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Abstract

Backup storage systems often remove redundancy across backups via inline deduplication,
which works by referring duplicate chunks of the latest backup to those of existing backups.
However, inline deduplication degrades restore performance of the latest backup due to frag-
mentation, and complicates deletion of expired backups due to the sharing of data chunks. While
out-of-line deduplication addresses the problems by forward-pointing existing duplicate chunks
to those of the latest backup, it introduces additional I/Os of writing and removing duplicate
chunks.

We design and implement RevDedup, an efficient hybrid inline and out-of-line deduplication
system for backup storage. It applies coarse-grained inline deduplication to remove duplicates of
the latest backup, and then fine-grained out-of-line reverse deduplication to remove duplicates
from older backups. Our reverse deduplication design limits the I/O overhead and prepares for
efficient deletion of expired backups. Through extensive testbed experiments using synthetic and
real-world datasets, we show that RevDedup can bring high performance to the backup, restore,
and deletion operations, while maintaining high storage efficiency comparable to conventional
inline deduplication.

1 Introduction

Deduplication is an established technique for eliminating data redundancy in backup storage. It
treats data as a stream of fixed-size or variable-size chunks, each of which is identified by a fin-

gerprint computed by a cryptographic hash (e.g., MD5, SHA-1) of its content. Two chunks are
said to be identical if their fingerprints are the same, while fingerprint collisions of two different
chunks are very unlikely [3]. Instead of storing multiple identical chunks, deduplication stores only
one unique copy of a chunk and refers any duplicate copies to the unique copy using smaller-size
references. Since backups have high redundant content, it is reported that deduplication can help
backup systems achieve effective storage saving by 20× [1].

1.1 Inline vs. Out-of-line Deduplication

Deduplication can be realized inline, which removes duplicate chunks on the write path, or out-of-
line, which first stores all data and later removes duplicates in the background. Today’s production
backup systems [13, 27, 29], which mainly build on disk-based backends, often implement inline
deduplication with average chunk size 4∼8KB. However, inline deduplication poses several fun-
damental challenges to the basic operations of backup systems, including backup, restore, and
deletion:
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• Backup: While inline deduplication avoids writing duplicates, its backup performance can
be degraded by extensive metadata operations for chunk indexing, including fingerprint com-
putations and index updates. The amount of metadata increases proportionally with the
number of chunks stored. Thus, keeping all fingerprints and other metadata in main memory
is infeasible. Instead, some indexing metadata must be kept on disk, but this incurs disk
accesses for metadata lookups and degrades backup performance.

• Restore: Inline deduplication introduces fragmentation [11, 13, 18, 23], as backups now refer
to existing data copies scattered in prior backups. This incurs significant disk seeks when
restoring recent backups, and the restore performance degrades. Fragmentation becomes
worse for newer backups, whose data is scattered across more prior backups. The gradual
degradation is undesirable since the new backups are more likely to be restored during disaster
recovery. A lower restore throughput of the latest backup implies a longer system downtime.

• Deletion: With inline deduplication, expired backups cannot be directly deleted as they may
be shared by newer, non-expired backups. Deletion is often handled via a mark-and-sweep
approach: in the mark phase, all chunks are scanned and any unreferenced chunks are marked
for removal; in the sweep phase, all marked chunks are freed from disk in the background.
However, the mark phase needs to search for unreferenced chunks across disk and incurs
significant I/Os.

Extensive studies address the above challenges of inline deduplication (see Section 5). How-
ever, it remains an open issue of how to address the challenges simulataneously so as to enable
deduplication-enabled backup systems to achieve high performance in backup, restore, and dele-
tion operations.

Out-of-line deduplication addresses some aforementioned issues of inline deduplication. For
example, it can reduce the disk I/O overhead of index lookups on the write path. It also mitigates
fragmentation and preserves restore performance of the new backups by referring duplicate chunks
of old backups to the chunks of new backups [11]. This forward-pointing approach also facilitates
the deletion of old backups, since their chunks are no longer shared by new backups. However,
out-of-line deduplication incurs extra I/Os of writing and removing redundant data, and hence
gives poorer backup performance than inline deduplication. For example, writing duplicates can
slow down the backup performance by around 3× compared to inlne deduplication based on the
measurements in a commercial backup system [11]. Also, out-of-line deduplication needs extra
storage space to keep redundant data before the redundant data is removed.

1.2 Contributions

Our position is that both inline deduplication and out-of-line deduplication complement each other
if carefully used. We propose RevDedup, an efficient hybrid inline and out-of-line deduplication
system for backup storage. Our work extends our prior work [19] to aim for high performance
in backup, restore, and deletion operations, while preserving storage efficiency as in conventional
inline deduplication. RevDedup first applies coarse-grained inline deduplication at the granularity
of large-size units, and further applies fine-grained out-of-line deduplication on small-size units to
improve storage efficiency. Our out-of-line deduplication step, called reverse deduplication, shifts
fragmentation to older backups by referring their duplicates to newer backups. To limit the I/O
overhead of reverse deduplication, we compare only two consecutive backup versions derived from
the same client, and we argue that it still effectively removes duplicates. Also, during reverse
deduplication, we repackage backup data to facilitate subsequent deletion of expired backups.
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We implement a RevDedup prototype and conduct extensive testbed experiments using syn-
thetic and real-world workloads. We show that RevDedup maintains comparable storage efficiency
to conventional inline deduplication, achieves high backup and restore throughput for recent back-
ups (e.g., on the order of GB/s), and supports fast deletion for expired backups. To our knowledge,
very few deduplication studies in the literature evaluate the actual I/O performance through pro-
totype implementation.

