
ar
X

iv
:1

21
1.

60
85

v5
 [

cs
.L

G
]

 1
7

A
pr

 2
01

4

Random Projections for Linear Support Vector Machines

SAURABH PAUL, Rensselaer Polytechnic Institute

CHRISTOS BOUTSIDIS, IBM T.J. Watson Research Center

MALIK MAGDON-ISMAIL, Rensselaer Polytechnic Institute

PETROS DRINEAS, Rensselaer Polytechnic Institute

Let X be a data matrix of rank ρ, whose rows represent n points in d-dimensional space. The linear support vector machine
constructs a hyperplane separator that maximizes the 1-norm soft margin. We develop a new oblivious dimension reduction
technique which is precomputed and can be applied to any input matrix X. We prove that, with high probability, the margin
and minimum enclosing ball in the feature space are preserved to within ǫ-relative error, ensuring comparable generalization
as in the original space in the case of classification. For regression, we show that the margin is preserved to ǫ-relative error with
high probability. We present extensive experiments with real and synthetic data to support our theory.

Categories and Subject Descriptors: I.5.2 [Design Methodology]: Classifier Design and evaluation; Feature evaluation and
selection; G.1.6 [Optimization]: Quadratic programming models; G.1.0 [General]: Numerical Algorithms

General Terms: Algorithms, Experimentation, Theory

Additional Key Words and Phrases: Classification, Dimensionality Reduction, Support Vector Machines

ACM Reference Format:

Saurabh Paul, Christos Boutsidis, Malik Magdon-Ismail, Petros Drineas, 2013. Random Projections for Linear Support Vector
Machines. ACM Trans. Knowl. Discov. Data. , , Article (December 2013), 20 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Support Vector Machines (SVM) [Cristianini and Shawe-Taylor 2000] are extremely popular in ma-
chine learning today. They have been used in both classification and regression. For classification, the
training data set consists of n points xi ∈ R

d, with respective labels yi ∈ {−1,+1} for i = 1 . . . n. For
linearly separable data, the primal form of the SVM learning problem is to construct a hyperplane
w∗ which maximizes the geometric margin (the minimum distance of a data point to the hyperplane),
while separating the data. For non-separable data the “soft” 1-norm margin is maximized. The dual
lagrangian formulation of the classification problem leads to the following quadratic program:

max
{αi}

n
∑

i=1

αi −
1

2

n
∑

i,j=1

αiαjyiyjx
T
i xj

subject to
n
∑

i=1

yiαi = 0,

0 ≤ αi ≤ C, i = 1 . . . n.

(1)

In the above formulation, the unknown lagrange multipliers {αi}ni=1 are constrained to lie inside the
“box constraint” [0, C]n, where C is part of the input. In order to measure the out-of-sample perfor-
mance of the SVM classifier, we can use the VC-dimension of fat-separators. Assuming that the data
lie in a ball of radius B, and that the hypothesis set consists of hyperplanes of width γ (corresponding
to the margin), then the V C-dimension of this hypothesis set is O(B2/γ2) [Vapnik 1998]. Now, given

A short version of this paper appeared in the 16th International Conference on Artificial Intelligence and Statistics (AISTATS
2013) [Paul et al. 2013]. Note, that the short version of our paper [Paul et al. 2013] does not include the details of the proofs,
comparison of random projections with principal component analysis, extension of random projections for SVM regression in
terms of both theory and experiments and experiments with fast SVM solver on RCV1 and Hapmap-HGDP datasets.
Christos Boutsidis acknowledges the support from XDATA program of the Defense Advanced Research Projects Agency
(DARPA), administered through Air Force Research Laboratory contract FA8750-12-C-0323; Petros Drineas and Malik Magdon-
Ismail are supported by NSF CCF-1016501 and NSF DMS-1008983; Saurabh Paul is supported by NSF CCF-916415.
Author’s addresses: S. Paul and M. Magdon-Ismail and P. Drineas, Computer Science Department, Rensselaer Polytechnic
Institute, pauls2@rpi.edu and {magdon, drinep}@cs.rpi.edu ; C. Boutsidis, Mathematical Sciences Department, IBM T.J. Watson
Research Center, cboutsi@us.ibm.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first page
or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to
lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481,
or permissions@acm.org.
c© 2013 ACM 1556-4681/2013/12-ART $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Knowledge Discovery from Data, Vol. , No. , Article , Publication date: December 2013.

http://arxiv.org/abs/1211.6085v5

:2 Paul et al.

the in-sample error, we can obtain a bound for the out-of-sample error, which is monotonic in the
VC-dimension [Vapnik and Chervonenkis 1971].

Analogous to the 1-norm soft margin formulation for SVM classification, we have a similar formula-
tion for regression called the linear ε-insensitive loss SVM [Cristianini and Shawe-Taylor 2000]. The
dual problem for ε-insensitive loss SVM regression is formulated as:

max

n
∑

i=1

αiyi − ε

n
∑

i=1

|αi| −
1

2

n
∑

i,j=1

αiαjx
T
i xj

subject to
n
∑

i=1

αi = 0,

− C ≤ αi ≤ C, i = 1 . . . n.

(2)

Here, {α}ni=1 are the Lagrange multipliers and they lie in the interval [−C,C]n.
Intuitively, if one can preserve the subspace geometry, then one should be able to preserve the per-

formance of a distance-based algorithm. We construct dimension reduction matrices R ∈ R
d×r which

produce r-dimensional feature vectors x̃i = RTxi; the matrices R do not depend on the data. We
show that for the data in the dimension-reduced space, the margin of separability and the minimum
enclosing ball radius are preserved, since the subspace geometry is preserved. So, an SVM with an ap-
propriate structure defined by the margin (width) of the hyperplanes [Vapnik and Chervonenkis 1971]
will have comparable VC-dimension and, thus, generalization error. This is true for classification. The
ε-insensitive loss SVM regression problem is an unbounded problem and as such, we are not able to
infer anything related to the generalization error bounds: we can only infer the preservation of margin.

1.1. Notation and SVM Basics

A,B, . . . denote matrices and α, ,
¯
. . . denote column vectors; ei (for all i = 1 . . . n) is the standard basis,

whose dimensionality will be clear from context; and In is the n × n identity matrix. The Singular
Value Decomposition (SVD) of a matrix A ∈ R

n×d of rank ρ ≤ min {n, d} is equal to A = UΣVT , where
U ∈ R

n×ρ is an orthogonal matrix containing the left singular vectors, Σ ∈ R
ρ×ρ is a diagonal matrix

containing the singular values σ1 ≥ σ2 ≥ . . . σρ > 0, and V ∈ R
d×ρ is a matrix containing the right

singular vectors. The spectral norm of A is ‖A‖2 = σ1.

1.1.1. SVM Classification. Let X ∈ R
n×d be the matrix whose rows are the vectors xT

i , Y ∈ R
n×n be

the diagonal matrix with entries Yii = yi, and α = [α1, α2, . . . , αn] ∈ R
n be the vector of lagrange

multipliers to be determined by solving eqn. e̊qn:svm1. The SVM optimization problem is

max
α

1T
α− 1

2
α

TYXXTYα

subject to 1TYα = 0; and 0 ≤ α ≤ C.
(3)

(In the above, 1, 0, C are vectors with the implied constant entry.) Let α
∗ be an optimal solution

of the above problem. The optimal separating hyperplane is given by w∗ = XTYα
∗ =

∑n
i=1 yiα

∗
ixi,

and the points xi for which α∗
i > 0, i.e., the points which appear in the expansion w∗, are the sup-

port vectors. The geometric margin, γ∗, of this canonical optimal hyperplane is γ∗ = 1/ ‖w∗‖2, where

‖w∗‖22 =
∑n

i=1 α
∗
i . The data radius is B = minx∗ maxxi

‖xi − x∗‖2. It is this γ∗ and B that factor into
the generalization performance of the SVM through the ratio B/γ∗. It is worth noting, that our results
hold for the separable case as well, which amounts to setting C to a large value.

1.1.2. SVM Regression. Let X ∈ R
n×d be the matrix whose rows are the vectors xT

i , y be the n-
dimensional vector with the target entries, and α = [α1, α2, . . . , αn] ∈ R

n be the vector of lagrange
multipliers to be determined by solving eqn. e̊qn:svm4. The SVM optimization problem is

max
α

yT
α− ε1T

α− 1

2
α

TXXT
α

subject to 1T
α = 0; and −C ≤ α ≤ C.

(4)

1, 0, C are vectors with the implied constant entry. Let α∗ be an optimal solution of the above problem.
The optimal separating hyperplane is given by w∗ = α

∗TX =
∑n

i=1 α
∗
ixi and the points xi for which

α∗
i > 0, i.e., the points which appear in the expansion w∗, are the support vectors. The geometric

margin for regression is defined in the same way as it was done for classification.

ACM Transactions on Knowledge Discovery from Data, Vol. , No. , Article , Publication date: December 2013.

Random Projections for Linear Support Vector Machines :3

1.2. Dimension Reduction

Our goal is to study how the SVM performs under (linear) dimensionality reduction transformations
in the feature space. Let R ∈ R

d×r be the dimension reduction matrix that reduces the dimensionality
of the input from d to r ≪ d. We will choose R to be a random projection matrix (see Section 2). The
transformed dataset into r dimensions is given by X̃ = XR, and the SVM optimization problem for
classification becomes

max
α̃

1T
α̃− 1

2
α̃

TYXRRTXTYα̃,

subject to 1TYα̃ = 0, and 0 ≤ α̃ ≤ C.

(5)

For regression, the SVM optimization problem becomes

max
α̃

yT
α̃− ε1T

α̃− 1

2
α̃

TXRRTXT
α̃

subject to 1T
α̃ = 0; and −C ≤ α̃ ≤ C.

