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Abstract. Learnability in Valiant’s PAC learning model has been shown to be strongly related to the
existence of uniform laws of large numbers. These laws define a distribution-free convergence
property of means to expectations uniformly over classes of random variables. Classes of real-valued
functions enjoying such a property are also known as uniform Glivenko–Cantelli classes. In this
paper, we prove, through a generalization of Sauer’s lemma that may be interesting in its own right,
a new characterization of uniform Glivenko–Cantelli classes. Our characterization yields Dudley,
Giné, and Zinn’s previous characterization as a corollary. Furthermore, it is the first based on a
simple combinatorial quantity generalizing the Vapnik–Chervonenkis dimension. We apply this result

An earlier version of this paper appeared in Proceedings of the 34th Annual Symposium on the
Foundations of Computer Science. IEEE, New York, pp. 292–301.
N. Alon acknowledges partial support from a USA–Israeli BSF grant. Part of this research was done
while N. Cesa-Bianchi was visiting UC Santa Cruz, partially supported by the “Progetto finalizzato
sistemi informatici e calcolo parallelo” of CNR under grant 91.00884.69.115.09672. N. Cesa-Bianchi
also acknowledges support of ESPRIT Working Group in Neural and Computational Learning,
NeuroCOLT 8556.
Authors’ addresses: N. Alon, Department of Mathematics, R. and B. Sackler Faculty of Exact
Sciences, Tel-Aviv University, Tel-Aviv, Israel, e-mail: noga@math.tau.ac.il; S. Ben-David, Depart-
ment of Computer Science, Technion, Haifa 32000, Israel, e-mail: shai@cs.technion.ac.il; N. Cesa-
Bianchi, DSI, University of Milan, Via Comelico 39, 20135 Milano, Italy, e-mail:
cesabian@dsi.unimi.it; D. Haussler, Department of Computer Science, University of California,
Santa Cruz, Santa Cruz, CA 95064, e-mail: haussler@cse.ucsc.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
q 1997 ACM 0004-5411/97/0700-0615 $03.50

Journal of the ACM, Vol. 44, No. 4, July 1997, pp. 615–631.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F263867.263927&domain=pdf&date_stamp=1997-07-01


to obtain the weakest combinatorial condition known to imply PAC learnability in the statistical
regression (or “agnostic”) framework. Furthermore, we find a characterization of learnability in the
probabilistic concept model, solving an open problem posed by Kearns and Schapire. These results
show that the accuracy parameter plays a crucial role in determining the effective complexity of the
learner’s hypothesis class.

Categories and Subject Descriptors: I.2.6 [Artificial Intelligence]: Learning–Concept learning

General Terms: Theory

Additional Key Words and Phases: PAC learning, uniform laws of large numbers, Vapnik–Cher-
vonenkis dimension

1. Introduction

In typical learning problems, the learner is presented with a finite sample of data
generated by an unknown source and has to find, within a given class, the model
yielding best predictions on future data generated by the same source. In a
realistic scenario, the information provided by the sample is incomplete, and
therefore the learner might settle for approximating the actual best model in the
class within some given accuracy. If the data source is probabilistic and the
hypothesis class consists of functions, a sample size sufficient for a given accuracy
has been shown to be dependent on different combinatorial notions of “dimen-
sion”, each measuring, in a certain sense, the complexity of the learner’s
hypothesis class.

Whenever the learner is allowed a low degree of accuracy, the complexity of
the hypothesis class might be measured on a coarse “scale” since, in this case, we
do not need the full power of the entire set of models. This position can be
related to Rissanen’s MDL principle [Rissanen 1978], Vapnik’s structural mini-
mization method [Vapnik 1982], and Guyon et al.’s notion of effective dimension
[Guyon et al. 1991]. Intuitively, the “dimension” of a class of functions decreases
as the coarseness of the scale at which it is measured increases. Thus, by
measuring the complexity at the right “scale” (i.e., proportional to the accuracy)
the sample size sufficient for finding the best model within the given accuracy
might dramatically shrink.

As an example of this philosophy, consider the following scenario.1 Suppose a
meteorologist is requested to compute a daily prediction of the next day’s
temperature. His forecast is based on a set of presumably relevant data, such as
the temperature, barometric pressure, and relative humidity over the past few
days. On some special events, such as the day before launching a Space Shuttle,
his prediction should have a high degree of accuracy, and therefore he analyzes a
larger amount of data to finely tune the parameters of his favorite mathematical
meteorological model. On regular days, a smaller precision is tolerated, and thus
he can afford to tune the parameters of the model on a coarser scale, saving data
and computational resources.

In this paper, we demonstrate quantitatively how the accuracy parameter plays
a crucial role in determining the effective complexity of the learner’s hypothesis
class.2

1 Adapted from Kearns and Schapire [1994].
2 Our philosophy can be compared to the approach studied in Haussler and Long [1995], where the
range of the functions in the hypothesis class is discretized into a number of elements inversely

616 N. ALON ET AL.



We work within the decision-theoretic extension of the PAC framework,
introduced by Haussler [1992] and also known as agnostic learning. In this model,
a finite sample of pairs ( x, y) is obtained through independent draws from a
fixed distribution P over X 3 [0, 1]. The goal of the learner is to be able to
estimate the conditional expectation of y given z. This quantity is defined by a
function f: X 3 [0, 1], called the regression function in statistics. The learner is
given a class * of candidate regression functions, which may or may not include
the true regression function f. This class * is called e-learnable if there is a
learner with the property that for any distribution P and corresponding regres-
sion function f, given a large enough random sample from P, this learner can find
an e-close approximation3 to f within the class *, or if f is not in *, an e-close
approximation to a function in * that best approximates f. (This analysis of
learnability is purely information-theoretic, and does not take into account
computational complexity.) Throughout the paper, we assume that * (and later
^) satisfies some mild measurability conditions. A suitable such condition is the
“image admissible Suslin” property (see Dudley [1984, Section 10.3.1, page 101]).