The rest of the paper proceeds as follows. In Section 2 and Section 3, we present the design and
implementation details of RevDedup, respectively. In Section 4, we report testbed experimental
results. We review related work in Section 5, and finally conclude the paper in Section 6.

2 RevDedup Design

RevDedup combines inline and out-of-line deduplication and is designed for backup storage. It
aims for the following design goals:

• Comparable storage efficiency to conventional inline deduplication approaches;

• High backup throughput for new backups;

• High restore throughput for new backups; and

• Low deletion overhead for expired backups.

2.1 Backup Basics

Backups are copies of primary data snapshotted from client systems or applications, and can be
represented in the form of tar files or VM disk images (e.g., qcow2, vmdk, etc.). They are regularly
created by a backup system, either as daily incremental backups or weekly full backups. Backup
data is organized into containers as the units of storage and read/write requests, such that each
container is of size on the order of megabytes. Today’s backup solutions mainly build on disk-based
storage, which achieves better I/O performance than traditional tape-based storage.

We define a series as the sequence of backups snapshotted from the same client at different
times. Each backup series has a retention period [27], which defines how long a backup is kept in
storage. We define a retention window that specifies a set of recent backups that need to be kept in
storage. The retention window slides over time to cover the latest backup, while the earliest backup
stored in the system expires. The backup system later deletes the expired backups and reclaims
storage space. Note that the retention window length may vary across different backup series.

Since backups share high redundancy, this work focuses on using deduplication to remove re-
dundancy and achieve high storage efficiency. We can further improve storage efficiency through
local compression (e.g., Ziv-Lempel [30]), yet we do not consider the effect of compression in this
work.

2.2 RevDedup Overview

RevDedup performs deduplication in two phases. It first applies inline deduplication by dividing
backup data into large-size units (e.g., on the order of megabytes) called segments, and removes
duplicate segments of new backups on the write path. It packs the unique segments into containers
and stores the containers on disk. Deduplication on large-size segments reduces both fragmentation
and indexing overheads [12]. See Section 2.3 for details.
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Figure 1: Overview of RevDedup operations.

RevDedup then reads the containers and applies out-of-line deduplication to small-size data
units (e.g., on the order of kilobytes) called chunks. It further removes duplicate chunks of older
backups and refers them to the identical chunks in newer backups. We call this reverse deduplication,
which shifts fragmentation to older backups and hence maintains high restore throughput of newer
backups. See Section 2.4 for details.

After reverse deduplication, RevDedup repackages segments into separate containers to facilitate
later deletions of expired backups. See Section 2.5 for details.

We first describe how RevDedup prepares for the two-phase deduplication before explaining the
design details.

2.2.1 Live and Archival Backups

RevDedup divides the retention window of a backup series into two sub-windows: live window and
archival window. Backups in the live window (called live backups) are those recently written and
are more likely to be restored, while those in the archival window (called archival backups) serve
for the archival purpose only and are rarely restored. RevDedup applies inline deduplication to the
latest backup, which is first stored in the live window. The retention window then slides to cover
the latest backup. The oldest live backup will move to the archival window, and RevDedup applies
reverse deduplication to that backup out-of-line (e.g., when the storage system has light load).

Figure 1 illustrates the lifecycles of six backups of the same series created in the following order:
X0, X1, X2, X3, X4, and X5. Suppose that the retention window is set to five backups, the live
window is set to two backups, and the archival window is set to three backups. When X5 is added,
X0 expires and can be deleted to reclaim disk space. Also, the segments of X5 can be deduplicated
with those of existing live backups (i.e., X4 in this example). Also, X3 moves to the archival
window. We can perform reverse deduplication and remove duplicate chunks from X3.

2.2.2 Chunking

Chunking is the process of dividing a data stream into fixed-size or variable-size deduplication units
(i.e., segments or chunks). Our discussion assumes variable-size chunking. Here, we consider the
chunking approach based on Rabin Fingerprinting [22], whose idea is to compute a rolling hash of
a sliding chunking window over the data stream and then identify boundaries whose lower-order
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bits of the rolling hash match a target pattern. An important property of Rabin Fingerprinting is
that the new rolling hash value can be efficiently computed using the last rolling hash value.

RevDedup identifies both segment and chunk boundaries using the same target pattern. We
define two bit lengths m and n, where m > n, which correspond to the average segment and chunk
sizes, respectively. When the chunking window slides, we first check whether the lowest n bits of
the rolling hash match the target pattern. If yes, the window endpoint is a chunk boundary, and
we further check whether the lowest m bits of the rolling hash match the same target pattern; if
yes, the window endpoint is also a segment boundary. Clearly, a segment boundary must also be a
chunk boundary. The chunking process can be done in a single pass of the data stream, and hence
preserves the chunking performance of Rabin Fingerprinting.

In our discussion, the segment or chunk size configured in variable-size chunking actually refers
to an average size. We also assume that the minimum and maximum segment or chunk sizes are
half and twice the average size, respectively.

2.3 Segment-level Inline Deduplication

RevDedup performs segment-level inline deduplication to the storage pool. As in conventional
inline deduplication, RevDedup performs deduplication globally in different levels: within the same
backup, across different backups of the same series, and across different series of backups. The
main difference is on the deduplication unit size: RevDedup uses large-size units (called segments)
on the order of megabytes (e.g., 4∼8MB), while conventional inline deduplication uses small-size
units on the order of kilobytes (e.g., 4KB [9] or 8KB [29]).

