Static Task Partitioning for Locked Caches in
Multi-Core Real-Time Systems

Abhik Sarkar, Frank Mueller
Dept. of Computer Science
North Carolina State University
Raleigh, NC 27695-8206
asarkar@ncsu.edu, mueller@cs.ncsu.edu

Abstract

Massive multi-core architectures with tens of cores areob@og more
prevalent in embedded systems. However, their acceptamcthe real-
time systems domain is rather low due to challenges in systealysis
and predictability. Recent real-time systems research fbassed on shared
cache architectures. In such systems, tasks across alkcgitare the same
cache (typically at level 2). In contrast, tile-based atebtures with massive
numbers of cores have private caches, only. At larger nusbércores, it
becomes important to utilize all resources efficiently ahdre cores among
hard, soft and non real-time tasks. In such a scenario, itobses difficult
to analyze cache behavior statically. Consequently, haal-time systems
become subject to conservative analysis including timiognbs based on
the assumption that data references default to lower levetaaches/memory.
Locking cache lines in hard real-time systems is a commoms&aensure
timing predictability of data references and to lower bosndn worst-
case execution time, especially in a multi-tasking enwirent. However,
cache locking poses a challenge to hard real-time systemsnohi-core
architectures. Static scheduling on hard real-time taskesdnot consider
conflicts among locked regions within caches. This work gsep three
static scheduling schemes as a remedy: (1) Greedy First [Eitr&asing
(GFFD) and (2) Colored First Fit Decreasing (CoFFD). This kalso adapts
these algorithms for conflict resolution partially lockeelgions. Experiments
indicate that CoFFD consistently outperforms GFFD for loweimber of
cores and lower system utilization. With partial lockinge thumber of cores
in some cases is reduced by almost 50% with an increase iansysilization
of 10%. Overall, this work is unique in considering the chafies of future
multi-core architectures for real-time systems and presidey insights into
task partitioning with locked caches for architectureshwirivate caches.

1. Introduction

Multi-core architectures have become prevalent in embegl;

Harini Ramaprasad
Dept. of Electrical and Computer Engg.
Southern lllinois University Carbondale
Carbondale, IL 62901
harinir@siu.edu

‘ Til?(ﬂ—{ Til—er1J—{ TiIfFZJ—{ TiIeTsJ
| o

‘ Til—er :ﬂ—{ TileT 5 ,,
‘ Tile 8 H Tildié:

Tile 12 H Tile 13 H Tile 14 H Tile 16'

Fig. 1. Tile-based Architecture

on aforementioned systems [6], [9]. Such schemes become
inapplicable to scalable multi-cores, such as shown inreigu
These architectures use private L1+L2 caches. Thus, aky tas
allocation algorithm requires prior knowledge of each ®sk
Worst Case Execution Time (WCET). However, the WCET
of a task obtained by static cache analysis depends on cache
analysis of all other tasks on a particular core. In this work

it is assumed that private L2 caches are large enough to hold
the data space and instructions of hard real-time tasks Thi
simplifies the analysis of L2 caches as any access to the L2
cache is a hit after a compulsory miss on warm-up. Thus,
a tighter upper-bound on the Worst Case Execution Time
(WCET) can be established by modeling references resolved
at the L2 level as hits after the warm-up phase of the first job
Xecution in a periodic task system. Still, the access ¢gten

ded system design. This is evident from the variety of multiss | 2 caches is an order of magnitude higher than that of
core processors available today, such as the 4-core MPCQrescaches so that bounds on WCET are not as tight as they
from ARM, the 8-core P4080 PowerPC from Freescale apdyd be. To further tighten WCET bounds, cache locking of
the 64-core TilePro64 from Tilera [1], which find applicat® gg|ected lines in L1 can be employed on scalable multi-core
in power control systems, satellites and network packet P9atforms.
cessing. However, hard real-time system designers have bee|, general, cache locking techniques provide predictgbili
skeptical in adopting these architectures. Unpredidtgaf 1, 5 task’s cache access behavior. Cache locking can be real-
multi-core caches have been a significant contributingofactzeq 4t various granularities. Studies on uni-processohea
to this skepticism. . o _ locking have assumed the entire L1 cache to be locked [16],
Research on cache contention has primarily consider@e another study on cache locking for shared caches has
shared caches. This simplifies the problem as all tasks Q& med locking individual cache lines [18]. Locked caches
considered to be contending for the shared cache spagg. ni-processors identify sets within a single cache way
Most contemporary research aims at optimizing the analygis 4 given task set to improve predictability and indirgctl

This work was supported in part by NSF grants CNS-0720496-0905181 uuhzaupn/response time of tasks while ensuring schablility
and CNS-0905212. on a single core. In contrast, our work extends to scalable

multi-core architectures where tasks are statically pantgd. consumed by the task-set when using GFFD and CoFFD,
Our work focuses on distributing tasks over disjoint coragspectively. These results indicate that CoFFD condigten
while considering their locked state. A real-time system déelivers a partition with fewer number of cores. If the olijex
veloper may choose to lock a set of cache lines to tighté&nto minimize the number of cores, the two algorithms are
WCET bound. This work uses these tightened WCET bounddapted to consider two different WCETS, one with lockirg al
to statically allocate tasks on disjoint set of cores. the regions specified by the developer and one without lgckin
Prior literature on uni-processor locking techniques f@su any of those regions for every task. The algorithms select
on filling a single cache way while reducing the overalbne of these versions to avoid lock conflicts while ensuring
utilization of a core. Reduction of the system utilizatioanc that utilization constraints are met. We observe that CoFFD
be achieved by placing all tasks with conflicting locked @clconsistently results in allocating fewer cores. Given & tas
regions on different cores. However, such a scheme woultllization u; of tasksi, task-sets composed of high utilization
consume a large number of cores and result in under-uidizat tasks (0.55 > u; > 0.40) allocate fewer cores under CoFFD
of computing resources. Also, multiple cache ways per Ldith at most 3% higher system utilization than GFFD. For low
cache can be dedicated to locking. Hence, the objective wiflization tasks-set$0.33 > u; > 0.15), CoFFD allocates
allocating tasks on scalable multi-cores has to be balandeder cores and lowers system utilization by up to 40% over

between the following objectives: GFFD.
1) Reduction of the number of cores; and We also propose a mechanism to resize lock regions so that
2) Reduction of the overall system utilization. they become partially unlocked. This scheme is applicable

