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ABSTRACT

Efficient spectrum use in wireless sensor networks through spatial
reuse requires effective models of packet reception at the physi-
cal layer in the presence of interference. Despite recent progress
in analytic and simulations research into worst-case behavior from
interference effects, these efforts generally assume geometric path
loss and isotropic transmission, assumptions which have not been
borne out in experiments.

Our paper aims to provide a methodology for grounding theoreti-
cal results into wireless interference in experimental reality. We de-
velop a new framework for wireless algorithms in which distance-
based path loss is replaced by an arbitrary gain matrix, typically ob-
tained by measurements of received signal strength (RSS). We ex-
perimentally evaluate the framework in two indoors testbeds with
20 and 60 motes, and confirm superior predictive performance in
packet reception rate for a gain matrix model over a geometric
distance-based model.

At the heart of our approach is a new parameter ¢ called metricity
which indicates how close the gain matrix is to a distance metric,
effectively measuring the complexity of the environment. A pow-
erful theoretical feature of this parameter is that a/l known SINR
scheduling algorithms that work in general metric spaces carry over
to arbitrary gain matrices and achieve equivalent performance guar-
antees in terms of ¢ as previously obtained in terms of the path loss
constant. Our experiments confirm the sensitivity of ¢ to the nature
of the environment. Finally, we show analytically and empirically
how multiple channels can be leveraged to improve metricity and
thereby performance. We believe our contributions will facilitate
experimental validation for recent advances in algorithms for phys-
ical wireless interference models.
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1. INTRODUCTION

There is mounting demand for tomorrow’s wireless networks to
provide higher performance while lowering costs. A central chal-
lenge in meeting this demand is to improve the utilization of the
wireless spectrum to enable simultaneous communications at the
same radio frequency. To accommodate research into efficient use
of wireless channels, for instance through spatial reuse, we require
practical models of signal propagation behavior and reception at
the physical layer in the presence of wireless interference.

Early models of worst-case wireless communication under inter-
ference were graph-based, most commonly based on distances. In
comparison, physical models, or SINR (signal to interference and
noise ratio) models, capture two important features of reality: sig-
nal strength decays as it travels (rather than being a binary prop-
erty) and interference accumulates (rather than being a pairwise
relation).

Analytic work on SINR — introduced by Gupta and Kumar [14]
in an average-case setting and Moscibroda and Wattenhofer [26] in
worst-case — has generally assumed geometric path loss, referred to
here as the GEO-SINR model: signals decay as a fixed polynomial
of the distance traveled.

While free space exhibits geometric decay, the reality for real-
world wireless environments is more complex. When located above
an empty plane, a signal bounces off the ground, resulting in com-
plicated patterns of superpositions known as multi-path fading. Most
real scenarios are more complex, with walls and obstructions. In
particular, cityscape and indoor environments are notoriously hard
to model. Moreover, the simple range-based models often make
further assumptions into geometric path loss that do not concord
with experiments, such as smooth and isotropic polynomial de-
crease in the signal strength. In fact, quoting recent meta-analysis
[3], “link quality is not correlated with distance.”



Various stochastic extensions of geometric path loss have been
proposed to address the observed variability in signal propagation.
The most common are log-normal shadowing and Rayleigh fad-
ing for addressing long- and short-distance variability, respectively.
Both modify the signal strength multiplicatively by an exponen-
tially distributed random variable. These models are highly useful
both for generating input for signal propagation simulations and for
average-case analysis of wireless interference algorithms.

A complementary view to stochastic studies, with deep roots in
computer science theory, is to allow for worst-case behavior and
obtain guarantees that hold for all instances to the problem at hand.
To avoid such results becoming too pessimistic, proper characteri-
zations or parameterizations are often essential. Our goal is to con-
tribute to such “any-case” analysis that avoids making assumptions
about the environment that may not be reflected in actual real-world
scenarios.

Our contributions. We propose moving theoretical algorithm
design away from assuming geometric path loss models to an ab-
stract SINR formulation with a matrix representing the fading (or
signal decay) between pairs of nodes in an arbitrary environment.
The matrix would typically be generated from direct measurements
of received signal strength (RSS) provided by motes, as proposed
by experimentalists [34, 32, 24]. The RSS matrix could also be
generated by other means, such as by inference, history, stochastic
models or by accurate environmental models.

Following this approach, worst-case algorithmic analysis is heav-
ily contingent on the contents of the RSS matrix, with unconstrained
settings causing computational intractability. We introduce a new
measure that reflects the attenuation complexity of the environ-
ment described by the RSS matrix. Dubbed metricity and denoted
¢, this parameter intuitively represents how close the RSS matrix
is to a distance metric. From a theoretical standpoint, the defini-
tion of metricity has extensive implications: All SINR algorithms
that work in arbitrary metric spaces work seamlessly in the abstract
model, with performance ratio in terms of metricity that is equiva-
lent to the original dependence on the path loss constant.

In an experimental evaluation on two testbeds of 20 and 60 nodes,
our measurements indicate that the metricity parameter corresponds
to the complexity of the environment. The experiments also sug-
gest that the SINR model — without the geometric assumption — is
of high fidelity, capturing signal propagation and reception well,
even in environments with obstacles and lack of line-of-sight.

We further address the effect of multi-path fading by giving trans-
mitters the choice of several channels/frequencies. Empirically, we
find that in an environment with extensive multi-path propagation
(but otherwise simple), the choice improves the metricity parame-
ter significantly. Analytically, we show that a known algorithm for
capacity maximization can be extended to handle multiple channels
without loss in performance.

