Smartphone Application Launch
with Smarter Scheduling

David T. Nguyen

College of William and Mary
McGlothlin-Street Hall 126
Williamsburg, VA 23185, USA
dnguyen@cs.wm.edu

Ge Peng

College of William and Mary
McGlothlin-Street Hall 126
Williamsburg, VA 23185, USA
gpeng@cs.wm.edu

Daniel Graham

College of William and Mary
McGlothlin-Street Hall 126
Williamsburg, VA 23185, USA

dggraham@cs.wm.edu
Gang Zhou

College of William and Mary
McGlothlin-Street Hall 126
Williamsburg, VA 23185, USA
gzhou®@cs.wm.edu

Guoliang Xing

Michigan State University
3115 Engineering Building
East Lansing, MI 48824, USA
glxing@msu.edu

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
Owner/Author. Copyright is held by the owner/author(s).

Ubicomp '14, Sep 13-17, 2014, Seattle, WA, USA.

ACM 978-1-4503-3047-3 /14 /09.

http://dx.doi.org/10.1145/2638728.2638763

Abstract

The time it takes to launch a smartphone application is
unpredictable. In this paper, we explore how these
unpredictable launch times are affected by constraints
associated with reading (writing) from (to) flash storage.
We conduct the first large-scale measurement study on
the Android 1/0 delay using the data collected from our
Android application running on 1480 devices within 188
days. Among others, we observe that reads experience up
to 626% slowdown when blocked by concurrent writes.
We use this obtained knowledge to design a pilot solution,
wherein by prioritizing reads over writes we are able to
reduce the launch delay by up to 37.8%.

Author Keywords
Smartphone Responsiveness; Application Delay; |/0
Optimizations; Application Launch

ACM Classification Keywords

C.4 [Performance of Systems]: Design studies.

Introduction

A recent analysis [11] indicates that most user
interactions with smartphones are short. Specifically, 80%
of the apps are used for less than two minutes. With such
brief interactions, apps should be rapid and responsive.
However, the same study reports that many apps incur
significant delays during launch and run-time. This work
addresses two key research questions towards achieving

lowait of 1480 Devices

Empirical CDF
I =4 o
» (=2} [--]

o
N

20 30 40 50
iowait (in %)

Figure 1: lowait.

StoreBench

m LGE Nexus 5

230760 - 122268 - 217006 - 117870
[Sequential Read - Sequential Write - Random Read -
Random Write (KB/s)

Score (Total Bandwidth): 687904

@ o2

192752 - 117870 - 204800 - 90021

[Sequential Read - Sequential Write - Random Read -
Random Write (KB/s)
Score (Total Bandwidth): 605443}

@ Samsung Galaxy Note 2

193893 - 121362 - 182044 - 107436
[Sequential Read - Sequential Write - Random Read -
Random Write (KB/s)

Score (Total Bandwidth): 604735

@ Asus Nexus 7

195047 - 92827 - 165494 - 100515
[Sequential Read - Sequential Write - Random Read -
Random Write (KB/s)

Score (Total Bandwidth): 553883}

@ Samsung Nexus 10

204800 - 10211 - 292571 - 3396
Sequential Read - Sequential Write - Random Read -
Ep

Figure 2: StoreBench Android
App.

rapid app response. (1) How does disk I/O performance
affect smartphone app response time? (2) How can we
improve app performance with |/O optimization
techniques?

In order to understand how disk |/O performance affects
smartphone application response time, we conduct a series
of measurement studies. First, we investigate what
portion of the CPU active time Android devices spend in
storage waiting for |/Os to complete. When the time the
CPUs spend in the storage subsystem is significant, this
will negatively affect the smartphone’s overall application
performance, and result in slow response time. To identify
what may be causing such waits, we learn more about 1/0
activities and their properties. The property that may be a
reason of such waits is 1/O slowdown, which quantifies
how one |/O type is slowed down due to presence of
another. If one 1/O activity (e.g., read) is slowed down by
another (e.g., write), there will be certain cases in the
application life cycle that will suffer from such slowdown
(e.g., launch, since reads dominate during launch).