Choosing large deduplication units (segments) has two key benefits. First, it mitigates frag-
mentation [25]. Since we put the entire segment in a container, we reduce the number of containers
that need to be accessed with a large segment size. In addition, it keeps a small deduplication
index (i.e., the data structure for holding the segment fingerprints and their locations), and hence
mitigates the indexing overhead [12]. For example, suppose that we store 1PB of data, the segment
size is 4MB, and the index entry size is 32 bytes. Then the index size is 8GB only, as opposed to
8TB when the deduplication unit size is 4KB.

Segment-level inline deduplication still achieves reasonably high deduplication efficiency, as
changes of backups are likely aggregated in relatively few small regions, while several extended
regions remain the same [12]. Nevertheless, using large deduplication units cannot maintain the
same level of deduplication efficiency as do conventional fine-grained deduplication approaches (see
our evaluations in Section 4).

To keep track of the deduplication metadata for all stored segments, our current RevDedup
design maintains an in-memory deduplication index. We can keep an on-disk index instead to
reduce memory usage, and exploit compact data structures and workload characteristics to reduce
on-disk index lookups [29]. Another option is to keep the index on solid-state drives [6, 16]. The
issues of reducing memory usage of indexing are posed as future work.

RevDedup packs the unique segments into a fixed-size container. To handle variable-size seg-
ments, we initialize a new container with a new segment (even the segment size is larger than the
container size). We then keep adding new segments to the container if it is not full. If adding a
segment exceeds the container size, we seal and store the container, and create a new container for
the segment being added.
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2.4 Reverse Deduplication

After segment-level inline deduplication, RevDedup divides each segment into smaller-size chunks,
each of which has size on the order of kilobytes, and applies chunk-level out-of-line deduplication to
further improve storage efficiency. To mitigate fragmentation of the newer backups that are more
likely to be restored, RevDedup performs reverse deduplication, i.e., removing duplicate chunks in
older backups and referring them to identical chunks in newer backups.

However, we must address several issues of out-of-line deduplication. First, there are extra I/Os
of identifying and removing duplicate chunks on disk. To reduce the I/O overhead, we limit the
deduplication operation to two consecutive backups of the same series. Second, we can remove
duplicate chunks only when their associated segments are no longer shared by other backups. We
use two-level reference management to keep track of how segments and chunks are referenced and
decide if a chunk can be safely removed. Third, we must support efficient removal of duplicate
chunks. We argue that we only check the segments that are not shared by any live backups for
chunk removal. In the following, we describe how we address the issues altogether.

2.4.1 Deduplication Operation

Our reverse deduplication works on two consecutive backups of the same series. When a live backup
(call it X0) moves from the live window to the archival window, RevDedup loads the metadata of
the following (live) backup of the same series (call it X1). It then removes duplicate chunks from
X0 and refers them to those in X1.

The deduplication operation follows two principles and we provide justifications. First, we limit
reverse deduplication to the backups of the same series. Due to repeated backups of the same client
system, inter-version duplicates of the same series are common [11]. Also, changes of a backup tend
to appear in small regions [12]. Thus, we can potentially remove additional inter-version duplicates
around the small change regions in a more fine-grained way [12]. Second, reverse deduplication
is applied to consecutive backups. Our assumption is that most duplicate chunks appear among
consecutive backups. Our current design focuses on only two consecutive backups, yet we can
compare more backups to trade deduplication performance for storage efficiency.

Each backup keeps a list of references to all chunks. Each chunk reference is one of the two
types: either (1) a direct reference, which points to a physical chunk, or (2) an indirect reference,
which points to a reference of the following backup of the same series. Since the following backup
may be further deduplicated with its own following backup, accessing a chunk may follow a chain
of indirect references. Figure 2 shows an example of reverse deduplication for four backups created
in the order X0, X1, X2, and X3. We see that X0 (the oldest backup) may access a chunk of X1
through an indirect reference, or a chunk of X2 or X3 through a chain of indirect references. Note
that the latest backup must have direct references only.

To perform reverse deduplication between the old backup X0 and the following backup X1,
RevDedup loads the chunk fingerprints of X1 from the metadata store (see Section 3) and builds
an in-memory index on the fly. It then loads the chunk fingerprints of X0 and checks if they match
any chunk fingerprints of X1 in the index. We quantify the worst-case memory usage as follows.
Suppose that the raw size of a backup is 20GB, the chunk size is 4KB, and each chunk-level index
entry size is 32 bytes. The total memory usage is up to 20GB÷4KB×32 bytes = 160MB. Note
that the index only temporarily resides in memory and will be discarded after we finish reverse
deduplication.
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Figure 2: Example of reverse deduplication for four backups of the same series created in the order:
X0, X1, X2, and X3.

2.4.2 Two-level Reference Management

After reverse deduplication, we can remove chunks that are not referenced by any backup from
disk to reclaim storage space. RevDedup uses two-level reference management to keep track of how
segments and chunks are shared.

RevDedup associates each segment with a reference count, which indicates the number of refer-
ences from the live backups. Suppose that we now store a segment of a new backup. If the segment
is unique, its reference count is initialized as one; if it is a duplicate, its corresponding reference
count is incremented by one. When a live backup moves to the archival window, all its associated
segments have their reference counts decremented by one. Reverse deduplication is only applied to
segments that have zero reference counts, meaning that the segments are not shared by any live
backup, and hence their chunks can be removed. To simplify our discussion, we call the segments
with zero reference counts non-shared, and those with positive reference counts shared. We only
check the non-shared segments for chunk removal.

If a chunk is found duplicate in the next backup, an indirect reference is recorded; if a chunk
is unique, a direct reference is set. A chunk can be safely removed if both conditions hold: (1) its
associated segment is non-shared, and (2) it holds an indirect reference.