(6)

We will present a construction for R that leverages the fast Hadamard transform. The running
time needed to apply this construction to the original data matrix is O (nd log r). Notice that while
this running time is nearly linear on the size of the original data, it does not take advantage
of any sparsity in the input. In order to address this deficiency, we leverage the recent work of
Clarkson and Woodruff [2013], Meng and Mahoney [2013] and Nelson and Nguyen [2013], which pro-
poses a construction for R that can be applied to X in O

(

nnz(X) + poly
(

nǫ−1
))

time; here nnz (X)
denotes the number of non-zero entries of X and ρ is the rank of X. To the best of our knowledge, this
is the first independent implementation and evaluation of this potentially ground-breaking random
projection technique (a few experimental results were presented by Clarkson and Woodruff [2013],
Meng and Mahoney [2013] and Nelson and Nguyen [2013]). All constructions for R are oblivious of
the data and hence they can be precomputed. Also, the generalization bounds that depend on the final
margin and radius of the data will continue to hold for classification, while the bound on the margin
holds for regression.

The pratical intent of using linear SVM after random projections is to reduce computational com-
plexity of training SVM and memory. For large-scale datasets, that are too big to fit into memory (see
Section 4.1.3 for details), random projections serve as a possible way to estimate out-of-sample error.
Random projections reduce the computational complexity of training SVM which is evident from the
experiments described in Section 4.

1.3. Our Contribution

Our main theoretical results are to show that by solving the SVM optimization problem in the pro-
jected space, we get relative-error generalization performance for SVM classification and that, we
preserve the margin upto relative error for SVM regression. We briefly discuss the appropriate val-
ues of r, namely the dimensionality of the dimensionally-reduced problem. If R is the matrix of the
randomized Hadamard transform (see Section 2 for details), then given ǫ ∈ (0, 1/2] and δ ∈ (0, 1) we
set

r = O
(

ρǫ−2 · log
(

ρdδ−1
)

· log
(

ρǫ−2δ−1 log
(

ρdδ−1
)))

. (7)

The running time needed to apply the randomized Hadamard transform is O (nd log r). If
R is constructed as described in Clarkson and Woodruff [2013], Meng and Mahoney [2013] and
Nelson and Nguyen [2013], then given ǫ ∈ (0, 1) and δ ∈ (0, 1) we set

r = O
(

ρǫ−4 log (ρ/δǫ) (ρ+ log (1/δǫ))
)

. (8)

The running time needed to apply this transform is O
(

nnz(X) + poly
(

nǫ−1
))

. If R is a random sign-
matrix, then given ǫ ∈ (0, 1/2] and we set

r = O
(

ρǫ−2 log ρ log d
)

. (9)

The running time needed to apply this transform is equal to O (ndr). Finally if R is a random gaussian
matrix, then given ǫ ∈ (0, 1/2] and δ ∈ (0, 1) we set,

r = O
(

ρǫ−2 log (ρ/δ)
)

. (10)

Our main theorem will be stated in terms of the randomized Hadamard Transform, but similar
statements can be obtained for the other three transforms.

ACM Transactions on Knowledge Discovery from Data, Vol. , No. , Article , Publication date: December 2013.

:4 Paul et al.

THEOREM 1.1. Let ǫ ∈ (0, 1/2] be an accuracy paramater and let δ ∈ (0, 1) be a failure probability.
Let R ∈ R

d×r be the matrix of the randomized Hadamard Transform, with r as in eqn. (7). Let γ∗ and
γ̃∗ be the margins obtained by solving the SVM problems using data matrices X and XR respectively
(eqns. (3) and (5)). Let B be the radius of the minimum ball enclosing all points in the full-dimensional

space (rows of X) and let B̃ be the radius of the ball enclosing all points in the dimensionally-reduced
space (rows of XR). Then, with probability at least 1− 2δ,

B̃2

γ̃∗2
≤ (1 + ǫ)

(1− ǫ)

B2

γ∗2
.

Similar theorems can be stated for the other two constructions of R by setting the value of r as in
eqns. (8), (9) and (10). For the case of SVM regression, we can only show that the margin is preserved
up to relative error with probability at least 1− δ, namely

γ̃∗2 ≥ (1− ǫ) γ∗2.

1.4. Prior work

The work most closely related to our results is that of Krishnan et al. [2008], which improved upon
Balcazar et al. [2001]. Balcazar et al. [2001] and Balczar et al. [2002] used random sampling tech-
niques for solving the SVM classification and ε-insensitive loss SVM regression problem respec-
tively, but they were not able to implement their algorithms in practice. Krishnan et al. [2008] and
Jethava et al. [2009] showed that by using sub-problems based on Gaussian random projections, one
can obtain a solution to the SVM classification and regression problem with a margin that is relative-
error close to the optimal. Their sampling complexity (the parameter r in our parlance) depends on
B4, and, most importantly, on 1/γ∗2. This bound is not directly comparable to our result, which only
depends on the rank of the data manifold, and holds regardless of the margin of the original problem
(which could be arbitrarily small). Our results dramatically improve the running time needed to apply
the random projections; our running times are (theoretically) linear in the number of non-zero entries
in X, whereas Krishnan et al. [2008] necessitates O(ndr) time to apply R on X.

Blum [2006] showed relative error margin preservation for linearly separable data by angle preser-
vation between points when using random orthogonal matrix, standard gaussian matrix and the ran-
dom sign matrix. We show relative-error margin preservation for non-separable data and use methods
that improve running time to compute random projections. Shi et al. [2012] establish the conditions
under which margins are preserved after random projection and show that error free margins are
preserved for both binary and multi-class problems if these conditions are met. They discuss the the-
ory of margin and angle preservation after random projections using Gaussian matrices. They show
that margin preservation is closely related to acute angle preservation and inner product preserva-
tion. Smaller acute angle leads to better preservation of the angle and the inner product. When the
angle is well preserved, the margin is well-preserved too. There are two main differences between
their result and ours. They show margin preservation to within additive error, whereas we give mar-
gin preservation to within relative error. This is a big difference especially when the margin is small.
Moreover, they analyze only the separable case. We analyze the general non-separable dual problem
and give a result in terms of the norm of the weight vector. For the separable case, the norm of the
weight vector directly relates to the margin. For the non-separable case, one has to analyze the actual
quadratic program, and our result essentially claims that the solution in the transformed space will
have comparably regularized weights as the solution in the original space.

Shi et al. [2009] used hash kernels which approximately preserved inner product to design a
biased approximation of the kernel matrix. The hash kernels can be computed in the num-
ber of non-zero terms of a data matrix similar to the method of Clarkson and Woodruff [2013],
Meng and Mahoney [2013] and Nelson and Nguyen [2013] that we employed. Shi et al. [2009] used
random sign matrices to compute random projections which typically increase the number
of non-zero terms of the data matrix. However, the method of Clarkson and Woodruff [2013],
Meng and Mahoney [2013] and Nelson and Nguyen [2013] takes advantage of input sparsity.
Shi et al. [2009] showed that their generalization bounds on the hash kernel and the original kernel
differed by the inverse of the product of the margin and number of datapoints. For smaller margins,
this difference will be high. Our generalization bounds are independent of the original margin and
hold for arbitrarily small margins.

Zhang et al. [2013] developed algorithms to accurately recover the optimal solution to the original
SVM optimization problem using a Gaussian random projection. They compute the dual solution pro-
vided that the data matrix has low rank. This is different from our work since we analyze the ratio of
radius of the minimum enclosing ball to the margin using random projections and do not try to recover
the solution.

ACM Transactions on Knowledge Discovery from Data, Vol. , No. , Article , Publication date: December 2013.

Random Projections for Linear Support Vector Machines :5

Finally, it is worth noting that random projection techniques have been applied extensively in the
compressed sensing literature, and our theorems have the same flavor to a number of results in that
area. However, to the best of our knowledge, the compressed sensing literature has not investigated
the 1-norm soft-margin SVM optimization problem.

2. RANDOM PROJECTION MATRICES

Random projections are extremely popular techniques in order to deal with the curse-of-
dimensionality. Let the data matrix be X ∈ R

n×d (n data points in R
d) and let R ∈ R

d×r (with r ≪ d)
be a random projection matrix. Then, the projected data matrix is X̃ = XR ∈ R

n×r (n points in R
r).

If R is carefully chosen, then all pairwise Euclidean distances are preserved with high probability.
Thus, the geometry of the set of points in preserved, and it is reasonable to hope that an optimization
objective such as the one that appears in SVMs will be only mildly perturbed.

There are many possible constructions for the matrix R that preserve pairwise distances. The
most common one is a matrix R whose entries are i.i.d. standard Gaussian random variables
[Dasgupta and Gupta 2003; Indyk and Motwani 1998] –RG for short. Achlioptas [2003] argued that
the random sign matrix – RS for short – e.g., a matrix whose entries are set to +1 or −1 with equal
probability, also works. Li et al. [2006] used the sparse random projection matrix whose entries were
set to +1 or −1 with probability 1/2

√
d and 0 with probability (1 − 1/

√
d). These constructions take

O (ndr) time to compute X̃.
More recently, faster methods of constructing random projections have been developed, using, for

example, the Fast Hadamard Transform [Ailon and Chazelle 2006] – FHT for short. The Hadamard-
Walsh matrix for any d that is a power of two is defined as

Hd =

[

Hd/2 Hd/2

Hd/2 −Hd/2

]

∈ R
d×d,

with H1 = +1. The normalized Hadamard-Walsh matrix is
√

1
dHd, which we simply denote by H. We

set:

RSRHT =

√

d

r
DHS, (11)

a rescaled product of three matrices. D ∈ R
d×d is a random diagonal matrix with Dii equal to ±1

with probability 1
2 . H ∈ R

d×d is the normalized Hadamard transform matrix. S ∈ R
d×r is a random

sampling matrix which randomly samples columns of DH; specifically, each of the r columns of S is
independent and selected uniformly at random (with replacement) from the columns of Id, the identity
matrix. This construction assumes that d is a power of two. If not, we just pad X with columns of
zeros (affecting run times by at most a factor of two). The important property of this transform is that
the projected features X̃ = XR can be computed efficiently in O (nd log r) time (see Theorem 2.1 of
Ailon and Liberty [2008] for details). An important property of R (that follows from prior work) is that
it preserves orthogonality.