We summarize our contributions as follows:

e First, through a large-scale measurement study
based on the data collected from 1480 devices using
an app we developed, we find that Android devices
spend a significant portion of their CPU active time
(up to 58%) waiting for storage 1/Os to complete.
Further investigation reveals that a read experiences
up to 626% slowdown when blocked by a concurrent
write.

e Second, we design and implement a system
prototype called SmartlO that shortens the
application delay by prioritizing reads over writes.

e Third, we evaluate our system using 20 popular
applications from four groups (sensing, regular,
streaming, and games) and we show that SmartlO

reduces launch delays by up to 37.8%, and run-time
delays by up to 29.6%.

Motivation

In order to understand how disk 1/O performance affects
smartphone application response time, we conduct a
large-scale measurement study using the data collected
from our Android app running on 1480 Android devices.
The app is available for free download at [3], and is
displayed in Figure 2. The results in Figure 1 reveal that
Android devices spend a significant portion of their CPU
active time waiting for storage |/Os to complete, also
known as jowait. Specifically, around 40% of the devices
have jowait values between 13% and 58%. This negatively
affects the smartphone’s overall application performance,
and results in slow response time. Therefore, in order to
improve the application performance, it is essential to
investigate possible causes of such waits.

Further investigation identifies that one of the reasons
causing such waits is 1/O slowdown, which represents the
slowdown of one |/O type due to presence of another. In
particular, our experimentation reveals a significant
slowdown of reads in the presence of writes. Specifically, a
sequential read experiences up to 626% slowdown when
blocked by a concurrent write. Similarly, a random read
experiences up to 293% slowdown when blocked by a
concurrent write. This significant read slowdown may
negatively impact the application performance during the
life cycles when the number of reads dominates. A good
example is application launch.

Pilot Solution

In order to improve the application delay performance in
smartphones, we present our pilot solution called SmartlO
[9, 8, 6, 5], a system that reduces the application response
time by prioritizing reads over writes, and grouping them

°
°
° 8 ° °
o o o = ° o _> °
o o o ° o o o °

01234567 01234567 7

Real-time Best Effort Idle
Idle
¢ | Lwe]
Best Effort 9
s
Real-time| o
(o]
H ™o Dispatch
i Queue

FLASH BLOCK DEVICE

Figure 3: Dispatch Example.

based on assigned priorities. SmartlO issues |/Os with
optimized concurrency parameters.

1/0O Priority Assignment. Our system follows the
implications from the previous measurement study. First,
since a read suffers a large slowdown in the presence of a
concurrent write, the goal is to allow reads to be
completed before writes, while avoiding write starvation.
In order to achieve this, a third level of 1/O priority is
added into the current block layer [1], assigning higher
priority to reads and lower to writes. This third priority
level has a lower priority than the first two priority levels
in the existing Linux 1/O scheduler (CFQ). Details will be
elaborated in the following paragraph. Write starvation is
avoided by applying a maximal period of time assigned to
a process, which is by default 100ms as used in the CFQ's
time slice concept. Beside CFQ, the proposed solution can
be easily adapted to other schedulers.

1/0 Dispatch. A sample dispatch is illustrated in

Figure 3. In the current CFQ implementation, each block
device has 17 queues of 1/0 requests (8 Real-time, 8 Best
Effort, and 1 Idle). The existing system selects a queue
based on the priorities, takes a request in the queue, and
inserts it in the dispatch queue. The queue selection
process accounts for two priority levels: the class priority
(Real-time, Best Effort, Idle), and the priority within the
class (0-7). Our system does not change the above
dispatch process but uses a third priority level to organize
the dispatch queue in favor of the reads. The dispatch
queue is then divided into three sections, from the bottom
up real-time, best effort, and idle requests. Each section is
organized such that reads precede writes.

Evaluation
We evaluate our pilot solution by measuring launch and
run-time delays of 20 popular apps (5 sensing, 5 regular, 5

streaming, and 5 games), with and without SmartlO.
During the experiment, our Samsung S4 phone has all
radio communication disabled except for WiFi that is
necessary to provide stable Internet connections required
on most apps. The screen is set to stay-awake mode with
constant brightness, and the screen auto-rotation is
disabled. Only one app runs at a time, and no other app
is in the background. The cache is cleared before each
measurement in order to evaluate real performance
improvement caused by SmartlO.

The Android Monkey tool [2] is utilized to trigger the
launch process of each app. The application launch delay
starts when the launch process is triggered, and ends
when the process completes. The delays include four
components obtained through the Linux time command:
the time taken by the app in the user mode (user), the
time taken by the app in the kernel mode (system), the
time the app spends waiting for the disk I/Os, and the
time the app spends waiting for the network 1/Os. In order
to test delays of apps running on the phone with SmartlO,
we utilize again the Android Monkey tool to generate
streams of 500 user events such as clicks, touches, or
gestures. The run-time delay is defined as the time
needed to complete the 500 user events in a running app.

