
Static Task Partitioning for Locked Caches in
Multi-Core Real-Time Systems

Abhik Sarkar, Frank Mueller
Dept. of Computer Science

North Carolina State University
Raleigh, NC 27695-8206

asarkar@ncsu.edu, mueller@cs.ncsu.edu

Harini Ramaprasad
Dept. of Electrical and Computer Engg.
Southern Illinois University Carbondale

Carbondale, IL 62901
harinir@siu.edu

Abstract

Massive multi-core architectures with tens of cores are becoming more
prevalent in embedded systems. However, their acceptance in the real-
time systems domain is rather low due to challenges in systemanalysis
and predictability. Recent real-time systems research hasfocused on shared
cache architectures. In such systems, tasks across all cores share the same
cache (typically at level 2). In contrast, tile-based architectures with massive
numbers of cores have private caches, only. At larger numbers of cores, it
becomes important to utilize all resources efficiently and share cores among
hard, soft and non real-time tasks. In such a scenario, it becomes difficult
to analyze cache behavior statically. Consequently, hard real-time systems
become subject to conservative analysis including timing bounds based on
the assumption that data references default to lower levelsof caches/memory.
Locking cache lines in hard real-time systems is a common means to ensure
timing predictability of data references and to lower bounds on worst-
case execution time, especially in a multi-tasking environment. However,
cache locking poses a challenge to hard real-time systems onmulti-core
architectures. Static scheduling on hard real-time tasks does not consider
conflicts among locked regions within caches. This work proposes three
static scheduling schemes as a remedy: (1) Greedy First Fit Decreasing
(GFFD) and (2) Colored First Fit Decreasing (CoFFD). This work also adapts
these algorithms for conflict resolution partially locked regions. Experiments
indicate that CoFFD consistently outperforms GFFD for lower number of
cores and lower system utilization. With partial locking, the number of cores
in some cases is reduced by almost 50% with an increase in system utilization
of 10%. Overall, this work is unique in considering the challenges of future
multi-core architectures for real-time systems and provides key insights into
task partitioning with locked caches for architectures with private caches.

1. Introduction

Multi-core architectures have become prevalent in embed-
ded system design. This is evident from the variety of multi-
core processors available today, such as the 4-core MPCores
from ARM, the 8-core P4080 PowerPC from Freescale and
the 64-core TilePro64 from Tilera [1], which find applications
in power control systems, satellites and network packet pro-
cessing. However, hard real-time system designers have been
skeptical in adopting these architectures. Unpredictability of
multi-core caches have been a significant contributing factor
to this skepticism.

Research on cache contention has primarily considered
shared caches. This simplifies the problem as all tasks are
considered to be contending for the shared cache space.
Most contemporary research aims at optimizing the analysis

This work was supported in part by NSF grants CNS-0720496, CNS-0905181
and CNS-0905212.

������ ������

������ ������

������ �����	

�����
 ������

�������

������� �������

�������

����


������	 �������

������

������

���������

�	


����


�������

Fig. 1. Tile-based Architecture

on aforementioned systems [6], [9]. Such schemes become
inapplicable to scalable multi-cores, such as shown in Figure 1.
These architectures use private L1+L2 caches. Thus, any task
allocation algorithm requires prior knowledge of each task’s
Worst Case Execution Time (WCET). However, the WCET
of a task obtained by static cache analysis depends on cache
analysis of all other tasks on a particular core. In this work,
it is assumed that private L2 caches are large enough to hold
the data space and instructions of hard real-time tasks. This
simplifies the analysis of L2 caches as any access to the L2
cache is a hit after a compulsory miss on warm-up. Thus,
a tighter upper-bound on the Worst Case Execution Time
(WCET) can be established by modeling references resolved
at the L2 level as hits after the warm-up phase of the first job
execution in a periodic task system. Still, the access latency
of L2 caches is an order of magnitude higher than that of
L1 caches so that bounds on WCET are not as tight as they
could be. To further tighten WCET bounds, cache locking of
selected lines in L1 can be employed on scalable multi-core
platforms.

In general, cache locking techniques provide predictability
to a task’s cache access behavior. Cache locking can be real-
ized at various granularities. Studies on uni-processor cache
locking have assumed the entire L1 cache to be locked [16],
[17]. Another study on cache locking for shared caches has
assumed locking individual cache lines [18]. Locked caches
on uni-processors identify sets within a single cache way
for a given task set to improve predictability and indirectly
utilization/response time of tasks while ensuring schedulability
on a single core. In contrast, our work extends to scalable



multi-core architectures where tasks are statically partitioned.
Our work focuses on distributing tasks over disjoint cores
while considering their locked state. A real-time system de-
veloper may choose to lock a set of cache lines to tighten
WCET bound. This work uses these tightened WCET bounds
to statically allocate tasks on disjoint set of cores.

Prior literature on uni-processor locking techniques focuses
on filling a single cache way while reducing the overall
utilization of a core. Reduction of the system utilization can
be achieved by placing all tasks with conflicting locked cache
regions on different cores. However, such a scheme would
consume a large number of cores and result in under-utilization
of computing resources. Also, multiple cache ways per L1
cache can be dedicated to locking. Hence, the objective of
allocating tasks on scalable multi-cores has to be balanced
between the following objectives:

1) Reduction of the number of cores; and
2) Reduction of the overall system utilization.

Static task partitioning has been considered as a viable
scheduling option for real-time tasks on multiple cores. Such
scheduling schemes aim at minimizing the number of cores for
a set of tasks with given worst-case execution time (WCET).
However, partitioning tasks with locked cache regions involves
resolving the conflicts between locked regions of different
tasks.