Static task partitioning has been considered as a viaB’Y‘gen the programmer can accura_Lter provide the ngmber
: . . . of references to a locked cache line. The two algorithms,
scheduling option for real-time tasks on multiple coresctSu

scheduling schemes aim at minimizing the number of cores %FFD and CoFFD, were adapted to exploit this per-line

a set of tasks with given worst-case execution time (WCE'Ireference frequency information, based on which they ohoos

e) . hether to retain the lock of a line or unlock it due to lock
However, partitioning tasks with locked cache regions ives . . .
. . : . conflicts of lines between disjoint tasks. We observe theth su
resolving the conflicts between locked regions of different :
tasks mechanism can further reduce the number of allocated dores.

In this work, we develop and evaluate two partitionin%:ay even allow GFFD to perform at par with CoFFD. Overall,

algorithms: (1) Greedy First Fit Decreasing (GFFD), and (e provide key insights into task partitioning with locked

Colored First Fit Decreasing (CoFFD). GFFD is a variant %ag::: for large-scale multi-core architectures with gteiv

the general First Fit Decreasing (FFD) algorithm that tries Summary of contributions: This research makes the fol-

to allocate tasks onto a minimum number of cores [3]. Thi : - .)

o) wing contributions in the context of hard real-time syste
scheme lacks prior information on the number of cores of. L

ith cache locking:

a concrete processor but rather reasons abstractly abe>utV¥h1 Thi Kis the fi lov locked h
minimum number of cores of a hypothetical processor design.) s wolr_ Is the 'rhs.t to emp;)y r?c de C?C. €S on mas-
COFFD, a more sophisticated scheme, exhibits a novel ap- 3{)’6 muu—corg;:lzj |tectu|r|es or har hrea —tane systems.
proach based on graph coloring that delivers task pariitipn ~ 2) W€ propose sk ar)r? oca}:!on sc Emelt a: p(;artltur)]ns
In contrast to GFFD, CoFFD initially assumes a given number agien setrc]) tahs S W'tb cor; |c|:|ts n tdelr oc_ek cacl €
of cores for an architecture. The algorithm then tries tocaite rTehQ'O”f SO th at _t ? m;]m e(rjo a (;)cate C;)res IS ﬂ_ept gw'
a given task-set onto the fixed number of cores. In case of Is algorithm is further adapted to resolve conflicts by

failure, the number of cores is incremented and the attempt (1) unlocking entire task_ or (i.i) resizing_locked regions.

to allocate tasks to cores is repeated. If the objective is t03) We.propose CoIoreq First Fit Depreasmg (CoFFD) that
achieve minimum utilization, tasks should be allocatedhait derlve_s t§5k aIIo<_:at|ons for a given ”””.‘ber .Of cores
candidate regions locked as this lowers their WCET. Table 1 resulting in a feasible schedule. This algorithm is fl_thher
depicts a comparison of the number of allocated cores for employed to reduce the number of cores relative to

different task-sets using GFFD and CoFFD on an architecture4 (streedy First Fit De?reasiﬂg (.GFFE)' I K
that has a direct-mapped locked L1 data cache.) We Propose a novel mec anlsm.t at allows tasks .to re-
solve conflicts by partially unlocking the locked regions

TABLE 1. CoFFD vs GFFD: Locked WCET and inflating their WCETs accordingly. This method
NUmber Sysem NUMba of Cores aims at improving the schedulablllty_of task set_s on a
of Tasks | Utilization | GEED | CoFFD given number of cores when resolution of conflicts by

42 20.25 27 25 partial unlocking result in lower system utilization than
42 13.42 25 24 unlocking an entire task.
42 9.39 24 23

2. Related Work

The first and second columns depict the number of tasks
in the task-set and the utilization of the task-set, respagt In past decade, there has been considerable research pro-
The third and the fourth columns show the number of coresoting locked caches in the context of multi-tasking real-

time systems. Static and dynamic cache locking algorithméile accessing sensory data, which accounts for a veryl smal
for instruction caches have been proposed to improve systéaction of the total references. Also, these systems cae ha
utilization in [16], [15]. Several methods have been depebtb inclusive or non-inclusive L2 caches. With inclusive caghe
to lock program data that is hard to analyze statically [19%he locked regions in L1 need to be locked in L2 as well. Our
Further techniques have been developed for cache lockatg thlgorithms are applicable to a system considering both data
provide comparable performance obtained on scratchpad atnd instruction caches. However, for the simplicity of s
cation [17]. Recently, cache locking has also been propfmsedwe assume that instruction references for hard real-tirsiesta
multi-core systems that use shared L2 caches [18]. Thisltreswre all hits at the first level of cache. We also assume that
is a strong proponent of cache locking as a viable solution limads to the lines that have not been locked in the L1 cache
future real-time system designs on multi-cores. bypass the L1 cache (as in a previous research work [10]).