Roadmap. In the following section, we formally define our con-
cepts, describe and calibrate our experimental setup in and vali-
date the basic premises of our framework. We analyze the metric-
ity parameter ¢ in Section 3 and present experimental results. By
leveraging the metricity concept in our framework, we introduce an
approach for tackling multi-path fading using multiple frequencies
in Section 4 and present experimental and theoretical results. We
survey related work in Section 5 and conclude in Section 6.

2. MODEL VALIDATION

Our first order of action is to verify that the SINR model, without
the geometric assumption, is faithful to reality. We assess the pre-
dictability of packet reception rate (PRR) under interference, and
the assumption of the additivity of interference, by comparing our

abstract model to the original GEO-SINR through experiments. The
experiments are conducted in two testbeds (Fig 1): one in the mid-
dle of a large open classroom (TB-20) and another in a challenging
basement corridor (TB-60).

2.1 The Physical Model

The SINR model is based on two key principles: (i) a signal de-
cays as it travels from a sender to a receiver, and (ii) interference
— signals from other sources than the intended transmitter — accu-
mulates. A transmission is successfully received if and only if the
strength of the received signal relative to interference is above a
given threshold.

Formally, a link £, = (s, 7+) is given by a pair of nodes, sender
s, and a receiver r,. The channel gain G, denotes the reciprocal
of the signal decay of ¢, as received at r,. If a set S of links
transmits simultaneously, then the SINR at Z,, is

Pv Gv’u

SINR, := )
N + ZuES PvGuv

)

where P, is the power used by the sender s, of £,, and N is the
ambient noise. In the thresholded SINR model, the transmission of
0y is successful iff SINR,, > 3, where (3 is a hardware-dependent
constant.

The common assumption of geometric path loss in SINR models
states that the gain is inversely proportional to a fixed polynomial
of the distance traveled, i.e., Gyv = d(Su, )~ %, where the range
of the path loss constant o is normally between 1 and 6. The geo-
metric path loss assumption is valid in free space; we have a = 2
in perfect vacuum.

The MB-SINR model refers to the SINR formula (1) applied to
a general gain matrix G obtained through pairwise RSS measure-
ments.

2.2 Experimental Setup

] 20 |
° ° ° ° °
3 =% "y,
.’ M) ‘o;
15 DAY -qﬂ' AN
21 e ° ° ° ° J om,” oo &
" o o \" o
g E10[ % . ,X%
1 ° ° ° ° ° ‘ )
5F ‘. oo
[
L4 T
0 °o o e ] e ot
0 1 2 3 4 0 5 10 15 20 25 30
m m

Figure 1: Topologies of our 20-node testbed (TB-20) (left) and
60-node curved corridor testbed (TB-60) (right).

Wireless hardware. Since a motivating goal of our study is
to understand raw interference between wireless transceivers, we
elected to operate at the physical-layer of a wireless device. We
needed a mote with granular control over MAC-level capabilities,
such as power and frequency control, over one tailored to specific
protocol stacks, such as the 802.11 suite. For example, we require
the ability to disable low-level features such as clear channel as-
sessment (CCA).

We chose the Pololu Wixel, a development board for the TI
CC2511F32 [35], as our mote hardware platform. The CC2511F32
is an 8051 micro controller SystemOnChip with integrated 2.4 GHz
FM-transceiver stage (CC2500). In addition to meeting our func-
tional requirements, the Wixels are inexpensive (14-20 USD), en-
abling larger scale deployments.
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Figure 2: (a) RSS matrix. Gain between directed pairs of nodes
in TB-60, measured by RSS and averaged over 1000 packets. (b)
Comparing measured and predicted RSS. Correlation between
RSS as predicted by distance with geometric path loss (o« = 2.18)
and measured in TB-60 testbed.

Configuration. In our experiments, every sender node in each
trial transmits a burst of 1000 packets with 4 ms delay between
consecutive packets to facilitate successful delivery to the receiver.
The length of each packet is 22 bytes, including a 16-bit CRC. Only
packets that pass a CRC check are considered successful transmis-
sions, with all error correction capabilities on the mote disabled.
The radio is configured to use data whitening and Minimum Shift
Keying (MSK) modulation format. During experiments, the wire-
less motes report details about packets sent or received to an auxil-
iary log via USB which also provides control signals and power for
the experiments. Packet details include the received signal strength
(RSS) as an integer in dBm.

TB-20 testbed. In the first testbed, we arranged 20 wireless
motes on an 4 X 5 grid with 1 m spacing in an empty classroom.
The motes in the grid were mounted on wooden poles 1 m from
the ground in order to minimize reflection and attenuation from
the ground; see Fig. 1 for the topology. The testbed was deployed
temporarily for a focused set of tests.

TB-60 testbed. In the second testbed, we suspended 60 wireless
motes about 0.3 m from metal wire trays and 2.5 m from the con-
crete floor in a curved basement corridor; see Fig. 1 for the topol-
ogy. The corridor provides a challenging environment: limited line
of sight between motes, obstacles such as water pipes and thick
electric cables, and reinforced concrete walls. Approximately 94%
of the directed links are in range for communication. The length
of the corridor is 40.1 m, the longest distance (direct line) between
any two motes is 21.8 m while the shortest distance is 0.4 m. The
TB-60 testbed is a more permanent setup, with the experiments
conducted over the span of several weeks.