In this work, we develop and evaluate two partitioning
algorithms: (1) Greedy First Fit Decreasing (GFFD), and (2)
Colored First Fit Decreasing (CoFFD). GFFD is a variant of
the general First Fit Decreasing (FFD) algorithm that tries
to allocate tasks onto a minimum number of cores [3]. This
scheme lacks prior information on the number of cores of
a concrete processor but rather reasons abstractly about the
minimum number of cores of a hypothetical processor design.
CoFFD, a more sophisticated scheme, exhibits a novel ap-
proach based on graph coloring that delivers task partitioning.
In contrast to GFFD, CoFFD initially assumes a given number
of cores for an architecture. The algorithm then tries to allocate
a given task-set onto the fixed number of cores. In case of
failure, the number of cores is incremented and the attempt
to allocate tasks to cores is repeated. If the objective is to
achieve minimum utilization, tasks should be allocated with all
candidate regions locked as this lowers their WCET. Table 1
depicts a comparison of the number of allocated cores for
different task-sets using GFFD and CoFFD on an architecture
that has a direct-mapped locked L1 data cache.

TABLE 1. CoFFD vs GFFD: Locked WCET
Number System Number of Cores
of Tasks Utilization GFFD CoFFD

42 20.25 27 25
42 13.42 25 24
42 9.39 24 23

The first and second columns depict the number of tasks
in the task-set and the utilization of the task-set, respectively.
The third and the fourth columns show the number of cores

consumed by the task-set when using GFFD and CoFFD,
respectively. These results indicate that CoFFD consistently
delivers a partition with fewer number of cores. If the objective
is to minimize the number of cores, the two algorithms are
adapted to consider two different WCETs, one with locking all
the regions specified by the developer and one without locking
any of those regions for every task. The algorithms select
one of these versions to avoid lock conflicts while ensuring
that utilization constraints are met. We observe that CoFFD
consistently results in allocating fewer cores. Given a task
utilization ui of task i, task-sets composed of high utilization
tasks(0.55 > ui > 0.40) allocate fewer cores under CoFFD
with at most 3% higher system utilization than GFFD. For low
utilization tasks-sets(0.33 > ui > 0.15), CoFFD allocates
fewer cores and lowers system utilization by up to 40% over
GFFD.

We also propose a mechanism to resize lock regions so that
they become partially unlocked. This scheme is applicable
when the programmer can accurately provide the number
of references to a locked cache line. The two algorithms,
GFFD and CoFFD, were adapted to exploit this per-line
reference frequency information, based on which they choose
whether to retain the lock of a line or unlock it due to lock
conflicts of lines between disjoint tasks. We observe that such a
mechanism can further reduce the number of allocated cores.It
may even allow GFFD to perform at par with CoFFD. Overall,
we provide key insights into task partitioning with locked
caches for large-scale multi-core architectures with private
caches.

Summary of contributions: This research makes the fol-
lowing contributions in the context of hard real-time systems
with cache locking:

1) This work is the first to employ locked caches on mas-
sive multi-core architectures for hard real-time systems.

2) We propose GFFD, an allocation scheme that partitions
a given set of tasks with conflicts in their locked cache
regions so that the number of allocated cores is kept low.
This algorithm is further adapted to resolve conflicts by
(i) unlocking entire task or (ii) resizing locked regions.

3) We propose Colored First Fit Decreasing (CoFFD) that
derives task allocations for a given number of cores
resulting in a feasible schedule. This algorithm is further
employed to reduce the number of cores relative to
Greedy First Fit Decreasing (GFFD).

4) We propose a novel mechanism that allows tasks to re-
solve conflicts by partially unlocking the locked regions
and inflating their WCETs accordingly. This method
aims at improving the schedulability of task sets on a
given number of cores when resolution of conflicts by
partial unlocking result in lower system utilization than
unlocking an entire task.

2. Related Work

In past decade, there has been considerable research pro-
moting locked caches in the context of multi-tasking real-



time systems. Static and dynamic cache locking algorithms
for instruction caches have been proposed to improve system
utilization in [16], [15]. Several methods have been developed
to lock program data that is hard to analyze statically [19].
Further techniques have been developed for cache locking that
provide comparable performance obtained on scratchpad allo-
cation [17]. Recently, cache locking has also been proposedfor
multi-core systems that use shared L2 caches [18]. This trend
is a strong proponent of cache locking as a viable solution in
future real-time system designs on multi-cores.

Choffneset al. have proposed migration policies for mul-
ticore fair-share scheduling [7]. Their technique strivesto
minimize migration costs while ensuring fairness among the
tasks by maintaining balanced scheduling queues as new tasks
are activated. Calandrinoet al. propose scheduling techniques
that account for co-schedulability of tasks with respect to
cache behavior [2], [4]. Their approach is based on organizing
tasks with the same period into groups of cooperating tasks.
All these methods improve cache performance in soft real-
time systems. Liet al.discuss migration policies that facilitate
efficient operating system scheduling in asymmetric multicore
architectures [11], [12]. Their work focuses on fault-and-
migrate techniques to handle resource-related faults in hetero-
geneous cores and does not operate in the context of real-time
systems. Eisleret al. [8] develop a cache capacity increasing
scheme for multicores that scavenges unused neighboring
cache lines.

Paolieri et al. [14] have proposed TDMA-based bus and
L2 cache access to improve predictability on multi-core ar-
chitectures. Their work focuses on supporting hard real-time
applications on multi-cores but assumes shared L2 caches with
contention due to accesses by different tasks. Ouyanget al.
[13] have proposed extending Quality of Service support to
mesh-based interconnects but their study is limited to the on-
chip network traffic.