Choffneset al. have proposed migration policies for mul-This allows cores with lower core utilization to co-scheslul
ticore fair-share scheduling [7]. Their technique strives non-real-time tasks along with hard real-time tasks withou
minimize migration costs while ensuring fairness among ttaffecting the deterministic behavior of the latter. Sucloriy
tasks by maintaining balanced scheduling queues as new taskecution of application tasks have been considered imtece
are activated. Calandrinet al. propose scheduling techniquegsesearch [14]. We assume that a hard real-time task can only
that account for co-schedulability of tasks with respect fock one cache line per set. Thus, for a 8KB L1 cache with
cache behavior [2], [4]. Their approach is based on orgagizian associativity of two, a hard real-time task can lock up to
tasks with the same period into groups of cooperating taskd¥B of cache content.

All these methods improve cache performance in soft real-
time systems. Let al. discuss migration policies that facilitate
efficient operating system scheduling in asymmetric maitéc
architectures [11], [12]. Their work focuses on fault-and-
migrate techniques to handle resource-related faults tiertre
geneous cores and does not operate in the context of real-tim
systems. Eisleet al. [8] develop a cache capacity increasing
scheme for multicores that scavenges unused neighboring
cache lines.

Paolieri et al. [14] have proposed TDMA-based bus and
L2 cache access to improve predictability on multi-core ar-
chitectures. Their work focuses on supporting hard reaéti
applications on multi-cores but assumes shared L2 cachis wi
contention due to accesses by different tasks. Ouyatngj.

[13] have proposed extending Quality of Service support to
mesh-based interconnects but their study is limited to the o Fig. 2. A Lock-based Architecture
chip network traffic.

Private
Level-1 Data
Caches With

one-way lockable

Private Private
LS Inclusive Level-2 LES Inclusive Level-2
Caches With able Caches With
Lock support Lock support

QoS-based Mesh Interconnect

We assume that all hard real-time tasks are periodic. Each
3. System Design task’s deadline is the same as its period, i.e., an invatatio
a task’s job has to finish before its next invocation. We ferth
In this section, we describe our system architecture apgsume that the system runs a scheduler per core. Each of
assumptions to WCET analysis for this study. The objectfve these schedulers independently schedules the tasks tatioca
this work is to best utilize a private cache architectureisThto this core. We assume them to utilize Earliest DeadlinstFir
corresponds to the current trend in potentially mesh or til€EDF) scheduling. EDF optimally schedules tasks for uni-
based multi-core designs. Tile-based architectures sbaka processor, i.e., the utilization bound for each core is eefin
large number tile processors (cores). Each tile consisanof by the following equation:
in-order processor, a private L1, a private L2 cache and®@rou Y., IC; < 1, whereC; and P; are the WCET and the
(see Figure 1). Each tile acts as a node on a mesh interconngetiod of theith task, respectively. Deadlines are assumed to
Recent work has added Quality-of-Service (QoS) policies be the same as the periods.
mesh-interconnects [13]. We have identified these trentiseas For the algorithms, each task needs to provide the following
driving force for the simplification of our system. We assummformation:< listiocked—setss WCE T ockeds W CET uniocked
an architecture that has private caches and has a QoS-basedist;,creqd—sets 1S the list of sets where the programmer
interconnect. We assume that the first level of cache allowsndends to lock a cache line for the taSk/C ET}ycreq and
certain number of ways of the associative cache to be lockBdCET,,iockeqa are the WCETs of a task when all the
as shown in Figure 2. We also assume that the L2 caches lawes of list;,creq—sets are locked and unlocked, respectively.
large enough with high associativity so that the addressespaV C ETj,.r.qa does not include the overhead of loading the
of allocated hard real-time tasks on a core fit within the L2ontents of a task because it is a one-time cost incurred at
cache. Thus, we assume that the off-chip references octur osystem start-up.

We also assume that the real-time tasks are pairwise indelnput: M : Set of TasksAssoc : Number of locked

pendent. Hence, these tasks do not cause any coherenae traffi ways per cache,M..,¢ : conflict Matrix
on the interconnect. Output: Nprocs NUMber of processors

1 Nprocs =1,
4, Task Partition Algorithms 2 M sort(decreasingiocked);

3 while M is not emptydo
Success = false ;
Nprocs-Sort(decreasing utilization) ;
1 := M front;
foreach Ny, ocs j dO
if IsAllocatable(j,i,Assoc,Mcony) # —1 then
if 1 Uocked < 1 -]u then
allocate task to corej in kth way;
j'u += Z'-’U/loc}’ced;
Success = true ;
break ;
end
end

Static task partitioning algorithms for multi-core areut
tures have been widely studied. Most of these approaches
consistently aim at minimizing the number of cores uti-
lized [3]. They use bin-packing schemes considering a eingi
utilization value per task. However, locked caches provide S
with a tuple of data as discussed in the previous section.
Initially, our algorithms consider two value$V CETjocked
andWCETyniocked- In Section 4.3, we discuss a mechanisim
with the objective of reducing the impact of conflicts.

Thelistioered—sets it€mM is used to deduce a conflict matrix-

M_ony for locked tasks. A conflict among the locked sets indi-
cates the existence of common locked cache set(s). Eacly empt
entry in M., (%, j) signifies the absence of conflicts betweelq
tasksi and j while every filled entry signifies existence of a,
conflict. We now present our task allocation algorithms.