While the randomized Hadamard transform is a major improvement over prior work, it
does not take advantage of any sparsity in the input matrix. To fix this, very recent work
[Clarkson and Woodruff 2013] shows that carefully constructed random projection matrices can
be applied in input sparsity time by making use of generalized sparse embedding matri-
ces. Meng and Mahoney [2013], Nelson and Nguyen [2013] also use a similar construction which
runs in input sparsity time. Here we describe the construction of Clarkson and Woodruff [2013].
To understand their construction of R, assume that the rank of X is ρ and let r =
O
(

ρǫ−4 log (ρ/δǫ) (ρ+ log (1/ǫδ))
)

. Then, let a = Θ
(

ǫ−1 log (ρ/ǫδ)
)

, v = Θ
(

ǫ−1
)

, and let q =

O
(

ρǫ−2 (ρ+ log (1/ǫδ))
)

be an integer (by appropriately choosing the constants). The construction

starts by letting h : 1 . . . d → 1 . . . q be a random hash function; then, for i = 1 . . . q, let ai =
∣

∣h−1(i)
∣

∣

and let d =
∑q

i=1 ai. The construction proceeds by creating q independent matrices B1 . . .Bq, such
that Bi ∈ R

va×ai . Each Bi is the concatenation (stacking the rows of matrices on top of each other)

of the following matrices:
√

1
aΦ1D1 . . .

√

1
aΦaDa. The matrix ΦiDi ∈ R

v×ai is defined as follows: for

each m ∈ {1 . . . v}, h(m) = g′, where g′ is selected from {1 . . . ai} uniformly at random. Φi is a v × ai
binary matrix with Φh(m),m = 1 and all remaining entries set to zero. D is an ai × ai random diagonal
matrix, with each diagonal entry independently set to be +1 or −1 with probability 1/2. Finally, let S
be the block diagonal matrix constructed by stacking the Bi’s across its diagonal and let P be a d × d

permutation matrix; then, R = (SP)
T

. The running time is O
(

nnz(X) + poly
(

nǫ−1
))

. We will call the
method of Clarkson and Woodruff [2013] to construct a sparse embedding matrix CW.

ACM Transactions on Knowledge Discovery from Data, Vol. , No. , Article , Publication date: December 2013.

:6 Paul et al.

3. GEOMETRY OF SVM IS PRESERVED UNDER RANDOM PROJECTION

We now state and prove our main result, namely that solving the SVM optimization problem in the
projected space results in comparable margin and data radius as in the original space. The following
lemma will be crucial in our proof.

LEMMA 3.1. Fix ǫ ∈ (0, 1
2], δ ∈ (0, 1]. Let V ∈ R

d×ρ be any matrix with orthonormal columns and let

R = RSRHT as in eqn. (11), with r = O(ρǫ−2 · log(ρdδ−1) · log(ρǫ−2δ−1 log(ρdδ−1))). Then, with probability
at least 1− δ,

‖VTV −VTRRTV‖2 ≤ ǫ.

PROOF. Consider the matrix VTR = VTDHS. Using Lemma 3 of [Drineas et al. 2011],

∥

∥

∥
(HDV)(i)

∥

∥

∥

2

2
≤ 2ρ ln(40dρ)

d
⇒ (2 ln (40dρ))−1

∥

∥

∥
(HDV)(i)

∥

∥

∥

2

2

ρ
≤ 1

d

holds for all i = 1, . . . , d with probability at least 1 − δ. In the above, the notation A(i) denotes the

i-th row of A as a row vector. Applying Theorem 4 with β = (2 ln (40dρ))
−1

([Drineas et al. 2011],
Appendix) concludes the lemma.

We now state two similar lemmas that cover two additional constructions for R.

LEMMA 3.2. Let ǫ ∈ (0, 1
2] and let V ∈ R

d×ρ be any matrix with orthonormal columns. Let R ∈ R
d×r

be a (rescaled) random sign matrix. If r = O
(

ρǫ−2 log ρ log d
)

, then with probability at least 1− 1/n,

‖VTV −VTRRTV‖2 ≤ ǫ.

PROOF. The proof of this result is a simple application of Theorem 3.1(i)
of Magen and Zouzias [2011].

LEMMA 3.3. Let ǫ ∈ (0, 1
2], δ ∈ (0, 1), and let V ∈ R

d×ρ be any matrix with orthonor-

mal columns. Let R ∈ R
d×r be the CW random projection matrix (see Section 2) with r =

O
(

ρǫ−4 log (ρ/δǫ) (ρ+ log (1/ǫδ))
)

. Then, with probability at least 1− δ,

‖VTV −VTRRTV‖2 ≤ ǫ.

PROOF. The proof of this result follows from Theorem 1 of Meng and Mahoney [2013].

LEMMA 3.4. Let ǫ ∈ (0, 12], δ ∈ (0, 1), and let V ∈ R
d×ρ be any matrix with orthonormal columns. Let

R ∈ R
d×r be the Gaussian random projection matrix with r = O

(

ρǫ−2 log (ρ/δ)
)

. Then with probability
at least 1− δ,

‖VTV −VTRRTV‖2 ≤ ǫ.

PROOF. The proof of this result follows from Corollary 6 of Zhang et al. [2013].

Lemma 3.4 does not have the log factors as in Lemma 3.1, but Gaussian projections are slower
since they require full matrix-matrix multiplications.

THEOREM 3.5. Let ǫ be an accuracy parameter and let R ∈ R
d×r be a matrix satisfying

‖VTV −VTRRTV‖2 ≤ ǫ. Let γ∗ and γ̃∗ be the margins obtained by solving the SVM problems us-
ing data matrices X and XR respectively (eqns. (3) and (5)). Then,

γ̃∗2 ≥ (1− ǫ) · γ∗2.

PROOF. Let E = VTV − VTRRTV, and α
∗ = [α∗

1, α
∗
2, . . . , α

∗
n]

T ∈ R
n be the vector achieving the

optimal solution for the problem of eqn. (3) in Section 1. Then,

Zopt =
n
∑

i=1

α∗
i −

1

2
α

∗TYXXTYα
∗

=

n
∑

i=1

α∗
i −

1

2
α

∗TYUΣVTVΣUTYα
∗

=

n
∑

i=1

α∗
i −

1

2
α

∗TYUΣVTRRTVΣUTYα
∗

−1

2
α

∗TYUΣEΣUTYα
∗. (12)

ACM Transactions on Knowledge Discovery from Data, Vol. , No. , Article , Publication date: December 2013.

Random Projections for Linear Support Vector Machines :7

Let α̃
∗ = [α̃∗

1, α̃
∗
2, . . . , α̃

∗
n]

T ∈ R
n be the vector achieving the optimal solution for the dimensionally-

reduced SVM problem of eqn. (5) using X̃ = XR. Using the SVD of X, we get

Z̃opt =
n
∑

i=1

α̃∗
i −

1

2
α̃

∗TYUΣVTRRTVΣUTYα̃
∗. (13)

Since the constraints on α
∗, α̃∗ do not depend on the data (see eqns. (3) and (5)), it is clear that α̃

∗ is
a feasible solution for the problem of eqn. (3). Thus, from the optimality of α∗, and using eqn. (13), it
follows that

Zopt =
n
∑

i=1

α∗
i −

1

2
α

∗TYUΣVTRRTVΣUTYα
∗

−1

2
α

∗TYUΣEΣUTYα
∗

≥
n
∑

i=1

α̃∗
i −

1

2
α̃

∗TYUΣVTRRTVΣUTYα̃
∗

−1

2
α̃

∗TYUΣEΣUTYα̃
∗

= Z̃opt −
1

2
α̃

∗TYUΣEΣUTYα̃
∗. (14)

We now analyze the second term using standard sub-multiplicativity properties and VTV = I. Taking
Q = α̃

∗TYUΣ

1

2
α̃

∗TYUΣEΣUTYα̃
∗ ≤ 1

2
‖Q‖2 ‖E‖2

∥

∥

∥
QT

∥

∥

∥

2

=
1

2
‖E‖2 ‖Q‖22

=
1

2
‖E‖2

∥

∥

∥
α̃

∗TYUΣVT
∥

∥

∥

2

2

=
1

2
‖E‖2

∥

∥α̃
∗TYX

∥

∥

2

2
. (15)

Combining eqns. (14) and (15), we get

Zopt ≥ Z̃opt −
1

2
‖E‖2

∥

∥α̃
∗TYX

∥

∥

2

2
. (16)

We now proceed to bound the second term in the right-hand side of the above equation. Towards that
end, we bound the difference:

∣

∣

∣
α̃

∗TYXRRTXTYα̃
∗ − α̃

∗TYXXTYα̃
∗
∣

∣

∣

=
∣

∣

∣
α̃

∗TYUΣ
(

VTRRTV −VTV
)

ΣUTYα̃
∗
∣

∣

∣

=
∣

∣

∣
α̃

∗TYUΣ (−E)ΣUTYα̃
∗
∣

∣

∣

≤ ‖E‖2
∥

∥α̃
∗TYUΣ

∥

∥

2

2

= ‖E‖2
∥

∥

∥
α̃

∗TYUΣVT
∥

∥

∥

2

2

= ‖E‖2
∥

∥α̃
∗TYX

∥

∥

2

2
.

We can rewrite the above inequality as
∣

∣

∣

∥

∥α̃
∗TYXR

∥

∥

2

2
−

∥

∥α̃
∗TYX

∥

∥

2

2

∣

∣

∣
≤ ‖E‖2

∥

∥α̃
∗TYX

∥

∥

2

2
; thus,

∥

∥α̃
∗TYX

∥

∥

2

2
≤ 1

1− ‖E‖2
∥

∥α̃
∗TYXR

∥

∥

2

2
.

Combining with eqn. (16), we get

Zopt ≥ Z̃opt −
1

2

(‖E‖2
1− ‖E‖2

)

∥

∥α̃
∗TYXR

∥

∥

2

2
. (17)

ACM Transactions on Knowledge Discovery from Data, Vol. , No. , Article , Publication date: December 2013.