3. System Design

In this section, we describe our system architecture and
assumptions to WCET analysis for this study. The objective of
this work is to best utilize a private cache architecture. This
corresponds to the current trend in potentially mesh or tile-
based multi-core designs. Tile-based architectures consist of a
large number tile processors (cores). Each tile consists ofan
in-order processor, a private L1, a private L2 cache and a router
(see Figure 1). Each tile acts as a node on a mesh interconnect.
Recent work has added Quality-of-Service (QoS) policies to
mesh-interconnects [13]. We have identified these trends asthe
driving force for the simplification of our system. We assume
an architecture that has private caches and has a QoS-based
interconnect. We assume that the first level of cache allows a
certain number of ways of the associative cache to be locked
as shown in Figure 2. We also assume that the L2 caches are
large enough with high associativity so that the address space
of allocated hard real-time tasks on a core fit within the L2
cache. Thus, we assume that the off-chip references occur only

while accessing sensory data, which accounts for a very small
fraction of the total references. Also, these systems can have
inclusive or non-inclusive L2 caches. With inclusive caches,
the locked regions in L1 need to be locked in L2 as well. Our
algorithms are applicable to a system considering both data
and instruction caches. However, for the simplicity of analysis
we assume that instruction references for hard real-time tasks
are all hits at the first level of cache. We also assume that
loads to the lines that have not been locked in the L1 cache
bypass the L1 cache (as in a previous research work [10]).
This allows cores with lower core utilization to co-schedule
non-real-time tasks along with hard real-time tasks without
affecting the deterministic behavior of the latter. Such hybrid
execution of application tasks have been considered in recent
research [14]. We assume that a hard real-time task can only
lock one cache line per set. Thus, for a 8KB L1 cache with
an associativity of two, a hard real-time task can lock up to
4KB of cache content.

Core

0

Lock

able

Private

Level-1 Data 

Caches With 

one-way lockable 

Lock

able

Private

Inclusive Level-2 

Caches With 

Lock support 

Core

1

Lock

able

Lock

able

QoS-based Mesh Interconnect

Private

Inclusive Level-2 

Caches With 

Lock support 

Fig. 2. A Lock-based Architecture

We assume that all hard real-time tasks are periodic. Each
task’s deadline is the same as its period, i.e., an invocation of
a task’s job has to finish before its next invocation. We further
assume that the system runs a scheduler per core. Each of
these schedulers independently schedules the tasks allocated
to this core. We assume them to utilize Earliest Deadline First
(EDF) scheduling. EDF optimally schedules tasks for uni-
processor, i.e., the utilization bound for each core is defined
by the following equation:∑n

i=1

Ci

Pi
≤ 1, whereCi and Pi are the WCET and the

period of thei th task, respectively. Deadlines are assumed to
be the same as the periods.

For the algorithms, each task needs to provide the following
information:< listlocked−sets, WCETlocked, WCETunlocked

>. listlocked−sets is the list of sets where the programmer
intends to lock a cache line for the task.WCETlocked and
WCETunlocked are the WCETs of a task when all the
lines of listlocked−sets are locked and unlocked, respectively.
WCETlocked does not include the overhead of loading the
contents of a task because it is a one-time cost incurred at
system start-up.



We also assume that the real-time tasks are pairwise inde-
pendent. Hence, these tasks do not cause any coherence traffic
on the interconnect.

4. Task Partition Algorithms

Static task partitioning algorithms for multi-core architec-
tures have been widely studied. Most of these approaches
consistently aim at minimizing the number of cores uti-
lized [3]. They use bin-packing schemes considering a single
utilization value per task. However, locked caches provideus
with a tuple of data as discussed in the previous section.
Initially, our algorithms consider two values,WCETlocked

andWCETunlocked. In Section 4.3, we discuss a mechanism
with the objective of reducing the impact of conflicts.

The listlocked−sets item is used to deduce a conflict matrix
Mconf for locked tasks. A conflict among the locked sets indi-
cates the existence of common locked cache set(s). Each empty
entry inMconf(i, j) signifies the absence of conflicts between
tasksi and j while every filled entry signifies existence of a
conflict. We now present our task allocation algorithms.

4.1. Greedy First Fit Decreasing (GFFD)

3

0

1

2

2,1,0,3

2 2 1

1,0,3

0,3

1 conflicts 

with 2

0 and 2 do 

not conflict

2 1
0

1 3

3

3 conflicts 

with 0 and 1

Conflict 

Graph

2
0

Fig. 4. First Fit Decreasing in Operation

First Fit Decreasing (FFD) task partitioning is a commonly
used algorithm [3]. Figure 4 depicts an example. An undirected
conflict graph of four nodes/vertices is depicted in the figure.
A conflict graph in the context of task partitioning is a graph
G = (V ; E), where every vertex/nodev ∈ V corresponds
uniquely to a task and anedge(i; j) ∈ E indicates that
tasks i and j are in conflict and cannot be allocated onto
the same core. The objective is to map nodes into buckets
while keep in the number of buckets low. As such bin-packing
is known to be NP-hard, heuristic approaches are generally

Input: M : Set of Tasks,Assoc : Number of locked
ways per cache,Mconf : conflict Matrix

Output: Nprocs number of processors
1 Nprocs := 1 ;
2 M .sort(decreasingulocked);
3 while M is not emptydo
4 Success := false ;
5 Nprocs.sort(decreasing utilization) ;
6 i := M .front;
7 foreach Nprocs j do
8 if IsAllocatable(j,i,Assoc,Mconf) 6= −1 then
9 if i.ulocked ≤ 1 - j.u then

10 allocate taski to corej in kth way;
11 j.u += i.ulocked;
12 Success := true ;
13 break ;

end
end

end
14 if Success = false then
15 foreach Nprocs j do
16 if Success = false then
17 if i.uunlocked ≤ 1 - j.u then
18 allocate taski to corej;
19 j.u += i.uunlocked;
20 Success := true ;
21 break;

end
end

end
end

22 if Success = false then
23 allocateNewproc;
24 Nprocs := Nprocs ∪ Newproc;
25 allocate taski to Newproc;
26 Newproc.u = i.ulocked ;

end
end

Algorithm 1: Greedy First Fit Decreasing Heuristic (GFFD)

employed. The FFD algorithm arranges nodes in traversal
order via heuristics before allocating them. In this example,
the algorithm establishes an allocation order of nodes 2, 1,
0 and 3. At each step, the node in question checks if it can
be placed within any of the existing buckets. A node can be
allocated to a bucket if the bucket does not contain any node
that conflicts with it. In the example, node 0 gets allocated to
a bucket that contains node 2, which does not conflict with
0. In case all buckets conflict, a new bucket is created, e.g.,
during the allocation of nodes 1 and 3.

