skip to main content
10.1145/2639108.2639142acmconferencesArticle/Chapter ViewAbstractPublication PagesmobicomConference Proceedingsconference-collections
research-article

Accurate indoor localization with zero start-up cost

Authors Info & Claims
Published:07 September 2014Publication History

ABSTRACT

Recent years have seen the advent of new RF-localization systems that demonstrate tens of centimeters of accuracy. However, such systems require either deployment of new infrastructure, or extensive fingerprinting of the environment through training or crowdsourcing, impeding their wide-scale adoption.

We present Ubicarse, an accurate indoor localization system for commodity mobile devices, with no specialized infrastructure or fingerprinting. Ubicarse enables handheld devices to emulate large antenna arrays using a new formulation of Synthetic Aperture Radar (SAR). Past work on SAR requires measuring mechanically controlled device movement with millimeter precision, far beyond what commercial accelerometers can provide. In contrast, Ubicarse's core contribution is the ability to perform SAR on handheld devices twisted by their users along unknown paths. Ubicarse is not limited to localizing RF devices; it combines RF localization with stereo-vision algorithms to localize common objects with no RF source attached to them. We implement Ubicarse on a HP SplitX2 tablet and empirically demonstrate a median error of 39 cm in 3-D device localization and 17 cm in object geotagging in complex indoor settings.

References

  1. VICON T-Series. http://www.vicon.com. VICON.Google ScholarGoogle Scholar
  2. M. Agrawal and K. Konolige. Real-time localization in outdoor environments using stereo vision and inexpensive gps. ICPR. 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. Azizyan, I. Constandache, and R. Roy Choudhury. Surroundsense: Mobile phone localization via ambience fingerprinting. MobiCom, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. F. Bowman. Introduction to Bessel Functions. Dover Publications, 2012.Google ScholarGoogle Scholar
  5. K. Chintalapudi, A. Padmanabha Iyer, and V. N. Padmanabhan. Indoor localization without the pain. MobiCom, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. I. Constandache, R. Roy, and C. I. Rhee. Compacc Using mobile phone compasses and accelerometers for localization. In In INFOCOM, 2010.Google ScholarGoogle Scholar
  7. R. Fenby. Limitations on directional patterns of phase-compensated circular arrays. REE, 1965.Google ScholarGoogle ScholarCross RefCross Ref
  8. B. Ferris et al. WiFi-SLAM using gaussian proces latent variable models. IJCAI, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. P. J. Fitch. Synthetic Aperture Radar. Springer, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. H. Foroosh, J. Zerubia, and M. Berthod. Extensio of phase correlation to subpixel registration. Image Processing, IEEE Transactions on, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. Georgy et al. Modeling the stochastic drift of a mems-based gyroscope in gyro/odometer/gps integrated navigation. IEEE ITS, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. A. Goswami, L. Ortiz, and S. Das. Wigem: A learning-based approach for indoor localization. CoNEXT, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. D. Halperin, W. Hu, A. Sheth, and D. Wetherall. Tool release: Gathering 802.11n traces with channel state information. ACM SIGCOMM CCR, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. M. Hölzl, R. Neumeier, and G. Ostermayer. Analysis of compass sensor accuracy on several mobile devices in an industrial environment. In EUROCAST. 2013.Google ScholarGoogle Scholar
  15. K. Joshi, S. Hong, and S. Katti. PinPoint: Localizing Interfering Radios. NSDI, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Z. Li et al. Robust statistical methods for wireless localization in sensor networks. In IPSN, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. H. Lim, L.-C. Kung, J. C. Hou, and H. Luo. Zero-configuration indoor localization over 802.11 wireless infrastructure. IEEE Wirel. Netw., 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. H. Liu, Y. Gan, J. Yang, S. Sidhom, Y. Wang, Y. Chen, and F. Ye. Push the limit of WiFi based localization for smartphones. Mobicom, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. K. Liu et al. Guoguo: Enabling fine-grained indoor localization via smartphone. MobiSys, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Microsoft. Kinect. http://www.kinect.com.Google ScholarGoogle Scholar
  21. R. Nandakumar et al. Centaur: Locating devices in an office environment. Mobicom, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. M. Niessner, A. Dai, and M. Fisher. Combining Inertial Navigation and ICP for Real-time 3D Surface Reconstruction. Eurographics, 2014.Google ScholarGoogle Scholar
  23. H. Nyqvist et al. A high-performance tracking system based on camera and IMU. In FUSION, 2013.Google ScholarGoogle Scholar
  24. S. J. Orfanidis. Electromagnetic waves and antennas. http://www.ece.rutgers.edu/~orfanidi/ewa/.Google ScholarGoogle Scholar
  25. H. Rahul et al. Jmb: Scaling wireless capacity with user demand. In SIGCOMM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen. Zee: Zero-effort crowdsourcing for indoor localization. Mobicom, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. S. Sen, B. Radunovic, R. R. Choudhury, and T. Minka. You are facing the mona lisa: Spot localization using phy layer information. MobiSys, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. S. P. Tarzia, P. A. Dinda, R. P. Dick, and G. Memik. Indoor localization without infrastructure using the acoustic background spectrum. MobiSys, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. B. Triggs et al. Bundle adjustment - a moder synthesis. In Vision Algorithms Theory/Practice, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. D. Tse and P. Vishwanath. Fundamentals of Wireless Communications. Cambridge University Press, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef, and R. R. Choudhury. No need to war-drive: Unsupervised indoor localization. MobiSys, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. J. Wang, F. Adib, R. Knepper, D. Katabi, and D. Rus. RF-compass: Robot object manipulation using rfids. MobiCom, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. J. Wang and D. Katabi. Dude, where's my card?: RFID positioning that works with multipath and non-line of sight. SIGCOMM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. WiGle. Database. https://wigle.net.Google ScholarGoogle Scholar
  35. C. Wu. VisualSFM : A Visual Structure from Motion System. http://ccwu.me/vsfm/.Google ScholarGoogle Scholar
  36. C. Wu, Z. Yang, Y. Liu, and W. Xi. Wireless indoor localization without site survey. In INFOCOM, 2012.Google ScholarGoogle Scholar
  37. J. Xiong and K. Jamieson. Arraytrack: A fine-grained indoor location system. NSDI, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Z. Yang, C. Wu, and Y. Liu. Locating in fingerprint space: Wireless indoor localization with little human intervention. Mobicom, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. M. Youssef and A. Agrawala. The Horus WLAN location determination system. MobiSys, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Accurate indoor localization with zero start-up cost

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      MobiCom '14: Proceedings of the 20th annual international conference on Mobile computing and networking
      September 2014
      650 pages
      ISBN:9781450327831
      DOI:10.1145/2639108

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 7 September 2014

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      MobiCom '14 Paper Acceptance Rate36of220submissions,16%Overall Acceptance Rate440of2,972submissions,15%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    ePub

    View this article in ePub.

    View ePub