end
if Success = false then
foreach Np,ocs j dO

16 if Success = false then
. . . 17 if 2. %uniockea < 1 - 7.u then
4.1. Greedy First Fit Decreasing (GFFD) . allooato. task 10 core:
19]u += Z"’U/unlocked;
20 Success = true ;
Conflict 21 break;
Graph end
end
end
2,1,0,i> 1,0,3) ad
22 if Success = false then
1 conflicts 23 allocate N ewpyoc;
G g W|th 2 24 Nprocs = Nprocs) Newproc;
\J 25 allocate taski to Newproc;
0 3 26 Newproc'u = Z'-’U/loc}’ced ,
end
end
Algorithm 1: Greedy First Fit Decreasing Heuristic (GFFD)
employed. The FFD algorithm arranges nodes in traversal
3 conflicts Oand 2do order via heuristics before allocating them. In this exampl
with0and 1 not conflict the algorithm establishes an allocation order of nodes 2, 1,
Fig. 4. First Fit Decreasing in Operation 0 and 3. At each step, the node in question checks if it can

be placed within any of the existing buckets. A node can be

First Fit Decreasing (FFD) task partitioning is a commonlgllocated to a bucket if the bucket does not contain any node
used algorithm [3]. Figure 4 depicts an example. An und@ectthat conflicts with it. In the example, node O gets allocated t
conflict graph of four nodes/vertices is depicted in the figura bucket that contains node 2, which does not conflict with
A conflict graph in the context of task partitioning is a grapB. In case all buckets conflict, a new bucket is created, e.g.,
G = (V;E), where every vertex/node € V corresponds during the allocation of nodes 1 and 3.
uniquely to a task and amdge(i;j) € E indicates that We implemented a modified version to the FFD algorithm.
tasksi and j are in conflict and cannot be allocated ontdVe call this Greedy First Fit Decreasing (GFFD). Algorithm 1
the same core. The objective is to map nodes into bucketesents the implementation details of the algorithm. This
while keep in the number of buckets low. As such bin-packirggorithm takes a task set and the number of locked ways per
is known to be NP-hard, heuristic approaches are generalgche as an input. The idea is to incrementally add core®to th

1
2
[0 0 0
—_— —_— —_— 9 —_—
remove 0 remove 2 remove 1 remove 3

0 and 2 have 2 and 3 have 1 and 3 have 3 has
degrees<2 degree<2 degree<2 degree<2

M

Pop 3 e

yﬂyguu%uu;ﬁ

1 and 3 conflict:
So they can’t
share a bucket

2 does not
conflict with 3:
So they share a

bucket

conflict with 1:
So they share a
bucket

Fig. 3. Chaitin’s Coloring in Operation with 2 Colors

schedule starting with an initial number of corég,,.., of on task utilization. We can do better. When tasks contend
1. Line 2 sorts the tasks in decreasing order of their utibzar for cache regions, analysis of the cache conflict graph yield
under locking {0ckeq)- Lines 3-26 represent a loop that picksuperior, conflict-guided allocations. Such analysis ers
tasks in order and tries to allocate themNg, ... At the start tasks in a conflict-conscious order that ensures they can co-
of each loop, theV,,,...s cores are sorted in decreasing order aéxist with each other for a given number of cores. To this
core utilization with the objective of maximizing the utidition end, we adapted a graph coloring approach by Chaitin [5] that
of cores. The algorithm tries to allocate tasto corej. The is widely used in register allocation, which is based on the
procedure IsAllocatable() returns the cache way that is sfiollowing theorem:

unassigned to any locked lines of tasks that conflict with any

locked lines of task. In case a valid cache way is found andhaitin’s Theorem. Let G be a graph and & V(G) such

the allocation of the task with the locked region passes tHeat deg(v)< k, where deg(v) denotes the number of edges
schedulability test, the task is allocated to the core.ddtion Of vertex v. A graph G is k-colorable if and only if G - v is
updates the utilization of the core and also appends the tésRolorable.

to the list of core-allocated tasks with a specific lock-way f)) .
the associative cache. If, however, all the lockable cachgs This theorem provides the bases for graph decomposition by

of the core’s L1 are in conflict or the schedulability testsfai "epeatedly deleting vertices with degree less thantil either

the algorithm tries to allocate the task to another corel itnti the graph is empty or only vertices with degree greater than
runs out of cores iNV,,,.... If the task remains unallocated 0" equal tok are left. In the latter case, the graph cannot be
lines 14 through 26 try to allocate it without locking, i.e.colored. However, by removing a task from a conflict graph
with a utilization of wynieerea. The task may fail allocation USINg some heuristic, a new coloring attempt can be made
if it fails the schedulability test for each core (line 20p | for the remaining of the graph. Figure 3 shows how Chaitin's
such a scenario, a New o ew,,., is allocated, which is theorem can be used in practice. In this exa_mpl_e, the confllpt
then added to the list of cores M,,.c,. The task on this new 9raph is the same as in the FFD example in Figure 4. This
core gets allocated witho..q. We call this algorithm greedy N€W example shows how Chaitin’s ap_proach aIIoca_tes th(_a set
because it greedily allocates a task before moving on to gk nodes to two buckets/colors. At first, the algorithm fills

next task. up a stack removing one node at a time. A node is a viable
candidate for being pushed onto the stack if and only if the
4.2. Colored First Fit Decreasing (CoFFD) degree is less than 2. When a node is removed, it reduces the

degree of its neighbor in the remainder of the graph. Sinice al
GFFD identifies task conflicts only after a task has beemdes can be pushed onto the stack, the graph is two-cadorabl
committed for allocation, even though a conflict matrix ig¢cf. Chaitin’s theorem). During the following steps, nodes
already present. The algorithm does not have a prior nofionmopped off the stack and associated with a color/bucket. In
the number of cores available within the system. Furtheemoour example, Chaitin’s algorithm successfully allocatedes
the order in which tasks are assigned to cores is still basedwo buckets. In contrast, three buckets were requiredhby t

Input: M : Set of TasksNumO fColors : Number of metric uj,crea/degree as shown in line 11. The objective of

