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Abstract 
The effectiveness of texture mapping in enhancing the realism 

of computer generated imagery has made support for real-time tex- 
ture mapping a critical part of graphics pipelines. Despite a recent 
surge in interest in three-dimensional graphics from computer 
architects, high-quality high-speed texture mapping has so far been 
confined to costly hardware systems that use brute-force tech- 
niques to achieve high performance. One obstacle faced by design- 
ers of texture mapping systems is the requirement of extremely 
high bandwidth to texture memory. High bandwidth is necessary 
since there are typically tens to hundreds of millions of accesses to 
texture memory per second. In addition, to achieve the high clock 
rates required in graphics pipelines, low-latency access to texture 
memory is needed. In this paper, we propose the use of texture 
image caches to alleviate the above bottlenecks, and evaluate vari- 
ous tradeoffs that arise in such designs. 

We find that the factors important to cache behavior are (i) the 
representation of texture images in memory, (ii) the rasterization 
order on screen and (iii) the cache organization. Through a detailed 
investigation of these issues, we explore the best way to exploit 
locality of reference and determine whether this technique is 
robust with respect to different scenes and different amounts of 
texture. Overall, we observe that there is a significant amount of 
temporal and spatial locality and that the working set sizes are rel- 
atively small (at most 16KB) across all cases that we studied. Con- 
sequently, the memory bandwidth requirements of a texture cache 
system are substantially lower (at least three times and as much as 
fifteen times) than the memory bandwidth requirements of a sys- 
tem which achieves equivalent performance but does not utilize a 
cache. These results are very encouraging and indicate that cach- 
ing is a promising approach to designing memory systems for tex- 
ture mapping. 

1 Introduction 

Computer graphics is becoming an increasingly important appli- 
cation. Consequently, there has been much interest from designers 
of general-purpose microprocessors, media processors, and spe- 
cialized hardware to provide cost-effective real-time computer 
graphics capabilities. Examples of recent developments in this area 

are the Visual Instruction Set (VIS) in UltraSPARC? [16] and 

FBRAM [ 181 from Sun Microsystems, MMXTM Technology [ 191 
and Accelerated Graphics Port (AGP) [l] from Intel Corporation, 
Magic Carpet [12] from MIPS Technologies, and Talisman [13] 
from Microsoft Corporation. In this paper, we focus on one chal- 
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lenging aspect of graphics architecture, the design of a memory 
system for texture mapping. 

The mapping of images onto the surfaces of three-dimcnsionnl 
objects is known as texture mapping. Texture mapping has earned 
the role of a fundamental drawing primitive for its nbility to sub- 
stantially enhance the realism and visual complexity of computer- 
generated imagery [23,22]. Examples of this technique include the 
mapping of a 2D color image of a wooden texture to the surface of 
a guitar, a road image to a highway, or a grassy plot image to a 
mountain. In addition to the mapping of surfnce color [5], texture 
mapping has been used for mapping a myriad of other surfnce 
parameters including reflection of the environment [21], bumps 
[9], transparency [7], and shadows [20,25]. 

One characteristic of texture mapping is that texture imngcs 
often require large amounts of memory (typically in the range of n 
few megabytes to tens of megabytes). The amount of memory is 

dependent upon the number of textures in a scene and the size of 
each texture. It is generally accepted that the usefulness of texture 
mapping hardware increases with the amount of memory dcdl- 
cated for textures. Another characteristic of texture mapping is thnt 
it requires many calculations and texture lookups. This chnrnctcrls- 
tic causes it to be the main performance bottleneck in graphics 
pipelines. For each screen pixel (fragment) that is textured, the cnl- 
culations consist of generating texture addresses, tilterlng multlplc 
texture samples to avoid aliasing artifacts, and modulating the tcx- 
ture color with the pixel color. (Throughout this paper WC will USC 
the terms ji-ugment and screen pixel interchangeably.) Since the 
number of fragments that are textured can be quite large (typically 
tens to hundreds of millions per second), and each textured frng- 
ment requires multiple texture lookups (usually 8), the memory 
bandwidth requirements to texture memory can be very large (typ- 
ically several gigabytes per second). In addition, to nchicvc the 
high clock rates required in graphics pipelines, low-latency ncccss 
to texture memory is needed. 

The Silicon Graphics’ RealityEngine [14] is an exnmple of n 
high-end parallel graphics architecture that can support rcnl-time 
texture mapping. This system uses multiple engines (also cnllcd 
fragment generators) for texture mapping frngments, Each cnginc 
has an 8-way banked DRAM memory system that is dcdicntcd for 
textures (total 16 MB), and can perform eight independent tcxtut’o 
lookups in parallel. Since there are multiple fragment generntors 
(between 5 and 20) and each one has its own dedicated memory, 
the texture images must be replicated in each memory. One prob- 
lem with this architecture is that an application running on n 20 
fragment generator system is limited to 16 MB of unique memory 
for textures even though there is n total of 320 MB of texture mcm- 
ory in the system. Therefore, the domain of applications thnt con 
utilize the texture mapping hardware is constrained by the limited 
amount of unique memory. 

An alternative approach for providing fast texture accesses nnd 
high bandwidths is to use an SRAM cache with each frngmcnt 
generator instead of a dedicated DRAM memory. The premise of 
this idea is that there is a substantial amount of locality of rcfer- 
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FIGURE 2.1. Block diagram of texture mapping hardware. 

ence in texture mapped scenes. Thus, the cache size can be rela- 
tively small compared to a dedicated memory. The cache would be 
backed by a shared pool of DRAM. One advantage of this solution 
is that there is no need for texture replication for each fragment 
generator and the amount of unique memory for textures can be 
much larger. Another advantage is that the lower cost of a small 
cache compared to a much larger dedicated memory makes this 
architecture more scalable. A final advantage is that the latency of 
access to texture memory can be much lower and the access band- 
width can be substantially higher due to the use of SRAM. 

In this paper, we focus on a system that uses a single fragment 
generator and study the implications of a texture cache on memory 
bandwidth and rendering performance. Particularly important to 
the cache behavior are the representation of textures in memory, 
the rasterization order on screen and the cache organization. 
Through a detailed investigation of these three issues, we explore 
the best way to exploit temporal and spatial locality and determine 
whether this technique is robust with respect to different scenes 
and different amounts of texture. It is interesting to note that cur- 
rent graphics pipelines do not use caches for texture mapping and 
no serious evaluations have been published. Our simulation indi- 
cates that there is a significant amount of temporal and spatial 
locality and that the working set sizes are relatively small (at most 
16KB) across all cases that we studied. As a result, we find that 
even small caches of 32KB can offer substantial cost/performance 
benefits, With respect to the representation of textures in memory, 
we find that a blocked representation is required to fully exploit 
spatial locality and to avoid any dependency on the orientation of 
textures as they appear on the screen. When the texture images are 
large, the image arrays must be either padded or blocked at a 
coarser level to avoid conflicts between texture blocks. Finally, we 
find that a tiled rasterization order is useful for reducing the work- 
ing set size and for avoiding conflicts between texture blocks. 