2.3 Model calibration

We ran several experiments on the testbeds to gather calibration
data for the MB-SINR and GEO-SINR models. The figures with error
bars show the median, and upper and lower quartiles of the distri-
bution of experimental trials.

Ambient noise parameter IN. We evaluated N by sampling
the noise level registered by each mote, over several hours in both
early morning and during nighttime. All of our experiments use the
2.44 GHz frequency unless otherwise stated. We found the average
ambient noise in TB-60 to be around -99.1 dBm, but considerably
higher in TB-20 at around -94.4 dBm, in part due to external inter-
ference from 802.11 infrastructure.

Power setting P. We configured the wireless mote’s transmis-
sion power to 1 mW in all of our experiments.

PRR
o
o

Median ~ x
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Figure 3: Packet reception rate for (a) MB-SINR (b) GEO-SINR.
Fraction of packets correctly decoded by receivers in TB-60 as the
SINR is varied by evaluating different pairs, possibly invoking mul-
tiple senders. The plots show a transition from 0 to about 100%
PRR as the SINR grows.

RSS matrix. We measured the RSS for all directed node pairs
(sv, Tv) in both testbeds. In each time slot, a chosen node transmits
1000 packets in a sequence, while other nodes act as receivers. The
procedure was repeated for each pair of directed nodes. For tempo-
ral robustness, including day and night variations, the experiments
were repeated at different times of the day.

Fig. 2a illustrates the RSS,,, for all node pairs (s, 7v) in testbed
TB-60. The motes on both axes are ordered by the angle of their
polar coordinates due to the arced positioning of the corridor, thus
making neighboring motes in the testbed likely to be adjacent in
Fig. 2a. The figure further demonstrates that every mote can hear
some other mote in the testbed, that some mote pairs cannot com-
municate, and that transmissions are not fully symmetric.

Path loss constant o. Assuming geometric signal decay, the
best linear least-squares fit for the path loss constant o given link
lengths and the RSS values from Fig. 2a was a = 2.18 £ 0.07. By
using geometric path loss d (s, 7,) ~2*® to predict RSS values, we
plot the correlation between the predicted RSS and measured RSS
values in Fig. 2b. If the prediction were perfect, the points would
fall on the y = x diagonal line. Instead, the results in Fig. 2b
confirm that geometric path loss is not a reliable predictor for RSS.

2.4 Comparison of GEO-SINR and MB-SINR

We next evaluate the predictive power of the two models in ex-
periments with varying interference.

Controlling wireless interference in practice. One of the chal-
lenges with hardware experiments is the synchronization of the
wireless motes. Our focus on measuring interference requires us
to ensure that interfering motes are transmitting at the same time as
the sender. Although we investigate sets of links that are transmit-
ting at the same time, our analysis is focused on the performance of
individual links. We therefore circumvent the problem of synchro-
nizing the motes by running our experiments for each individual
link in the link set. To analyze how a single link ¢, would per-
form in the presence of the other sender-receiver pairs in a set .S,
the links in S \ {¢,} transmit continuously while we measure the
transmission of £,. This continuous transmission ensures that the
receiver in link /,, experiences interference from other links.

Experimental design. With the synchronization issues in mind,
we devised an experiment to compare the predictive power of the
two models. We repeatedly select a random pair of nodes to act as
sender and receiver, and a subset of 1-10 other nodes to cause inter-
ference. During the trial, the interfering nodes continuously trans-
mit packets on the same frequency. We deploy low-level packet
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Figure 4: Additivity in (a) MB-SINR and (b) GEO-SINR. Correla-
tion between predicted and measured (RSS) in TB-60.

filtering at the receiver to minimize processing overhead due to in-
terfering packets.

Packet reception rate by model. For every possible link in each
testbed, we generated over 15,000 packet transmission trials over
the link and measured the packet reception rate as a function of the
SINR as calculated by the two models. Fig. 3a shows the PRR as a
function of the SINR in MB-SINR, calculated using the RSS matrix
shown in Fig. 2a. Corresponding results for GEO-SINR where the
SINR is based on distances between nodes are shown in Fig. 3b.

The MB-SINR behaves as expected: generally the PRR and SINR
values are either both small or both large. There is a swift transition
from low to high PRR as the SINR value increases. We note that
occasional trials produce a small PRR value despite SINR being
large, as indicated by the two large error bars where SINR =~ 103.
These outliers stem from occasionally no packets being received
even for a large SINR, likely due to details of the testbed topology,
such as destructive interference caused by signal reflection. Con-
trary to the GEO-SINR model, the MB-SINR model has a discernible
threshold for successful transmissions.

Additivity of interference. Among the assumptions made by
the SINR model is that interference is additive. In other words, if
multiple senders transmit simultaneously, the RSS at the receiver
can be estimated as the sum of the individual signals. Fig. 4a and
4b show the actual RSS as a function of the predicted RSS as given
by MB-SINR (Fig. 4a) and GEO-SINR (Fig. 4b). We note that the
variability evident in the measured RSS arises due to sparsity of
data in those regions. If the additivity assumption is true, we would
expect the values in the figures to fall on the diagonal line y = .

The GEO-SINR appears more closely described by a pair of line
segments with different slopes than a linear fit. Using linear re-
gression, the coefficient of variation between the axes is low (1% ~
0.031), implying a low goodness-of-fit. Conversely, the MB-SINR
model has a strong linear trend, with linear regression to the diago-
nal line incurring only 3.2% error and producing a large coefficient
of variation (2 ~ 0.968) between the predicted and measured
RSS. The MB-SINR therefore more closely captures the additivity
of interference than the canonical GEO-SINR model.