:8 Paul et al.

Now recall from our discussion in Section 1 that w∗T = α
∗TYX, w̃∗T = α̃

∗TYXR, ‖w∗‖22 =
∑n

i=1 α
∗
i ,

and ‖w̃∗‖22 =
∑n

i=1 α̃
∗
i . Then, the optimal solutions Zopt and Z̃opt can be expressed as follows:

Zopt = ‖w∗‖22 −
1

2
‖w∗‖22 =

1

2
‖w∗‖22 , (18)

Z̃opt = ‖w̃∗‖22 −
1

2
‖w̃∗‖22 =

1

2
‖w̃∗‖22 . (19)

Combining eqns. (17), (18), and (19), we get

‖w∗‖22 ≥ ‖w̃∗‖22 −
(‖E‖2
1− ‖E‖2

)

‖w̃∗‖22

=

(

1− ‖E‖2
1− ‖E‖2

)

‖w̃∗‖22 . (20)

Let γ∗ = ‖w∗‖−1
2 be the geometric margin of the problem of eqn. (3) and let γ̃∗ = ‖w̃∗‖−1

2 be the
geometric margin of the problem of eqn. (5). Then, the above equation implies:

γ∗2 ≤
(

1− ‖E‖2
1− ‖E‖2

)−1

γ̃∗2

⇒ γ̃∗2 ≥
(

1− ‖E‖2
1− ‖E‖2

)

γ∗2. (21)

Our second theorem argues that the radius of the minimum ball enclosing all projected points (the
rows of the matrix XR) is very close to the radius of the minimum ball enclosing all original points
(the rows of the matrix X). We will prove this theorem for R = RSRHT as in eqn. (11), but similar results
can be proven for the other two constructions for R.

THEOREM 3.6. Fix ǫ ∈ (0, 1
2], δ ∈ (0, 1]. Let B be the radius of the minimum ball enclosing all

points in the full-dimensional space (the rows of the matrix X), and let B̃ be the radius of the ball
enclosing all points in the dimensionally reduced space (the rows of the matrix XR). Then, if r =
O(ρǫ−2 · log(ρdδ−1) · log(ρǫ−2δ−1 log(ρdδ−1))), with probability at least 1− δ,

B̃2 ≤ (1 + ǫ)B2.

PROOF. We consider the matrix XB ∈ R
(n+1)×d whose first n rows are the rows of X and whose

last row is the vector xT
B; here xB denotes the center of the minimum radius ball enclosing all n

points. Then, the SVD of XB is equal to XB = UBΣBV
T
B, where UB ∈ R

(n+1)×ρB , ΣB ∈ R
ρB×ρB , and

V ∈ R
d×ρB . Here ρB is the rank of the matrix XB and clearly ρB ≤ ρ + 1. (Recall that ρ is the rank

of the matrix X.) Let B be the radius of the minimal radius ball enclosing all n points in the original
space. Then, for any i = 1, . . . , n,

B2 ≥ ‖xi − xB‖22 =
∥

∥

∥
(ei − en+1)

T
XB

∥

∥

∥

2

2
. (22)

Now consider the matrix XBR and notice that
∣

∣

∣

∣

∥

∥

∥
(ei − en+1)

T
XB

∥

∥

∥

2

2
−

∥

∥

∥
(ei − en+1)

T
XBR

∥

∥

∥

2

2

∣

∣

∣

∣

=
∣

∣

∣
(ei − en+1)

T
(

XBX
T
B −XBRRTXT

B

)

(ei − en+1)
∣

∣

∣

=
∣

∣

∣
(ei − en+1)

T
UBΣBEBΣBU

T
B (ei − en+1)

∣

∣

∣

≤ ‖EB‖2
∥

∥

∥
(ei − en+1)

T
UBΣB

∥

∥

∥

2

2

= ‖EB‖2
∥

∥

∥
(ei − en+1)

T
UBΣBV

T
B

∥

∥

∥

2

2

= ‖EB‖2
∥

∥

∥
(ei − en+1)

T
XB

∥

∥

∥

2

2
.

In the above, we let EB ∈ R
ρB×ρB be the matrix that satisfies VT

BVB = VT
BRRTVB + EB, and we

also used VT
BVB = I. Now consider the ball whose center is the (n + 1)-st row of the matrix XBR

ACM Transactions on Knowledge Discovery from Data, Vol. , No. , Article , Publication date: December 2013.

Random Projections for Linear Support Vector Machines :9

(essentially, the projection of the center of the minimal radius enclosing ball for the original points).

Let ĩ = argmaxi=1...n

∥

∥

∥
(ei − en+1)

T
XBR

∥

∥

∥

2

2
; then, using the above bound and eqn. (22), we get

∥

∥

∥
(eĩ − en+1)

T
XBR

∥

∥

∥

2

2
≤ (1 + ‖EB‖2)

∥

∥

∥
(eĩ − en+1)

T
XB

∥

∥

∥

2

2

≤ (1 + ‖EB‖2)B2.

Thus, there exists a ball centered at eTn+1XBR (the projected center of the minimal radius ball in the

original space) with radius at most
√

1 + ‖EB‖2B that encloses all the projected points. Recall that

B̃ is defined as the radius of the minimal radius ball that encloses all points in projected subspace;
clearly,

B̃2 ≤ (1 + ‖EB‖2)B2.

We can now use Lemma 3.1 on VB to conclude that (using ρB ≤ ρ+ 1) ‖EB‖2 ≤ ǫ

Similar theorems can be proven for the two other constructions of R by using appropriate values for
r. We are now ready to conclude the proof of Theorem 1.1.

PROOF. (of Theorem 1.1) The proof of Theorem 1.1 follows by combining Theorem 3.5, Lemma 3.1,
and Theorem 3.6. The failure probability is at most 2δ, by a simple application of the union bound.

Finally, we state the margin preservation theorem for SVM regression, which is analogous to The-
orem 3.5. This theorem holds for all four choices of the random projection matrix R ∈ R

d×r and is
identical to the proof of Theorem 3.5.

THEOREM 3.7. Let ǫ be an accuracy parameter and let R ∈ R
d×r be a matrix satisfying

‖VTV −VTRRTV‖2 ≤ ǫ. Let γ∗ and γ̃∗ be the margins obtained by solving the SVM regression prob-
lems using data matrices X and XR respectively (eqns. (4) and (6)). Then,

γ̃∗2 ≥ (1− ǫ) · γ∗2.

4. EXPERIMENTS

In our experimental evaluations, we implemented random projections using four different methods:
RG, RS, FHT, and CW (see Section 2 for definitions) in MATLAB version 7.13.0.564 (R2011b). We ran
the algorithms using the same values of r (the dimension of the projected feature space) for all algo-
rithms, but we varied r across different datasets. We used LIBLINEAR [Fan et al. 2008] and LIBSVM
[Chang and Lin 2011] as our linear SVM solver with default settings. In all cases, we ran our exper-
iments on the original full data (referred to as “full” in the results), as well as on the projected data.
For large-scale datasets, we use LIBLINEAR which is a faster SVM solver than LIBSVM, while for
medium-scale datasets we use LIBSVM. We partitioned the data randomly for ten-fold cross-validation
in order to estimate out-of-sample error. We repeated this partitioning ten times to get ten ten-fold
cross-validation experiments. In the case where the dataset is already available in the form of a train-
ing and test-set, we do not perform ten-fold cross validation and use the given training and test set
instead. In order to estimate the effect of the randomness in the construction of the random pro-
jection matrices, we repeated our cross-validation experiments ten times using ten different random
projection matrices for all datasets. For classification experiments, we report in-sample error (ǫin),
out-of-sample error (ǫout), the time to compute random projections (trp), the total time needed to both
compute random projections and run SVMs on the lower-dimensional problem (trun), and the margin
(γ). For regression experiments, we report the margin, the combined running-time of random projec-
tions and SVM, mean-squared error (mse) and the squared correlation-coefficient (β) of ǫin. All results
are averaged over the ten cross-validation experiments and the ten choices of random projection ma-
trices. For each of the aforementioned quantities, we report both its mean value µ and its standard
deviation σ.

4.1. Experiments on SVM Classification

We describe experimental evaluations on three real-world datasets, namely a collection of document-
term matrices (the TechTC-300 dataset [Davidov et al. 2004]), a subset of the Reuters Corpus dataset
(RCV1 Dataset [Lewis et al. 2004]) and a population genetics dataset (the joint Human Genome Di-
versity Panel or HGDP [Li et al. 2008] and the HapMap Phase 3 data [Paschou et al. 2010]) and also
on three synthetic datasets. The synthetic datasets, a subset of the RCV1 dataset and the TechTC-300
dataset correspond to binary classification tasks while the joint HapMap-HGDP dataset and a sub-
set of the RCV1 dataset correspond to multi-class classification tasks; our algorithms perform well in

ACM Transactions on Knowledge Discovery from Data, Vol. , No. , Article , Publication date: December 2013.

:10 Paul et al.

multi-class classification as well. For the multi-class experiments of Section 4.1.3, we do not report a
margin. We use LIBLINEAR as our SVM solver for Hapmap-HGDP 1 and the RCV1 datasets, while for
the remaining datasets we use LIBSVM as our solver. For multi-class experiments, we use the method
of Crammer and Singer [Crammer and Singer 2000] implemented in LIBLINEAR.