The remainder of the paper is structured as follows. The next 
section provides background information on texture mapping. The 
motivation for a texture cache and its potential benefits are 
described in Section 3. Section 4 explains our experimental meth- 
odology and describes the benchmarks used in the study. Section 5 
introduces two representations of textures in memory and evalu- 
ates their miss rate characteristics and interactions with the cache 
organization. Section 6 introduces tiled rasterization and evaluates 
its effect on working set size and conflict misses. Section 7 relates 
the miss rate results from Section 5 and Section 6 to memory band- 
width and rendering performance. Finally, Section 8 summarizes 
the results and presents conclusions. 

2 Background 

To understand where texture mapping fits in a real-time render- 
ing system, we briefly describe the four major functions of a tradi- 
tional graphics pipeline [ll]: geometry processing, fragment 
generation, hidden surface removal, and framebuffer display. The 
3D geometries of scenes are commonly defined in terms of trian- 

FIGURE 2.2. Illustration of a Mip Map. Eight texels (shaded) 
from two adjacent levels of the pyramid are used in a ‘ISlinear 
Interpolation. 

gles. In the first stage, matrix transformations are applied to the tri- 
angle vertices, resulting in a perspective mapping of the triangles 
to the 2D display. The second stage is fragment generation consist- 
ing of rasterization, shading, and texture mapping of fragments. 
The third stage is hidden surface removal, accomplished using a z- 
buffer algorithm and the final stage is the display of the rendered 
image stored in the framebuffer. 

Of the four stages in a graphics pipeline, we are primarily inter- 
ested in the second stage. A block diagram of the second stage is 
shown in Figure 2.1. The fragment generator is responsible for ras- 
terizing the input triangles into fragments and performing the 
shading and texture mapping calculations. Rasterization involves 
interpolating screen coordinates, depth, texture coordinates and 
shading color across the surface of each triangle, and identifying 
the screen pixels (also called fragments) that lie inside the trian- 
gles. The color applied to the fragments is usually a function of 
both the shading and texture mapping calculations. Before we can 
describe how the fragments are texture mapped, we must first dis- 
cuss the concept of Mip Mapping. 

The goal of Mip Mapping, introduced by Williams [15], is to 
efficiently avoid aliasing artifacts by quickly filtering the texture 
image. It involves representing a texture as an image pyramid as 
illustrated in Figure 2.2. The bottommost level of the pyramid is 
the original texture image and each subsequent level is a flltered 
and down-sampled version of the previous level. Consider an 
example in which a texture mapped triangle is being viewed from 
far away, so that there is low resolution of image details. In this 
case, an area of texture can be represented by one screen pixel. 
Instead of re-filtering the image based on the level-of-detail 
required, we can use the pre-computed image from the appropriate 
level of the Mip Map. Each level of the Mip Map corresponds to a 
particular screen pixel to texture pixel ratio, where a screen pixel 
refers to the pixel on the screen itself and texture pixel, or texel, 
refers to the pixel in the texture image being depicted on the 
screen. 

When applying texture, we compute the texture coordinates 
(u,v) and the screen pixel to texel ratio d. In practice, the u,v, and d 
coordinates do not exactly map to a single texel. Consequently, we 
must take the weighted average of the eight texels closest to the 
(u,v,d) coordinates, four texels each from the two levels whose d 
values most closely approximate the desired d value. This is 
known as trilinear interpolation. A special case arises if the screen 
pixel to texel ratio is less than one. This occurs when a texture 
mapped triangle is being viewed from very close and causes the 
original texture image to be magnified. In this case, we take the 
weighted average of the four texels closest to the (u,v) coordinates 
in the bottommost level of the image pyramid. This is known as 
bilinear interpolation. The result of the trilinear or bilinear interpo- 
lation is usually modulated with the color computed from the shad- 
ing calculations to obtain the final color for the textured fragment. 

In summary, the fragment generator is responsible for rasteriz- 
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Representation. 
See Section 5. 

TABLE 2.1. Computational costs of the operations of a 
fragment generator. Apart from triangle setup, all the costs 
are on a per fragment basis. 

ing triangles into fragments, computing level-of-detail and Mip 
Map texture addresses for each fragment, filtering the texels that 
are accessed using either trilinear or bilinear interpolation, and 
finally applying the texture color to the fragments. Typical unopti- 
mized computational costs for each of the operations of a fragment 
generator are shown in Table 2.1. Since these costs are quite high, 
fragment generators often exploit deep pipelining and parallel- 
ism. In fact, most of the costs are incurred by texture mapping. 

3 Texture Cache: Motivation and Benefits 

In this section, we identify the types of locality of reference that 
are present in texture accesses and discuss the benefits of adding 
an SRAM texture cache between the fragment generator and 
DRAM texture memory. 

3.1 Locality of Reference in Texture Mapping 
The effectiveness of a memory hierarchy depends on locality of 

reference in data accesses. Both spatial and temporal locality are 
present in texture mapping. 

3.1.1 Spatial Locality 

The representation of textures as Mip Maps contributes to spa- 
tial locality in texture accesses. The Mip Map accesses have a high 
degree of spatial locality since the level of the map is selected to 
closely match the level-of-detail that is being drawn on the screen. 
In essence, this means that movements of one pixel in screen space 
roughly correspond to movements of one texel in texture space, 
hence the spatial locality in texture space. The spatial locality in 
Mip Map accesses is thus present irrespective of the scene. 

3.1.2 Temporal Locality 

Temporal locality in accesses to texture data is present when 
rendering a single frame and between consecutive frames. We gen- 
erally do not expect our caches to exploit temporal locality 
between consecutive frames because the cache sizes that we con- 
sider are much smaller than the amount of texture data that is typi- 

cally used by a single frame. Between memory and disk, however, 
this kind of temporal locality is of interest. Within a single frame, 
two types of temporal locality are present: locality arising from 
overlap of accesses needed for filtering between neighboring frag- 
ments and locality arising from repeated texture. Below, WC dis- 
cuss each of these two types of temporal locality in more detail. 

Overlap of Accesses between Neighboring Fragments 

Temporal locality is present between the texel accesses of ncigh- 
boring fragments. Since each textured fragment must access multi- 
ple texels for trilinear or bilinear interpolation, it is expected that 
some of these accesses will overlap with the texel accesses of 
neighboring fragments. We measured the average number of 
accesses per texel made by a spatially contiguous group of frag- 
ments across all four benchmark scenes, which arc described in 
Section 4. The results for trllinear interpolation (lower level), tri- 
linear interpolation (upper level) and bilinear interpolation arc 4, 
14 and 18, respectively. For trllinear interpolation, we distinguish 
between texel accesses that are to the more detailed level, lo~cr 
level, and the less detailed level, upper level, of the two adjacent 
levels of the Mip Map that are used in the interpolation, These 
results clearly show that the texels in the upper level of a trllincar 
interpolation are accessed a larger number of times than the texcls 
in the lower level. Since the lower level is more detailed than the 
upper level, it is traversed more rapidly and this leads to fewer 
accesses per texel. In general, we expect texels in the lower lcvcl 
of a trilinear interpolation to be accessed an average of four times 
and the texels in the upper level to be accessed an average of six- 
teen times. For bilinear interpolation, the number of accesses per 
texel is directly related to the amount of texture magnification and 
this can vary widely depending on the scene. 

