we have examined. The bad news is
that the improvements needed are often substantial. Simple
padding and alignment of data structures to page granular-
ity is not the answer, although it can be ultimately impor-
tant when used together with other types of optimizations.
Padding does reduce false sharing, but the increased frag-
mentation and the loss of prefetching usually undermines
the benefit. Also, in many applications where the natu-
ral data structures to be padded are many and very small,
e.g. particles, so padding to page grain can waste much
of the machine’s memory. To achieve satisfactory perfor-
mance on SVM, the optimizations needed are often algo-
rithmic changes—either in partitioning or in the nature of
the parallel algorithm—and require insights into both the
application as well as the key aspect of SVM.

Qualitatively, we can divide our experience with each ap-
plication into (1) the difficulty of understanding the major
performance bottleneck for SVM, (2) the difficulty of arriv-
ing at or conceptualizing a solution, and (3) the difficulty of
implementing the solution. This qualitative view is summa-
rized in the following table.

Application | Understanding [Conceptualizing | Implementing
Bottleneck Solution Solution
LU easy well known painful
Ocean easy well known painful
Volrend needed tools moderate easy
Shear-Warp difficult difficult difficult
Raytrace needed tools moderate easy
Barnes needed tools difficult difficult
Radix moderate difficult difficult

In most cases, especially the irregular applications, at
least one of the steps needed was quite nontrivial. In par-
ticular, the detailed simulator served as an excellent though
slow performance debugging tool, which enabled us to find
bottlenecks and understand their reasons (whether data wait
time and imbalances in it are due to the number of page
faults or contention, whether synchronization time is due to
the overhead of synchronization or due to serialization be-
cause of a dilated critical section, which phase of the com-
putations the problems occur in, how well the placement of
pages is working, etc). Incorporating the ability to deliver
such information in real SVM systems would be very useful.

Finally, our experience has shown that some common
types of useful optimizations can be identified for SVM, par-
ticularly for irregular applications. One of our longer-term
goals was to see if we can establish a set of programming
guidelines for SVM systems, beyond those used for hard-
ware cache-coherent multiprocessors. From this experience,
we emerge with the following common themes.

Padding and Alignment are usually most useful after other
optimizations like data structure reorganization have been
used to make access patterns coarser-grained.

Task Queues and Task Stealing should be used with care.
Stealing can induce very high communication, contention
and serialization costs on SVM, so it should be minimized.
This means that a nearly load balanced initial assignment
of tasks is much more important in SVM than in hardware-
coherent systems when task stealing is used, even at the
cost of increasing some inherent communication or loss of
locality.

Synchronization events are very expensive on SVM for sev-
eral reasons mentioned earlier, so it is crucial to reduce the
frequency of synchronization events, especially fine-grained
locking.

Locality versus Load Balance. While with task stealing it
is important to start with a more balanced assignment even
at the cost of some locality since the cost will be more than
regained by reducing stealing. Without task stealing, com-
munication and data locality often play a much more im-
portant role than computational load balance compared to
hardware cache-coherent systems. In fact, the load imbal-
ance that ends up hurting performance most is usually an
imbalance in the amount or cost of communication. Con-
tention is a particularly important reason for imbalances in
communication cost among processors.

Data Distribution. Particularly with home-based proto-
cols, proper data distribution is important, just as it is on
hardware cache-coherent DSM systems. This is true not
only to reduce the number and hence latency of remotely
satisfied page faults, but also to reduce contention gener-
ated by these page faults.

7 Future work

This study has focused on relatively small-scale systems, and
has been somewhat limited by the use of simulation, both
in problem sizes and in realism. We plan to expand our
study to real systems, both for hardware DSM and software
SVM. We have recently started experimenting with an SGI
Origin2000, a scalable shared-address-space multiprocessor
with physically distributed shared memory. Our early re-
sults on 16-processor Origin, running larger problems, vali-
date the qualitative conclusions based on the DSM simula-
tor. We are also developing and tuning SVM protocols on a
platform of Pentium Pro PCs and PC SMPs connected by
a Myrinet network, and would like to validate our results
there. In particular, it will be interesting to study how to
take advantage in the applications of the two-level commu-
nication hierarchy when SMP nodes are connected by SVM,
and how the programming and performance issues change
in this case. We would also like to validate that our conclu-
sions indeed hold true when full-sized problems are run on
real systems.

This study has also focused on small-scale machines (16
processors). When we use real systems, we plan to investi-
gate the issues with larger numbers of processors. For exam-
ple, it would be interesting to see if the optimizations that
are useful at smaller scale for SVM but not CC-NUMA be-
come more useful for CC-NUMA machines at larger scale [2],
and how problem size affects these results. We would also
like to look at the impact of these optimizations on sys-
tems that support fine-grained coherence with either more
commodity-oriented controllers [16] or in software [10, 19},
thus completing the performance portability picture, and to
enlarge our coverage by including more applications in our
suite. Finally, it may be interesting to examine how opti-
mizations performed on the applications compare with the
use of custom protocols to improve the performance of the
original applications on commodity-based protocols [6].

228

Acknowledgment

We would like to thank Angelos Bilas and Liviu Iftode for
their help with the SVM simulators.