We implemented a modified version to the FFD algorithm.
We call this Greedy First Fit Decreasing (GFFD). Algorithm 1
presents the implementation details of the algorithm. This
algorithm takes a task set and the number of locked ways per
cache as an input. The idea is to incrementally add cores to the



3

0

1

2

0 and 2 have 

degrees < 2

remove 0

3

1

2

0

2 and 3 have 

degree < 2

remove 2

3

1

0

1 and 3 have 

degree < 2

2

remove 1
3

0

3 has 

degree < 2

remove 3

2
1

3

0
2
1

Pop 3

3

Pop 1

3

3

1

31

1 and 3 conflict:

So they can’t 

share a bucket

Pop 2

31

2 does not 

conflict with 3:

So they share a 

bucket

3

1

2

2

Pop 0

31

0 does not 

conflict with 1:

So they share a 

bucket

2

3

0

1

2

0

Fig. 3. Chaitin’s Coloring in Operation with 2 Colors

schedule starting with an initial number of cores,Nprocs, of
1. Line 2 sorts the tasks in decreasing order of their utilization
under locking (ulocked). Lines 3-26 represent a loop that picks
tasks in order and tries to allocate them toNprocs. At the start
of each loop, theNprocs cores are sorted in decreasing order of
core utilization with the objective of maximizing the utilization
of cores. The algorithm tries to allocate taski to corej. The
procedure IsAllocatable() returns the cache way that is still
unassigned to any locked lines of tasks that conflict with any
locked lines of taski. In case a valid cache way is found and
the allocation of the task with the locked region passes the
schedulability test, the task is allocated to the core. Allocation
updates the utilization of the core and also appends the task
to the list of core-allocated tasks with a specific lock-way for
the associative cache. If, however, all the lockable cache-ways
of the core’s L1 are in conflict or the schedulability test fails,
the algorithm tries to allocate the task to another core until it
runs out of cores inNprocs. If the task remains unallocated,
lines 14 through 26 try to allocate it without locking, i.e.,
with a utilization of uunlocked. The task may fail allocation
if it fails the schedulability test for each core (line 20). In
such a scenario, a new core,Newproc, is allocated, which is
then added to the list of cores inNprocs. The task on this new
core gets allocated withulocked. We call this algorithm greedy
because it greedily allocates a task before moving on to the
next task.

4.2. Colored First Fit Decreasing (CoFFD)

GFFD identifies task conflicts only after a task has been
committed for allocation, even though a conflict matrix is
already present. The algorithm does not have a prior notion of
the number of cores available within the system. Furthermore,
the order in which tasks are assigned to cores is still based

on task utilization. We can do better. When tasks contend
for cache regions, analysis of the cache conflict graph yields
superior, conflict-guided allocations. Such analysis considers
tasks in a conflict-conscious order that ensures they can co-
exist with each other for a given number of cores. To this
end, we adapted a graph coloring approach by Chaitin [5] that
is widely used in register allocation, which is based on the
following theorem:

Chaitin’s Theorem. Let G be a graph and v∈ V(G) such
that deg(v)< k, where deg(v) denotes the number of edges
of vertex v. A graph G is k-colorable if and only if G - v is
k-colorable.

This theorem provides the bases for graph decomposition by
repeatedly deleting vertices with degree less thank until either
the graph is empty or only vertices with degree greater than
or equal tok are left. In the latter case, the graph cannot be
colored. However, by removing a task from a conflict graph
using some heuristic, a new coloring attempt can be made
for the remaining of the graph. Figure 3 shows how Chaitin’s
theorem can be used in practice. In this example, the conflict
graph is the same as in the FFD example in Figure 4. This
new example shows how Chaitin’s approach allocates the set
of nodes to two buckets/colors. At first, the algorithm fills
up a stack removing one node at a time. A node is a viable
candidate for being pushed onto the stack if and only if the
degree is less than 2. When a node is removed, it reduces the
degree of its neighbor in the remainder of the graph. Since all
nodes can be pushed onto the stack, the graph is two-colorable
(cf. Chaitin’s theorem). During the following steps, nodesare
popped off the stack and associated with a color/bucket. In
our example, Chaitin’s algorithm successfully allocates nodes
to two buckets. In contrast, three buckets were required by the



Input: M : Set of Tasks,NumOfColors : Number of
Cores× Number of locked ways per cache,
Mconf : conflict Matrix

Output: colorList , spilledList, rejectedTaskList
1 colorStack := empty;
2 spilledList := empty;
3 colorList := empty;
4 while M is not emptydo
5 M .sort(increasingdegreeconflicts);
6 t := M .front();
7 if t.degree< NumOfColors then
8 pusht onto colorStack ;
9 removet from M andMconf ;

end
10 else
11 t := task with minimum (uunlocked/degree) ;
12 pusht onto spilledList ;
13 removet from M andMconf ;

end
end

14 aveCoreUtil = colorStack.u
NumOfColors

;
15 while colorStack is not emptydo
16 t := PopcolorStack ;
17 repopulateMconf ;
18 while curColor < NumOfColors do
19 if None of the neighbors has this colorthen
20 curCore := curColor mod number Of