Sensitivity and specificity analysis. The GEO-SINR and MB-
SINR models can be viewed as binary classifiers that compare the
SINR to a threshold () to determine whether or not a transmission
will be successful. We say that a transmission is experimentally
successful if PRR > Tj4p and declare it to be a failure if PRR <
Tiow. We focus on those links that were clearly either feasible or
infeasible in our experiments, and set Thign = 0.8 and Tjow =
0.2. Roughly 6% of the tested links fall within the 0.2 — 0.8 range
and are thus not considered. A single instance in an SINR binary
classifier can have four outcomes:
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Figure 5: ROC-curves for (a) TB-60 and (b) TB-20. Comparison
of MB-SINR and GEO-SINR as estimators for successful transmis-
sion of packets as the acceptance threshold (3 is varied. Each trial
consists of 1000 packets exchanged in TB-60. A positive trial out-
come has PRR > 80% whereas a negative one has PRR < 20%.

True positive (TP): SINR > 3, PRR > Thign
False positive (FP): SINR < 8, PRR > Thign
True negative (TN): SINR < 3, PRR < Tjow
False negative (FN): SINR > 3, PRR < Tjow

A binary classifier incurs an inherent trade-off between true posi-
tive rate (sensitivity), defined as TP&iPFN’ and false positive rate (1-

specificity), defined as 1 — Fl;iiNTN = ﬂ’iipﬂ\l' The trade-off bal-
ance can normally be tuned by a threshold parameter of the classi-
fier, in this case 8. By varying [, the trade-off can be graphically
depicted on a ROC-curve (Receiver Operating Characteristic) that
shows true and false positive rates on two axes. If 8 = 0, the clas-
sifier predicts that all transmissions will be successful, and if (3 is
large, the classifier predicts that all transmissions will fail. A naive
classifier making uniformly random guesses would fall on the di-
agonal line from (0, 0) to (1, 1), whereas the (0, 1) point denotes
perfect classification.

Fig. 5a and 5b show the ROC-curves for the TB-60 and TB-
20 testbeds, respectively. MB-SINR provides significantly better
classification than GEO-SINR. In TB-60, the best trade-off between
true and false positive rates occurs when § = 2.15, with a true
positive rate of 94.8% and false positive rate of 5.2%.

In contrast, the predictions made by the canonical GEO-SINR on
the same testbed plateaus at true positive rates of 81.4% and false
positive rates of 18.6%. Both models give less accurate predictions
for TB-20 compared to TB-60. The topology for TB-20 is more
compact than TB-60. However, the larger and more variable ambi-
ent noise in TB-20 makes it more difficult to accurately predict the
outcome of a transmission than in the TB-60 testbed.

As expected, MB-SINR provides significantly superior predictive
power for PRR than GEO-SINR on both testbeds. Our results are
robust against modifying the thresholds to Thign, Ti0w = 0.5. Note
that RSS measurements used to compute SINR in MB-SINR were
performed weeks in advance of these experiments. This suggest
that the RSS matrix is resilient to temporal factors, with MB-SINR
correctly predicting nearly 95% of all instances.

3. METRICITY

A plethora of important wireless interference algorithms rely on
the GEO-SINR model, many of which have no obvious generaliza-
tion to arbitrary metrics. Moreover, several problems in the do-
main, such as finding the maximum set of links that can simultane-
ously transmit (the LINK CAPACITY problem), have been proved
to be computationally hard in an unconstrained SINR model [11].
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To facilitate algorithmic analysis under the more realistic MB-
SINR model, we introduce a metricity parameter ¢ that reflects how
well signal decay resembles a metric space.

In what follows, we assume arbitrary path loss with gain G, =
1/f(8u,1v) for some function f of pairs of points. Note that the
RSS between sender s, to receiver 7y, is Py Guy.

Definition. The metricity ((z,y) of a given node pair (z,y) in
gain matrix G is defined to be the smallest number satisfying for
any mote z with links also in G,

Fla ) < fa, )V gz @)
For notational simplicity we use C, = ((Sv, Tv).

Definition. We define ¢ as the maximum value over all (, in
G unless specified otherwise. ( is well defined, namely, consider
¢ = Go = 108, (fimaz/ frmin)s Where finaz = max, , f(z,y) and
fmin = ming y f(z,y). Then, we can see that the LHS of (2) is at
most [0 = 2£/¢0 while the RHS is at least that value. In the

man ?
case of geometric path loss, ¢ < q, since f(z,y) = d(x,y)® and
the distance function d(z, y) satisfies the ordinary triangle inequal-
ity.

Theoretical implications. The { parameter has the advantage
that theoretical results in the GEO-SINR can be imported without
significant changes to the MB-SINR. Specifically, the following is
true.

All results that hold for general metrics in the GEO-
SINR carry over to the MB-SINR with trivial modifica-
tions, giving practically identical performance ratios in
terms of ¢ as the original result had in terms of «.

Results that were proven for general metric spaces therefore do not
depend on the particular value of the path loss constant « or that
the value holds homogeneously. The results rely upon the triangle
inequality, for which Eqn. 2 applies equally well in arbitrary gain
matrices.