Figure 3 shows how we manage the segment and chunk references. Suppose that we store the
backups {X0, X1} and {Y0, Y1} of two separate backup series. Also, we assume that when X1 and
Y1 are stored in the live window, both X0 and Y0 move to the archival window. Let the segment
size be two chunks. From the figure, the segment AB is no longer shared by any live backup, so its
segment count is zero. Also, X0 can refer to chunk A in X1, so chunk A can be removed from X0
by reverse deduplication. Since the segment CD is still shared by X1 and Y1, its reference count is
two. Both segments AB’ and AB” have reference counts equal to one.

2.4.3 Chunk Removal

RevDedup loads the containers that have non-shared segments. It compacts all non-shared segments
without the removed chunks in reverse deduplication, and repackages them into separate containers.
It also rewrites the loaded containers with the remaining shared segments with positive reference
counts back to disk. Separating the non-shared and shared segments into different containers has
two benefits. First, when we run the chunk removal process next time, the repackaged containers
with non-shared segments are untouched. This saves the unnecessary I/Os. Second, it supports
efficient deletion of expired backups, as described in Section 2.5.
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Figure 3: Example of reference management in RevDedup for two backup series {X0,X1} and
{Y0,Y1}, where X0 and Y0 are in the archival window, while X1 and Y1 are in the live window.

2.5 Deletion of Backups

RevDedup supports efficient deletion of expired backups using container timestamps. When it
removes chunks from non-shared segments and repackages them into a new container (see Sec-
tion 2.4.3), it associates with the container a timestamp that specifies the creation time of the
corresponding backup. Any segments whose backups are created at about the same time can
be gathered and packed into the same container, even though the backups may be derived from
different series. For containers with shared segments, their timestamps are set to be undefined.

To delete expired backups, RevDedup examines the well-defined timestamps of all containers
and delete the expired containers. Such containers must contain non-shared segments that belong
to expired backups, and hence are safe to be deleted. We do not need to scan all segments/chunks
as in the traditional mark-and-sweep approach, so the deletion time is significantly reduced.

3 Implementation

We have implemented a RevDedup prototype in C on Linux. The prototype mounts its storage
backend on a native file system, which we choose to be Linux Ext4 in this work. In this section, we
describe the components of the prototype, including metadata and executable modules. We also
present techniques that further improve the prototype performance.

3.1 Metadata

We maintain deduplication metadata for each of the segments, chunks, containers, and backup
series: (1) the metadata of each segment describes the segment fingerprint, the fingerprints of
all chunks in the segment, the reference count (for chunk removal in reverse deduplication), and
the segment offset; (2) the metadata of each chunk describes the chunk fingerprint and the chunk
offset; (3) the metadata of each container describes segments in the container and the timestamp
(for reclamation); and (4) the metadata of each backup series describes which versions are in the
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live, archival, and retention windows. We store each type of the metadata as a log-structured file
with fixed-size entries, each of which is indexed by a unique identifier. We map the metadata logs
into memory using mmap(), so the entries are loaded into memory on demand.

In addition, we maintain an in-memory deduplication index for segment-level inline deduplica-
tion (see Section 2.3). We implement the index as a hash map using the Kyoto Cabinet library [8].
Each segment fingerprint is then mapped to an identifier in the segment metadata log. In our proto-
type, we compute the segment and chunk fingerprints with SHA-1 using the OpenSSL library [20].

Each backup is associated with a recipe that contains a list of references for reconstructing
the backup. For a live backup, the recipe describes the references to the unique segments; for
an archival backup, the recipe holds both direct and indirect references, which state the offsets of
chunks on disk and the offsets of direct reference entries, respectively.

3.2 Executable Modules

We decompose the RevDedup prototype into executable modules that run as standalone programs.
We can also run them as daemons and connect them via inter-process communication.

• chunking: It chunks a backup file into segments and chunks, and stores the fingerprints and
offsets in a temporary file.

• inlinededup: It performs segment-level inline deduplication on the backup file, using the tem-
porary file created from chunking. It first loads the in-memory segment deduplication index
from the segment metadata log. For new unique segments, it adds them into containers,
appends metadata to the segment metadata log, and adds new entries to the deduplication
index. It also creates the backup recipe holding all the segment references for the backup.

• revdedup: It takes a backup of a series as the input and performs reverse deduplication on
itself and its following backup of the same series. It also repacks segments with removed
chunks into different containers.

• restore: It reconstructs the chunks of a backup given the series and version numbers as inputs.
It reads the backup recipe, and returns the chunks by tracing the direct references or chains
of indirect references.

• delete: It takes a timestamp as the input and deletes all backups created earlier than the
input timestamp.

3.3 Further Improvements

We present techniques that improve the performance of RevDedup during deployment.

Multi-threading: RevDedup exploits multi-threading to parallelize operations. For example,
during backup, multiple threads check the segments for inline deduplication opportunities and write
segments into containers; during reverse deduplication, multiple threads read containers and check
for chunk removal; during restore, multiple threads read containers and trace indirect reference
chains to reconstruct the segments.

Prefetching: RevDedup reads containers during reverse deduplication and restore. It uses
prefetching to improve read performance. Specifically, a dedicated prefetch thread calls the POSIX
function posix fadvise(POSIX FADV WILLNEED) to notify the kernel to prefetch the containers into
cache and save future disk reads. While the prefetch thread issues the notification and waits for
the response from the kernel, other threads work on metadata processing and data transmission so
as to mitigate the notification overhead. Note that prefetching is also used by Lillibridge et al. [13]
(known as the forward assembly area) to improve read performance of deduplication systems. Our
prefetching approach differs in that it leverages the kernel support.
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Traces # Series # Backups α% β% γMB

SG1 1 78 2% 10% 10MB

SG2 1 78 4% 10% 10MB

SG3 1 78 2% 20% 10MB

SG4 1 78 2% 10% 20MB

SG5 1 78 10% 10% 10MB

GP 16 320 2% 10% 10MB

Table 1: Details of all synthetic datasets.