Cores ;
21 if curCore.u < aveCoreUtil and

curCore.u + t.u ≤ 1 then
22 t.color := curColor ;
23 colorList[curColor] := t ;
24 Add t.u to curCore.u ;

end
end

end
25 if t.color is not a valid Colorthen
26 pusht onto rejectedTaskList ;

end
end

Algorithm 2: Task Coloring Algorithm

FFD algorithm.
Algorithm 2 shows the task coloring mechanism, which

is responsible for finding non-conflicting tasks that can be
grouped together in a given number of colors. The number
of colors is equal to the number of locked cache ways that
can be filled within a given number of cores. Lines 4-13 fill
up two data-structures,colorStack and spilledList. Every
iteration of this loop finds a task that can be placed on either
of these stacks. Line 5 sorts the tasks in increasing order
of the number of tasks it conflicts with inM . A task with
minimum degree is pushed ontocolorStack if and only if its
degree is less thanNumOfColors. Otherwise, the algorithm
finds a task using a heuristic that focuses on minimizing the

metric ulocked/degree as shown in line 11. The objective of
this heuristic is to decrease the conflict degrees of as many
tasks as possible and, at the same time, to pick a task that
causes the minimum increase in the system utilization while
remaining unlocked (uunlocked). This task is then added to the
spilledList. While removing the tasks fromM , we decrease
the conflict degree of neighbors. Once all tasks have been
distributed among either of the stacks, lines 14-26 put the
tasks incolorStack into different colorLists. Assigning a task
from colorStack to a colorList is equivalent to allocating
the task to a core as each color corresponds to a lockable
cache way. ThecolorLists are associated with cores in a
round robin manner, i.e., if the number of lockable cache
ways per task is equal to two and the number of cores is
three, then there are a total of sixcolorLists. The first, second
and thirdcolorLists are associated with the first cache way
on cores one, two and three, respectively. The fourth, fifth
and sixth colorLists are associated with the second cache
way on cores one, two and three. Lines 16-17 pop a task
from the colorStack and re-populate the conflict edges in
the graph with the tasks that have already been colored. The
algorithm then loops through all the colors until it finds a
color that has not been allocated to any of its neighbors in the
graph. Line 20 picks the core associated with that color. For
a task to be assigned a color, the task has to pass the EDF
schedulability test. Furthermore, the current utilization of the
core has to be less thanaveCoreUtil, whereaveCoreUtil has
been computed at line 14. These conditions preventcolorLists
from becoming unbalanced. Chaitin’s algorithm in its purest
form is (i) unaware of the tasks in thespilledList and (ii)
may deliver an unbalancedcolorList. E.g., if none of the
tasks are conflicting then all tasks can be given the same color.
Conditions at line 24 allow the tasks to be evenly distributed
across cores. If either of the conditions fail, then the algorithm
moves on to the next color until all the colors have been tried.
If a task cannot be assigned a valid color, it is moved to
rejectedTaskList.

The task coloring stage outputs partially filled cores and a
list of tasks inrejectedTaskList and spilledStack. These
are subsequently used by the second part of the allocation
shown in Algorithm 3. Algorithm 3 first tries to allocate
tasks from therejectedTaskList. It sorts the tasks of
rejectedTaskList in decreasing order of theirulocked. Each
iteration of the loop starting at line 2 then picks a task in order
and tries to allocate it in FFD fashion onNprocs. If a task can-
not be allocated to a core, it is moved to thespilledList. Once
the rejectedTaskList is empty, all the tasks inspilledList
are allocated in FFD manner while considering each task as
unlocked. If all the tasks inspilledList are allocated, the
task set is deemed to be schedulable on a given number of
Nprocs cores. Otherwise,Nprocs is incremented by the caller
of CoFFD. This process repeats until a schedule has been
found.

Figure 5 depicts a step-by-step working example:
(a) Tasks are grouped in a conflict graph. Our example has

five tasks withulocked utilizations of 0.5, 0.3, 0.4, 0.2



Input: rejectedTaskList, Assoc : Number of locked
ways per cache,Mconf : conflict Matrix,Nprocs :
number of cores

1 rejectTaskList.sort(decreasingulocked);
2 foreach rejectTaskList i do
3 Nprocs.sort(decreasingu);4 Success = false;
5 foreach Nprocs j do
6 foreach Assoc k do
7 if IsAllocatable(j,i,Assoc,Mconf) 6= −1

then
8 allocate taski to corej in kth

associativity;
9 j.u += i.ulocked;

10 Success = true;
11 goto ;

end
end

end
12 if Success==false then
13 put taski on spilledList ;

end
end

14 spilledList.sort(decreasinguunlocked);
15 foreach SpilledList i do
16 Success = false;
17 foreach Nprocs j do
18 if i.uunlocked < 1 - j.u then
19 allocate taski to corej;
20 j.u += i.uunlocked;
21 Success = true;
22 break;

end
end

23 if Success==false then
24 return Failed Allocation;

end
end

25 return Successful Allocation;
Algorithm 3: Colored First Fit Decreasing (CoFFD)— Un-
colored Lists

and 0.2. Each task conflicts with its neighboring task.
Therefore, tasks form a chain of conflicts in the graph.

(b) Our graph coloring algorithm is applied to split the tasks
in ColorLists. The task set is split into two colors
alternating between adjacent tasks in the samecolorList.