Repeated Texture 

Temporal locality is also present when a texture is rcpcntcd 
across the surface of an object. An example application is a ~111 
that is textured by repeating a 2D texture image of an individual 
brick. Since the amount of repetition is a function of the texture 
coordinates defined in the high-level geometric description of the 
scene, this type of temporal locality is very scene dependent, WC 
measured the average number of times a texel is rcpcatcd in the 
benchmark scenes. The results for the Town, Guitar, Goblet and 
Flight scenes are 2.9,1.7,1-l and 1.0 times, respectively. 

3.2 Texture Cache Benefits 
The evolution of DRAM technology motivates the USC of an 

SRAM texture cache. The rapid growth in DRAM density has 
meant that fewer DRAM chips are needed to construct a memory 
of a fixed size. The use of higher density memory chips has led to a 
decline in bandwidth per Megabyte of memory [24]. An SRAM 
texture cache can exploit locality of reference to hide most of the 
texture accesses from reaching memory, thus lowering the band- 
width requirements. 

Another reason for adding an SRAM cache is that block trans- 
fers of cache lines between the cache and memory make it possible 
to get the most bandwidth out of the memory. Present-day DRAM 
architectures are optimized for long burst transfers to microproccs- 
sor caches since this amortizes the setup costs of the transfer over 
many bytes and leads to the most efficient memory bus utilization, 

A third reason for having an SRAM texture cache is that static 
memories typically have shorter access latencies than dynnmic 
memories. The SRAM cache can be tightly coupled with the frag 
ment generator which makes it possible to run the fragment gcner- 
ator at higher clock rates. This is an incentive for integrating the 
SRAM cache onto the same chip as the fragment generator, 

Finally, a recent trend in computer graphics has been the USC of 
rendered images as textures [3]. As a result, it has become dcsir- 
able to unify the framebuffer and texture memories to avoid copy- 
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800x800 719 1867 72 94 8 4.9 1.1 23% 0.7 

800x800 7200 41 25 14 1 1.4 0.78 56% 0.3 

TABLE 4.1. Texture Mapping Benchmarks. 

ing data between the two. A fragment generator COMCCkd to an 
SRAM texture cache does not necessarily require a dedicated tex- 
ture memory. This makes it possible to fetch the texture data as it is 
needed from whichever DRAM buffer it is stored in. In fact, multi- 
ple fragment generators can share the same DRAM memory sys- 
tem and no cache coherence is needed since the texture data is 
mostly read-only. The caches can be flushed if necessary when the 
textures change. 

The organization of the texture cache is characterized by three 
parameters: cache size, line size and associativity. The choice of 
cache size is related to the working set sizes of texture mapped 
scenes. The line size depends on the amount of spatial locality that 
can be exploited. As noted earlier, larger line sizes can elicit a 
larger fraction of the peak memory bandwidth. Finally, the cache 
associativity is related to the kinds of conflicts that can occur. 

4 Methodology 

Doing performance studies for graphics architectures is a diffi- 
cult endeavour. The primary reasons are the lack of well-estab- 
lished benchmark programs and the lack of tools for obtaining 
traces of graphics commands. In this section, we discuss how we 
address these and additional issues. 

4.1 Simulation Environment 
The simulation environment consists of three components. The 

first component is a software implementation of a three-dimen- 
sional polygonal graphics pipeline. This is responsible for geome- 
try, clipping, lighting of vertices, rasterization, shading, texture 
mapping and finally Z-buffering. The pipeline is similar to the one 
described in [14]. Specifically, the texture mapping implementa- 
tion is based on the OpenGL specification document [17]. Since 
the pipeline is implemented in software, we can easily experiment 
with different representations of texture in memory and can raster- 
ize the triangles in either the horizontal or vertical direction. The 
textures are assigned memory using the malloc() system call and 
we allocate 32 bits per texel. The triangles are rasterized in the 
same order that they are specified in the input. 

The second component is a capability to trace the GL calls that 
are made by a graphics application while it is running in real-time 
on a hardware-based renderer. This was done using a standard util- 
ity program called gldebug, intended for debugging GL programs, 
and a parser that parses the GL calls while the application is run- 
ning. This technique can be applied to any binary executable that 
makes GL calls. The trace is then fed to our software implementa- 
tion of the graphics pipeline which executes equivalent procedures 
and generates images as output. The images allow us to verify that 
the interpretation of the trace is accurate. 

The third component is a trace-driven cache simulator that can 
model different cache sizes, line sizes and associativities. When- 
ever the software-based fragment generator accesses a texel from 
memory, it also makes a call to the cache simulator passing the 
address of the texel as a parameter. The cache simulator runs con- 
currently with the graphics pipeline. 

4.2 Benchmarks 
We study four benchmarks that are applications of color texture 

mapping. The characteristics of these benchmarks are summarized 
in Table 4.1. Because the cache sizes that we consider are much 
smaller than the amount of texture used in each benchmark, we do 
not expect to exploit temporal locality between consecutive 
frames. For this reason, we have selected a single frame per bench- 
mark. 

The first two benchmarks, shown in Figure 4.1 and Figure 4.2, 
are taken from the Silicon Graphics Reality Engine Demo Suite 
and are representative of present-day applications of texture map- 
ping. The Flight scene, shown in Figure 4.1, uses several 
1024x1024 pixel satellite images as textures and maps these tex- 
tures onto a geometric model of the terrain. An important charac- 
teristic of the Flight scene is that it has large variations in level-of- 
detail as a result of the mountainous terrain. In comparison, the 
Town scene, shown in Figure 4.2, maps many smaller textures 
onto flat surfaces and these textures appear upright in the image of 
the scene. The Guitar scene, shown in Figure 4.3, is another appli- 
cation where textures are mapped onto flat surfaces. It differs from 
the Town scene in that the textures are larger and they do not 
appear uniformly oriented in the image of the scene. Finally, the 
fourth benchmark, shown in Figure 4.4, consists of a single texture 
wrapped around a goblet. The Goblet benchmark is characterized 
by its use of small triangles to make up the curved surface and by 
the variations in level-of-detail that occur when the surface 
becomes 90 degrees to the viewing angle. In all four benchmarks, 
the textures are stored as Mip Maps and trilinear interpolation is 
used for filtering the images. 

5 Representation of Texture Maps in 
Memory 

The representation of texture maps in memory is important to 
the cache behavior because it effects where texture data is placed 
in the cache. In this section, we study the interaction between the 
texture representation and the parameters of the cache organiza- 
tion. We examine two representations: a Nonblocked representa- 
tion and a Blocked representation. 

5.1 Previous Work 
In [15], Williams also described a clever memory organization 

and addressing scheme for two-dimensional textures which is 
illustrated in Figure 5.1(a). At each level of the pyramid, the image 
is separated into its red, green, and blue color components. The fil- 
tered and down-sampled levels of the pyramid are stored above 
and to the left of their predecessor levels. Once the u, v, and d 
coordinates are calculated, indexing the Mip Map is a simple mat- 
ter that involves binary operations since the individual images are 
sampled at powers of two. 