Handling of null chunks: Some backup workloads such as VM images may contain a large
number of null (or zero-filled) chunks [10]. RevDedup skips writing null chunks. When a read
request is issued to a null chunk, the restore module returns the null chunk on the fly instead of
reading it from disk. This improves both backup and restore performance.

Tunable parameters: RevDedup makes performance trade-offs through configurable parame-
ters, including the sizes of segments, chunks, and containers, as well as the lengths of retention,
live, archival windows. For example, a longer live window implies that more backups are ready
to be restored, while consuming more storage space; larger segments and chunks imply less in-
dexing overhead and data fragmentation, while reducing deduplication efficiency. We explore the
performance effects of different parameters in Section 4.

4 Experiments

We conduct testbed experiments on our RevDedup prototype. We show that RevDedup achieves
high storage efficiency, high backup throughput, high restore throughput of new backups, and low
deletion overhead of expired backups.

4.1 Setup

Datasets: We evaluate RevDedup using both synthetic and real-world datasets. For synthetic
datasets, we extend the idea by Lillibridge et al. [13] to generate configurable workloads for stress-
testing data fragmentation. We simulate a backup series by first creating a full backup using a
Ubuntu 12.04 virtual machine (VM) disk image configured with 8GB space. Initially, the image
has 1.1GB of system files. On each simulated weekday, we randomly walk through the file system
to pick α% of files and modify β% of file contents, and further add γMB of new files to the file
system. The parameters α, β, and γ are configurable in our evaluation. We represent five simulated
weekdays as one simulated week. At the start of each simulated week, we perform a full backup of
the disk image using the dd utility. We generate 78 full backups to simulate a duration of 1.5 years.
We configure the parameters to simulate five types of activities of a single backup series, as listed
in Table 1. We call the datasets SG1-5. In addition, we also simulate a scenario with a group of
16 backup series covering 20 weekly full backups each. We call the dataset GP.

We also consider a real-world dataset taken from the snapshots of VM images used by uni-
versity students in a programming course. We prepared a master image of 7.6GB installed with
Ubuntu 10.04 and assigned it to each student to work on three programming assignments over a
12-week span. We took weekly snapshots for the VMs. For privacy reasons, we only collected cryp-
tographic hashes on 4KB fixed-size blocks. For our throughput tests, we reconstruct disk blocks
derived from the hashes via a one-to-one function. Our evaluation selects a subset of 80 VMs
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covering a total of 960 weekly full backups. The total size is 7.2TB with 3.3TB of non-zero blocks.
We call the dataset VM. Note that the dataset only presents a special real-world use case, and we
do not claim its representativeness for general virtual desktop environments.

Testbed: We conduct our experiments on a machine with an Intel Xeon E3-1240v2 quad-core,
eight-threaded processor, 32GB RAM, and a disk array with eight ST1000DM003 7200RPM 1TB
SATA disks. By default, we configure a RAID-0 array as done in prior work [9] to maximize the
disk array throughput for high-performance tests, while we also consider RAID-5 and RAID-6 in
baseline performance tests (see Section 4.2). We fix the RAID chunk size at 512KB. The machine
runs Ubuntu 12.04.3 with Linux kernel 3.8.

Default settings: We compare RevDedup and conventional inline deduplication. For RevDedup,
we fix the container size at 32MB, the segment size at 4MB for inline deduplication, the chunk size
at 4KB for reverse deduplication. We also assume that the retention window covers all backups.
We fix the live window length to be one backup and the archival window length to be the number
of all remaining backups. For conventional inline deduplication, we configure RevDedup to fix the
segment size as 4KB and disable reverse deduplication. The container size is also fixed at 32MB.
We refer to conventional inline deduplication as Conv in the following discussion.

For the datasets SG1-5 and GP, both RevDedup and Conv use variable-size chunking based
on Rabin Fingerprinting [22]; for the dataset VM, we use fixed-size chunking, which is known to be
effective for VM image storage [10]. We examine the effects of various parameters, including the
container size, the segment size, and the live window length.

Evaluation methodology: Our experiments focus on examining the I/O performance of RevDedup.
When we perform throughput and latency measurements, we exclude the overhead of fingerprint
computations, which we assume can be done by backup clients offline before they store backup
data. We pre-compute all segment and chunk fingerprints before benchmarking. In addition, for
each write, we call sync() to force all data to disk. Before each read, we flush the file system cache
using the command “echo 3 > /proc/sys/vm/drop caches”. By default, we disable prefetching
(see Section 3.3) to focus on the effect of disk accesses on I/O performance.

4.2 Baseline Performance

We measure the baseline performance of RevDedup using unique data (i.e., without any duplicates).
We write 8GB of unique data, and then read the same data from disk. We also measure the raw
throughput of the native file system. We obtain averages and standard deviations over 20 runs.

Table 2 shows the results. In RAID-0, RevDedup can achieve at least 95.9% and 88.6% of raw
write and read throughputs, respectively. We also configure the testbed as RAID-5 and RAID-6.
We observe throughput drops due to the storage of parities. Nevertheless, RevDedup achieves
nearly the raw throughput.

4.3 Storage Efficiency

We calculate the percentage reduction of storage space with deduplication. We exclude the meta-
data overhead and null chunks in our calculation. We compare RevDedup and Conv. For RevDedup,
we vary the segment sizes. We also provide a breakdown for segment-level inline deduplication and
reverse deduplication.