Taking the LINK CAPACITY problem as an example, approxi-
mation results carry over for numerous cases: fixed power [16];
arbitrary power control [20, 21]; distributed setting based on regret
minimization [2] and under jamming [7]; and the weighted version
with linear power [17].

In a sibling paper [5], we have examined in detail how exactly the
current body of analytic results carries over to the MB-SINR. With
only few exceptions, results that have been derived specifically for
the Euclidean plane also hold in the MB-SINR model, making only
an elementary assumption about the convergence of interference:
that the collective interference of uniformly distributed nodes does
not tend to infinity.

A consequence of these translations between models is that pre-
vious theoretical work in the GEO-SINR model is in fact highly ro-
bust to spatial signal variability.

3.1 Experimental evaluation

Method and evaluation. Using values obtained for the RSS
matrices in both testbeds, shown for TB-60 in Fig. 2a, we evaluate
the minimal value of (,, (as defined in Eqn. 2) for every directed
node pair within communication range. The cumulative distribu-
tion function (CDF) of the resulting (, values is shown for two
frequencies (2.40 GHz and 2.44 GHz) in Fig. 6a. In both testbeds
the values for (, range up to 12. However, note that the metricity
values in TB-60 are generally a bit larger than in TB-20. The dis-
crepancy is to be expected, since the challenging TB-60 environ-
ment both contains longer links with more variable signal strength
as well as more variable signal attenuation due to obstacles.

In both testbeds, we find that a small fraction of the links have
comparatively higher values of (,, as seen by the long tapering at
the top in Fig. 6a, which in turn drives the value for ( to a relatively
high number. To quantify, we find that the 95" and 99™ percentile
of the (, value of links are significantly smaller than the global
maximum ¢. In TB-60 some of the weakest links are only able to
communicate at particular frequencies. These links correspond to
pairs that have weak signals, and limited or no line-of-sight. In TB-
20, while all pairs have line-of-sight and can communicate with
one another, the large ¢ value is an artifact of relatively high ¢,
values for only a handful of links. We investigate the effect further
in Section 4.

Factors affecting (. One of the drivers behind the definition of
¢ is to measure the “complexity” of the environment. To be more
precise, we investigated the impact of obstacles in the environment,
the number of nodes of a network and the distances between nodes
in order to better pinpoint what features most influence the ¢ value.
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Figure 7: (a) Metricity (,) with log-normal shadowing in TB-
60. CDF of comparison on the metricity C, using log-normal shad-
owing on distances in TB-60 averaged over 10 instances compared
to actual measurements. (b) Metricity (¢) with log-normal shad-

owing vs. standard deviation. Metricity ¢ (as the 95™ percentile on
Cv) using log-normal shadowing on distances in both testbeds with
growing standard deviation o.

To examine the impact of different environmental characteris-
tics, we divide the nodes in TB-60 into three subsets of 20 nodes
in Fig. 6b. The set of motes with the lowest values of (, has the
fewest number of obstacles (low-obstacle), whereas the set with the
higher (, values (high-obstacle) has a variety of barriers, such as
electric cables suspended in the ceiling and greater distances be-
tween nodes. The medium-obstacle group has an average number
of barriers while also having the most condensed topology. We cal-
culated the values for (, on the different links in the induced gain
matrix for each set to obtain Fig. 6b. The figure suggests that the
complexity of the environment, in the form of physical obstacles,
might have a significant impact on the value of ¢.

We further examine the impact of the size of the set of motes on
¢. Using the RSS matrices for TB-60 and TB-20, we calculate ¢
for randomly generated subsets of different sizes. Fig. 6¢ shows
metricity as a function of set size. The thick lines represent ¢ as
the average 95™ percentile of the values for ¢,, which is relatively
stable with increased sizes for sets of five or more nodes. The cor-
responding thin lines, which represent the average ¢ as the highest
value for (, in each testbed, demonstrate that the global maximum
¢ continues to grow with the set size. The increase is to be ex-
pected, as larger sets are more likely to include the links with the
highest ¢, values.

We also looked into the relationship between node distances and
the ¢ value of a set. We took different subsets of nodes that have
roughly the same distances to one another, as shown in Fig. 6d.
The figure suggests that the distances between nodes are poorly
correlated with the value of (.

3.2 Log-normal shadowing and metricity

One of the most commonly used stochastic extensions of geo-
metric path loss to address observed variability in signal propa-
gation is log-normal shadowing. According to this model, signal
decay follows the geometric model d“, but with a multiplicative
exponentially distributed factor:

f(Su,'f’v) = d(5u7rv)a '6X7

where X is a normally distributed random variable with zero mean.
We note that log-normal shadowing is an approach to introduce
non-geometric properties into gain matrices. Since metricity is a
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Figure 8: Metricity (¢,) in TB-20 and TB-60. CDF compari-
son of computed (., values for RSS matrices on both testbeds. The
thick lines represent values computed for the RSS matrices. The
dashed lines show ( values for the 2.44 GHz frequency, which is
representative of other frequencies in the respective testbeds.

measure of such discrepancy, it might be instructive to calculate
metricity on instances generated with log-normal shadowing.

We used the topology of the TB-60 testbed and generated log-
normal distributions with standard deviations o = 1.0 and 2.0, and
computed the CDF of the metricity of the resulting gain matrices.
Averages over 10 instances are shown in Fig. 7a, interposed with
the actual ¢, measurements. We note a similarity between the mea-
sured values and the log-normal values with o = 1.0, although the
tail is measurably heavier in the latter.