The special case where the distribution P is taken over X 3 {0, 1} was studied
by Kearns and Schapire [1994], who called this setting probabilistic concept
learning. If we further demand that the functions in * take only values in {0, 1},
it turns out that this reduces to one of the standard PAC learning frameworks for
learning deterministic concepts. In this case, it is well known that the learnability
of * is completely characterized by the finiteness of a simple combinatorial
quantity known as the Vapnik–Chervonenkis (VC) dimension of * [Vapnik and
Chervonenkis 1971; Blumer et al. 1989]. An analogous combinatorial quantity for
the probabilistic concept case was introduced by Kearns and Schapire. We call
this quantity the Pg-dimension of *, where g . 0 is a parameter that measures
the “scale” to which the dimension of the class * is measured. They were only
able to show that finiteness of this parameter was necessary for probabilistic
concept learning, leaving the converse open. We solve this problem showing that
this condition is also sufficient for learning in the harder agnostic model.

This last result has been recently complemented by Bartlett et al. [1996], who
have shown that the Pg-dimension characterizes agnostic learnability with respect
to the mean absolute error. Simon [1994] has independently proven a partial
characterization of (nonagnostic) learnability using a slightly different notion of
dimension.

As in the pioneering work of Vapnik and Chervonenkis [1971], our analysis of
learnability begins by establishing appropriate uniform laws of large numbers. In
our main theorem, we establish the first combinatorial characterization of those
classes of random variables whose means uniformly converge to their expecta-
tions for all distributions. Such classes of random variables have been called
Glivenko–Cantelli classes in the empirical processes literature [Dudley et al.
1991]. Given the usefulness of related uniform convergence results in combina-
torics and randomized algorithms, we feel that this result may have many
applications beyond those we give here. In addition, our results rely on a

proportional to the accuracy. In this case, one is interested in bounding the complexity of the
discretized class through the dimension of the original class. Some of our results build on this
discretization technique.
3 All notions of approximation are with respect to mean square error.
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combinatorial result that generalizes Sauer’s Lemma [Sauer 1972; Shelah 1972].
This new lemma considerably extends some previously known results concerning
{0, 1, p} tournament codes [van Lint 1985; Collins et al. 1987]. As other related
variants of Sauer’s Lemma were proven useful in different areas, such as
geometry and Banach space theory (see, e.g., Milman [1982] and Alon and
Milman [1983]), we also have hope to apply this result further.

2. Uniform Glivenko–Cantelli Classes

The uniform, distribution-free convergence of empirical means to true expecta-
tions for classes of real-valued functions has been studied by Dudley, Giné,
Pollard, Talagrand, Vapnik, Zinn, and others in the area of empirical processes.
These results go under the general name of uniform laws of large numbers. We
give a new combinatorial characterization of this phenomenon using methods
related to those pioneered by Vapnik and Chervonenkis.

Let ^ be a class of functions from a set X into [0, 1]. (All the results presented
in this section can be generalized to classes of functions taking values in any
bounded real range.) Let P denote a probability distribution over X such that f is
P-measurable for all f [ ^. By P( f ), we denote the P-mean of f, that is, its
integral with respect to P. By Pn( f ), we denote the random variable 1/n ¥ i51

n

f( xi), where x1, x2, . . . , xn are drawn independently at random according to P.
Following Dudley et al. [1991], we say that ^ is an e-uniform Glivenko–Cantelli

class if

lim
n3`

sup
P

PrH sup
m$n

sup
f[^

uPm~ f ! 2 P~ f ! u . eJ 5 0. (1)

Here Pr denotes the probability with respect to the points x1, x2, . . . , drawn
independently at random according to P.4 The supremum is understood with
respect to all distributions P over X (with respect to some suitable s-algebra of
subsets of X; see Dudley et al. [1991]).

We say that ^ satisfies a distribution-free uniform strong law of large numbers, or
more briefly, that ^ is a uniform Glivenko–Cantelli class, if ^ is an e-uniform
Glivenko–Cantelli class for all e . 0.

We now recall the notion of VC-dimension, which characterizes uniform
Glivenko–Cantelli classes of {0, 1}-valued functions.

Let ^ be a class of {0, 1}-valued functions on some domain set, X. We say ^
VC-shatters a set A # X if, for every E # A, there exists some fE [ ^ satisfying:
For every x [ A\ E, fE( x) 5 0, and, for every x [ E, fE( x) 5 1. Let the
VC-dimension of ^, denoted VC-dim(^), be the maximal cardinality of a set A #
X that is VC-shattered by ^. (If ^ VC-shatters sets of unbounded finite sizes,
then let VC-dim(^) 5 `). The following was established by Vapnik and
Chervonenkis [1971] for the “if” part and (in a stronger version) by Assouad and
Dudley [1989] (see Dudley et al. [1991, proposition 11, page 504].)

THEOREM 2.1 Let ^ be a class of functions from X into {0, 1}. Then ^ is a
uniform Glivenko–Cantelli class if and only if VC-dim(^) is finite.