Table I. ǫout and γ of Synthetic Data

ǫout Projected Dimension r
256 512 1024 full

D1

CW (µ) 24.08 19.45 16.66 15.10
(σ) 4.52 4.15 3.52 2.60

RS (µ) 24.1.0 19.46 16.36 15.10
(σ) 4.45 3.79 3.22 2.60

FHT (µ) 23.52 19.59 16.67 15.10
(σ) 4.21 4.05 3.37 2.60

RG (µ) 24.34 19.73 16.69 15.10
(σ) 4.44 3.86 3.28 2.60

D2

CW (µ) 25.94 21.07 17.33 15.44
(σ) 4.13 4.16 3.45 2.54

RS (µ) 25.80 20.80 17.47 15.44
(σ) 4.40 3.93 3.42 2.54

FHT (µ) 25.33 21.23 17.58 15.44
(σ) 3.69 4.24 3.53 2.54

RG (µ) 25.43 20.54 17.25 15.44
(σ) 4.03 3.65 3.38 2.54

D3

CW (µ) 27.62 22.97 18.93 15.83
(σ) 3.46 3.22 3.32 2.00

RS (µ) 28.15 23.00 18.72 15.83
(σ) 3.02 3.48 2.78 2.00

FHT (µ) 27.92 23.41 18.73 15.83
(σ) 3.46 3.60 3.02 2.00

RG (µ) 27.71 22.85 18.96 15.83
(σ) 3.38 3.29 3.33 2.00

γ Projected Dimension r
256 512 1024 full

D1

CW (µ) 5.72 6.67 7.16 7.74
(σ) 0.58 0.58 0.59 0.59

RS (µ) 5.73 6.66 7.18 7.74
(σ) 0.57 0.55 0.55 0.59

FHT (µ) 5.76 6.64 7.15 7.74
(σ) 0.56 0.58 0.56 0.59

RG (µ) 5.67 6.60 7.13 7.74
(σ) 0.57 0.51 0.54 0.59

D2

CW (µ) 6.62 8.09 8.88 9.78
(σ) 0.64 0.62 0.59 0.66

RS (µ) 6.65 8.10 8.88 9.78
(σ) 0.64 0.60 0.63 0.66

FHT (µ) 6.66 8.06 8.84 9.78
(σ) 0.63 0.65 0.63 0.66

RG (µ) 6.66 8.13 8.90 9.78
(σ) 0.65 0.60 0.63 0.66

D3

CW (µ) 7.69 9.84 11.07 12.46
(σ) 0.67 0.60 0.71 0.69

RS (µ) 7.61 9.85 11.05 12.46
(σ) 0.59 0.6212 0.62 0.69

FHT (µ) 7.63 9.83 11.11 12.46
(σ) 0.67 0.64 0.64 0.69

RG (µ) 7.69 9.85 11.04 12.46
(σ) 0.67 0.61 0.7 0.69

Synthetic data: ǫout decreases and γ increases as a function of r in all three families of matrices, using any of the
four random projection methods. µ and σ indicate the mean and the standard deviation of ǫout over ten matrices
in each family D1, D2, and D3, ten ten-fold cross-validation experiments, and ten choices of random projection
matrices for the four methods that we investigated (a total of 1,000 experiments for each family of matrices).

4.1.1. Synthetic datasets. The synthetic datasets are separable by construction. More specifically, we
first constructed a weight vector w ∈ R

d, whose entries were selected in i.i.d. trials from a Gaussian
distribution N (µ, σ) of mean µ and standard-deviation σ. We experimented with the following three
distributions: N (0, 1), N (1, 1.5), and N (2, 2). Then, we normalized w to create ŵ = w/ ‖w‖2. Let Xij =

N (0, 1); then, we set xi to be equal to the i-th row of X, while yi = sign
(

ŵTxi

)

. We generated families of

matrices of different dimensions. More specifically, family D1 contained matrices in R
200×5,000; family

D2 contained matrices in R
250×10,000; and family D3 contained matrices in R

300×20,000. We generated
ten datasets for each of the families D1, D2, and D3, and we report average results over the ten
datasets. We set r to 256, 512, and 1024 and set C to 1,000 in LIBSVM for all the experiments. Tables
I shows ǫout and γ for the three datasets D1, D2, and D3. ǫin is zero for all three data families. As
expected, ǫout and γ improve as r grows for all four random projection methods. Also, the time needed
to compute random projections is very small compared to the time needed to run SVMs on the projected
data. Figure 1 shows the combined running time of random projections and SVMs, which is nearly the
same for all four random projection methods. It is obvious that this combined running time is much
smaller that the time needed to run SVMs on the full dataset (without any dimensionality reduction).
For instance, for r = 1024, trun for D1, D2, and D3 is (respectively) 6, 9, and 25 times smaller than trun
on the full-data.

4.1.2. The TechTC-300 dataset. For our first real dataset, we use the TechTC-300 data, consisting of a
family of 295 document-term data matrices. The TechTC-300 dataset comes from the Open Directory
Project (ODP), which is a large, comprehensive directory of the web, maintained by volunteer editors.
Each matrix in the TechTC-300 dataset contains a pair of categories from the ODP. Each category
corresponds to a label, and thus the resulting classification task is binary. The documents that are

1In Paul et al. [2013], the experiments on Hapmap-HGDP dataset were done using LIBSVM’s one-against-one multi-class clas-
sification method. LIBLINEAR does not have the one-against-one method implemented in the package. So we use the Crammer
and Singer method [Crammer and Singer 2000].

ACM Transactions on Knowledge Discovery from Data, Vol. , No. , Article , Publication date: December 2013.

Random Projections for Linear Support Vector Machines :11

CW RS FHT RG
0

10

20

30

40

50

60

70
t ru

n

r=256

r=512

r=1024

full

D1

CW RS FHT RG
0

20

40

60

80

100

120

140

160

180

t ru
n

r=256

r=512

r=1024

full

D2

CW RS FHT RG
0

50

100

150

200

250

300

350

400

450

500

t ru
n

r=256

r=512

r=1024

full

D3

Fig. 1. Total (average) running times, in seconds, of random projections and SVMs on the lower-dimensional data
for each of the three families of synthetic data. Vertical bars indicate the, relatively small, standard deviation (see
the caption of Table I).

ACM Transactions on Knowledge Discovery from Data, Vol. , No. , Article , Publication date: December 2013.

:12 Paul et al.

collected from the union of all the subcategories within each category are represented in the bag-of-
words model, with the words constituting the features of the data [Davidov et al. 2004]. Each data
matrix consists of 150-280 documents (the rows of the data matrix X), and each document is described
with respect to 10,000-40,000 words (features, columns of the matrix X). Thus, TechTC-300 provides
a diverse collection of data sets for a systematic study of the performance of the SVM on the projected
versus full data. We set the parameter C to 500 in LIBSVM for all 295 document-term matrices and

Table II. TechTC-300 Dataset

Projected Dimension r
128 256 512 full

ǫout

CW(µ) 24.63 22.84 21.26 17.35
(σ) 10.57 10.37 10.17 9.45

RS(µ) 24.58 22.90 21.38 17.35
(σ) 10.57 10.39 10.23 9.45

FHT (µ) 24.63 22.93 21.35 17.35
(σ) 10.66 10.39 10.2 9.45

RG (µ) 24.59 22.96 21.36 17.35
(σ) 10.54 10.5 10.18 9.45

γ

CW (µ) 1.66 1.88 1.99 2.09
(σ) 3.68 3.79 3.92 4.00

RS (µ) 1.66 1.88 1.99 2.09
(σ) 3.65 3.80 3.91 4.00

FHT (µ) 1.66 1.88 1.98 2.09
(σ) 3.65 3.81 3.88 4.00

RG (µ) 1.66 1.88 1.99 2.09
(σ) 3.70 3.83 3.91 4.00

trp

CW (µ) 0.0046 0.0059 0.0075 −−
(σ) 0.0019 0.0026 0.0033 −−

RS (µ) 0.0429 0.0855 0.1719 −−
(σ) 0.0178 0.0356 0.072 −−

FHT (µ) 0.0443 0.0882 0.1764 −−
(σ) 0.0206 0.0413 0.0825 −−

RG (µ) 0.039 0.078 0.1567 −−
(σ) 0.0159 0.0318 0.0642 −−

trun

CW (µ) 1.23 2.22 4.63 4.85
(σ) 0.87 0.93 1.93 2.12

RS (µ) 0.99 1.53 3.02 4.85
(σ) 0.97 0.59 1.12 2.12

FHT (µ) 0.95 1.46 2.83 4.85
(σ) 0.96 0.55 1.02 2.12

RG (µ) 0.82 1.23 2.48 4.85
(σ) 0.83 0.45 0.84 2.12

TechTC300: Results on the TechTC300 dataset, averaged
over 295 data matrices using four different random projec-
tion methods. The table shows how ǫout, γ, trp (in seconds),
and trun (in seconds) depend on r. µ and σ indicate the
mean and the standard deviation of each quantity over 295
matrices, ten ten-fold cross-validation experiments, and ten
choices of random projection matrices for the four methods
that we investigated.

set r to 128, 256, and 512. We use a lower value of C than for the other data sets for computational
reasons: larger C is less efficient. We note that our classification accuracy is slightly worse (on the full
data) than the accuracy presented in Section 4.4 of Davidov et al. [2004], because we did not fine-tune
the SVM parameters as they did, since that is not the focus of this study. For every dataset and every
value of r we tried, the in-sample error on the projected data matched the in-sample error on the full
data. We thus focus on ǫout, the margin γ, the time needed to compute random projections trp, and the
total running time trun. We report our results averaged over 295 data matrices. Table II shows the
behavior of these parameters for different choices of r. As expected, ǫout and the margin γ improve as
r increases, and they are nearly identical for all four random projection methods. The time needed to
compute random projections is smallest for CW, followed by RG, RS and FHT. As a matter of fact, trp
for CW is ten to 20 times faster than RG, RS and FHT for different values of r. This is predicted by the
theory in Clarkson and Woodruff [2013], since CW is optimized to take advantage of input sparsity.
However, this advantage is lost when SVMs are applied on the dimensionally-reduced data. Indeed,
the combined running time trun is fastest for RG, followed by FHT, RS and CW. In all cases, the total
running time is smaller than the SVM running time on full dataset. For example, in the case of RG or

ACM Transactions on Knowledge Discovery from Data, Vol. , No. , Article , Publication date: December 2013.

Random Projections for Linear Support Vector Machines :13

FHT, setting r = 512 achieves a running time trun which is about twice as fast as running SVMs on
the full dataset; ǫout increases by less than 4%.