Although this representation makes addressing very inexpen- 
sive, it is prone to several problems from a caching perspective. 
The most serious problem is that the individual color components 
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FIGURE 5.1. (a) Mip Map representation proposed by Will- 
iams. (b) Base nonblocked representation. 

of a texel are always separated by powers of two bytes in memory 
since the texture image dimensions are powers of two. (Note that 
in most graphics libraries including OpenGL, the texture image 
dimensions are either restricted to be powers of two or the images 
are padded so that the dimensions are powers of two.) Thus, it is 
very likely that the individual color components will map to the 
same line in the cache resulting in conflicts. Another problem is 
that the representation does not exploit spatial locality that would 
be present if the color components were stored contiguously in the 
same cache line. Finally, since the image is separated by compo- 
nent, reading a texel from the cache requires three separate 
accesses with tag comparisons for each access. 

5.2 Base Nonblocked Representation 
An alternative representation is illustrated in Figure 5.1(b). In 

this representation, the red, green, blue and alpha components are 
stored contiguously. Each level of the pyramid is represented by its 
own two-dimensional array and each array is stored in row-major 
order. We will consider this representation as the base representa- 
tion for the remainder of this paper since it is not prone to the prob- 
lems mentioned previously. 

5.2.1 Texel Addressing 

The main advantage of the base representation is that it requires 
the fewest number of addressing calculations. The addressing cal- 
culations, shown below, assume that the dimensions of the texture 
arrays are powers of two. The texel addressing calculations must 
be performed eight times per fragment since a trllinear interpola- 
tion requires eight texture samples. 

All variables are a function of the Mip Map level. 
fu, tv: texel u- and v-coordinates 
base: starting address of 2D texture array 
lw: logz(width of 2D texture array in pixels) 

Texel address = base + (tv <c lw) + tu 

52.2 Cold Misses 

Cold misses cannot be avoided and so they represent the lower 
bound for miss rates in the cache. Figure 5.2 shows graphs of miss 
rate versus cache size measured for fully associative caches with 
an LRU replacement policy. These graphs assume a line size of 32 
bytes and fully associative caches so that we can ignore conflict 
misses. We study the effect of line size on cold misses and defer 
the discussion of conflict misses to Section 5.3.3. 

Cold misses typically occur in two places: along triangle edges 
where the textures are first accessed, and in the interior of large tri- 
angles when the texture accesses cross cache line boundaries. The 
cold miss rates can be deduced from the miss rates for the large 
caches since they do not include capacity misses. (Note that the 
cold miss rates are the same regardless of whether rasterization is 
horizontal or vertical; we discuss the effect of rasterization direc- 

tion on working set size in Section 52.3). The cold miss rates for 
the Town, Guitar, Goblet and Flight scenes arc 0.55%, 0.87%, 
lS%, and 2.8% respectively. These miss rates are quite low con- 
sidering that the line size of 32 bytes holds just eight tcxels, 

One factor that contributes to differences in cold miss rate is the 
amount of temporal locality in the form of repeated texture, As 
previously noted in Section 3.1.2, the amount of repetition of tcx- 
tures is very scene dependent. Another factor is the frequency of 
changes in level-of-detail across the surfaces that are textured. In 
the Town and Guitar scenes, the surfaces are predominantly flat 
causing the variations in level-of-detail to be gradual. As n result, 
we find that a large fraction of each line of texture data that is 
fetched into the cache is used. In comparison, the mountainous tcr- 
rain in the Flight scene causes frequent changes in level-of-detail, 
Consequently, the accesses are fragmented across different 1~~1s 
of the Mip Map and a smaller fraction of each line of texture data 
that is fetched into the cache is used. Since more lines are nccdcd 
for texturing, the cold miss rates are higher. 

We also measured the cold miss rates for caches with a larger 
128 byte line size. The results for the Town, Guitar, Goblet nnd 
Flight scenes are 0.15%. 0.25%, O-42%, and 1.1% respectively, WC 
see that the cold miss rates are much reduced with increasing Hno 
size, indicating the presence of substantial spatial locality. 

5.2.3 Working Set Size 

The working set size is a measure of the amount of data that is 
actively in use at a particular time. Most applications have a hierar- 
chy of working sets [6]. In a graph of miss rate versus cache size, 
the different levels of the working set hierarchy can be seen as pla- 
teaus followed by sharp reductions in miss rate at particular cache 
sizes. 

One can consider the coarsest level of the working set hierarchy 
in texture mapping to consist of all the texture data required to rcn- 
der an image. The Principle of Texture T/n@ [4] defines the mini- 
mum amount of data required to render an image: 

Given a scene consisting of textured 30 surfaces, the amount of 
texture information minimally required to render an image of the 
scene is proportional to the resolution of the image and is indepen- 
dent of the number of surfaces and the size of the textures, 

This principle is a consequence of the fact that each pixel of the 
image can represent at most one filtered sample of texture, The 
advantage of representing textures in the form of Mip Maps is that 
the amount of data used in filtering for each pixel is fixed regard- 
less of the level-of-detail. 

We are interested in understanding the makeup of the first sig 
nificant working set because it corresponds to the smallest cache 
size that one would consider using for caching texture images, WC 
are also interested in making a worst-case estimate of the size of 
the first significant working set to generalize our analysis beyond 
the benchmarks that we study. We define the first significant work- 
ing set as the first Ievel of the working set hierarchy and begin by 
noting that a triangle is rasterized one scan line at a time, where a 
scan line consists of either a horizontal or vertical span of pixels in 
screen space. We assume for our worst-case analysis that the trian- 
gle being rasterized is large and spans the entire area of the screen. 
We have shown that there is spatial and temporal locality in the 
accesses to texture data, especially by accesses from adjacent scan 
lines. A cache that is large enough to hold the texture data ncedcd 
for an entire scan line can exploit such localities of reference to 
significantly reduce miss rates. Thus, we see that the first level 
working set consists of the texture data needed for an entire scan 
line, and a significant reduction in miss rate occurs when the cache 
is large enough to hoId this working set. ‘Iwo parameters thnt cnn 
place a bound on the worst-case working set size arc the tcxturc 
image size and the screen size. If the texture image size is less thnn 
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FIGURE5.2. Results for the base representation using fully associative caches. The line size is 32 bytes (8 texels). 
(a) Horizontal rasterization (row major order). (b) Vertical rasterization (column major order). 

the screen size, the texture is wrapped around and repeated. In this 
case, the worst case working set size is bounded by the cache line 
size multiplied by the length of the diagonal of the texture image, 
since this is the maximum length through the texture and the tex- 
ture can appear in an arbitrary orientation on the screen. On the 
other hand, if the texture image size is greater than the screen size, 
the worst case working set size is bounded by the cache line size 
multiplied by the maximum width or height of the screen, depend- 

ing upon whether we rasterize horizontally or vertically’. 
We have measured the average runlength of texel accesses from 

the same texture. The results for the Town, Guitar and Flight 
scenes, which are applications of more than one texture, are 
223,629, 553,745 and 562,154, respectively. An underlying 
assumption is that the triangles are processed in the same order 
that they are specified in the high-level geometric description of 
the scene. These long runlengths demonstrate that the working set 
is limited to one texture at any point in time. 