4 Actually Dudley et al. use outer measure here, to avoid some measurability problems in certain
cases.

618 N. ALON ET AL.



Several generalizations of the VC-dimension to classes of real-valued functions
have been previously proposed.

Let ^ be a class of [0, 1]-valued functions on some domain set X.

POLLARD [1990] (See also Haussler [1992].) We say ^ P-shatters a set A # X if
there exists a function s: A 3 R such that, for every E # A, there exists some fE

[ ^ satisfying: For every x [ A\ E, fE( x) , s( x) and, for every x [ E, fE( x) $
s( x). Let the P-dimension (denoted by P-dim) be the maximal cardinality of a set
A # X that is P-shattered by ^. (If ^ P-shatters sets of unbounded finite sizes,
then let P-dim(^) 5 `.)

VAPNIK [1989]. We say ^ V-shatters a set A # X if there exists a constant a [ R

such that, for every E # A, there exists some fE [ ^ satisfying: For every x [
A\E, fE( x) , a and, for every x [ E, fE( x) $ a . Let the V-dimension (denoted
by V-dim) be the maximal cardinality of a set A # X that is V-shattered by ^. (If
^ V-shatters sets of unbounded finite sizes, then let V-dim(^) 5 `.)

It is easily verified (see below) that the finiteness of neither of these
combinatorial quantities provides a characterization of uniform Glivenko–Can-
telli classes (more precisely, they both provide only a sufficient condition).
Kearns and Schapire [1994] introduced the following parametrized variant of the
P-dimension.

Definition 2.2. Let ^ be a class of [0, 1]-valued functions on some domain set
X and let g be a positive real number. We say ^ Pg-shatters a set A # X if there
exists a function s: A 3 [0, 1] such that, for every E # A, there exists some fE

[ ^ satisfying: For every x [ A\ E, fE( x) # s( x) 2 g and, for every x [ E,
fE( x) $ s( x) 1 g. Let the Pg-dimension of ^, denoted Pg-dim(^), be the
maximal cardinality of a set A # X that is Pg-shattered by ^. (If ^ Pg-shatters
sets of unbounded finite sizes, then let Pg-dim(^) 5 `.)

A parametrized version of the V-dimension, which we’ll call Vg-dimension, can
be defined in the same way we defined the Pg-dimension from the P-dimension.
The first lemma below follows directly from the definitions. The second lemma is
proven through the pigeonhole principle.

LEMMA 2.3. For any ^ and any g . 0,

Pg-dim~^! # P-dim~^! and Vg-dim~^! # V-dim~^! .

LEMMA 2.4. For any class ^ of [0, 1]-valued functions and for all g . 0,

Vg-dim~^! # Pg-dim~^! # S 2 1

2g 2 1DVg/ 2-dim~^! .

The Pg and the Vg dimensions have the advantage of being sensitive to the scale
at which differences in function values are considered significant.

Our main result is the following new characterization of uniform Glivenko–
Cantelli classes, which exploits the scale-sensitive quality of the Pg and the Vg

dimensions.

THEOREM 2.5. Let ^ be a class of functions from X into [0, 1].
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(1) There exist constants a , b . 0 (independent of ^) such that for any g . 0

(a) If Pg-dim(^) is finite, then ^ is an (ag)-uniform Glivenko–Cantelli class.
(b) If Vg-dim(^) is finite, then ^ is a (bg)-uniform Glivenko–Cantelli class.
(c) If Pg-dim(^) is infinite, then ^ is not a (g 2 t)-uniform Glivenko–Cantelli

class for any t . 0.
(d) If Vg-dim(^) is infinite, then ^ is not a (2g 2 t)-uniform Glivenko–

Cantelli class for any t . 0.

(2) The following are equivalent:

(a) ^ is a uniform Glivenko–Cantelli class.
(b) Pg-dim(^) is finite for all g . 0.
(c) Vg-dim(^) is finite for all g . 0.

(In the proof, we actually show that a # 24 and b # 48; however, these values
are likely to be improved through a more careful analysis.)

The proof of this theorem is deferred to the next section. Note however that
part (1) trivially implies part (2).

The following simple example (a special case of Dudley et al. [1991, Example
4, page 508], adapted to our purposes) shows that the finiteness of neither P-dim
nor V-dim yields a characterization of Glivenko–Cantelli classes. (Throughout
the paper, we use ln to denote the natural logarithm and log to denote the
logarithm in base 2.)

Example 1. Let ^ be the class of all [0, 1]-valued functions f defined on the
positive integers and such that f( x) # e2x for all x [ N and all f [ ^. Observe
that, for all g . 0, Pg-dim(^) 5 Vg-dim(^) 5 ln(1/2g). Therefore, ^ is a
uniform Glivenko–Cantelli class by Theorem 2.5. On the other hand, it is not
hard to show that the P-dimension and the V-dimension of ^ are both infinite.

Theorem 2.5 provides the first characterization of Glivenko–Cantelli classes in
terms of a simple combinatorial quantity generalizing the Vapnik–Chervonenkis
dimension to real-valued functions. Our results extend previous work by Dudley
et al., where an equivalent characterization is shown to depend on the asymptotic
properties of the metric entropy. Before stating the metric-entropy characteriza-
tion of Glivenko–Cantelli classes we recall some basic notions from the theory of
metric spaces.