We also examined how global metricity ¢ grows with the stan-
dard deviation o in the generated log-normal distributed instances
in both testbeds. We show the results on Fig. 7b, where we dis-
play the 95" percentile of the distribution of ¢, values. The plot
exhibits a linear relationship, as shown in Fig. 7b, or roughly { =
2.5 + 4.90. The agreement accords with the expected signal vari-
ations produced by a multiple of an exponentially distributed ran-
dom variable.

4. FINESSING MULTI-PATH FADING WITH
MULTIPLE CHANNELS

In our experiments, high metricity values were primarily caused
by a handful of links. In particular, experiments in the simple en-
vironment of the TB-20 testbed exhibited a higher value of ¢ than
we suspected. One potential source of the complexity may be due
to adverse signal reflection.

When signals travel along different paths, the superposition of
the different signals produces patterns of signal cancellation and
amplification known as multi-path fading ([10, Sec. 2]). This effect
is particularly pronounced and systematic in simpler settings. The
interference pattern will necessarily shift with frequency. Hence,
the influence of multi-path fading on signal reception between a
pair of points is likely to vary greatly with the chosen channel.

We propose to tackle the problem of signal cancellation and de-
structive interference by supplying algorithms with multiple chan-
nels (frequencies) from which to choose. First, we propose a vari-
ation of the metricity parameter ¢ and evaluate the difference from
the experimental data from our testbeds. As a case study, we then
formulate a multi-channel version of the link LINK CAPACITY prob-
lem and obtain worst-case approximation results.

4.1 Experimental Evaluation

We performed additional experiments to obtain RSS matrices
RSS? for 8 different frequencies f ranging from 2.40 GHz to



2.48 GHz or wavelengths between 7 and 7.15 cm. These frequen-
cies mean that multi-path alignment can shift from fully destructive
to fully constructive interference when the difference in the path
lengths is at least 1.4 m.

We calculated ¢, values separately for each RSS’. Although
they can vary significantly on a per link basis, we found the differ-
ences in the overall distributions to be insignificant. Fig. 8 shows
f = 2.40 GHz — other frequencies had similar distributions.

To factor out frequency—depeﬂdﬁnt fading, we computed for each

node pair (s, 7, ) the median RSS, of the eight RSS values rang-
ing over the different frequencies. We observe that (, values of
the matrix RSS are significantly lower, as the thick lines in Fig. 8
indicate.

The frequency dependency is more apparent in TB-20, which
suggests that signal reflection plays a relatively large role in that
environment. The increased reliance on a particular frequency can
be explained by the regular grid structure and condensed setting of
TB-20 (Fig. 1), which makes the testbed a good candidate to ob-
serve (frequency dependent) multi-path fading phenomena. How-
ever, the links in TB-60 are on average longer and thus reflection
plays a smaller role in signal attenuation. Furthermore, the greater
number of obstacles in TB-60 may also explain the decreased de-
pendency on frequency.

The observation that the channels have different fading proper-
ties brought us to introduce a new version of the LINK CAPACITY
problem to incorporate different frequencies.

4.2 Link capacity with multiple frequencies

The empirical indications — that having a choice of channels
use results in smaller values of (,, and thus better approximation
factors — motivate us to generalize the LINK CAPACITY problem.
Namely, in MULTI-CHANNEL LINK CAPACITY, we assign links
to a set of frequencies, but each link is only eligible to use a subset
of the frequencies. As before, we want to assign as many links as
possible with the constraint that those assigned to a given frequency
form a feasible set.

This formulation considers links that experience significant frequ-
ency-dependent fading as not usable in that frequency. It does not
take into consideration the possible decrease in inferference due to
such fading. One reason is that such fading is too unpredictable to
expect any algorithm to utilize that to obtain better solutions than
otherwise, and thus it is also not fair to compare with such a strong
adversary. The other reason is that with arbitrary fading patterns,
we are back in the abstract SINR model, for which very strong in-
approximability results hold [11].

The classic LINK CAPACITY problem is to find a maximum sub-
set S C L of a given set L of links that can successfully transmit
simultaneously. We modify the LINK CAPACITY problem to fit our
observations on the use of multiple frequencies:

MULTI-CHANNEL LINK CAPACITY
Given: A set L of n links, and k subsets L1, La, ..., Lr C L.
Find: Sets S1,S55,...,S; with S; C L; and S; feasible, for i =
1,2,...,k.
Maximize: |S1U Sz, ... U Sk|.
Here L; represents the links that are eligible for frequency ¢ and S;
those scheduled for that frequency.

Additional definitions. To simplify notation we write f,, =
f(su,mv) and fi, = fuu. We assume a total order < on the links,
where £, < /., implies that f,, < f,,. We use the shorthand nota-
tion ¢, < L to denote that ¢, < £, for all links £, in L. A power
assignment P is decay monotone if P, < P, whenever £, < {,,

reception monotone if ?w“ < % whenever ¢, < ¢, and simply

monotone if both properties hold.! This captures the main power
strategies, including uniform and linear power.

We modify the notion of affectance [11, 22]: The affectance
aly(v) of link £,, on link £, under power assignment P is the in-
terference of ¢,, on ¢, normalized to the signal strength (power

received) of £, or

aw(v) = min (1, Cv ];;:g::’) = min (1, 1;: }{1) , (3

where ¢, = m > [ is a constant depending only on
universal constants and the signal strength G, of £, indicating the
extent to which the ambient noise affects the transmission. We drop
P when clear from context. Furthermore let a,,(v) = 0. For a set
S of links and link £y, let av(S) = 3, g av(w)and as(v) =
> ¢, es @w(v). Assuming S contains more than two links we can
rewrite Eqn. 1 as as(v) < 1 and this is the form we will use.
Observe that affectance is additive and thus as(v) = ag, (v) +
as, (v) for any partition (S1, S2) of S.