Coresx Number of locked ways per cache, this heuristic is to decrease the conflict degrees of as many
M_ony - conflict Matrix tasks as possible and, at the same time, to pick a task that
Output: colorList , spilledList, rejectedT'askList causes the minimum increase in the system utilization while
1 colorStack = empty; remaining unlockedi,niockeq). This task is then added to the
2 spilledList := empty; spilledList. While removing the tasks from/, we decrease
3 colorList := empty; the conflictdegree of neighbors. Once all tasks have been
4 while M is not emptydo distributed among either of the stacks, lines 14-26 put the
5 | M.sort(increasinglegreecon fiicts); tasks incolorStack into different colorLists. Assigning a task
6 | t:=M.front(); from colorStack to a colorList is equivalent to allocating
7 | if t.degree< NumO fColors then the task to a core as each color corresponds to a lockable
8 pusht onto colorStack ; cache way. ThewolorLists are associated with cores in a
9 removet from M and Moy ; round robin manner, i.e., if the number of lockable cache
end ways per task is equal to two and the number of cores is
10 else three, then there are a total of sixdor Lists. The first, second
1 t := task with minimum Guniockea/degree) ; and third colorLists are associated with the first cache way
12 pusht onto spilledList ; on cores one, two and three, respectively. The fourth, fifth
13 removet from M and Moy ; and sixth color Lists are associated with the second cache
end way on cores one, two and three. Lines 16-17 pop a task
end from the colorStack and re-populate the conflict edges in
14 aveCoreUtil = %: the graph with the tasks that have already been colored. The
15 while colorStack is not emptydo algorithm then loops through all the colors until it finds a
16 t := PopcolorStack ; color that has not been allocated to any of its neighborsen th
17 repopulateM o s ; graph. Line 20 picks the core associated with that color. For
18 while curColor < NumO fColors do a task to be assigned a color, the task has to pass the EDF
19 if None of the neighbors has this coltren schedulability test. Furthermore, the current utilizatf the
20 curCore := curColor mod number Of core has to be less thaneCoreUtil, whereaveCoreUtil has
Cores ; been computed at line 14. These conditions prewelat: Lists
21 if curCore.u < aveCoreUtil and from becoming unbalanced. Chaitin’s algorithm in its ptires
curCore.u + t.u < 1 then form is (i) unaware of the tasks in theilledList and (ii)
22 t.color := curColor ; may deliver an unbalanceeblorList. E.g., if none of the
23 colorList[curColor] :=t ; tasks are conflicting then all tasks can be given the same. colo
24 Add t.u to curCore.u ; Conditions at line 24 allow the tasks to be evenly distridute
end across cores. If either of the conditions fail, then the atgm
end moves on to the next color until all the colors have been tried
end If a task cannot be assigned a valid color, it is moved to
25 if t.color is not a valid Colorthen rejectedT ask List.
26 | pusht ontorejectedT askList ; The task coloring stage outputs partially filled cores and a
end list of tasks inrejectedTaskList and spilledStack. These
end are subsequently used by the second part of the allocation
Algorithm 2: Task Coloring Algorithm shown in Algorithm 3. Algorithm 3 first tries to allocate

tasks from therejectedTaskList. It sorts the tasks of
rejectedTaskList in decreasing order of their;,.x.q. Each
FFD algorithm. iteration of the loop starting at line 2 then picks a task idesr
Algorithm 2 shows the task coloring mechanism, whicand tries to allocate it in FFD fashion a¥,,.,.. If a task can-
is responsible for finding non-conflicting tasks that can beot be allocated to a core, it is moved to #glled List. Once
grouped together in a given number of colors. The numbtae rejectedTaskList is empty, all the tasks iBpilledList
of colors is equal to the number of locked cache ways thate allocated in FFD manner while considering each task as
can be filled within a given number of cores. Lines 4-13 filinlocked. If all the tasks irspilledList are allocated, the
up two data-structures;olorStack and spilledList. Every task set is deemed to be schedulable on a given number of
iteration of this loop finds a task that can be placed on eith®f,.,.s cores. OtherwiseN,,...s is incremented by the caller
of these stacks. Line 5 sorts the tasks in increasing orddr CoFFD. This process repeats until a schedule has been
of the number of tasks it conflicts with in/. A task with found.
minimum degree is pushed ontolorStack if and only if its Figure 5 depicts a step-by-step working example:
degree is less thaWumO f Colors. Otherwise, the algorithm (a) Tasks are grouped in a conflict graph. Our example has
finds a task using a heuristic that focuses on minimizing the five tasks withu;,.xcq Utilizations of 0.5, 0.3, 0.4, 0.2

Input: rejectedT askList, Assoc : Number of locked
ways per cache, M., s : conflict Matrix,Np,ocs :

number of cores
rejectTaskList.sort(decreasing;ocked);
foreach rejectTaskList i do

1
2
3 Nprocs-sort(decreasing); Success = false;
5 foreach Ny, ocs j dO
6 foreach Assoc k do
7 if IsAllocatable(j,i,Assoc,Mcony) # —1
then
8 allocate task to corej in kth
associativity;
9 .]u += Z.-ulocked;
10 Success = true;
1 goto ;
end
end
end
12 if Success==false then
13 | put taski on spilledList ;
end
end

14 spilledList.sort(decreasing.niocked);
15 foreach SpilledList i do

16 Success = false;
17 foreach Np,ocs j dO
18 if . Uyniocked < 1 - j.u then
19 allocate taski to corejy;
20 .]u += Z.-uunlocked;
21 Success = true;
2 break;
end
end
23 if Success==false then
24 | return Failed Allocation;
end
end

25 return Successful Allocation;

(a (b) (c)
Conflict Graph
Color Lists

L
Rejected
I List
— — e
Core 0 Corel

Conflicting

Associativity

S

)
-]

Core0 Corel

Core 0 Core 1 Lock to unlock

(d) (e) (d)
Fig. 5. Task Coloring in Operation

therejectedT ask List as it exceeds the utilization bound
of 1.

(d) The algorithm now tries to allocate the task from
rejectTaskList to core zero. It fails due to task conflicts
with an already allocated task and due to the availability
of only one cache way for locking.