512 1024 2048
0

2

4

6

8

10

Projections

Eo
ut

Region−level Classification

CW
FHT
RS
RG

512 1024 2048
0

5

10

15

20

25

30

35

Projections

Eo
ut

Population−level Classification

CW
FHT
RS
RG

Fig. 2. ǫout as a function of r in the Hapmap-HGDP dataset for four different random projection methods and two
different classification tasks. Vertical bars indicate the standard-deviation over the ten ten-fold cross-validation
experiments and the ten choices of the random projection matrices for each of the four methods.

4.1.3. The HapMap-HGDP dataset. Predicting ancestry of individuals using a set of genetic markers is
a well-studied classification problem. We use a population genetics dataset from the Human Genome
Diversity Panel (HGDP) and the HapMap Phase 3 dataset (see Paschou et al. [2010] for details), in
order to classify individuals into broad geographic regions, as well as into (finer-scale) populations.
We study a total of 2,250 individuals from approximately 50 populations and five broad geographic
regions (Asia, Africa, Europe, the Americas, and Oceania). The features in this dataset correspond
to 492, 516 Single Nucleotide Polymorphisms (SNPs), which are well-known biallelic loci of genetic
variation across the human genome. Each entry in the resulting 2, 250 × 492, 516 matrix is set to +1
(homozygotic in one allele), −1 (homozygotic in the other allele), or 0 (heterozygotic), depending on the
genotype of the respective SNP for a particular sample. Missing entries were filled in with −1, +1, or
0, with probability 1/3. Each sample has a known population and region of origin, which constitute its
label. We set r to 256, 512, 1024, and 2048 in our experiments. Since this task is a multi-class classifi-
cation problem, we used LIBLINEAR’s Crammer and Singer technique for classification. We ran two
sets of experiments: in the first set, the classification problem is to assign samples to broad regions of
origin, while in the second experiment, our goal is to classify samples into (fine-scale) populations. We
set C to 1,000 in LIBLINEAR for all the experiments. The in-sample error is zero in all cases. Figure 2
shows the out-of-sample error for regions and populations classification, which are nearly identical for
all four random projection methods. For regional classification, we estimated ǫout to be close to 2%, and
for population-level classification, ǫout is close to 20%. This experiment strongly supports the compu-
tational benefits of our methods in terms of main memory. X is a 2, 250×492, 516 matrix, which is too
large to fit into memory in order to run SVMs. Figure 3 shows that the combined running time for four
different random projection methods are nearly identical for both regions and population classification
tasks. However, the time needed to compute the random projections is different from one method to

ACM Transactions on Knowledge Discovery from Data, Vol. , No. , Article , Publication date: December 2013.

:14 Paul et al.

512 1024 2048
0

50

100

150

200

250

Projections

Ru
nn

in
g

tim
e

in
 s

ec
s

CW
FHT
RS
RG

Total running time: regional classification

512 1024 2048
0

50

100

150

200

250

300

Projections

Ru
nn

in
g

tim
e

in
 s

ec
s

CW
FHT
RS
RG

Total running time: population-level classification

512 1024 2048
0

20

40

60

80

100

120

Projections

t rp

CW
FHT
RS
RG

Time needed to compute random projections

Fig. 3. Total running time in seconds (random projections and SVM classification on the dimensionally-reduced
data) for Hapmap-HGDP dataset for four different projection methods using both regional and population-level
labels. Notice that the time needed to compute random projection is independent of the classification labels.
Vertical bars indicate standard-deviation, as in Figure 2.

the next. FHT is fastest, followed by RS, RG and CW. In this particular case, the input matrix is dense,
and CW seems to be outperformed by the other methods as the running time of CW depends on the
number of non-zeros of the matrix.

4.1.4. The RCV1 dataset. The RCV1 dataset [Lewis et al. 2004]2 is a benchmark dataset on text cate-
gorization. We use the RCV1 dataset for both binary and multi-class classification tasks. The RCV1

2 The RCV1 dataset is available publicly at http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets and contains a training-set
and a test-set of predesignated size.

ACM Transactions on Knowledge Discovery from Data, Vol. , No. , Article , Publication date: December 2013.

Random Projections for Linear Support Vector Machines :15

2048 4096 8192
0.3

20

40

60

80

100

120

nn
z(

X
R

)/n
nz

(X
)

Projections

RCV1 binary−class

CW
FHT
RS
RG

2048 4096 8192
0.3

20

40

60

80

100

120

140

nn
z(

X
R

)/n
nz

(X
)

Projections

RCV1 Multi−class

CW
FHT
RS
RG

Fig. 4. Ratio of number of non-zero entries of projected data and full-data for RCV1 dataset.

binary classification dataset had one training set containing 20,242 data-points and 47,236 features.
We generate ten different test-sets each containing 20,000 points and 47,236 features from the avail-
able test-set for the binary classification task. The RCV1 binary classification dataset contains CCAT
and ECAT as the positive classes and GCAT and MCAT as the negative classes. Instances in both
positive and negative classes are absent. The RCV1 multi-class dataset had one training set 15,564
training points with 47,236 features and ten different test-sets each containing 16,000 data points
and 47,236 features were generated from the available test-set. There are 53 classes in the RCV1
multi-class dataset. We set r to 2048, 4096 and 8192. We use LIBLINEAR as our SVM solver. We use
the L2-regularized L2-loss support vector classification in the primal mode with default settings for
binary classification and the method of Crammer and Singer [Crammer and Singer 2000] for multi-
class classification. We set C = 10 for both multi-class classification and binary classification. The
RCV1 dataset is very sparse with 0.16% non-zero entries in the binary-class dataset and 0.14% non-
zero entries in the multi-class dataset.

Tables III and IV show the results for RCV1 binary and multi class datasets.tsvm denotes the SVM-
training time on the projected data. For both binary and multi-class tasks, we observe that ǫout is close
to that of full dataset and ǫout decreases with increase in number of projections. The SVM training
time is smaller than that of full dataset for CW method only. For the other methods like FHT, RS and
RG, the number of non-zeros in the projected data increases which increases the SVM training time.
This is evident from Figure 4 which shows the ratio of number of non-zeros of projected data and full
data. For all methods except CW, the number of non-zeros increases with increase in value of r. This
follows from the theory predicted in Clarkson and Woodruff [2013], since CW method takes advantage
of input sparsity. The combined running time is smaller than that of full-dataset for CW method. The
margin of the projected data is close to that of full data for RCV1 binary class dataset.

4.2. PCA vs Random Projections

Principal Components Analysis (PCA) constructs a small number of linear features that summarize
the input data. PCA is computed by first mean-centering the features of the original data and then
computing a low-rank approximation of the data matrix using SVD. Thus the PCA feature matrix is
given by Z = XcVk, where Xc represents the centered data matrix X and Vk represents the top k
right singular vectors of Xc. To the best of our knowledge, there is no known theoretical framework
connecting PCA with margin or generalization error of SVM, so we only provide empirical evidence of
the comparison.

Our goal is to evaluate if the data matrix represented by a small number of principal components
can give the same or better performance than random projections when combined with SVMs, in terms
of both running time and out-of-sample error. Note that the number of random projections is always
greater than the rank of the matrix. For PCA we retain a number of principal components that is less
than or equal to the rank of the matrix in order to compare its performance to random projections.

We used the TechTC300 dataset for experimental evaluation and used MATLAB’s SVD solver in
“econ” mode to compute PCA. We kept k equal to 32, 64, and ρ (where ρ is the rank of the matrix)
principal components. The results corresponding to a number of principal components equal to the
rank of the data matrices are referred to as “full-rank”, while “full” refers to the results on the full-
dimensional dataset. We ran PCA experiments on 294 datasets with k = 64, since one of them had
rank less than 64. For k = 32, we used the entire set of 295 TechTC300 matrices. tpca denotes the time
to compute PCA on the dataset and we set C = 500 and C = 1 in our experiments. The out-of-sample
error for PCA is equal to or sometimes slightly better compared to the error on the full-dimensional
datasets. Even though a smaller number of principal components achieve better out-of-sample error
when compared to random projections, the combined running time of SVMs and PCA is typically
higher than that of random projections. The combined running time of SVMs and PCA is sensitive

ACM Transactions on Knowledge Discovery from Data, Vol. , No. , Article , Publication date: December 2013.

:16 Paul et al.

Table III. RCV1 Dataset (Multi-class)

Projected Dimension r
2048 4096 8192 full

ǫout

CW(µ) 18.30 15.15 13.50 11.83
(σ) 0.157 0.117 0.079 0.18

RS(µ) 17.57 14.66 13.21 11.83
(σ) 0.172 0.134 0.1094 0.18

FHT (µ) 17.50 14.58 13.2 11.83
(σ) 0.2033 0.0905 0.0597 0.18

RG (µ) 17.47 14.61 13.21 11.83
(σ) 0.101 0.146 0.036 0.18

trp

CW (µ) 0.0093 0.0189 0.0357 −−
(σ) 0.0005 0.0007 0.0010 −−

RS (µ) 2.412 4.782 9.49 −−
(σ) 0.0323 0.0847 0.0636 −−

FHT (µ) 2.484 4.85 9.966 −−
(σ) 0.1621 0.023 0.23 −−

RG (µ) 13.559 28.875 55.05 −−
(σ) 0.0715 1.9801 1.4315 −−

tsvm

CW (µ) 1.99 2.23 2.80 2.96
(σ) 0.2309 0.4030 0.2929 −−

RS (µ) 45.103 94.652 207.278 2.96
(σ) 2.82 5.705 15.084 −−

FHT (µ) 45.468 98.287 201.558 2.96
(σ) 3.143 6.689 10.765 −−

RG (µ) 47.458 121.208 263.392 2.96
(σ) 7.222 23.393 45.814 −−

RCV1 Multi-class: µ and σ represents the mean and standard
deviation of the results which have been averaged over ten dif-
ferent random projection matrices. Since there was one training
set, there is no standard deviation for tsvm of “full” data.

to the value of C, while the running time for random projections and SVM do not vary greatly, like
PCA, by change of C.3 Random projections are therefore a faster and more stable method than PCA.
However, PCA appears to perform better than random projections when the number of components is
equal to the rank of the matrix. Table V shows the results of PCA experiments; note that the standard
deviation of trun for C = 500 is quite high because of the varied running times of SVMs on the various
TechTC300 matrices.