The results indicate that SmartlO reduces launch delays
by up to 37.8%, and run-time delays by up to 29.6%
(Figure 4). SmartlO's performance gain during launch is
due to its read-intensive nature. Specifically, the average
number of reads observed during launch on the 20 apps is
five times higher than writes. The smaller performance
gain during the run-time is caused by its modest |/O
activity. SmartlO’s read performance improvement comes
with little cost due to the read/write discrepancy nature
of the flash storage (reads take much faster to complete).

[
12345678 91011121314151617181920 12345678 91011121314151617181920

(a) Launch Delay: SmartlO Disabled (b) Launch Delay: SmartlO Enabled

ﬁ_ﬁﬁﬁﬁﬁﬁﬁﬁ_{ Ml user []system [|network I/0[__]disk I/O%
15

Time (s)

o

Iz EEQHHHBWHHHHHHEEQE 8 e

12345678 91011121314151617181920 " 12345678 91011121314151617181920

(c) Run-time Delay: SmartlO Disabled (d) Run-time Delay: SmartlO Enabled

Figure 4: Launch and Run-time Delay. 1:Angry Birds;
2:GTA; 3:NFS; 4:Temple Run; 5:The Simpsons; 6:CNN;
7:Nightly News; 8:ABC News; 9:YouTube; 10:Pandora;
11:Facebook; 12: Twitter; 13:Gmail; 14:Maps;
15:AccuWeather; 16:Accelerometer; 17:Gyroscope;
18:Proximity Sensor; 19:Compass; 20:Barometer.

Future Work

Although SmartlO is designed to favor reads over writes,
it may be sometimes desirable to have the ability of
lowering this read-preference, or even changing it to
write-preference for certain workloads. This more accurate
priority control will require further understanding of the
read and write priority. Finally, our experience from
previous work [7, 4] will guide us in balancing the energy
and performance trade-off through various 1/0
optimization techniques.

Related Work

Little work in the research community directly relates to
ours. Yan et al. [11] and Parate et al. [10] propose
systems predicting application launch to reduce the launch
delay. However, mispredictions of the proposed approaches

will lead to significant memory and energy overhead.

Conclusion

This paper presents a measurement study on the behavior
of reads and writes in smartphones. The obtained insights
are used to design and implement a system that reduces
the application delay by prioritizing reads over writes.

References

[1] Block layer. http://goo.gl/SwdLz5, 2014.

[2] Monkey. http://goo.gl/F14hw, 2014.

[3] Storebench download. http://goo.gl/avadeV, 2014.

[4] Nguyen, D. T. Evaluating impact of storage on
smartphone energy efficiency. In Proc. of ACM
UbiComp (2013).

[5] Nguyen, D. T. Improving smartphone responsiveness
through i/o optimizations. In Proc. of ACM
UbiComp (2014).

[6] Nguyen, D. T. Smartphone application delay
optimizations. In Proc. of ACM MobiSys (2014).

[7] Nguyen, D. T., Zhou, G., Qi, X., Peng, G., Zhao, J.,
Nguyen, T., and Le, D. Storage-aware smartphone
energy savings. In Proc. of ACM UbiComp (2013).

[8] Nguyen, D. T., Zhou, G., and Xing, G. Poster:
Towards reducing smartphone application delay
through read/write isolation. In Proc. of ACM
MobiSys (2014).

[9] Nguyen, D. T., Zhou, G., and Xing, G. Video: Study
of storage impact on smartphone application delay.
In Proc. of ACM MobiSys (2014).

[10] Parate, A., Bdhmer, M., Chu, D., Ganesan, D., and
Marlin, B. M. Practical prediction and prefetch for
faster access to applications on mobile phones. In
Proc. of ACM UbiComp (2013).

[11] Yan, T., Chu, D., Ganesan, D., Kansal, A., and Liu,
J. Fast app launching for mobile devices. In Proc. of
ACM MobiSys (2012).

http://goo.gl/SwdLZ5
http://goo.gl/F14hW
http://goo.gl/ava9eV

	Introduction
	Motivation
	Pilot Solution
	Evaluation
	Future Work
	Related Work
	Conclusion
	References