(c) We assume a multi-core system with single-way locking
in the L1 cache. Since the aggregate utilization is 1.6,
Nprocs is initialized with the ceiling of system utilization,
which is 2. The tasks in eachcolorList are sorted in
decreasing order ofulocked. The cores are filled in a
round-robin fashion. The greencolorList fits within core
zero. Tasks in the redcolorList are allocated to core one.
Tasks with higher utilization (0.5 and 0.4) are allocated
to core one while the task with utilization 0.2 is moved to

0.2

Color Lists

0.2

Core 0 Core 1

Rejected 
List

0.2

Conflicting 
Associativity

0.2

Conflict Graph

T
as

ks

0.5

0.3

0.4

0.2

0.2

0.5

0.4

0.3

0.2

0.3
0.2

0.5

0.4

Core 0 Core 1

0.3
0.2

0.5

0.4

Lock to unlockCore 0 Core 1

0.3
0.2

0.5

0.4

0.4

0.4

(c)(b)(a)

(d)(e)(d)

Fig. 5. Task Coloring in Operation

therejectedTaskList as it exceeds the utilization bound
of 1.

(d) The algorithm now tries to allocate the task from
rejectTaskList to core zero. It fails due to task conflicts
with an already allocated task and due to the availability
of only one cache way for locking.

(e) At this stage, the task is moved to thespilledList. The
task’s utilization is increased touunlocked. This changes
its utilization from 0.2 to 0.4.

(f) The task is allocated on core 0 with this inflated uti-
lization because such allocation does not violate the
utilization bound on core 0.

4.3. Optimized Region Resizing for Multi-cores

So far, we have assumed that conflicting tasks can only
share a resource either by locking all specified regions or
keeping all of them unlocked. This is useful when locked
regions should remain transparent to the programmer. We can
improve on our results if programmers can accurately estimate
the upper bound on the number of references to each locked
cache line (e.g., based on upper loop bounds). This requires
the specification of the number of references (Nrefs) for each
locked cache line inlistlocked set. We can then compute the
reference frequency,Rf , of a locked cache line for task t as

Rf =
Nrefs

Periodt

When the allocation of a task withWCETlocked has failed,
we need not inflate the WCET of the task directly from
WCETlocked to WCETunlocked. Instead, we can resolve
conflicts at a much finer granularity. If a task C has a conflict
with another task A at setm, and if Rf for setm of task C
is higher thanRf for setm of task A, then task C will retain
its locked line while task A will lose one. If multiple cache
ways are lockable, the locked cache line with the minimum
Rf is replaced. This increases the utilization of the task with
the newly locked line.



Optimization-induced changes to task allocation algo-
rithms: Since a task will lock multiple cache lines, allocation
of a task to a core may affect different tasks on different cache
sets. Hence, the schedulability test has to use the temporary
WCETs of all the affected tasks before making permanent
changes. TheIsAllocatable procedure performs a locked
cache analysis and delivers the temporary WCETs along with
a list of cache resizing specifications if the schedulability test
succeeds. In case the test fails, the list of updates is rejected
and no permanent changes are made to the WCETs. In Algo-
rithm 2, the heuristic for selecting spilled tasks will change
since partial locking of cache lines affects multiple tasks
instead of dilating the WCET of just one. Thus, we spill the
task whoseNumber of conflicting cache lines/degree)
is minimal.

We can use the algorithms presented above in several ways.
If tasks can meet their deadlines only under locking with
WCETlocked, then these algorithms will allocate them with
WCETlocked. If WCETlocked and WCETunlocked are pro-
vided, then both fully locked and fully unlocked scenarios can
be assessed by the algorithms. Dealing with execution times
at coarser levels seems more attractive to the developers. This
allows them to select lockable lines with rough estimate of
the access patterns. Also, it may not be possible to deduce an
accurate number of references or the estimates can be highly
pessimistic, especially when data regions are being accessed
sparsely. Conversely, if data regions are being frequently
referenced and references are uniformly dense around locked
regions, then the region resizing can be used in conjunction
with CoFFD and CoFFD.

5. Task-set Generation

Due to the unavailability of a full blown real-time appli-
cation for massive multi-core architectures, we decided to
utilize synthetic task sets in our experiments. This also allows
us to test corner cases of our algorithms. Table 2 shows
the architectural and task-set parameters of our experimental
framework.

Parameter Value
Processor Model in-order
Cache Line Size 32B

L1 Cache Size/Associativity 8KB/2-way
Lockable associativity 1/2

L1 Access latency 1 cycle
L2 Access Latency 10 cycles

External Memory Latency 100 cycles
Max. sets locked by a task 114/128
Min. sets locked by a task 8/128
Max. size of locked region 57 sets
Min. size of locked region 8 sets

Max. size of task-sets 42
total tasks generated 126

Max. locked regions by a task 4
Min. locked regions by a task 1

TABLE 2. System Parameters

We generated the synthetic task-set values (period, locked
execution time and unlocked execution time) as follows:

1) Task-sets with varying number of locked sets were
generated. Tasks could have anywhere from 1 to 4
locked regions. Each locked region is given a random
number of references. Every cache line is subjected to a
uniform number of references to model spatial locality
effects.

2) The total number of references were derived by ag-
gregating the number of references incurred within the
locked regions of the task. Since the programmer will
be locking the regions in L1 (highest utilization benefit),
we assume that these locked lines consume 80% of the
total data loads. Out of the remaining 20%, we assume
18% are hits in the L2 cache and 2% are references
to sensory data that goes off chip. We also assume
that every 5th instruction is a load. This lets us infer
number of instruction fetches that incur L1 cache hits
(see Section 3). These assumptions allow us to derive a
WCETlocked for a task.

3) To derive theWCETunlocked, we assume unlocked
regions to hit in L2 cache. If two locked regions are
accessed by two different paths, then the increase in
WCET is due to just one region (the one that dominates
the references), not both. Thus, we randomly select tasks
to accommodate such behavior. This also results in var-
ied increases in execution time betweenWCETlocked

andWCETunlocked across tasks.
4) Next, we assign periods to each taski to group them into

different utilization categories: high utilization(0.55 >
ui > 0.40), medium utilization(0.40 > ui > 0.25), and
low utilization (0.25 > ui > 0.15).