Let (X, d) be a (pseudo) metric space, let A be a subset of X and e . 0.
A set B # A is an e-cover5 for A if, for every a [ A, there exists some b [ B

such that d(a, b) , e. The e-covering number of A, 1d(e, A), is the minimal
cardinality of an e-cover for A (if there is no such finite cover then it is defined to
be `).

A set A # X is e-separated if, for any distinct a, b [ A, d(a, b) $ e. The
e-packing number of A, }d(e, A), is the maximal size of an e-separated subset of
A.

The following is a simple, well-known fact:

5 Because of the condition B # A, the sets B defined here are often called proper e-covers. A more
general (and closely related) notion of cover is obtained when the elements of B can also belong to
X\A . Proper covers are used in Vapnik [1982, pp. 225–228], which we use to prove Lemma 2.6.

620 N. ALON ET AL.



LEMMA 2.6. For every ( pseudo) metric space (X, d), every A # X, and e . 0

}d~2e, A! # 1d~e, A! # }d~e, A! .

For a sequence of n points xn 5 ( x1, x2, . . . , xn) and a class ^ of real-valued
functions defined on X, let lxn

` ( f, g) denote the l` distance between f, g [ ^ on
the points xn, that is

lxn
` ~ f, g! 5 max

1#i#n

uf~ xi! 2 g~ xi! u.

As we will often use the lxn
` distance, let us introduce the notation 1(e, ^, xn)

and }(e, ^, xn) to stand for, respectively, the e-covering and the e-packing
number of ^ with respect to lxn

` .
A notion of metric entropy Hn, defined by

Hn~e, ^! 5 sup
xn[Xn

log 1~e, ^, xn! ,

has been used by Dudley, Giné, and Zinn to prove the following.

THEOREM 2.7. [DUDLEY ET AL. 1991, THEOREM 6, PAGE 500]. Let ^ be a class
of functions from X into [0, 1]. Then

(1) ^ is a uniform Glivenko–Cantelli class if and only if limn3`Hn(e, ^)/n 5 0
for all e . 0.

(2) For all e . 0, if limn3`Hn(e, ^)/n 5 0, then ^ is an (8e)-uniform
Glivenko–Cantelli class.

The results by Dudley et al. also give similar characterizations using lp norms in
place of the l` norm.

Related results were proved earlier by Vapnik and Chervonenkis [1971; 1981].
In particular, they proved an analogue of Theorem 2.7, where the convergence of
means to expectations is characterized for a single distribution P. Their charac-
terization is based on Hn(e, ^) averaged with respect to samples drawn from P.

3. Proof of the Main Theorem

We wish to obtain a characterization of uniform Glivenko–Cantelli classes in
terms of their Pg-dimension. By using standard techniques, we just need to
bound the g-packing numbers of sets of real-valued functions by an appropriate
function of their Pcg-dimension, for some positive constant c. Our line of attack
is to reduce the problem to an analogous problem in the realm of finite-valued
functions. Classes of functions into a discrete and finite range can then be
analyzed using combinatorial tools.

We shall first introduce the discrete counterparts of the definitions above. Our
next step will be to show how the real-valued problem can be reduced to a
combinatorial problem. The final, and most technical part of our proof, will be
the analysis of the combinatorial problem through a new generalization of
Sauer’s Lemma.

Let X be any set and let B 5 {1, . . . , b}. We consider classes ^ of functions
f from X to B. Two such functions f and g are separated if they are 2-separated in
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the l` metric, that is, if there exists some x [ X such that uf( x) 2 g( x) u $ 2.
The class ^ is pairwise separated if f and g are separated for all f Þ g in ^.

Definition 3.1. ^ strongly shatters a set A # X if A is nonempty and there
exists a function s: A 3 B such that, for every E # A, there exists some fE [ ^
satisfying: For every x [ A\ E, fE( x) # s( x) 2 1 and, for every x [ E, fE( x) $
s( x) 1 1. If s is any function witnessing the shattering of A by ^, we shall also
say that ^ strongly shatters A according to s.

Let the strong dimension of ^, S-dim(^), be the maximal cardinality of a set A
# X that is strongly shattered by ^. (If ^ strongly shatters sets of unbounded
finite size, then let S-dim(^) 5 `.)

For a function f: X 3 R, f $ 0, and a real number r . 0, the r-discretization
of f, denoted by fr, is the function fr( x) 5 f( x)/r, that is,

fr~ x! 5 max$i [ N : ir # f~ x!% .

For a class ^ of nonnegative real-valued functions let ^r 5 { fr : f [ ^}.
We need the following lemma:

LEMMA 3.2. For any class ^ of [0, 1]-valued functions on a set X and for any r
. 0,

(1) for every g # r/2, S-dim(^r) # Pg-dim(^);
(2) for every e $ 2r and every xn [ Xn, }(e, ^, xn) # }(2, ^r, xn).

PROOF. To prove part (1), we show that any set strongly shattered by ^r is
also Pr/ 2-shattered by ^. If A # X is strongly shattered by ^r, then there exists
a function s such that for every E # A there exists some f(E) [ ^ satisfying: For
every x [ A\ E, f(E)

r ( x) 1 1 # s( x) and for every x [ E, f(E)
r ( x) $ s( x) 1 1.