Figure 4 shows the results. Consider the synthetic datasets SG1-5 and GP. In RevDedup,
segment-level inline deduplication itself also reduces storage space, but the saving drastically drops
as the segment size increases. For example, when the segment size is 8MB, segment-level inline
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(GB/s) Raw RevDedup

W (R0) 1.060 (0.013) 1.017 (0.034)
R (R0) 1.235 (0.004) 1.094 (0.004)

W (R5) 0.913 (0.011) 0.81 (0.013)
R (R5) 1.004 (0.020) 0.85 (0.008)

W (R6) 0.793 (0.016) 0.734 (0.020)
R (R6) 0.935 (0.010) 0.726 (0.029)

Table 2: Baseline throughput of RevDedup with segment size 4MB and container size 32MB on
unique data under RAID-0, RAID-5, and RAID-6 (values in the brackets are standard deviations).
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Figure 4: Percentage reduction of storage space of RevDedup and Conv.

deduplication only gives 56.5∼68.9% of space saving for SG1-5. Nevertheless, reverse deduplication
increases the saving to 93.6∼97.0%, which is comparable to Conv.

For the real-world dataset VM, RevDedup achieves a saving of 96.3∼97.1%, which is close to
98.3% achieved by Conv. In particular, segment-level inline deduplication saves at least 90% of
space, since most system files remain unchanged in the VM images. We emphasize that the findings
are specific to our dataset and may not hold in general.

4.4 Throughput

We evaluate the backup and restore throughput of RevDedup, and compare the results with Conv.
We study the how different segment sizes and container sizes affect the backup and restore through-
put. We only focus on the datasets SG1, GP, and VM. We also study the overhead of reverse
deduplication, the gains of prefetching, and the effect of live window length, where we focus on the
dataset SG1. The results for SG1 are plotted every three weeks for clarify of presentation. All
results are averaged over five runs.

4.4.1 Backup

To evaluate the backup throughput of RevDedup, we only measure the backup performance due
to segment-level inline deduplication, since reverse deduplication is assumed to be done out-of-line.
We will measure the overhead of reverse deduplication in Section 4.4.3.

Before each experimental run of a dataset, we format the file system without any data. We
submit each backup using inlinededup (see Section 3.2), and measure the duration starting from
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Figure 5: Backup throughput of RevDedup and Conv for different datasets. We vary the container
and segment sizes of RevDedup: figures (a), (c), and (e) fix the segment size at 4MB and vary the
container size; figures (b), (d), and (f) fix the container size at 32MB and vary the segment size.
The plots start from the second week to take into account inter-version redundancy.

when the in-memory deduplication index is built until all segments are packed into containers and
written to disk. The backup throughput is calculated as the ratio of the original backup size to the
measured duration. Figure 5 shows the backup throughput results, which we elaborate below.

Performance trends of Conv and RevDedup: At the beginning, RevDedup has significantly
higher backup throughput than the raw write throughput (e.g., 4× for SG1 as shown in Figure 5(a)).
The throughput decreases over time, as we make more content changes to the backups and hence
introduce more unique data. Both synthetic datasets SG1 and GP show similar trends, due to the
ways of how we inject changes to the backups.

The real-world dataset VM shows throughput fluctuations because of the varying usage pat-
terns. For example, Week 4 shows a sudden throughput drop because there was an assignment dead-
line and students made significant changes to their VMs. Despite the fluctuations, RevDedup still
achieves much higher backup throughput than the raw write throughput. We note that RevDedup
can reach an exceptionally high throughput of up to 30GB/s. The reason is that our VM dataset
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RevDedup
Conv 1MB 4MB 8MB

Index Lookups (sec) 2.562 0.032 0.012 0.008

Data Writes (sec) 0.961 0.501 0.617 0.646

Table 3: Time breakdown of writing the second backup of SG1 for Conv with segment size 4KB
and RevDedup with varying segment sizes, where the container size is fixed at 32MB.

contains a large volume of duplicate segments and null segments, both of which can be eliminated
on the write path.

Although Conv has higher reduction of storage space than RevDedup with only segment-level
inline deduplication (see Figure 4), it has much lower backup throughput, and its throughput is
fairly stable. To explain the results, we measure two sub-operations of a backup operation: index
lookups and data writes (note that data writes include packing segments to containers and writing
containers to disk). With multi-threading (see Section 3.3), both sub-operations are carried out
simultaneously, and hence the backup performance is bottlenecked by the slowest sub-operation.
We consider a special case when we store the backup of the 2nd week for SG1. We configure
Conv with segment size 4KB and RevDedup with varying segment sizes, while both schemes have
container size fixed at 32MB. Table 3 provides a time breakdown for the two sub-operations. We
observe that for Conv, although its deduplication index is kept in memory, its small deduplication
units significantly increase the lookup time and make the index lookups become the bottleneck.
Even though we inject more unique data to the backups over time, the backup throughput remains
bottlenecked by index lookups. On the other hand, RevDedup has much less index lookup overhead
with larger segments. We also note that Conv has higher data write time than RevDedup, because
it adds a much larger number of small segments into containers.

We emphasize that as more unique data is added, RevDedup eventually has its backup through-
put dropped below Conv. Nevertheless, the backup throughput of RevDedup is lower bounded by
the baseline for unique data (see Section 4.2).

Effect of container size: While a larger container size implies fewer write requests and hence
better data write performance, the gains in backup throughput is insignificant due to the inevitable
indexing overhead in deduplication. For example, for SG1 in Figure 5(a) and GP in Figure 5(c),
the backup throughput of RevDedup increases by only 9% and 16% (averaged over all weeks) when
the container size increases from 4MB to 16MB, respectively.