When rendering a span of pixels in screen space, texels (texture 
pixels) may be traversed in arbitrary orientations on the screen. In 
the worst case, the texture accesses can be streaming vertically 
through the texture causing only a fraction of each cache line that 
is brought into the cache to be actively used. The net effect is that 
the working set size is larger than it needs to be. This is a short- 
coming of the base representation that we have chosen. 

Figure 5.2(a) shows the miss rate results versus cache size when 
the scenes are rasterized horizontally. The first level working set 
sizes for the Flight, Town, Guitar and Goblet scenes are 4KB, 
SKB, 16Kl3, and 16Kl3 respectively. These working set sizes are a 
very small fraction of the total amount of texture that is used to 
render each scene (please see Table 4.1 for the full texture content 
used) and indicate that texture caching can be effective with rela- 
tively small cache sizes. 

Figure 5.2(b) shows the miss rates versus cache size when the 
scenes are rasterized vertically. Compared to Figure 5.2(a), the 
miss rates for the Town scene have substantially increased for 
small cache sizes, whereas the miss rates for the other scenes have 
not changed quite as much. The first level working set size for the 
Town scene has grown from 8KB to 16KB because of a mismatch 
between the base representation and the rasterization direction. In 
fact, since most of the textures appear upright in the image of the 
Town scene, vertical rasterization causes the direction in which the 
texels are accessed to be perpendicular to the direction in which 

1. The screen rasterization path that would lead to the smallest working set 
would follow a Peano-Hilhert order since this would traverse a region of 
the texture in a spatially contiguous manner. 

the texels are stored leading to worst-case behavior. In the Flight 
scene, the effect is less pronounced because the triangles are mod- 
erately sized. The Goblet scene results do not change because the 
triangles are relatively small. The results for the Guitar scene do 
not change very much because the textures in this scene are not 
uniformly oriented in any particular direction. From an architec- 
tural perspective, the important point is that the base representation 
is sensitive to the direction of texture accesses. For the remainder 
of this paper, we report results using vertical rasterization for the 
Town scene since this leads to worst-case behavior, and report 
results using horizontal rasterization for the Flight, Guitar and 
Goblet scenes. 

In summary, we have shown that the cold miss rates are very 
low and can be further reduced with larger line sizes. The long tex- 
ture runlengths, measured with the same rendering sequence as 
that taken by actual hardware engines that do texture mapping, 
indicate that the working set is limited to one texture. In addition, 
the working set sizes are very small compared with the amount of 
texture that is used to render each scene, justifying the use of rela- 
tively small texture caches. Finally, we found that the base repre- 
sentation is sensitive to the orientation of textures on the screen. 

5.3 Blocked Representation 
A blocked representation can be used to reduce the dependency 

on the orientation of textures, as seen by the viewer, and to exploit 
more spatial locality. A blocked representation of a 5-level Mip 
Map is illustrated in Figure 5.3. In this representation, also com- 
monly known as Tiled, texels that are within a square region 
(block) of a two-dimensional image are ordered consecutively in 
memory. The idea of texture blocking is previously discussed in 
[4] and [lo]. There are several issues that are raised by this repre- 
sentation. First, what is the addressing overhead associated with 
blocking? Second, how do we select the block size and is it related 
to the cache line size? Third, what are the improvements in miss 
rate as we increase the cache line size? Finally, what is the effect of 
blocking on conflict misses? In the following subsections, we dis- 
cuss each of these issues in turn. 

5.3.1 Texel Addressing Overhead 

The blocked representation converts two-dimensional texture 
arrays into four-dimensional arrays. Therefore, the texel address- 
ing calculations must be done in a two-step process which is illus- 
trated below. We assume that the blocks are square and have 
dimensions that are powers of two. Furthermore, we assume that 
the blocks have the same dimensions across all Mip Map levels. 

i ’ 
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F’IGURJZ 5.3. An illustration of the blocked representation for 
a texture Mip Map. 

bw, bh: block width and height in texels. These are equal and 
are powers of two. 

Ibw, Ibh: log#w or bh) 
bs: log#w * bh) 

The following variables are a function of the Mip Map level. 
rs: logz(width of texture array in texels * bh) 
tu, tv: texel u- and v-coordinates 
bx, by: block coordinates 
sx, sy: sub-block coordinates in texels 
base: starting address of 4D texture array 

bx=tu>>lbw 
by = tv >> lbh 
Block address = base + (by -CC rs) + (bx -CC bs) 

sx=hl&(hw- 1) 
sy = tv & (bh - 1) 
Texel address = Block address + (sy c< lbw) + sx 

The variables bx, by, sx, and sy are simply bit-fields of the u- and 
v- texel coordinates, tu a&l tv. Furthermore, two of the shift opera- 
tions shown above, involving the variables bs and lbw, have con- 
stant shift amounts assuming that the block dimensions remain 
fixed. Hence, the aggregate hardware overhead of the blocked rep- 
resentation compared to the base representation simply consists of 
two additions. These operations are incurred in the calculation of 
the block address. 

53.2 Selecting a Block Size and Cache Line Size 

The next question we would like to answer is whether there is 
any interaction between the block size used in the representation 
and cache line size. Figure 5.4 shows miss rate versus cache line 
size for a variety of block sizes. We chose a 32JCB cache for our 
measurements because this cache size is larger than the working 
set sizes which we noted earlier. The graph in Figure 5.4(a) is for 
the Town scene. It shows that the lowest miss rates occur when the 
block size most closely matches the cache line size. For example, 
the lowest miss rate for a 64 byte cache line is for a 4x4 block 
which has a block size of 64 bytes. This effect can be explained by 
observing that individual cache lines that hold square regions of 
texture are most effective at exploiting spatial locality. When the 
block sizes greatly differ from the cache line sizes, we find that the 
working set sizes can become unnecessarily large leading to many 
capacity misses. The results for the Guitar scene, shown in Figure 
54(b), are very similar. 

We would like to quantify the extent of reduction in miss rate as 
the line size is increased. Figure 5.5 shows the effects of line and 
block size on miss rate for a fully associative 32KB cache. At 
32KB, the primary misses that remain are cold misses and these 
misses are independent of the orientation of textures as viewed on 
the screen. The miss rates for the Flight, Goblet, Guitar and Town 
scenes at a line size of 32 bytes are 2X%, 1.5%, 1.2% and 0.8% 
respectively. The miss rates at a line size of 128 bytes are 0.87%, 
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FIGURE 5.4. The interaction between block size and cache line 
size. These results were measured using fully associative 32KB 
caches. The block dimensions are given in texels. 
(a) Town-vertical. (b) Guitar-horizontal. 