Assume first f(E)
r ( x) 1 1 # s( x). Then r z f(E)

r ( x) 1 r # r z s( x) holds and,
by definition of f(E)

r , we have f(E)( x) , r z f(E)
r ( x) 1 r, which implies f(E)( x) ,

r z s( x). Now assume f(E)
r ( x) $ s( x) 1 1. Then r z f(E)

r ( x) $ r z s( x) 1 r and,
by definition of f(E)

r , we have f(E)( x) $ rf(E)
r ( x), which implies f(E)( x) $ r z

s( x) 1 r. Thus A is Pr/ 2-shattered by ^, as can be seen using the function s9: A
3 [0, 1] defined by s9( x) 5 r z s( x) 1 r/ 2 for all x [ X.

To prove part (2) of the lemma, it is enough to observe that, by the definition
of ^r, for all f, g [ ^ and all x [ X, uf( x) 2 g( x) u $ 2r implies ufr( x) 2
gr( x) u $ 2. e

We now prove our main combinatorial result, which gives a new generalization of
Sauer’s Lemma. Our result extends some previous work concerning {0, 1, p}
tournament codes, proven in a completely different way (see van Lint [1985] and
Collins et al. [1987]).

The lemma concerns the l` packing numbers of classes of functions into a
finite range. It shows that, if such a class has a finite strong dimension, then its
2-packing number is bounded by a subexponential function of the cardinality of
its domain. For simplicity, we arbitrarily fix a sequence xn of n points in X and
consider only the restriction of ^ to this domain, dropping the subscript xn from
our notation.
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LEMMA 3.3. If ^ is a class of functions from a finite domain X of cardinality n
to a finite range, B 5 {1, 2, . . . , b}, and S-dim(^) 5 d, then }l`(2, ^) , 2(nb2)log y,
where y 5 ¥i51

d (i
n)bi.

Note that for fixed d the bound in Lemma 3.3 is nO(log n) even if b is not a
constant but a polynomial in n.

PROOF OF LEMMA 3.3. Fix b $ 3 (the case b , 3 is trivial.) Let us say that a
class ^ as above strongly shatters a pair ( A, s) (for a nonempty subset A of X
and a function s: A 3 B) if ^ strongly shatters A according to s. For all integers
h $ 2 and n $ 1, let t(h, n) denote the maximum number t such that for every
set F of h pairwise separated functions f from X to B, F strongly shatters at least
t pairs ( A, s) where A # X, A Þ À, and s: A 3 B. If no such F exists, then t(h, n) is
infinite.

Note that the number of possible pairs ( A, s) for which the cardinality of A
does not exceed d $ 1 is less than y 5 ¥ i51

d ( i
n)bi (as for A of size i . 0, there

are strictly less than bi possibilities to choose s). It follows that, if t(h, n) $ y for
some h, then } l`(2, ^) , h for all sets ^ of functions from X to B and such
that S-dim(^) # d. Therefore, to finish the proof, it suffices to show that
t(2(nb

2

)log y, n) $ y for all d $ 1 and n $ 1.
We claim that t(2, n) 5 1 for all n $ 1, and t(2mnb2, n) $ 2t(2m, n 2 1)

for all m $ 1 and n $ 2. The first part of the claim is readily verified. For the
second part, first note that if no set of 2mnb2 pairwise separated functions from
X to B exists, then t(2mnb2, n) 5 ` and hence the claim holds. Assume then
that there is a set F of 2mnb2 pairwise separated functions from X to B. Split it
arbitrarily into mnb2 pairs. For each pair ( f, g) find a coordinate x [ X where
uf( x) 2 g( x) u . 1. By the pigeonhole principle, the same coordinate x is picked
for at least mb2 pairs. Again by the pigeonhole principle, there are at least
mb2/(2

b) . 2m of these pairs ( f, g) for which the (unordered) set { f( x), g( x)}
is the same. This means that there are two subclasses of F, call them F1 and F2,
and there are x [ X and i, j [ B, with j . i 1 1, so that for each f [ F1, f( x)
5 i and for each g [ F2 g( x) 5 j, and uF1u 5 uF2u 5 2m. Obviously, the
members of F1 are pairwise separated on X\{ x} and the same holds for the
members of F2. Hence, by the definition of the function t, F1 strongly shatters at
least t(2m, n 2 1) pairs ( A, s) with A # X \ { x}, and the same holds for F2.
Clearly F strongly shatters all pairs strongly shattered by F1 or F2. Moreover, if
the same pair ( A, s) is strongly shattered both by F1 and by F2, then F also
strongly shatters the pair ( A ø { x}, s9), where s9( y) 5 s( y) for y [ A and
s9( x) 5 (i 1 j)/ 2. It follows that t(2mnb2, n) $ 2t(2m, n 2 1), establishing
the claim.

Now suppose n . r $ 1. Let h 5 2(nb2)((n 2 1)b2) . . . ((n 2 r 1 1)b2).
By repeated application of the above claim, it follows that t(h, n) $ 2r. Since t
is clearly nondecreasing in its first argument, and 2(nb2) r $ h, this implies
t(2(nb2)r, n) $ 2r for all n . r $ 1. Now set r 5 log2 y, where y 5 ¥i51

d (i
n)bi. If

n # r, then 2(nb2) r . bn. However, since the total number of functions from X
to B is bn, there are no sets of pairwise separated functions of size larger than
this, and hence t(2(nb2) r, n) 5 t(2(nb2)log2 y, n) 5 ` . y in this case. On the
other hand, when n . r, the result above yields t(2(nb2)log2 y, n) $ 2log2y $
y. Thus, in either case, t(2(nb2)log2 y, n) $ y, completing the proof. e
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Before proving Theorem 2.5, we need two more lemmas. The first one is a
straightforward adaptation of Vapnik [1982, Section A.6, p. 223].