For a comparison of PCA to random projections, we consider the case of r = 512 and the random
gaussian matrix and randomized Hadamard Transform (see Table II for C = 500), which has the best
combined running time for random projections and SVMs. The combined running time of SVMs and
“full-rank” PCA is smaller than that of RG (FHT) and SVMs by 0.19 (0.16) seconds, while the out-of-
sample error of the former is only 4% better. However, the time needed to compute PCA is 1.73 seconds,
while random projections take negligible time to be computed; applying SVMs on the dimensionally-
reduced matrix is the bottleneck of the computation. If PCA retains only 32 or 64 principal components,
the running time of our method is smaller by factors of 30 and 5 respectively.

For C = 1 and r = 512, SVMs and “full-rank” PCA is smaller than that of RG (FHT) and SVMs
by 0.43 (0.15) seconds, while the out-of-sample error of the former is again 4% better. For C = 1, if
PCA retains only 32 or 64 principal components, the running time of our method is smaller by a few
seconds.

These clearly show the advantage of using random projections over PCA, especially when a small
number of principal components is desired. The PCA feature matrix is sensitive to the value of C. For
a higher value of C, SVM takes a longer time to train the inseparable data of the PCA feature matrix.

4.3. Experiments on SVM regression

We describe experimental evaluations on real world datasets, namely Yalefaces dataset
[Cai et al. 2006] and a gene expression dataset (NCI60 [Ross et al. 2000]). We convert the multi-label
classification tasks into a regression problem. We use LIBSVM with default settings and use C = 1 in
all our experiments. The general observations from our experiments are as follows: (i) the combined
runtime of random projections and SVM is smaller than the runtime of SVM on full dataset, (ii) the
margin increases with an increase in the number of projections.

3 We repeated all experiments on TechTC-300 using C = 1 and noticed the same pattern in the results as we did for C = 500.
RG and FHT are faster than the remaining two methods.

ACM Transactions on Knowledge Discovery from Data, Vol. , No. , Article , Publication date: December 2013.

Random Projections for Linear Support Vector Machines :17

Table IV. RCV1 Dataset (binary-class)

Projected Dimension r
2048 4096 8192 full

ǫout

CW(µ) 12.90 9.57 6.54 4.51
(σ) 1.234 0.619 0.190 0.1161

RS(µ) 9.26 7.82 6.22 4.51
(σ) 0.134 0.116 0.077 0.1161

FHT (µ) 9.23 7.94 6.29 4.51
(σ) 0.166 0.145 0.150 0.1161

RG (µ) 9.24 7.75 6.20 4.51
(σ) 0.255 0.113 0.109 0.1161

γ

CW (µ) 0.0123 0.0094 0.0125 0.0152
(σ) 0.0002 0.0002 0.0003 −−

RS (µ) 0.0158 0.0105 0.0127 0.0152
(σ) 0.0005 0.00009 0.0001 −−

FHT (µ) 0.0160 0.0105 0.0127 0.0152
(σ) 0.0003 0.0001 0.0001 −−

RG (µ) 0.0158 0.0106 0.0127 0.0152
(σ) 0.0004 0.0001 0.00009 −−

trp

CW (µ) 0.0112 0.0231 0.0456 −−
(σ) 0.0008 0.0014 0.0008 −−

RS (µ) 4.34 8.94 18.89 −−
(σ) 0.48 1.33 3.48 −−

FHT (µ) 4.29 8.21 16.37 −−
(σ) 0.577 1.003 1.484 −−

RG (µ) 20.52 48.18 86.384 −−
(σ) 0.248 3.32 6.15 −−

tsvm

CW (µ) 0.0726 0.1512 0.2909 0.368
(σ) 0.0082 0.0113 0.009 −−

RS (µ) 9.22 20.11 41.29 0.368
(σ) 0.9396 3.245 7.3966 −−

FHT (µ) 8.78 18.95 37.18 0.368
(σ) 1.29 2.79 4.76 −−

RG (µ) 11.17 30.17 44.76 0.368
(σ) 0.364 4.204 2.079 −−

RCV1 Binary-class: µ and σ represents the mean and standard
deviation of the results which have been averaged over ten differ-
ent random projection matrices. Since there was one training set,
there is no standard deviation for tsvm and γ of “full” data.

Table V. TechTC300 PCA Experiments

C=500 Projected Dimension k
32 64 full-rank full

ǫout PCA (µ) 15.02 17.35 17.35 17.35
(σ) 9.32 9.53 9.45 9.45

tpca PCA (µ) 1.73 1.73 1.73 −−
(σ) 1.15 1.15 1.15 −−

trun PCA (µ) 86.73 14.04 2.67 4.85
(σ) 174.35 81.12 1.56 2.12

C=1 Projected Dimension k
32 64 full-rank full

ǫout PCA (µ) 13.33 15.72 17.21 17.21
(σ) 8.10 9.20 9.44 9.44

tpca PCA (µ) 1.73 1.73 1.73 −−
(σ) 1.15 1.15 1.15 −−

trun PCA (µ) 5.70 2.99 2.80 4.92
(σ) 10.68 5.83 1.62 2.16

PCA Experiments: Results on the TechTC300 dataset, averaged over all data matrices using PCA. The table shows how ǫout,
tpca (in seconds), and trun (in seconds) depend on r. µ and σ indicate the mean and the standard deviation of each quantity
over the data matrices and ten ten-fold cross-validation experiments.

4.3.1. Yalefaces Dataset. The Yalefaces dataset [Cai et al. 2006] consists of 165 grayscale images of 15
individuals. There were eleven images per subject, one per different facial expression (happy, sad, etc)
or configuration (center-light, left-light, etc). The dataset has 165 datapoints and 4,096 features with
15 classes. The classes were used as the labels for regression. We set the value of r to 256, 512, and
1024. trun for SVM and random projections is approximately 9, 7 and 4 times smaller than that of
full-dataset. The margin increases as the number of random projections increases. The mean-squared
in-sample error decreases with an increase in the number of random projections.

4.3.2. NCI60 Dataset. The NCI60 dataset [Ross et al. 2000] consists of 1375 gene expression profiles of
60 human cancer cell lines. The dataset contains 1375 features and 60 datapoints with ten classes. The
features contain the log-ratio of the expression levels. The classes were used as labels for regression.
We set the value of r to 128, 256, and 512. The running time of the four methods are nearly the
same. The squared correlation-coefficient is very close to one and is not influenced by the number of
projections, r. The mean squared ǫin remains the same for all values of r.

ACM Transactions on Knowledge Discovery from Data, Vol. , No. , Article , Publication date: December 2013.

:18 Paul et al.

Table VI. Yalefaces Dataset

Projected Dimension r
256 512 1024 full

ǫin

CW(mse) 0.2697 0.0257 0.0103 0.0098
(β) 0.9859 0.9987 0.9995 0.9995

RS(mse) 0.2201 0.0187 0.0107 0.0098
(β) 0.9886 0.9991 0.9995 0.9995

FHT (mse) 0.2533 0.0233 0.0102 0.0098
(β) 0.9868 0.9988 0.9995 0.9995

RG (mse) 0.281 0.0174 0.0105 0.0098
(β) 0.9853 0.9991 0.9995 0.9995

γ

CW (µ) 0.11 0.12 0.13 0.14
(σ) 0.0032 0.0028 0.0020 0.0031

RS (µ) 0.11 0.12 0.13 0.14
(σ) 0.0043 0.0024 0.0018 0.0031

FHT (µ) 0.11 0.12 0.13 0.14
(σ) 0.0026 0.0022 0.0031 0.0031

RG (µ) 0.11 0.12 0.13 0.14
(σ) 0.0034 0.0030 0.0025 0.0031

trun

CW (µ) 4.14 5.06 8.62 34.93
(σ) 0.17 0.12 0.24 0.02

RS (µ) 3.92 4.81 8.45 34.93
(σ) 0.17 0.10 0.19 0.02

FHT (µ) 4.12 5.09 8.69 34.93
(σ) 0.23 0.17 0.25 0.02

RG (µ) 4.37 5.49 9.43 34.93
(σ) 0.15 0.09 0.06 0.02

Yalefaces Dataset: Results on the Yalefaces dataset using four
different random projection methods. The table shows how ǫin, γ
and trun (in seconds) depend on r. mse and β indicate the mean-
squared error and the squared correlation coefficient, while µ
and σ represent the mean and standard deviation over ten ten-
fold cross-validation experiments, and ten choices of random
projection matrices for the four methods that we investigated.

Table VII. NCI60 Dataset

Projected Dimension r
128 256 512 full

ǫin

CW(mse) 0.0098 0.0097 0.0097 0.0097
(β) 0.9987 0.9989 0.9989 0.9990

RS(mse) 0.0098 0.0097 0.0097 0.0097
(β) 0.9987 0.9988 0.9990 0.9990

FHT (mse) 0.0097 0.0098 0.0097 0.0097
(β) 0.9987 0.9988 0.9989 0.9990

RG (mse) 0.0098 0.0098 0.0097 0.0097
(β) 0.9987 0.9988 0.9989 0.9990

γ

CW (µ) 1.89 2.12 2.22 2.33
(σ) 0.05 0.07 0.07 0.12

RS (µ) 1.90 2.09 2.25 2.33
(σ) 0.10 0.06 0.07 0.12

FHT (µ) 1.88 2.10 2.22 2.33
(σ) 0.10 0.09 0.05 0.12

RG (µ) 1.87 2.12 2.20 2.33
(σ) 0.10 0.10 0.06 0.12

trun

CW (µ) 0.26 0.39 0.76 2.19
(σ) 0.01 0.01 0.01 0.003

RS (µ) 0.27 0.40 0.78 2.19
(σ) 0.02 0.01 0.01 0.003

FHT (µ) 0.29 0.43 0.85 2.19
(σ) 0.04 0.05 0.10 0.003

RG (µ) 0.26 0.38 0.74 2.19
(σ) 0.02 0.04 0.05 0.003

NCI60 Dataset: Results on the NCI60 dataset using four differ-
ent random projection methods. The table shows how ǫin, γ and
trun (in seconds) depend on r. See caption of Table VI for an
explanation of mse, β, µ and σ.