6. Evaluation

This section presents results of the conducted experiments.
We present our experimental results for a system that supports
single locked cache ways. Such a scheme is also applicable
when considering horizontal cache partitioning, where allthe
lockable ways in each set are dedicated to a task.

TABLE 3. Allocated Cores for CoFFD & GFFD: All Tasks
Locked

Number High Util. Med. Util. low Util.
of Tasks GFFD CoFFD GFFD CoFFD GFFD CoFFD

4 3 3 3 2 3 2
8 6 5 5 4 4 4
12 9 8 6 5 5 5
16 11 10 9 8 8 8
20 13 13 12 11 12 11
24 16 15 16 15 16 15
28 20 19 20 19 20 19
32 22 20 22 21 22 21
36 24 21 24 22 23 22
42 27 25 25 24 24 23

Allocations while retaining of locked state: Table 3 depicts
the results of our algorithms when tasks are allocated in locked



state, i.e., with an execution time ofWCETlocked. The first
column shows the number of tasks in the task-set. The third
and fourth columns show the number of cores allocated by
GFFD and CoFFD, respectively, when a task-set is composed
of high utilization tasks only. The fifth and sixth columns
represent the same for medium utilization tasks, and the sixth
and seventh columns for lower utilization tasks. Lower core
allocations are depicted in bold font. In all cases, CoFFD
results in fewer cores allocated than GFFD, especially as the
number of tasks increases. As more tasks are added to the
system, the conflict graph becomes denser. CoFFD will then
avoids strategically conflicts under due to its coloring scheme
while the greedy scheme results in a less conflict-conscious
allocation.

TABLE 4. CoFFD vs GFFD: Selected Tasks Unlocked
Number GFFD CoFFD GFFD CoFFD Util.
of Tasks Util. Util. decreased

by CoFFD
4 2 2 1.48 0.88 40.54 %
8 3 3 2.05 2.027 0.88 %
12 5 4 3.77 3.06 18.83 %
16 7 6 5.07 4.13 18.54 %
20 9 8 7.33 5.86 19.64 %
24 11 10 8.6 7.04 18.13 %
28 12 11 10.2 8.65 15.19 %
32 14 12 11.57 9.7 16.16 %
36 15 15 12.67 10.27 18.94 %
42 17 17 14.04 11.87 20.37 %

Allocations with all or none: This experiment allows
allocation of tasks either with locking of all regions or while
leaving all of them unlocked. After a locked allocation with
WCETlocked is attempted, algorithms can fall back to an
unlocked allocation withWCETunlocked for a given task
in case conflicts have prevented the allocation on a given
core. Table 3 depicts the results with best results in bold
face. The first column shows the number of tasks in the
task-set. The second and the third columns show the number
of cores allocated by GFFD and CoFFD, respectively. Sets
with higher/medium utilization tasks result in similar alloca-
tions. This is because it is difficult for the higher utilization
tasks to be allocated under the inflated execution budget of
WCETunlocked. However, tasks with lower utilizations can
be allocate tasks withWCETunlocked. The fourth and the
fifth columns depict the system utilization delivered under
the allocations of the algorithms. The last column shows the
decrease in system utilization achieved by CoFFD over GFFD.
The results indicate that CoFFD beats GFFD not only in
terms of allocating fewer cores but has in improving system
utilization by over 18% for task-sets with large numbers of
tasks. This is because GFFD inflates the execution budget
of task that cannot be allocated to cores under locking.
In addition, conflict analysis prior to allocation allows the
algorithm to apply heuristics to reduce the number of tasks that
remain unlocked. The results of CoFFD are due to a combined
heuristics for selecting spilled tasks in CoFFD. Heuristic1
selects the task with the leastWCETunlocked

degreeofConflicts2 value, which

emphasizes the task’s degree. This prevents the number of
cores to be increased when non-conflict placements are still
feasible. Algorithmically, CoFFD avoids spills of tasks onto
the stack (see Algorithm 3). Heuristic 2 selects the task with
the leastWCETunlocked value. Of the two heuristics, CoFFD
selects the one that results in the allocation of fewer cores. For
example, most task sets in Table 4 resulted in the allocation
of fewer cores under heuristic 1, but the last task set would
have resulted in the allocation of 18 cores whereas heuristic 2
reduced this allocation to 17. This behavior was also observed
while allocating tasks with locked region resizing (see below).

TABLE 5. Region Resizing

Number GFFD CoFFD GFFD CoFFD
of w/ Partial w/ Partial w/ locks w/ locks

Tasks Locking Locking only only
4 2 2 3 2
8 3 3 4 4
12 4 4 5 5
16 6 6 8 8
20 7 7 12 11
24 8 8 16 15
28 10 10 20 19
32 10 10 22 21
36 12 12 23 22
42 13 13 24 23

Region Resized Locking: The next experiment assessed the
optimization of resizing locked regions for conflicted tasks. We
observed that sets with high utilization tasks result in dilation
of WCET when locking fails, which reduces their chances
of being allocated. In Table 5, we show the results for task-
sets with low utilization tasks as they benefited the most from
region resizing. The first column shows the number of tasks
in the task-sets. The second and the third columns show the
number of cores allocated when partial locking is used by
GFFD and CoFFD, respectively. The fourth and fifth columns
show the number of allocated cores when tasks are not allowed
to unlock any of their regions. The results indicate that for
higher number of tasks, partial locking after resizing reduces
the number of required cores by 50%. It is interesting to note
that the greedy algorithm performed as well as CoFFD with
combined heuristics 1 and 2. This is due to the fine-grained
arbitration of conflict regions under resizing. For task-sets with
medium utilization tasks, CoFFD and GFFD allocate a similar
number of cores for all task-sets. Yet, CoFFD results in 1%-
14% reduced system utilization.