(e) At this stage, the task is moved to theilledList. The
task’s utilization is increased t0,,;,ckeq- This changes
its utilization from 0.2 to 0.4.

() The task is allocated on core 0 with this inflated uti-
lization because such allocation does not violate the
utilization bound on core 0.

4.3. Optimized Region Resizing for Multi-cores

So far, we have assumed that conflicting tasks can only
share a resource either by locking all specified regions or
keeping all of them unlocked. This is useful when locked

Algorithm 3: Colored First Fit Decreasing (CoFFD)— Un-regions should remain transparent to the programmer. We can

colored Lists

improve on our results if programmers can accurately eséima
the upper bound on the number of references to each locked
cache line (e.g., based on upper loop bounds). This requires

and 0.2. Each task conflicts with its neighboring taslthe specification of the number of referencasdy,) for each
Therefore, tasks form a chain of conflicts in the graphlocked cache line ifist;ockeq_set- We can then compute the
(b) Our graph coloring algorithm is applied to split the mskreference frequency?y, of a locked cache line for task t as

in ColorLists. The task set is split into two colors
alternating between adjacent tasks in the savhe-List.

L NTefs
Rf ~ Perio

dy
When the allocation of a task with’ C ET},...q has failed,

(©

We assume a multi-core system with single-way lockinge need not inflate the WCET of the task directly from
in the L1 cache. Since the aggregate utilization is 1.8V C ETjockeq t0 WCET niockeq- INStead, we can resolve
Nyprocs 1S initialized with the ceiling of system utilization, conflicts at a much finer granularity. If a task C has a conflict
which is 2. The tasks in eactvlorList are sorted in with another task A at set, and if Ry for setm of task C
decreasing order Ofiockeq. The cores are filled in a is higher thanR; for setm of task A, then task C will retain
round-robin fashion. The greenlor List fits within core its locked line while task A will lose one. If multiple cache
zero. Tasks in the reeblor List are allocated to core one.ways are lockable, the locked cache line with the minimum
Tasks with higher utilization (0.5 and 0.4) are allocate®; is replaced. This increases the utilization of the task with
to core one while the task with utilization 0.2 is moved téthe newly locked line.

Optimization-induced changes to task allocation algo- We generated the synthetic task-set values (period, locked
rithms: Since a task will lock multiple cache lines, allocatiorexecution time and unlocked execution time) as follows:
of a task to a core may affect different tasks on differenheac 1) Task-sets with varying number of locked sets were

sets. Hence, the schedulability test has to use the tenyporar generated. Tasks could have anywhere from 1 to 4
WCETs of all the affected tasks before making permanent |ocked regions. Each locked region is given a random

changes. ThelsAllocatable procedure performs a locked number of references. Every cache line is subjected to a
cache analysis and delivers the temporary WCETs along with uniform number of references to model spatial locality
a list of cache resizing specifications if the schedulabtkist effects.

succeeds. In case the test fails, the list of updates istegifec 2) The total number of references were derived by ag-
and no permanent changes are made to the WCETs. In Algo- gregating the number of references incurred within the
rithm 2, the heuristic for selecting spilled tasks will clgan locked regions of the task. Since the programmer will
since partial locking of cache lines affects multiple tasks be locking the regions in L1 (highest utilization benefit),
instead of dilating the WCET of just one. Thus, we spill the we assume that these locked lines consume 80% of the
task whoseNumber_of_con flicting_cache_lines/degree) total data loads. Out of the remaining 20%, we assume
is minimal. 18% are hits in the L2 cache and 2% are references
We can use the algorithms presented above in several ways. to sensory data that goes off chip. We also assume
If tasks can meet their deadlines only under locking with that every 5th instruction is a load. This lets us infer

WCET,cked, then these algorithms will allocate them with number of instruction fetches that incur L1 cache hits
WCETockeq- If WCETockea aNd W CETyniockeq are pro- (see Section 3). These assumptions allow us to derive a
vided, then both fully locked and fully unlocked scenarias ¢ WCET,ocreq for a task.

be assessed by the algorithms. Dealing with execution times3) To derive theWCET niocked, WE assume unlocked

at coarser levels seems more attractive to the developeis. T regions to hit in L2 cache. If two locked regions are

allows them to select lockable lines with rough estimate of accessed by two different paths, then the increase in
the access patterns. Also, it may not be possible to deduce an WCET is due to just one region (the one that dominates
accurate number of references or the estimates can be highly the references), not both. Thus, we randomly select tasks
pessimistic, especially when data regions are being aedess to accommodate such behavior. This also results in var-
sparsely. Conversely, if data regions are being frequently ied increases in execution time betweBNC ETj,cked
referenced and references are uniformly dense arounddocke andWCETyniocked Cross tasks.
regions, then the region resizing can be used in conjunctiord) Next, we assign periods to each task group them into
with CoFFD and CoFFD. different utilization categories: high utilizatiof®.55 >
u; > 0.40), medium utilization(0.40 > u; > 0.25), and
5 Task-set Generation low utilization (0.25 > u; > 0.15).
6. Evaluation

Due to the unavailability of a full blown real-time appli-
cation for massive multi-core architectures, we decided to This section presents results of the conducted experiments
utilize synthetic task sets in our experiments. This altmaal We present our experimental results for a system that steppor
us to test corner cases of our algorithms. Table 2 show®i§gle locked cache ways. Such a scheme is also applicable
the architectural and task-set parameters of our expetahenfvhen considering horizontal cache partitioning, wheretre!