LEMMA 3.4. Let ^ be a class of functions from X into [0, 1] and let P be a
distribution over X. Then, for all e . 0 and all n $ 2/e2,

PrH sup
f[^

UPn~ f ! 2 P~ f !U . eJ # 12n z E@1~e/6, ^, x̃2n!#exp~2e2n/36!

(2)

where Pr denotes the probability with respect to the sample x1, . . . , xn drawn indepen-
dently at random according to P, and E the expectation with respect to a second sample
x̃2n 5 x̃1, . . . , x̃2n also drawn independently at random according to P.

PROOF. A well-known result (see for example, Dudley [1984, Lemma 11.1.5]
or Giné and Zinn [1984, Lemma 2.5]) shows that, for all n $ 2/e2,

PrH sup
f[^

uPn~ f ! 2 P~ f ! u . eJ # 2PrH sup
f[^

uPn9~ f ! 2 Pn0~ f ! u .
e

2J ,

where Pn9( f ) 5 n21 ¥ i51
n f( x̃ i), Pn0( f ) 5 n21 ¥ i5n11

2n f( x̃ i).
We combine this with a result by Vapnik [1982, pp. 225–228] showing that for

all e . 0.

PrH sup
f[^

uPn9~ f ! 2 Pn0~ f ! u . eJ # 6n z E@1~e/3, ^, x̃2n!#exp~2e2n/9! .

This concludes the proof. e

The next result applies Lemma 3.3 to bound the expected covering number of a
class ^ in terms of Pg-dim(^).

LEMMA 3.5. Let ^ be a class of functions from X into [0, 1] and P a distribution
over X. Choose 0 , e , 1 and let d 5 Pe/4-dim(^). Then

E@1~e, ^, xn!# # 2S 4n

e2 D dlog~2en/~de!!

where the expectation E is taken with respect to a sample x1, . . . , xn drawn
independently at random according to P.

PROOF. By Lemma 2.6, Lemmas 3.2 and 3.3, and Stirling’s approximation,

E@1~e, ^, xn!# # sup
xn

1~e, ^, xn!

# sup
xn

}~e, ^, xn!

# sup
xn

}~2, ^e/ 2, xn!

# 2S 4n

e2 D d log~2en/~de!!

. (3)
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We are now ready to prove our characterization of uniform Glivenko–Cantelli
classes.

PROOF OF THEOREM 2.5. We begin with part (1)(d): If Vg-dim(^) 5 ` for
some g . 0, then we will show that ^ is not a (2g 2 t)-uniform Glivenko–
Cantelli class for any t . 0. To see this, assume Vg-dim(^) 5 `. For any sample
size n and any d . n, find in X a set S of d points that are Vg-shattered by ^.
Then there exists a . 0 such that for every E # S there exists some fE [ ^
satisfying: For every x [ A\ E, fE( x) # a 2 g and, for every x [ E, fE( x) $ a
1 g . Let P be the uniform distribution on S. For any sample xn 5 ( x1, . . . , xn)
from S there is a function f [ ^ such that f( xi) # a 2 g, 1 # i # n, and f( x)
$ a 1 g for all x [ S\ { x1, . . . , xn}. Thus, for any t . 0, if d 5 uS u is large
enough we can find some f [ ^ such that uP( f ) 2 Pn( f ) u $ 2g 2 t. This
proves part (1)(d). Part (1)(c) follows from Lemma 2.4.

To prove part (1)(a), we use inequality (2) from Lemma 3.4. Then, to bound
the expected covering number we apply Lemma 3.5. This shows that

lim
n3`

sup
P

PrH sup
f[^

uPn~ f ! 2 P~ f ! u . agJ 5 0 (4)

for some a . 0 whenever Pg-dim(^) is finite. Equation (4) shows that Pn( f ) 3
P( f ) in probability for all f [ ^ and all distributions P. Furthermore, as Lemma
3.4 and Lemma 3.5 imply that ¥n51

` Pr{supf[^uPn( f ) 2 P( f ) u . ag} , `, one
may apply the Borel–Cantelli lemma and strengthen (4) to almost sure conver-
gence; that is,

lim
n3`

sup
P

PrH sup
m$n

sup
f[^

uPm~ f ! 2 P~ f ! u . agJ 5 0.

This completes the proof of part (1)(a). The proof of part (1)(b) follows
immediately from Lemma 2.4. e

The proof of Theorem 2.5, in addition to being simpler than the proof in Dudley
et al. [1991] (see Theorem 2.7 in this paper), also provides new insights into the
behaviour of the metric entropy used in that characterization. It shows that there
is a large gap in the growth rate of the metric entropy Hn(e, ^): either ^ is a
uniform Glivenko–Cantelli class, and hence, by (3) and by definition of Hn, for
all e . 0, Hn(e, ^) 5 O(log2 n); or ^ is not a uniform Glivenko–Cantelli class,
and hence there exists e . 0 such that Pe-dim(^) 5 `, which is easily seen to
imply that Hn(e, ^) 5 V(n). It is unknown if log2 n can be replaced by loga n
where 1 # a , 2.

From the proof of Theorem 2.5, we can obtain bounds on the sample size
sufficient to guarantee that, with high probability, in a class of [0, 1]-valued
random variables each mean is close to its expectation.