7. Conclusions

The use of multi-core architectures is not yet prevalent in
real-time systems since guaranteeing predictability of hard
real-time tasks on such architectures remains a challenge.
Cache locking is a technique that is commonly employed to
improve the predictability of real-time task execution. Multiple
tasks may choose to lock conflicting regions in the cache.
While multi-core architectures can conceptually support such
scenarios by allocating conflicting tasks onto different cores,



current static task partitioning techniques for hard real-time
tasks do not take such conflicts into account.

This paper proposes a two algorithms for task allocation in a
multi-core environment where tasks are allowed to lock cache
lines in a specified subset of cache ways for each core’s private
L1 cache. The first algorithm, GFFD is an enhanced versions
of the First Fit Decreasing (FFD) algorithm. The second,
CoFFD, is based on a graph coloring method. Experimental
results indicate that CoFFD consistently performs better than
the GFFD for lower number of cores and lower system
utilization.

We also propose a mechanism that allows locked regions to
be resized. This scheme is applicable when the programmer
can accurately provide the number of references to a locked
cache line, yet does not want to be concerned with fine-grained
locking decisions. The two algorithms were further adapted
to use task and reference information to choose whether to
retain a line in locked or unlock state for conflicting regions.
With such partial locking, the number of cores in some
cases is reduced by almost 50% with an increase in system
utilization of 10%. Overall, this work is unique in considering
the challenges of future multi-core architectures for real-time
systems and provides key insights into task partitioning with
locked caches for architectures with private caches.

References

[1] Tilera processor family. http://www.tilera.com/.
[2] J. Anderson, J. Calandrino, and U. Devi. Real-time scheduling on

multicore platforms. InIEEE Real-Time Embedded Technology and
Applications Symposium, pages 179–190, Apr. 2006.

[3] A. Burchard, J. Liebeherr, Y. Oh, and S. Son. New strategies for
assigning real-time tasks to multiprocessor systems.IEEE Trans. on
Computers, 44(12):1429–1442, 1995.

[4] J. Calandrino and J. Anderson. Cache-aware real-time scheduling
on multicore platforms: Heuristics and a case study. InEuromicro
Conference on Real-Time Systems, pages 209–308, July 2008.

[5] G. J. Chaitin. Register allocation & spilling via graph coloring. In
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 98–105, 1982.

[6] S. Chattopadhyay, A. Roychoudhury, and T. Mitra. Modeling shared
cache and bus in multi-cores for timing analysis. InProceedings of
the 13th International Workshop on Software &#38; Compilers for
Embedded Systems, SCOPES ’10, pages 6:1–6:10, New York, NY, USA,
2010. ACM.

[7] D. Choffnes, M. Astley, and M. J. Ward. Migration policies for multi-
core fair-share scheduling.ACM SIGOPS Operating Systems Review,
42:92–93, 2008.

[8] N. Eisley, L.-S. Peh, and L. Shang. Leveraging on-chip networks for data
cache migration in chip multiprocessors. InInternational conference on
Parallel architectures and compilation techniques, pages 197–207, 2008.

[9] N. Guan, M. Stigge, W. Yi, and G. Yu. Cache-aware scheduling and
analysis for multicores. InProceedings of the seventh ACM international
conference on Embedded software, EMSOFT ’09, pages 245–254, New
York, NY, USA, 2009. ACM.

[10] D. Hardy, T. Piquet, and I. Puaut. Using bypass to tighten wcet estimates
for multi-core processors with shared instruction caches.In Proceedings
of the 30th Real-Time Systems Symposium, pages 68–77, Washington
D.C., USA, Dec. 2009.

[11] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn. Efficient operating
system scheduling for performance-asymmetric multi-corearchitectures.
In In ACM/IEEE conference on Supercomputing, pages 1–11, Nov. 2007.

[12] T. Li, P. Brett, B. Hohlt, R. Knauerhase, S. McElderry, and S. Hahn.
Operating system support for shared-isa asymmetric multi-core architec-
tures. InWorkshop on the Interaction between Operating Systems and
Computer Architecture, pages 19–26, June 2008.

[13] J. Ouyang and Y. Xie. Loft: A high performance network-on-chip
providing quality-of-service support. Microarchitecture, IEEE/ACM
International Symposium on, 0:409–420, 2010.

[14] M. Paolieri, E. Quiñones, F. J. Cazorla, G. Bernat, andM. Valero.
Hardware support for wcet analysis of hard real-time multicore systems.
In ISCA, pages 57–68, 2009.

[15] I. Puaut. Wcet-centric software-controlled instruction caches for hard
real-time systems. InECRTS ’06: Proceedings of the 18th Euromicro
Conference on Real-Time Systems, pages 217–226, Washington, DC,
USA, 2006. IEEE Computer Society.

[16] I. Puaut and D. Decotigny. Low-complexity algorithms for static cache
locking in multitasking hard real-time systems. InIn IEEE Real-Time
Systems Symposium, pages 114–123, 2002.

[17] I. Puaut and C. Pais. Scratchpad memories vs locked caches in hard
real-time systems: a quantitative comparison. InProceedings of the
conference on Design, automation and test in Europe, pages 1484–1489,
San Jose, CA, USA, 2007. EDA Consortium.

[18] V. Suhendra and T. Mitra. Exploring locking & partitioning for
predictable shared caches on multi-cores. InProceedings of the 45th
annual Design Automation Conference, pages 300–303, New York, NY,
USA, 2008. ACM.

[19] X. Vera, B. Lisper, and J. Xue. Data caches in multitasking hard real-
time systems. InIn IEEE Real-Time Systems Symposium, pages 154–
165, 2003.