framework. lockable ways in each set are dedicated to a task.
| Parama e VA] TABLE 3. Allocated Cores for CoFFD & GFFD: All Tasks
Processor Model in-order Locked
Cache Line Size 32B Number High Util. Med. Util. low Util.
L1 Cache Size/Associativity | 8KB/2-way of Tasks| GFFD [CoFFD | GFFD [CoFFD | GFFD | CoFFD
Lockable associativity 1/2 4 3 3 3 2 3 2
L1 Access latency 1 cycle 8 6 5 5 4 4 4
L2 Access Latency 10 cycles 12 9 8 6 5 5 5
External Memory Latency 100 cycles
Max. sets locked by a task 114/128 %8 E,; ﬂ 13 1? 12 1?
Min. sets locked by a task 8/128
Max. size of locked region 57 sets gg %8 ig %8 ig %g ig
Min. size of locked region 8 sets
Max. size of task-sets 42 32 22 20 22 21 22 21
total tasks generated 126 36 24 21 24 22 23 22
Max. locked regions by a tas 4 42 27 25 25 24 24 23
Min. locked regions by a task 1
TABLE 2. System Parameters Allocationswhileretaining of locked state: Table 3 depicts

the results of our algorithms when tasks are allocated ikeldc

state, i.e., with an execution time & C ETj,.xeq. The first emphasizes the task’s degree. This prevents the number of
column shows the number of tasks in the task-set. The thitdres to be increased when non-conflict placements are still
and fourth columns show the number of cores allocated Bsasible. Algorithmically, CoFFD avoids spills of taskston
GFFD and CoFFD, respectively, when a task-set is compogbé stack (see Algorithm 3). Heuristic 2 selects the task wit
of high utilization tasks only. The fifth and sixth columnghe leastV C ETni0ckeqa Value. Of the two heuristics, CoOFFD
represent the same for medium utilization tasks, and thé sixselects the one that results in the allocation of fewer cdies

and seventh columns for lower utilization tasks. Lower comxample, most task sets in Table 4 resulted in the allocation
allocations are depicted in bold font. In all cases, CoFFb&f fewer cores under heuristic 1, but the last task set would
results in fewer cores allocated than GFFD, especially as thave resulted in the allocation of 18 cores whereas heu@sti
number of tasks increases. As more tasks are added to th@uced this allocation to 17. This behavior was also oleskrv
system, the conflict graph becomes denser. CoFFD will therile allocating tasks with locked region resizing (seeohdl
avoids strategically conflicts under due to its coloringesob

while the greedy scheme results in a less conflict-conscious TABLE 5. Region Resizing

allocation. Number GFFD CoFFD GFFD | CoFFD
of w/ Partial | w/ Partial | w/ locks | w/ locks
TABLE 4. CoFFD vs GFFD: Selected Tasks Unlocked Tasks Locking Locking only only
Number | GFFD | COFFD | GFFD | COFFD Ut 4 2 2 3 2
of Tasks util. util. | decreased 8 3 3 4 4
by CoFFD 12 4 4 5 5
Z 2 2| 148 0.88| 4054 % 16 6 6 8 8
8 3 3| 205| 2027 0.88 % 20 7 7 12 1
12 5 4| 3.77 3.06| 1883 % 24 8 8 16 15
16 7 6| 5.07 4.13| 1854 % 28 10 10 20 19
20 9 8| 7.33 5.86| 19.64 % 32 10 10 22 21
24 11 10 8.6 7.04| 1813 % 36 12 12 23 22
28 12 1| 10.2 8.65| 1519 % 42 13 13 24 23
32 14 12 11.57 9.7 16.16 %
36 15 15| 12.67| 10.27| 1894 % Region Resized L ocking: The next experiment assessed the
42 17 17| 14.04 11.87 20.37 % optimization of resizing locked regions for conflicted tas/e

observed that sets with high utilization tasks result imtitin

Allocations with all or none: This experiment allows of WCET when locking fails, which reduces their chances
allocation of tasks either with locking of all regions or Wehi of being allocated. In Table 5, we show the results for task-
leaving all of them unlocked. After a locked allocation withsets with low utilization tasks as they benefited the mosnfro
WCETickea is attempted, algorithms can fall back to anregion resizing. The first column shows the number of tasks
unlocked allocation WithWC ETniockea fOr @ given task in the task-sets. The second and the third columns show the
in case conflicts have prevented the allocation on a giveamber of cores allocated when partial locking is used by
core. Table 3 depicts the results with best results in bofgFFD and CoFFD, respectively. The fourth and fifth columns
face. The first column shows the number of tasks in thgow the number of allocated cores when tasks are not allowed
task-set. The second and the third columns show the numfetunlock any of their regions. The results indicate that for
of cores allocated by GFFD and CoFFD, respectively. Seiggher number of tasks, partial locking after resizing e
with higher/medium utilization tasks result in similar@df- the number of required cores by 50%. It is interesting to note
tions. This is because it is difficult for the higher utilimat that the greedy algorithm performed as well as CoFFD with
tasks to be allocated under the inflated execution budget@mbined heuristics 1 and 2. This is due to the fine-grained
WCET uniockeda- However, tasks with lower utilizations canarbitration of conflict regions under resizing. For tasksseith
be allocate tasks WitV CETyniockea- The fourth and the medium utilization tasks, CoFFD and GFFD allocate a similar
fifth columns depict the system utilization delivered undegfumber of cores for all task-sets. Yet, CoFFD results in 1%-
the allocations of the algorithms. The last column shows th&9 reduced system utilization.
decrease in system utilization achieved by CoFFD over GFFD.
The results indicate that CoFFD beats GFFD not only if. Conclusions
terms of allocating fewer cores but has in improving system
utilization by over 18% for task-sets with large numbers of The use of multi-core architectures is not yet prevalent in
tasks. This is because GFFD inflates the execution budgeil-time systems since guaranteeing predictability afdha
of task that cannot be allocated to cores under lockingal-time tasks on such architectures remains a challenge.
In addition, conflict analysis prior to allocation allowseth Cache locking is a technique that is commonly employed to
algorithm to apply heuristics to reduce the number of talsks t improve the predictability of real-time task execution. INple
remain unlocked. The results of CoFFD are due to a combinegks may choose to lock conflicting regions in the cache.
heuristics for selecting spilled tasks in CoFFD. Heurigtic While multi-core architectures can conceptually suppachs

selects the task with the |ea§etg‘feceffcugj;’;}“‘;§s2 value, which scenarios by allocating conflicting tasks onto differenteso

current static task partitioning techniques for hard teak

tasks do not take such conflicts into account.