We define a weight function W (v, w) = a,(w) 4+ aw (v), when
Ly < £y and W4 (v,w) = 0, otherwise. The plus sign is to re-
mind us that weights are from smaller to larger decay links. Also,
Wi(X,v) =3, cx W4(w,v), representing the sum of the in-
and out-affectances (as in Eqn. 3) of a link v to and from those
links in set X that have smaller decay.

A set S of links is anti-feasible if a.,(S) < 2 for every link
{, € S and bi-feasible if both feasible and anti-feasible [15]. More
generally, for K > 1, S is K-feasible (K -anti-feasible) if a, (S) <
1/K (as(v) < 2/K), and K-bi-feasible if both.

Approximation of MULTI-CHANNEL LINK CAPACITY. We
extend a greedy algorithm for LINK CAPACITY [16] and show
that it gives equally good approximation algorithm for MULTI-
CHANNEL LINK CAPACITY, even in MB-SINR. We assume that
the links are assigned monotone power.

Algorithm 1 MULTI-CHANNEL LINK CAPACITY in MB-SINR
, Lk C

Let L be a set of links using monotone power P and L1, Lo, . ..
L be subsets.
Set X1, Xa,... X« 0
for ¢, € L in order of increasing f, values do
fori< 1...kdo
if W4 (X;,v) < 1/2then
X, + X; U {EU}
break
for each X; do
Si +— {fu (S Xi|axi(v) < 1}
return (S1,S52,...,5k)

Note that the sets returned by Algorithm 1 are feasible by con-
struction.

We turn to proving a performance guarantee for the algorithm.
The following key result bounds the affectance of a feasible set to
a (shorter) link outside the set to a constant. A similar but weaker
bound was first introduced by Kesselheim and Vocking [22].

LEMMA 1. Let Lbea 35/,3-bi-feasihle set with monotone power

assignment P and let £, be a link (not necessarily in L) with £,, <
L. Then, W4 (v, L) = O(1).

We prove Lemma 1 by splitting it into two lemmas bounding
in-affectance for links in a feasible set and similarly bounding out-
affectance for links in an anti-feasible set.

"This corresponds to length monotone and sublinear power assign-
ments in GEO-SINR [22].
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LEMMA 2. Let L be a 3§/ﬂ—feasible set with monotone power
assignment P and let £, be a link with £, < L. Then, a], (v) =
O(1).

PROOF. The basic idea is to identify a “proxy” for ¢,, within the
set L. Namely, we bound the affectance of L on ¢, in terms of the
affectance on the “nearest” link ¢,, in L, which is small since L is
feasible and contains £,,.

Formally, consider the link ¢, = (sy,7.) € L such that F :=
f(rv,ry) is minimum and link £, = (Sw,Tw) € S such that
Sfwo = f(Sw,7v) is minimum (possibly ¢, = £,,). Let £, be an
arbitrary link in L and define Q = f.. See Fig. 9.

We first show that

F<24Q. “

Let ¢, £ be renamings of the links 5, £, such that f, = max(fz, fw)
and f, = min(fz, fw)-

By definition of ¢, and £, it holds that max(fyu, fzv) < Q.
Thus, using the weak triangular inequality,

Fsy 80V < flS + L <2QY¢ . (5)
Using Eqn. 5 and that f. < f,, it holds that
FilC < Y4 fsy, )Y < S 42QYC 0 (6)

By the feasibility condition on L, a,(z) < /3¢, while by def-
inition of affectance and reception monotonicity (i.e., P,/f, <

P./f2),

ay(z) = cz%;;zz > ﬁ;;yz .

Combining the two bounds on a,(z), we get that 3¢ - f, < fy..
That, combined with Eqn. 6 and canceling a f, factor, gives that

S
3¢ < (1 + Q(Q/fy)1/<) , which implies that f, < @ and further
that f,, < fy < Q. Then, by the definitions of F', £,, and Q,
FYS = flro,ra) /S < S + £/ <2:QY¢ ()

implying Eqn. 4, as desired.
Now, using the weak triangular inequality, the definition of F,
and Eqn. 7, we get that

FalS < FHC+ Flror) VS < QY+ FYC < QY +2QY¢ .
Thus,
fou=3Q =3 fou . ®)
Observe that since f,, < f, and power is monotone, it holds that
¢y < ¢y. Then, using Eqn. 8 and the definition of affectance,
P fo 3Ps fu
facv Pv - facu Pu

az(v) = ¢y = 3%, (u) .

Finally, letting L., = L\ {{w }, we sum over all links in L,

ar(v) = aw(v)+ar, (v) < 14+3%az, (u) < 143° 3’% =0(),
using the feasibility assumption for the last inequality. [

For anti-feasible sets a similar result holds with a nearly identical
proof, swapping the roles of senders and receivers of the links.

LEMMA 3. Let L be a 3°/B-anti-feasible set with monotone
power assignment P and let £, be a link with £, < L. Then,
ay (L) = O(1).