5. CONCLUSIONS AND OPEN PROBLEMS

We present theoretical and empirical results indicating that random projections are a useful dimen-
sionality reduction technique for SVM classification and regression problems that handle sparse or

ACM Transactions on Knowledge Discovery from Data, Vol. , No. , Article , Publication date: December 2013.

Random Projections for Linear Support Vector Machines :19

dense data in high-dimensional feature spaces. Our theory predicts that the dimensionality of the pro-
jected space (denoted by r) has to grow essentially linearly (up to logarithmic factors) in ρ (the rank of
the data matrix) in order to achieve relative error approximations to the margin and the radius of the
minimum ball enclosing the data. Such relative-error approximations imply excellent generalization
performance. However, our experiments show that considerably smaller values for r results in clas-
sification that is essentially as accurate as running SVMs on all available features, despite the fact
that the matrices have full numerical rank. This seems to imply that our theoretical results can be
improved. We implemented and tested random projection methods that work well on dense matrices
(the RS and FHT methods of Section 2), as well as a very recent random projection method that works
well with sparse matrices (the CW method of Section 2). We also experimented with different SVM
solvers for lage and medium-scale datasets. As expected, FHT, RG and RS work well on dense data
while CW is an excellent choice for sparse data, as indicated by the SVM classification experiments.
For large-scale sparse data, CW is the method of choice as the other methods outweigh the bene-
fits of performing random projections. For SVM regression experiments, the combined running times
using the four methods are the same for dense datasets. The mean squared error and the squared
correlation-coefficient of ǫin of the projected data are non-zero as opposed to the SVM classification
experiments. Finally, we compare random projections with a popular method of dimensionality reduc-
tion, namely PCA and see that the combined running time of random projection and SVM is faster
than that of SVM and PCA, with a slightly worse out-of-sample error. All our experiments are on
matrices of approximately low-rank, while the theory holds for matrices of exactly low-rank. It is not
known if the theory extends to matrices of approximately low rank. This is an open problem and needs
further investigation.

REFERENCES

D. Achlioptas. 2003. Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J. Comput. System Sci.
66, 4 (2003), 671–687.

N. Ailon and B. Chazelle. 2006. Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform. In Proceedings
of the 38th Annual ACM Symposium on Theory of Computing. 557–563.

N. Ailon and E. Liberty. 2008. Fast dimension reduction using Rademacher series on dual BCH codes. In Proceedings of the 19th
Annual ACM-SIAM Symposium on Discrete Algorithms. 1–9.

J.L. Balcazar, Y. Dai, and O. Watanabe. 2001. A Random Sampling Technique for Training Support Vector Machines. In Pro-
ceedings of the 12th International Conference on Algorithmic Learning Theory. 119–134.

J.L. Balczar, Y. Dai, and O. Watanabe. 2002. Provably Fast Support Vector Regression using Random Sampling. In In Proceed-
ings of SIAM Workshop in Discrete Mathematics and Data Mining.

A. Blum. 2006. Random Projection, Margins, Kernels, and Feature-Selection. In In Proceedings of the International Conference
on Subspace, Latent Structure and Feature Selection. 52–68.

D. Cai, X. He, J. Han, and H-J. Zhang. 2006. Orthogonal Laplacianfaces for Face Recognition. IEEE Transactions on Image
Processing 15, 11 (2006), 3608–3614.

C-C. Chang and C-J. Lin. 2011. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and
Technology 2 (2011), 27:1–27:27. Issue 3. Software available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

K.L. Clarkson and D.W. Woodruff. 2013. Low Rank Approximation and Regression in Input Sparsity Time. In Proceedings of
the 45th ACM Symposium on the Theory of Computing.

K. Crammer and Y. Singer. 2000. On the learnability and design of output codes for multi-class problems.. In In Computational
Learning Theory. 35–46.

N. Cristianini and J. Shawe-Taylor. 2000. Support Vector Machines and other kernel-based learning methods. Cambridge Uni-
versity Press.

S. Dasgupta and A. Gupta. 2003. An elementary proof of a theorem of Johnson and Lindenstrauss. Random Structures and
Algorithms 22, 1 (2003), 60–65.

D. Davidov, E. Gabrilovich, and S. Markovitch. 2004. Parameterized generation of labeled datasets for text categorization based
on a hierarchical directory. In Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval. 250–257. http://techtc.cs.technion.ac.il/techtc300/techtc300.html.

P. Drineas, M.W. Mahoney, S. Muthukrishnan, and T. Sarlos. 2011. Faster least squares approximation. Numerische. Math. 117,
2 (2011), 219–249.

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. 2008. LIBLINEAR: A library for large linear classification.
Journal of Machine Learning Research (2008), 1871 –1874.

P. Indyk and R. Motwani. 1998. Approximate nearest neighbors: towards removing the curse of dimensionality. In Proceedings
of the 30th Annual ACM Symposium on Theory of Computing. 604–613.

V. Jethava, K. Suresh, C. Bhattacharyya, and R. Hariharan. 2009. Randomized Algorithms for Large scale SVMs. CoRR
abs/0909.3609 (2009). http://arxiv.org/abs/0909.3609.

S. Krishnan, C. Bhattacharyya, and R. Hariharan. 2008. A Randomized Algorithm for Large Scale Support Vector Learning. In
Advances in 20th Neural Information Processing Systems. 793–800.

D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. 2004. RCV1: A new benchmark collection for text categorization research. Journal of
Machine Learning Research (2004), 361–397.

ACM Transactions on Knowledge Discovery from Data, Vol. , No. , Article , Publication date: December 2013.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://techtc.cs.technion.ac.il/techtc300/techtc300.html

:20 Paul et al.

J.Z. Li, D.M. Absher, H. Tang, A.M. Southwick, A.M. Casto, S. Ramachandran, H.M. Cann, G.S. Barsh, M. Feldman, L.L. Cavalli-
Sforza, and R.M. Myers. 2008. Worldwide human relationships inferred from genome-wide patterns of variation. Science
319, 5866 (2008), 1100–1104.

P. Li, T.J. Hastie, and W.K. Church. 2006. Very sparse random projections. In Proceedings of the 12th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. 287–296.

A. Magen and A. Zouzias. 2011. Low rank matrix-valued Chernoff bounds and approximate matrix multiplication. In Proceed-
ings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms. 1422–1436.

X. Meng and M.W. Mahoney. 2013. Low-distortion Subspace Embeddings in Input-Sparsity Time and Applications to Robust
Linear Regression. In Proceedings of the 45th ACM Symposium on the Theory of Computing.

J. Nelson and H.L. Nguyen. 2013. OSNAP: Faster numerical linear algebra algorithms via sparser subspace embeddings. In
Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS).

P. Paschou, J. Lewis, A. Javed, and P. Drineas. 2010. Ancestry informative markers for fine-scale individual assignment to
worldwide populations. Journal of Medical Genetics 47, 12 (2010), 835–47.

S. Paul, C. Boutsidis, M. Magdon-Ismail, and P. Drineas. 2013. Random Projections for Support Vector Machines. In Proceedings
of the 16th International Conference on Artificial Intelligence & Statistics, JMLR W& CP. 498 –506.

D.T. Ross, U. Scherf, M.B. Eisen, C.M. Perou, P. Spellman, V. Iyer, S.S. Jeffrey, M. Van de Rijn, M. Waltham, A. Pergamenschikov,
J.C.F Lee, D. Lashkari, D. Shalon, T.G. Myers, J.N. Weinstein, D. Botstein, and P.O. Brown. 2000. Systematic Variation in
Gene Expression Patterns in Human Cancer Cell Lines. Nature Genetics 24, 3 (2000), 227–234.

Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola, and S.V.N. Vishwanathan. 2009. Hash Kernels for Structured Data. Journal
of Machine Learning Research 10 (2009), 2615–2637.

Q. Shi, C. Shen, R. Hill, and A.V.D Hengel. 2012. Is margin preserved after random projection ?. In Proceedings of 29th Interna-
tional Conference on Machine Learning. 591–598.

V.N. Vapnik and A. Chervonenkis. 1971. On the Uniform Convergence of Relative Frequencies of Events to their Probabilities.
Theory of Probability and its Applications 16 (1971), 264–280.

V. N. Vapnik. 1998. Statistical Learning Theory. Theory of Probability and its Applications 16 (1998), 264–280.

L. Zhang, M. Mahdavi, R. Jin, and T. Yang. 2013. Recovering Optimal Solution by Dual Random Projection. In Conference on
Learning Theory (COLT) JMLR W & CP, Vol. 30. 135–157. http://arxiv.org/abs/1211.3046.

Received April 2013; revised October 2013; accepted December 2013

ACM Transactions on Knowledge Discovery from Data, Vol. , No. , Article , Publication date: December 2013.

http://arxiv.org/abs/1211.3046

	1 Introduction
	1.1 Notation and SVM Basics
	1.1.1 SVM Classification
	1.1.2 SVM Regression

	1.2 Dimension Reduction
	1.3 Our Contribution
	1.4 Prior work

	2 Random Projection Matrices
	3 Geometry of SVM is preserved under Random Projection
	4 Experiments
	4.1 Experiments on SVM Classification
	4.1.1 Synthetic datasets
	4.1.2 The TechTC-300 dataset
	4.1.3 The HapMap-HGDP dataset
	4.1.4 The RCV1 dataset

	4.2 PCA vs Random Projections
	4.3 Experiments on SVM regression
	4.3.1 Yalefaces Dataset
	4.3.2 NCI60 Dataset

	5 Conclusions and open problems