0.41%, 0.36% and 0.21%. There appears to be a significant rcduc- 
tion in miss rate as the line and block sizes are increased, 

Thus far, we have presented results for a 32KB cache and WC 
have found that this cache size is adequate for holding the working 
sets of all four scenes. In Figure 5.6, we show results specific to the 
Guitar scene for different cache sizes. These graphs demonstrate 
that the blocked representation when coupled with larger line and 
block sizes, leads to a reduction in the number of capacity misses 
for cache sizes that are smaller than the working set size, In Figure 
5.4 we saw that increasing the line size alone, without blocking, 
leads to worse miss rates. We can conclude that the blocked rcprc- 
sentation is an essential component for reducing the frequency of 
capacity misses, We have found that the other benchmark scenes 
experience similar reductions in capacity misses (although not 
shown here due to space reasons) when the cache sizes arc smnllor 
than the working set sizes. 

In summary, we can conclude that the best block size to use for 
texturing corresponds to when the memory required to store one 
block of texture is the same as the cache line size. Furthermore, for 
scenes that we evaluate, there is enough spatial locality that larger 
line sizes can be used. 

5.3.3 Conflict Misses 

Thus far, we have ignored conflict misses and have only shown 
results for fully associative caches. In this section, WC identify tho 
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kinds of conflict misses that can occur and discuss how they can be 
avoided. 

In Figure 5.1(b), we showed that in the base nonblocked repre- 
sentation, the levels of a Mip Map are stored separately in memory 
as two-dimensional arrays. Since these arrays are usually restricted 
to have dimensions that are powers of two, conflicts are prone to 
occur between neighboring texels that are in the same column. 
This kind of conflict miss can be avoided with the use of a blocked 
representation. The texels that lie within a block are guaranteed not 
to conflict in the cache since they are stored consecutively in mem- 
ory. Moreover, since the block size is selected to be the same as the 
cache line size, the group of texels that lie within a block would be 
held by the same cache line. 

Conflicts can also occur between blocks which are in different 
levels of a Mip Map. These conflicts are likely to be avoided with a 
two-way set-associative cache since trilinear interpolations simul- 
taneously access at most two levels of a Mip Map. 

Figure 5.7 shows graphs of miss rate versus cache size for dif- 
ferent cache associativities. A relatively large line size of 128 
bytes was selected for these experiments because conflict misses 
are more likely to occur when there are fewer lines in the cache. 
Thus, these results are indicative of the worst-case effect of con- 
flicts on miss rate. The results in Figure 5.7(a) are for the Goblet 
scene and show that there is a significant difference in miss rates 
between the direct-mapped caches and the two-way set-associative 
caches. Since the triangles in the Goblet scene have fairly small 
areas, it is unlikely that conflicts will occur between blocks that are 
in the same level of a Mip Map. Hence, we attribute this difference 
in miss rates to conflicts between blocks that are in different levels 
of a Mip Map. The graph also shows that the two-way set-associa- 
tive caches have the same miss rates as the folly associative caches 
indicating that increasing the associativity beyond two-way does 
not lead to any further improvement in miss rates. 

The results in Figure 5.7(a) for the Goblet scene assumed a 
blocked representation. Had the representation been nonblocked, 
an eight-way associative cache would have been required to 
achieve the same miss rates as a folly associative cache among the 
small cache sizes. This result demonstrates that the blocked repre- 
sentation is useful for avoiding conflicts between neighboring tex- 
els in different rows of a 2D array. 

The results in Figure 5.7(b) are for the Town scene. In this 
graph, we also find that two-way set-associativity is useful for 
eliminating conflicts between adjacent levels of a Mip Map. How- 
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ever, unlike Figure 5.7(a), there is a notable difference between the 
miss rates for the two-way set-associative caches and the folly 
associative caches. Vertical rasterization through the upright tex- 
tures in the Town scene leads to conflicts between multiple blocks 
which he within the same 2D array. The graph for the Town scene 
also shows that limited cache associativities beyond two-way are 
beneficial for small cache sizes, but are ineffective at avoiding this 
kind of block conflict miss among large caches. The results for the 
Guitar scene are similar since the textures are accessed along a 
variety of paths and the triangles are large. The results for the 
Flight scene are also similar except that most of the conflicts are 
avoided when the caches are eight-way set-associative and this is 
attributed to the fact that the triangles are moderately sized. 

In summary, the blocked representation prevents conflicts from 
occurring between neighboring texels. Conflicts are also prone to 
occur between blocks. Conflicts between blocks at adjacent levels 
of the Mip Map can be successfully eliminated with two-way set- 
associative caches. Conflict misses that occur within the same 2D 
array are harder to prevent because the textures can be accessed 
along any path. In the next section, we discuss a tiled rasterization 
order that has the effect of reducing the number of blocks in the 
working set that can conflict with each other. 

6 Rasterization Order and Tiling in 
Screen Space 

The order in which screen pixels are traversed to determine 
whether they lie within the boundary of a triangle is the rasteriza- 
tion order. The rasterization order effects the texture access pattern 
and consequently, it can influence the cache behavior. As can be 
seen in Figure 6.1(a), the rasterization path of row major order 
spans the entire width of the triangle. As a result, the working set 
size for row major order is proportional to the amount of texture 
needed for an entire row of fragments; thus the working set size is 
related to the dimensions of the triangles that are mapped onto the 
screen. We propose reducing this variance, and thus the cache size 
needed for textures, by the use of a tiled rasterization order. 

In a tiled order, a spatially contiguous block of screen pixels is 
traversed consecutively. Figure 6.1(b) illustrates a tiled rasteriza- 
tion path where the screen is statically decomposed into tiles. The 
cost associated with tiling depends on the rasterization algorithm. 
Additional setup computations for each tile may be required if the 
rasterization, shading and texture parameters are computed incre- 
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mentally across the surface of a triangle. One factor that has con- 
siderable influence on the texture access pattern is the tile size. In 
the following two sections, we address the issues of selecting a tile 
size and study the implications of tiled rasterization with respect to 
texture representation and cache organization. 

6.1 Selecting a Tile Size 
To understand the interaction between the tile dimensions and 

the working set size, we show miss rate results versus cache size in 
Figure 6.2 for the Guitar scene. The measurements were taken 
with a blocked texture representation and a relatively large line 
size of 128 bytes to take advantage of spatial locality. In Figure 
6.2(a), we find that as we progress from very small tiles to medium 
tiles, there are significant reductions in miss rate amongst cache 
sizes that previously did not fit the working set. It is evident that 
tiling causes the working set size to be reduced and this shows up 
as fewer capacity misses. Figure 6.2(b) shows that the opposite 
effect occurs as we progress from medium tiles to very large tiles 
for the same scene. When the tiles are very small, the texture 
access patterns converge towards the access pattern of a nontiled 
rasterization order. On the other hand, when the tiles are very 
large, the working sets are larger than the cache size and capacity 
misses dominate the cache behavior. 

We have found that tiled rasterization has a similar effect on the 
results of the Town scene. One characteristic that is common to 
both the Guitar and Town scenes is that they include large triangles 
that span significant areas of the screen. When the triangles are 
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order in which the tiles are rasterized. order in which the tiles are rasterized. 

moderately sized, as in the Flight scene, the effect of tiled rastcr- 
ization on the working set size is less pronounced, and when the 
triangles are small, as in the Goblet scene, the working set size 
becomes completely unaffected by the tile dimensions. For sccncs 
with small triangles, it is advantageous to render neighboring trinn- 
gles that lie in the same tile consecutively to exploit spatial locality 
and thus ensure that the working set size is minimized. We can 
conclude that tiled rasterization does not hurt when the triangles 
are small (and is thus robust), while in frequently occurring situn- 
tions where the triangles are large it helps substantially in reducing 
working set size. 