This paper proposes a two algorithms for task allocation i A

multi-core environment where tasks are allowed to lock eac
lines in a specified subset of cache ways for each core’stpriva

L1 cache. The first algorithm, GFFD is an enhanced versiond

of the First Fit Decreasing (FFD) algorithm. The second,

CoFFD, is based on a graph coloring method. Experimental

results indicate that CoFFD consistently performs bettant
the GFFD for lower number of cores and lower system

utilization.

We also propose a mechanism that allows locked regions to
be resized. This scheme is applicable when the programmer
can accurately provide the number of references to a lockédl

cache line, yet does not want to be concerned with fine-gaaine

locking decisions. The two algorithms were further adapted
to use task and reference information to choose whether[8l

retain a line in locked or unlock state for conflicting regson
With such partial locking, the number of cores in some

cases is reduced by almost 50% with an increase in system

utilization of 10%. Overall, this work is unique in considey
the challenges of future multi-core architectures for-teak
systems and provides key insights into task partitioninth wi
locked caches for architectures with private caches.

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

El

[10]

(11]

[12]

Tilera processor family. http://www.tilera.com/.

J. Anderson, J. Calandrino, and U. Devi. Real-time salieg on
multicore platforms. InIEEE Real-Time Embedded Technology and
Applications Symposiunpages 179-190, Apr. 2006.

A. Burchard, J. Liebeherr, Y. Oh, and S. Son. New straggior
assigning real-time tasks to multiprocessor systedtSEE Trans. on
Computers 44(12):1429-1442, 1995.

J. Calandrino and J. Anderson. Cache-aware real-tinfeeciding
on multicore platforms: Heuristics and a case study. Euromicro
Conference on Real-Time Systemages 209-308, July 2008.

G. J. Chaitin. Register allocation & spilling via grapllering. In
ACM SIGPLAN Conference on Programming Language Design and
Implementation pages 98-105, 1982.

S. Chattopadhyay, A. Roychoudhury, and T. Mitra. Moxglishared
cache and bus in multi-cores for timing analysis. Rroceedings of
the 13th International Workshop on Software & Compgildor
Embedded Systen8COPES '10, pages 6:1-6:10, New York, NY, USA,
2010. ACM.

D. Choffnes, M. Astley, and M. J. Ward. Migration polisidor multi-
core fair-share schedulingACM SIGOPS Operating Systems Reyiew
42:92-93, 2008.

N. Eisley, L.-S. Peh, and L. Shang. Leveraging on-chipvoeks for data
cache migration in chip multiprocessors. liternational conference on
Parallel architectures and compilation techniquesges 197-207, 2008.
N. Guan, M. Stigge, W. Yi, and G. Yu. Cache-aware schedukand
analysis for multicores. IRProceedings of the seventh ACM international
conference on Embedded softwaEMSOFT '09, pages 245-254, New
York, NY, USA, 2009. ACM.

D. Hardy, T. Piquet, and I. Puaut. Using bypass to tighteet estimates
for multi-core processors with shared instruction cacle®roceedings
of the 30th Real-Time Systems Symposipages 68-77, Washington
D.C., USA, Dec. 2009.

T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn. Efficiesperating
system scheduling for performance-asymmetric multi-eoohitectures.

In In ACM/IEEE conference on Supercomputipgges 1-11, Nov. 2007.
T. Li, P. Brett, B. Hohlt, R. Knauerhase, S. McElderrpjdaS. Hahn.
Operating system support for shared-isa asymmetric rooig-architec-
tures. InWorkshop on the Interaction between Operating Systems and
Computer Architecturepages 19-26, June 2008.

[13] J. Ouyang and Y. Xie.

(17]

Loft: A high performance netwonk-chip
providing quality-of-service support. Microarchitecture, IEEE/ACM
International Symposium ¢1®:409-420, 2010.

M. Paolieri, E. Quifiones, F. J. Cazorla, G. Bernat, and Valero.
Hardware support for wcet analysis of hard real-time maifgcsystems.
In ISCA pages 57-68, 2009.

I. Puaut. Wocet-centric software-controlled instiant caches for hard
real-time systems. IECRTS '06: Proceedings of the 18th Euromicro
Conference on Real-Time Systemages 217-226, Washington, DC,
USA, 2006. IEEE Computer Society.

I. Puaut and D. Decotigny. Low-complexity algorithma fstatic cache
locking in multitasking hard real-time systems. ImIEEE Real-Time
Systems Symposiumpages 114-123, 2002.

I. Puaut and C. Pais. Scratchpad memories vs lockedesaich hard
real-time systems: a quantitative comparison. Piroceedings of the
conference on Design, automation and test in Eurgages 1484-1489,
San Jose, CA, USA, 2007. EDA Consortium.

V. Suhendra and T. Mitra. Exploring locking & partitiong for
predictable shared caches on multi-cores. Ploceedings of the 45th
annual Design Automation Conferengeges 300-303, New York, NY,
USA, 2008. ACM.

X. Vera, B. Lisper, and J. Xue. Data caches in multitagkhard real-
time systems. Inn IEEE Real-Time Systems Symposiymages 154—
165, 2003.