Effect of segment size: A large segment size reduces the deduplication opportunity, and hence
RevDedup writes more data to disk. Since the data write dominates the backup performance of
RevDedup (see Table 3), its backup throughput drops as the segment size increases. For example,
for SG1 in Figure 5(b), the backup throughput drops by 38% (averaged over all weeks) when the
segment size increases from 1MB to 8MB.

4.4.2 Restore

After writing all backups, we restore each backup using the module restore (see Section 3.2).
We measure the restore throughput of RevDedup and Conv as the ratio of the original backup
size to the restore time. For RevDedup, we first perform out-of-line reverse deduplication on the
backups, so that the restore performance of both RevDedup and Conv is measured when they have
comparable storage efficiency (see Section 4.3). Figure 6 shows the restore throughput results for
various container sizes and segment sizes, corresponding to the settings of Figure 5. The results
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Figure 6: Restore throughput of RevDedup and Conv, corresponding to the settings in Figure 5.

are elaborated as follows.

Performance trends of Conv and RevDedup: Conv suffers from data fragmentation and
hence its restore throughput decreases for more recent backups (e.g., by 86% from Week 2 to
Week 78 in Figure 6(a)), while RevDedup shifts data fragmentation to older backups and maintains
high restore throughput for the latest backups. For instance, from Figures 6(a) and 6(c), the
restore throughput for the latest backup of RevDedup is 5× and 4× that of Conv for SG1 and
GP, respectively. The throughput values are smaller than the raw read throughput, mainly due to
data fragmentation caused by segment-level inline deduplication.

For the real-world dataset VM, we see similar trends of restore throughput for both RevDedup
and Conv. However, the restore throughput of RevDedup goes beyond the raw read throughput
(see Figures 6(e) and 6(f)). The reason is that the VM images contain a large number of null
chunks, which are generated on the fly by RevDedup rather than read from disk. We expect that
the restore throughput drops as the number of null chunks decreases.

Effect of container size: The restore throughput increases with the container size as the number
of read requests decreases. For example, for SG1 in Figure 6(a) and GP in Figure 6(c), the restore
throughput of RevDedup increases by 11.8% and 14.4% (averaged over all weeks) when the container
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Figure 7: Reverse deduplication throughput of RevDedup.

size increases from 4MB to 16MB, respectively. However, further increasing the container size from
16MB to 32MB shows only marginal gains.

Effect of segment size: A larger segment size increases the restore throughput, as it mitigates
data fragmentation. For example, for SG1 in Figure 6(b), the restore throughput for the latest
backup of RevDedup increases by 39.3% (averaged over all weeks) when the segment size increases
from 1MB to 8MB. The trade-off of using larger segments is that it reduces both storage efficiency
and backup throughput.

4.4.3 Reverse Deduplication Overhead

We now evaluate the reverse deduplication throughput, defined as the ratio of the original backup
size to the reverse deduplication time. Recall that we set the default live window length as one
backup. After we submit a new backup, we perform reverse deduplication on its previous backup.
We measure the time of reading the containers that have non-shared segments of the previous
backup and writing the compacted segments without removed chunks to disk.

Figure 7 shows the reverse deduplication throughput for SG1 starting from Week 1. Week 1 has
lower throughput than the next few weeks, due to the following reason. Initially, many containers
are mixed with shared and non-shared segments, so we load such containers and separate the
shared and non-shared segments into different containers (see Section 2.4.3). Later we only load
the containers whose segments change from shared to non-shared, plus the containers that have
non-shared segments associated with the backup on which we apply reverse deduplication. We also
see that the throughput drops as the amount of unique data increases, yet it is lower bounded by
about half of the baseline read/write throughput (see Section 4.2) since the whole backup is read
for chunk removal and rewritten to disk (assuming that the baseline read and write throughputs
are about the same).

4.4.4 Gains of Prefetching

We disable prefetching in the previous experiments. We now evaluate the restore throughput
increases with prefetching enabled. We focus on SG1. For RevDedup, we fix the segment size at
4MB and the container size at 32MB. Figure 8 shows the results. We see that prefetching improves
the restore throughput by 23.9% and 45.8% (averaged over all weeks) for Conv and RevDedup,
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Figure 8: Restore throughput of Conv and RevDedup with and without prefetching.
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Figure 9: Restore throughput of RevDedup with different live window lengths.

respectively. Note that the data fragmentation problem, while being mitigated, still manifests in
Conv, which still has around 82% drop in restore throughput from the first week to the last one.

4.4.5 Effective Live Window Length

The live window length defines the number of backups that remain coarsely deduplicated by
segment-level inline deduplication, and determines the trade-off between storage efficiency and
restore performance. Here, we study the effect of live window length for the dataset SG1. We first
store all backups of SG1 and perform reverse deduplication using RevDedup. We then measure
the restore throughput for each backup. We vary the live window length to be 1, 5, and 17 backups
(i.e., the archival window lengths are 77, 73, and 61 backups, respectively).

Figure 9 shows the restore throughput results. The restore throughput increases over time for
backups within the archival window, since RevDedup shifts data fragmentation to old backups. On
the other hand, the restore throughput decreases over time for the backups within the live window
(e.g., when the live window is 17 backups), due to data fragmentation caused by segment-level
inline deduplication. Nevertheless, the drop is slower than conventional deduplication as the large
segment size limits the overhead of data fragmentation.

Setting a larger live window increases the restore throughput of backups in the archival window.
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Figure 10: Deletion times of RevDedup and mark-and-sweep.

Recall that an archival backup has indirect reference chains to the oldest live backup. A larger
live window implies that an archival backup has shorter indirect reference chains. This reduces the
tracing time when restoring the archival backups.