6.2 Effect of Tiling on Conflict Misses 
In Section 5.3.3, we found that conflicts between blocks thnt nre 

in the same level of a Mip Map are difficult to avoid bccnusc the 
direction of texture accesses can be arbitrary. Assuming that ncigh- 
boring blocks do not map to the same line in the cache, tiled rnstcr- 
ization can reduce the occurrence of this kind of block conflict 
since it confines the working set to a spatially contiguous region of 
texture. Unfortunately, because the texture image dimensions arc 
powers of two and the memory required for a single row of texture 
blocks can be a multiple of the cache size, it is likely that conflicts 
will arise between neighboring blocks in the same column. One 
way to ensure that neighboring blocks do not conflict is to plncc n 
number of unused pad blocks at the end of each row of blocks ns 
illustrated in Figure 6.3(a). This scheme requires additionnl tcxcl 
addressing calculations which are shown below. 

bw, bh: block width and height in texels. These arc equal 
and are powers of two. 

ps: logz(bw * bh * number of pad blocks). Number of pad 
blocks is a power of two. 

by: block row coordinate 

Texel address = Texel address computed for blocked 
representation + (by CC ps) 

The shift operation shown above has a constant shift amount 
assuming that the block dimensions and the number of pad blocks 
remain fixed. Hence, the additional hardware overhend of padding 
is just one addition per texel addressing calculation. Padding nlso 
incurs a memory overhead, though this overhead tends to be ncgli- 
gible for large textures where padding is most needed. 

Another way to ensure that neighboring blocks do not conflict is 
to use another level of blocking in the representation of the texture 
images as illustrated in Figure 6.3(b). In this scheme, the IWO- 

dimensional texture arrays would effectively be stored as six= 

dimensional arrays. The size of the coarser blocks should be cqunl 
to the cache size since this ensures that a square region of blocks 
can be mapped into the cache without any conflicts, The ndditionnl 
hardware overhead of another level of blocking is two ncldldons 
per texel addressing calculation. 

Figure 6.4 shows the effect of tiled rasterization on conflict 
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FIGURE 6.3. (a) Illustration of a 4D blocked and padded rep- 
resentation for one level of a Mip Map. We use the same num- 
ber of pad blocks at the end of each row of blocks for all levels 
of a Mip Map. (b) Illustration of a 6D blocked representation 
for one level of a Mip Map. The size of the finer 2D blocks is se- 
lected to be equal to the cache line size and the size of the coars- 
er 4D blocks is selected to be equal to the cache size. 

misses for the Town and Flight scenes. Comparing the tiled raster- 
ization results for the Town scene in Figure 6.4(a) with the non- 
tiled rasterization results previously shown in Figure 5.7(b), we 
find that the rate of conflicts is quite diminished with tiled raster- 
ization. As expected, the effect of tiled rasterization on block con- 
flict misses in the Guitar scene is very similar. Even though the 
Flight scene uses moderately sized triangles, it is highly prone to 
conflicts between neighboring blocks that lie in the same column 
because of the relatively large textures used for the terrain images. 
Indeed, Figure 6.4(b) for the Flight scene shows that tiled raster- 
ization by itself is not sufficient for avoiding block conflict misses. 
However, when tiled rasterization is combined with either padding 
or 6D blocking, the rate of block conflict misses is significantly 
reduced. We can conclude that tiled rasterization effectively limits 
the number of blocks in the working set that can conflict with each 
other and that either padding or 6D blocking is needed to ensure 
that conflicts do not occur between neighboring blocks. 

7 Memory Bandwidth and Rendering 
Performance 

Perhaps the two most important metrics that characterize a tex- 
ture mapping system are rendering performance and memory 
bandwidth In this section, we discuss the issues in texture caching 
that effect rendering performance and after making some assump- 
tions about the machine model, we relate the miss rates to memory 
bandwidth. 
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7.1 Machine Model 
As previously shown in Figure 2.1, the texture mapping hard- 

ware consists of two components: a fragment generator and an 
SRAM texture cache. We discuss the details of each of these com- 
ponents separately. 

7.1.1 Fragment Generator 

The fragment generator is responsible for performing a fairly 
large number of calculations. As mentioned earlier, these include 
rasterizing triangles into fragments, computing level-of-detail and 
texture addresses for each fragment, trilinear interpolation of tex- 
els accessed from a Mip Map, and finally, applying the filtered tex- 
ture to the fragments. To accomplish all of these tasks, we assume 
that the fragment generator exploits parallelism and pipelining to a 
great extent. We also assume that the clock frequency is 100 MHz 
since this is representative of present-day ASIC technology. 

An appropriate measure of rendering performance is the number 
of textured fragments per second. One factor that can limit the 
maximum bandwidth achieved is the number of texels that can be 
accessed from the cache per cycle. Considering that a trilinear 
interpolation requires eight distinct texels to be accessed from the 
cache, a system that accessed just one texel per cycle would be 
limited to 12.5 million textured fragments per second. It is appar- 
ent that to achieve higher performance, more than one texel must 
be accessed per cycle. This issue is discussed further in Section 
7.1.2. For now, we assume that the machine can read four texels 
per cycle, leading to a maximum bandwidth of 50 million textured 
fragments per second. The computation time is factored out by the 
pipelined nature of the system. 

Another factor that can effect the performance of the system is 
the latency associated with filling a cache line from memory when 
a cache miss occurs. Even though the memory latency tends to be 
very long (roughly fifty 1Ons cycles for a 128 byte cache line), it 
still must be completely hidden to achieve the maximum rate of 
fragments textured per second. Note that the memory latency 
would constrain the performance of the system if it were not hid- 
den and that this reduction of fragment bandwidth becomes more 
pronounced as we increase the clock rate or the number of texel 
accesses per cycle. Another incentive for hiding the memory 
latency is the notion of robustness of performance with respect to 
different scenes. Some applications of real-time graphics require a 
high level of performance even under the worst-case conditions. A 
texturing system can sustain the maximum rate if the memory 
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FIGURE 6.4. Effect of tiled rasterization on conflict misses. The textures are stored in blocks of 8x8 texels and the cache line size is 
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(a) Town scene (rasterization is in column major order within and between tiles). (b) Flight scene. 

latency is completely hidden and the memory bandwidth is met. 
One solution for hiding the memory latency is proposed in [13]. 

The basic idea is to compute the texel addresses far in advance of 
the cache accesses by rasterizing the triangles twice: the first time 
to compute the texel addresses and to prefetch the lines that are 
missing in the cache and the second time to perform fragment tex- 
turing and shading. Since the texel addresses are needed by both 
rasterizers, they can either be computed independently by each ras- 
terizer or they can be passed from the first rasterizer to the second 
by means of a FIFO buffer. The former approach is likely to be 
more costly because of the large number of calculations needed to 
compute the texel addresses (please refer to Table 2.1). 