THEOREM 3.6. Let ^ be a class of functions from X into [0, 1]. Then for all
distributions P over X and all e, d . 0

PrH sup
f[^

uPn~ f ! 2 P~ f ! u . eJ # d (5)
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for

n 5 OS 1

e2 S dln2
d

e
1 ln

1

d
D D

where d is the Pe/24-dimension of ^.

Theorem 3.6 is proven by applying Lemma 3.4 and Lemma 3.5 along with
standard approximations. We omit the proof of this theorem and mention
instead that an improved sample size bound has been shown in Bartlett and Long
[1995, Equation (5), Theorem 9]. In particular, they show that if the P(1/42t)e-
dimension d9 of ^ is finite for some t . 0, then a sample size of order

OS 1

e2 S d9 ln2
1

e
1 ln

1

d
D D (6)

is sufficient for (5) to hold.

4. Applications to Learning

In this section, we define the notion of learnability up to accuracy e, or
e-learnability, of statistical regression functions. In this model, originally intro-
duced in Haussler [1992] and also known as “agnostic learning”, the learning task
is to approximate the regression function of an unknown distribution. The
probabilistic concept learning of Kearns and Schapire [1994] and the real-valued
function learning with noise investigated by Bartlett et al. [1996] are special cases
of this framework.

We show that a class of functions is e-learnable whenever its Pae-dimension is
finite for some constant a . 0. Moreover, combining this result with those of
Kearns and Schapire, who show that a similar condition is necessary for the
weaker probabilistic concept learning, we can conclude that the finiteness of the
Pg-dimension for all g . 0 characterizes learnability in the probabilistic concept
framework. This solves an open problem from Kearns and Schapire [1994].

Let us begin by briefly introducing our learning model. The model examines
learning problems involving statistical regression on [0, 1]-valued data. Assume X
is an arbitrary set (as above), and Y 5 [0, 1]. Let Z 5 X 3 Y, and let P be an
unknown distribution on Z. Let X and Y be random variables, respectively
distributed according to the marginal of P on X and Y. The regression function f
for distribution P is defined, for all x [ X, by

f~ x! 5 P~YuX 5 x! .

The general goal of regression is to approximate f in the mean square sense (i.e.,
in L2-norm) when the distribution P is unknown, but we are given zn 5 ( z1, . . . ,
zn), where each zi 5 ( xi, yi) is independently generated from the distribution P.

In general we cannot hope to approximate the regression function f for an
arbitrary distribution P. Therefore, we choose a hypothesis space *, which is a
family of mappings h: X 3 [0, 1], and settle for a function in * that is close to
the best approximation to f in the hypothesis space *. To this end, for each
hypothesis h [ *, let the function lh: Z 3 [0, 1] be defined by lh( x, y) 5
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(h(x) 2 y)2, for all x [ X and y [ [0, 1]. Thus, P(lh) is the mean square loss of h.
The goal of learning in the present context is to find a function ĥ [ * such that

P~lĥ! # inf
h[*

P~lh! 1 e

for some given accuracy e . 0. It is easily verified that if infh[* P(lh) is achieved
by some h [ *, then h is the function in * closest to the true regression
function f in the L2 norm.

A learning procedure is a mapping A from finite sequences in Z to *. A
learning procedure produces a hypothesis ĥ 5 A( zn) for any training sample zn.
For given accuracy parameter e, we say that * is e-learnable if there exists a
learning procedure A such that

lim
n3`

sup
P

Pr$P~lA( zn)! . inf
*

P~lh! 1 e% 5 0.

Here Pr denotes the probability with respect to the random sample zn [ Zn,
each zi drawn independently according to P, and the supremum is over all
distributions P defined on a suitable s-algebra of subsets of Z. Thus, * is
e-learnable if, given a large enough training sample, we can reliably find a
hypothesis ĥ [ * with mean square error close to that of the best hypothesis in
*. Finally, we say * is learnable if and only if it is e-learnable for all e . 0.

If Z 5 X 3 {0, 1}, the above definitions of learnability yield the probabilistic
concept learning model. In this case, if (7) holds for some e . 0 and some class
*, we say that * is e-learnable in the p-concept model.

We now state and prove the main results of this section. We start by
establishing sufficient conditions for e-learnability and learnability in terms of the
Pg-dimension.

THEOREM 4.1. There exist constants a, b . 0 such that for any g . 0:

(1) If Pg-dim(*) is finite, then * is (ag)-learnable.
(2) If Vg-dim(*) is finite, then * is (bg)-learnable.
(3) If Pg-dim(*) is finite for all g . 0 or Vg-dim(*) is finite for all g . 0, then *

is learnable.

We then prove the following, which characterizes p-concept learnability.

THEOREM 4.2

(1) If Pg-dim(*) is infinite, then * is not (g2/8 2 t)-learnable in the p-concept
model for any t . 0.

(2) If Vg-dim(*) is infinite, then * is not (g2/2 2 t)-learnable in the p-concept
model for any t . 0.

(3) The following are equivalent:

(a) * is learnable in the p-concept model.
(b) Pg-dim(*) is finite for all g . 0.
(c) Vg-dim(*) is finite for all g . 0.
(d) * is a uniform Glivenko–Cantelli class.
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PROOF OF THEOREM 4.1. It is clear that part (3) follows from part (1) using
Theorem 2.5. Also, by Lemma 2.4, part (1) is equivalent to part (2). Thus, to prove
Theorem 4.1, it suffices to establish part (1). We do so via the next two lemmas.