The trade-off is that a larger live window length increases the storage space. For example, the
percentage reductions of space saved due to deduplication drop from 96.6% to 93.2% (averaged
over all weeks) when the live window length increases from 1 to 17 backups.

4.5 Deletion Overhead

We evaluate the deletion overhead of RevDedup and compare it with the traditional mark-and-
sweep approach. We consider two types of deletion operations: incremental deletion of the earliest
backup and batch deletion of multiple expired backups. We first store 78 weeks of backups and
perform reverse deduplication using RevDedup, and then run each type of deletion. Figure 10
shows the average results over five runs for the dataset SG1. We elaborate the results below.

Incremental deletion: In this test, we keep deleting a backup from the series one by one, starting
from the earliest backup. RevDedup simply deletes the metadata of the deleted backup and the
containers whose timestamps are equal to the creation time of the deleted backup. On the other
hand, in the mark-and-sweep approach, the mark phase loads the metadata of the backup and
decrements the reference count of each associated segment, and the sweep phase scans through all
containers to delete the non-referenced segments and reconstruct the containers with the remaining
segments that are not deleted. Figure 10(a) shows the time breakdown. The mark phase incurs
small running time as it only processes metadata, while the sweep phase incurs significant running
time as it needs to read and reconstruct the containers. RevDedup has significantly smaller deletion
time than each of the mark and sweep phases.

Batch deletion: In this test, we delete the n earliest backups, with n ranging from 1 (only the
earliest one) to 77 (all except the most recent one). To measure the time of deleting n backups,
we first take a snapshot of the storage partition and store the snapshot elsewhere, perform the
deletion and record the time, and finally restore the snapshot to prepare for the next deletion.
The deletion processes of both RevDedup and mark-and-sweep are similar to those in individual
deletion. Figure 10(b) shows the time breakdown. The running time of the mark phase increases
with n since it reads the metadata of more backups, while the sweep phase has similar running
time as in incremental deletion as it scans through all containers once only. The deletion time of
RevDedup remains very small.

Summary: The two tests show that RevDedup incurs small overhead in both incremental and
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batch deletion operations. The deletion overhead is amortized over the chunk removal process
during reverse deduplication. The small batch deletion overhead of RevDedup provides flexibility
for administrators to defer the deletion of expired backups as long as the storage space remains
sufficient.

5 Related Work

Backup: Most existing deduplication studies for backup storage focus on achieving high backup
performance. Deduplication is first proposed in Venti [21] for data backup in content-addressable
storage systems. DDFS [29] and Foundation [23] maintain fingerprints in a Bloom filter [4] to
minimize memory usage for fingerprint indexing. DDFS further exploits spatial locality to cache the
fingerprints of blocks that are likely written later. Other studies [2,9,12,14,17,28] exploit workload
characteristics to further improve backup performance while limiting the memory overhead for
indexing. ChunkStash [6] and Dedupv1 [16] store fingerprints in solid state drives to achieve high-
speed fingerprint lookup. All above approaches build on inline deduplication, while RevDedup
uses out-of-line deduplication to address both restore and deletion performance. In particular,
Bimodal [12] uses a hybrid of large and small chunk sizes. Although seemingly similar to RevDedup,
it dynamically switches between the chunk sizes in inline deduplication, while RevDedup uses out-
of-line deduplication on small-size chunks.

Restore: To mitigate chunk fragmentation in inline deduplication and hence improve restore
performance, Kaczmarczyk et al. [11] propose context-based rewriting, which selectively rewrites a
small percentage of data for the latest backups. Nam et al. [18] measure the fragmentation impact
given the input workload and activate selective deduplication on demand. Lillibridge et al. [13]
use container capping to limit the region of chunk scattering, and propose the forward assembly
area (similar to caching) to improve restore performance. Note that the studies [11, 13, 18] only
conduct simulation-based evaluations, while we implement a prototype to experiment the actual
I/O throughput. SAR [15] leverages SSDs to store the chunks referenced by many duplicate chunks
and absorb the random reads to harddisks. In contrast, RevDedup does not rely on the use of
SSDs.

The above approaches are designed for backup storage, while iDedup [25] is designed for primary
storage and it limits disk seeks by applying deduplication to chains of continuous duplicate chunks
rather than individual chunks.

Reclamation: Several approaches focus on reducing the reclamation overhead in inline dedupli-
cation systems. Guo et al. [9] propose a grouped mark-and-sweep approach that associates files
into different backup groups and limits the scanning to only a subset of backup groups. Botelho
et al. [5] propose a memory-efficient data structure for indexing chunk references. Strzelczak et

al. [26] extend HYDRAstor [7] with concurrent deletion to minimize the interference of background
sweeping to ongoing writes. Simha et al. [24] limit the number of reclaimed chunks and ensure that
the reclamation overhead to be proportional to the size of incremental backups.

6 Conclusions

We explore the problem of achieving high performance in essential operations of deduplication
backup storage systems, including backup, restore, and deletion, while maintaining high storage
efficiency. We present RevDedup, an efficient hybrid inline and out-of-line deduplication system for
backup storage. The key design component of RevDedup is reverse deduplication, which removes
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duplicates of old backups out-of-line and mitigates fragmentation of latest backups. We propose
heuristics to make reverse deduplication efficient: (1) limiting the deduplication operation to con-
secutive backup versions of the same series, (2) using two-level reference management to keep track
of how segments and chunks are shared, and (3) checking only non-shared segments for chunk re-
moval. We extensively evaluate our RevDedup prototype using synthetic and real-world workloads
and validate our design goals. We plan to release the source code of our RevDedup prototype in
the final version of the paper.
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