7.1.2 SFWM Texture Cache 

As mentioned in the previous section, it is important to be able 
to access more than one texel from the cache in the same cycle. A 
common way of designing a multi-ported cache is to interleave the 
cache lines across multiple independently addressed banks [8]. 
Since a trilinear interpolation involves accessing neighboring tex- 
els, the interleaving across banks in a texture cache must be at the 
granularity of a texel rather than a cache line. A conflict-free 
address distribution which allows up to four texels to be accessed 
in parallel is possible if the texels are stored in a morton order 
within the cache lines [3]. Morton order implies that the texels are 
stored in 2x2 blocks. The texels within each 2x2 block are inter- 
leaved across the four banks and the same interleaving pattern is 
used for all 2x2 blocks that lie within a cache line to ensure that 
adjacent texels in abutting blocks are assigned to different banks. 

While it may seem from Table 2.1 that the number of calcula- 
tions for texture mapping is sufficiently high that the computation 
rather than cache bandwidth is the bottleneck, in practice this is not 
the case. Comparing the number of calculations required in each 
phase of texture mapping, we note that the trilinear interpolation 
portion is the most computationally-intensive. The nature of this 
computation is such that cache bandwidth is critical to perfor- 
mance. Consider the core of a trilinear interpolation, which must 
be performed separately for each R,G,B,A color component: 

Interpolated value = Texel(n) + Weight * (Texel(n+l) - Texel(n) ) 

We observe that this calculation requires pairs of texel values 
before it can proceed. Limiting the number of texel accesses to one 
per cycle constrains the rate of subtractions to one every other 
cycle. In contrast, a two-ported cache would allow subtractions 
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every cycle. One might also consider adding more than two cache 
ports so that this calculation can be performed in parallel on diffcr- 
ent pairs of texels. Since the trilinear interpolation phase is the bot- 
tleneck in the fragment generator pipeline, improving its 
performance would directly impact the overall performance of a 
fragment generator. While we have been mostly focussing on spc- 
cial-purpose hardware, recent additions of visualization instruc- 
tions such as MMX [I93 and VIS [I63 and deep pipelines hnvc 
shifted the bottleneck away from computation in microprocessors, 

7.2 Memory Bandwidth 
The memory bandwidth results assuming that the system oper- 

ates at peak bandwidth of 50 million textured fragments per scc- 
ond are shown in Table 7.1. We report results for three diffcrcnt 
cache sizes: 4KB, 32KB, and 128KB. The 4KB cache is reprcscn- 
tative of a very small on-chip cache. The 32KB cache is large 
enough to hold the working sets, yet it can also be placed on-chip, 
Both the 4KB and 32KB caches are two-way set-associative, The 
128KB cache size provides a measure of how low the miss rates 
and memory bandwidths can become if a very large cache is used, 
This cache is direct mapped since associativity makes little diffcr- 
ence in miss rates at this size. The results were measured for the 
blocked representation since we previously found this texture rep- 
resentation to be most suitable. In addition, the texture arrays arc 
padded and the rasterization in screen space is tiled to reduce con- 
flict misses and working set size. 

One trend that can be seen in these results is that the memory 
bandwidth requirements are much reduced in the. transition from 
the 4KB cache to the 32KB cache for all scenes except the Flight 
scene where the reductions are more modest. The transition to the 
128KB cache leads to less drastic reductions in memory band- 
widths demonstrating that fairly small cache sizes arc adequate for 
texture mapping. Another trend is that the memory bandwidth 
requirements increase very slightly with increasing line size for the 
32KB and 128KB caches. This result is encouraging because 
larger line sizes can elicit a larger fraction of the peak memory 
bandwidth. 

We would like to compare the memory bandwidth rcqulrcmcnts 
discussed above for a fragment generator that uses an SRAM tcx- 
ture cache with the memory bandwidth requirement of a fragment 
generator of equivalent performance that directly accesses a dcdl- 
cated DRAM memory system for all texel lookups, For the latter 
system, which does not use a cache, the memory bandwidth 



TABLE 7.1. Memory bandwidth requirements in MBytes/second for different cache and line sizes. The performance of the system is 
50 million textured fragments/second. The miss rates are also shown in parentheses. The texture maps are stored in a blocked and 
padded representation in memory. The block dimensions are given in texels and the pad is four blocks at the end of each row of 
texture blocks. The rasterization is tiled in screen space using 8x8 pixel tiles. Texels are 32.bits. 

requirement is 1.5 GByteslsecond (4 byte&exe1 * 8 texels/frag- 
ment * SOM fragments/second). On the other hand, the memory 
bandwidth requirement for a system that uses a 32KB cache is 
between 100 and 450 MBytes/second. We see that there is a three 
to fifteen times reduction in memory bandwidth requirements due 
to caching. 

Although the main focus of this paper has been on a graphics 
rendering system with a single fragment generator, it is interesting 
to note that the memory bandwidths are low enough that a parallel 
system could be built with multiple fragment generators sharing a 
single texture memory, each with their own cache. As mentioned 
earlier, this makes it possible to avoid replicating the textures in 
each fragment generator memory as is done in the RealityEngine. 

8 Conclusions and Future Work 

As we move into the era of the Internet with 3-D virtual chat 
groups, realistic visualization of scientific phenomenon, photoreal- 
istic computer games, the need to provide high performance yet 
cheap computer graphics is becoming critical. While much atten- 
tion has been given in the past to design of memory hierarchies for 
general-purpose computers using the SPEC benchmarks and trans- 
action processing benchmarks, so far there is little published data 
available on core graphics algorithms like texture mapping. This 
paper attempts to fill that gap. 

We have built a sophisticated environment in which computer 
graphics workloads can be rendered, and our simulation results 
show that caches can be highly effective for texture-mapped 
graphics. Traditionally, caches have not been used in computer 
graphics systems where the philosophy has been to provide guar- 
anteed performance under worst-case conditions, although this 
philosophy is beginning to change 1131. By using techniques such 
as (i) block-based representation of Mip-Mapped textures, (ii) tiled 
rendering in the screen space itself, and (iii) padded or six-dimen- 
sionally blocked texture arrays, we can robustly reduce the miss 
rates. We study the relationship between block size in texture rep- 
resentations and cache line size, and also discuss which tile sizes 
are appropriate. We observe that caches as small as 16 KBytes 
with 2-way associativity (to reduce conflict miss rates for Mip 
Map levels) can reduce the effective bandwidth needed from the 
memory system by a factor of three to fifteen, while also reducing 
the latency of access. Because of the above tiling techniques, the 
performance can be made robust regardless of the scenes that are 
being texture mapped. 

A promising approach for rendering directly from compressed 
textures has been proposed in the literature [2]. In future work, it 
would be interesting to study the interaction between compressed 
representations of textures and cache architectures. Another area 
which we have not studied in detail is the use of texture caching in 
parallel architectures. One of the interesting questions that must be 

addressed in this area is how to balance the work among multiple 
fragment generators without reducing the spatial locality in each 
reference stream. 
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