Let l* 5 {lh : h [ *}.

LEMMA 4.3. If l* is an e-uniform Glivenko–Cantelli class, then * is (3e)-
learnable.

PROOF. The proof uses the method of empirical risk minimization, analyzed by
Vapnik [1982]. As above, let Pn(lh) denote the empirical loss on the given
sample zn 5 ( z1, z2, . . . , zn), that is

Pn~lh! 5
1

n
O
i51

n

lh~ zi! 5
1

n
O
i51

n

~h~ xi! 2 yi!
2.

A learning procedure, A*e, e-minimizes the empirical risk if A*e( zn) is any ĥ [ *
such that Pn(l ĥ) # infh[* Pn(lh) 1 e. Let us show that any such procedure is
guaranteed to 3e-learn *.

Fix any n [ N. If

uPn~lh! 2 P~lh! u # e

for all h [ *, then

P~lA*
e( zn)! # Pn~lA*

e( zn)! 1 e

# Pn~lh! 1 2e ; h [ *

# P~lh! 1 3e ; h [ *,

and thus P(lA*e( zn)) # infh[* P(lh) 1 3e. Hence, since we chose n and e
arbitrarily,

lim
n3`

sup
P

PrH sup
m$n

sup
h[*

uPm~lh! 2 P~lh! u . eJ 5 0

implies

lim
n3`

sup
P

PrH P~lA*
e( zn)! . inf

h [ *

P~lh! 1 3eJ 5 0.

The following lemma shows that bounds on the covering numbers of a family of
functions * can be applied to the induced family of loss functions l*. We
formulate the lemma in terms of the square loss but it may be readily generalized
to other loss functions. A similar result was independently proven by Bartlett et
al. [1996] for the absolute loss L( x, y) 5 ux 2 y u (and with respect to the l1

metric rather than the l` metric used here).

LEMMA 4.3. For all e . 0, all *, and any zn 5 (z1, . . . , zn), where zi 5 (xi, yi),
i 5 1, . . . , n,

1~e, l*, zn! # 1~e/ 2, *, xn! ,

where xn 5 (x1, . . . , xn).
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PROOF. It suffices to show that, for any f, g [ * and any 1 # i # n, if uf( xi)
2 g( xi) u # e/ 2 then u( f( xi) 2 yi)

2 2 ( g( xi) 2 yi)
2u # e. This follows by

noting that, for every s, t, w [ [0, 1], u(s 2 w)2 2 (t 2 w)2 u # 2 us 2 t u. e

We end the proof of Theorem 4.1 by proving part (1). By Lemma 4.3, it suffices
to show that l* is (ag)-uniform Glivenko–Cantelli for some a . 0. To do so we
use (2) from Lemma 3.4. Then, to bound the expected covering number, we
apply first Lemma 4.3 and then Lemma 3.5. This establishes

lim
n3`

sup
P

PrH sup
h[*

uPn~lh! 2 P~lh! u . agJ 5 0

for some a . 0 whenever Pg-dim(*) is finite. An application of the Borel–
Cantelli lemma to get almost sure convergence yields the proof. e

We conclude this section by proving our characterization of p-concept learnabil-
ity.

PROOF OF THEOREM 4.2. As e-learnability implies e-learnability in the p-
concept model, we have that part (3) follows from part (1), part (2), and from
Theorem 4.1 using Theorem 2.5.

The proof of part (2) uses arguments similar to those used to prove part (1)(d)
of Theorem 2.5. Finally note that part (1) follows from part (2) by Lemma 2.4
(we remark that a more restricted version of part (1) was proven in Theorem 11
of Kearns and Schapire [1994]). e

5. Conclusions and Open Problems

In this work we have given a characterization of uniform Glivenko–Cantelli
classes based on a combinatorial notion generalizing the Vapnik–Chervonenkis
dimension. This result has been applied to show that the same notion of
dimension provides the weakest combinatorial condition known to imply agnostic
learnability and, furthermore, characterizes learnability in the model of probabi-
listic concepts under the square loss. Our analysis demonstrates how the accuracy
parameter in learning plays a central role in determining the effective dimension
of the learner’s hypothesis class.

An open problem is what other notions of dimension may characterize uniform
Glivenko–Cantelli classes. In fact, for classes of functions with finite range, the
same characterization is achieved by each member of a family of several notions
of dimension (see Ben-David et al. [1995]).

A second open problem is the asymptotic behaviour of the metric entropy: we
have already shown that for all e . 0, Hn(e, ^) 5 O(log2 n) if ^ is a uniform
Glivenko–Cantelli class and Hn(e, ^) 5 V(n), otherwise. We conjecture that
for all e . 0, Hn(e, ^) 5 O(log n) whenever ^ is a uniform Glivenko–Cantelli
class. A positive solution of this conjecture would also affect the sample
complexity bound (6) of Bartlett and Long. In fact, suppose that Lemma 3.5
could be improved by showing that supxn }(e, ^, xn) # (n/e2)cd for some
positive constant c and for d 5 Pe/4-dim(^) (note that this implies our
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conjecture). Then, combining this with Bartlett and Long [1995, Lemmas 10 –11],
we could easily show a sample complexity bound of

OS 1

e2 S d ln
1

e
1 ln

1

d
D D ,

for any 0 , t , 1/8 for which d 5 P(1/8 2 t)e-dim(^) is finite. It is not clear how
to bring the constant 1/8 up to 1/4 as in (6), which was proven using l1 packing
numbers.
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