References

(1]

(2]

{3}

(4]

[5]

f6}

(7}

(8]

(9}

(10]

(11]

Nanette J. Boden, Danny Cohen, Robert E. Felderman,
Alan E. Kulawik, Charles L. Seitz, Jakov N. Seizovic,
and Wen-King Su. Myrinet: A Gigabit-per-Second Lo-
cal Area Network. IEEE Micro, 15(1):29-36, February
1995.

Holt C., Singh J. P., and Hennessy J. Application and
Architectural Bottlenecks in Large Scale Distributed
Shared Memory Machines. In Proceedings of the 25th
Annual International Symposium on Computer Archi-
tecture, pages 134-145, May 1996.

Jiang D and Singh J.P. Parallel Shear-Warp Volume
Rendering on Shared Address Space Multiprocessors.
In Proceedings of the 1997 ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
June 1997.

Lenoski D., Laudon J., Joe T., Nakahira D., Stevens
L., Gupta A., and Hennessy J. The DASH Prototype:
Implementation and Performance. In Proceedings of
the 19th Annual International Symposium on Computer
Architecture, pages 92-103, May 1992.

Agarwal A. et al. The MIT Alewife Machine: Archi-
tecture and Performance. In Proceedings of the 22th
International Symposium on Computer Architecuture,
pages 2-13, June 1995.

Babak Falsafi et al. Application-specific Protocols for
Shared Memory Multiprocessors. In Proceedings of Su-
percomputing95, November 1995.

Heinrich M. et al. The Performance Impact of Flexibil-
ity in the Stanford FLASH Multiprocessor. In Proceed-
ings of the 6th International Conference on Architecu-
tural Support for Programming Language and Operating
Systems, pages 274-285, October 1995.

Kuskin J. et al. The Stanford Flash Multiprocessor.
In Proceedings of the 21th International Symposium on
Computer Architecuture, pages 302-313, April 1994.

Lacroute P. G. Fast Volume Rendering Using a Share-
Warp Factorization of the Viewing Transformation.
PhD thesis, Stanford University, 1995.

Schoinas 1., Falsafi B., Hill M., Larus J., Lucas C.,
Mukherjee S., Reinhardt S., Schnarr E., and Wood
D. Implementing Fine-Grain Distributed Shared Mem-
ory On Commodity SMP Workstations. Technical Re-
port 1307, Computer Sciences Department, University
of Wisconsin-Madison, March 1996.

Singh J.P., Joe T., Hennessy J., and Anoop Gupta. An
Empirical Comparison of the KSR-1 ALLCACHE and
Stanford DASH Multiprocessors. In Supercomputing
’98, November 1993.

(12]

(13]

(14]

[15]

(16]

17}

[18]

(19]

[20]

21]

P. Keleher, AL
Cox, S. Dwarkadas, and W. Zwaenepoel. TreadMarks:
Distributed Shared Memory on Standard Workstations
and Operating Systems. In Proceedings of the Winter
USENIX Conference, pages 115-132, January 1994.

Iftode L., Singh J. P., and Li K. Scope Consistency:
a Bridge Between Release Consistency and Entry Con-
sistency. In Proceedings of the 8th Annual ACM Sym-
postum on Parallel Algorithms and Architectures, June
1996.

Iftode L., Singh J. P., and Li K. Understanding Ap-
plication Performance on Shared Virtual Memory Sys-
tems. In Proceedings of the 23th Annual International

Symposium on Computer Architecture, pages 122-133,
May 1996.

Singh J. P., Gupta A., and Levoy M. Paralle Visu-
alization Algorithms: Performance and Architectural
Implications. Computer, 27:45-55, 1994.

Pfile R. Typhoon-Zero Implementation: The Vor-
tex Module. Technical Report CS-TR-95-1290, Com-
puter Sciences Department, University of Wisconsin-
Madison, October 1995.

Reinhardt S., Larus J., and Wood D. Tempest and
Typhoon: User-Level Shared Memory. In Proceedings
of the 21th International Symposium on Computer Ar-
chitecuture, pages 325-336, April 1994.

Woo S.C., Ohara M., Torrie E., Singh J. P., and Gupta
A. The SPLASH-2 Programs: Characterization and
Methodological Considerations. In Proceedings of the
22th Annual International Symposium on Computer
Architecture, June 1995.

D.J. Scales, K. Gharachorloo, and C.A. Thekkath.
Shasta: A Low Overhead, SOftware-Only Approach
for Supporting Fine-Grain Shared Memory. In The 6th
International Conference on Architectural Support for
Programming Languages and Operating Systems, Octo-
ber 1996.

Radhika Thekkath, Amit Pal Singh, Jaswinder Pal
Singh, John L. Hennessy, and Susan John. An Eval-
uation of the Convex Exemplar SP-1200. In Proc. Intl.
Parallel Processing Symposium, April 1997.

Y. Zhou, L. Iftode, and K. Li. Performance Evaluation
of Two Home-Based Lazy Release Consistency Proto-
cols for Shared Virtual Memory Systems. In Proceed-
ings of the Operating Systems Design and Implementa-
tion Symposium, October 1996.

Permission to make digital/hard copy of part or all this work for
personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advan-
tage, the copyright notice, the title of the publication and its date
appear, and notice is given that copying is by permission of ACM,

Inc. To copy otherwise, to republish, to post on servers, or to

redistribute to lists, requires prior specific permission and/or a fee.

PPoPP ‘97 Las Vegas, NV
© 1997 ACM 0-89791-906-8/97/0006...$3.50

229