PROOF. Form the dual links L*, which has a link [}, = (s}, 75)
for each link I, = (8,,7y) € L such that s, = r, and 1, = s,.
Clearly the lengths of [}, and [,, are the same s0 fy,*y* = fu,. Also,
forur = fuu. Observe that the anti-feasibility assumption on L
implies that L* is 3¢ /B-feasible. Then, we can follow the proof of
Lemma 2, applied to the set L*, to get that

fua: = fac*u* g 3Cfx*v* = 3<fv:c .
This implies, using the monotonicity of power, that

¢
Py fo _ 3Pufs
f’UIPI_ fuz Pz

The rest of the proof is identical. []

= 3% (z) .

ay(T) = cs

Combining Lemma 2 and 3 implies Lemma 1.

Finally, to analyze the performance ratio of Algorithm 1, we
will use an adaptation of the following signal-strengthening lemma
from [8, Prop. 8] and a lemma generalizing a popular argument
used to show that the size of a subset of links of another set of links
is large.

LEMMA 4 ([8]). Let L be a feasible set and K > 1 be a
value. Then, there exists a K -bi-feasible subset of L of size (| L|/ K).

The approximation that we can prove for MULTI-CHANNEL LINK
CAPACITY has actually better dependence on ¢ than what follows
for LINK CAPACITY from [16]. A lower bound of Q(ZC’O(D) on
the approximability of LINK CAPACITY [16, 5] implies that the
bound is close to best possible.

THEOREM 5. Algorithm 1 yields a O(3°)-approximation for
MULTI-CHANNEL LINK CAPACITY.

PROOF. Let L be a set of links and let L1, Lo, ..., Lx C L be
subsets of L where L; contains the links that are eligible in fre-
quency ¢. Let OPT = OPT1 UOPT> U ... U OPT} be an op-
timum solution to MULTI-CHANNEL LINK CAPACITY on L. Let
K =3¢ /. By Lemma 4, there is a K-bi-feasible subset O PT}
in OPT; of size Q(|OPT;|/K), for each ¢ € {1,...,k}. Let
OPT' = OPT, UOPT)U...UOPT].

Let S=S1US2U...Spxand X = X7 U X U...Xg bethe
sets computed by Algorithm 1 on input L. We first bound |S| in
terms of | X| and then | X| in terms of |[OPT’|. To bound |S]| to
|X'| we bound |S;| to | X;| for every ¢ € {1...k}. Note that by
the construction of X, ax, (X;) = W4 (X;, Xi) < |X;|/2, and
thus the average in-affectance of links in X; is at most 1/2. Since
each S; consists of the links in X; of affectance at most 1/2, by
Markov’s inequality, | S;| > | X;|/2.

By the definition of the algorithm, W (X;, fw) > 1/2, V4, €
OPT’' \ X,X; € X. Summing over all links £,, in OPT" \ X,
we get that W (X;,OPT' \ X) > |OPT" \ X|/2. Furthermore,



since OPT’ contains k K -feasible sets, it follows by Lemma 1 that
W4 (£y, OPT") = O(k), foreach £,, € X. Summing over all links
in X;, we get that W, (X;, OPT) = O(k|X;|). Combining yields
that for any set X; we have |[OPT’ \ X|/2 < Wi (X;,OPT" \
X;) € O(k|X,|), giving that | X;| = Q(|OPT" \ X|/k).

Summing over i then gives | X | = > |X;| = Q(|OPT" \ X|).
Thus, the solution output by the algorithm satisfies |S| > | X|/2 =
Q(OPT')) = QOPT|/K) = Q(OPT|/3%). O

In summary, the metricity definition implies that a large range
of algorithmic results from GEO-SINR carries over without change.
Thus, MB-SINR has both the desired generality and amenability to
algorithmic analysis. We also extend known results on LINK CA-
PACITY to handle frequency-sensitive links, and improve the de-
pendence of the approximation on ¢ along the way.

5. RELATED WORK

Numerous experimental results have indicated that simplistic range-

based models of wireless reception are insufficient [9, 37, 23, 1, 29,
38, 36]. Besides directionality and asymmetry, signal strength is
not well predicted by distance. Interference patterns are also insuf-
ficiently explained by pairwise relationships, suggesting the need
for additive interference models, both experimentally [23, 27, 24]
and analytically [27, 26, 19].

The weakness of the known prescriptive models for interference
and packet reception has led experimentalists to form models based
on measurements. Son, Krishnamachari and Heidemann [34] sho-
wed that the SINR formula, using separately measured RSS val-
ues, is the main factor in predicting PRR. They found PRR to be
dependent on the number of interferers, which was not supported
in later studies [24, 6] and attributed to hardware variability or the
quality of the CC1000 radios used. Reis et al. [32] independently
proposed a similar approach on a 802.11 platform. They found sub-
stantial variability across nodes, and that similarity across time was
sufficient over moderate time scales of minutes to hours, but that
prediction accuracy degrades over longer periods.

Maheshwari, Jain and Das [24] compared different models of in-
terference using two testbeds with variations in hardware, power
level, and indoor/outdoor. They concluded that the physical model
gives best accuracy, albeit less than perfect. In their followup work-
shop paper [25], they focus on the relationship of joint interfer-
ence (SINR with multiple interferers) to PRR. They gave strong
evidence that the basic formula works, and verify the additivity of
the SINR model.

Chen and Terzis [6] proposed a method for calibrating RSSI
readings to combine interference measurements from different mo-
tes. They found that Tmote Sky motes consistently report RSSI
values inaccurately, even reporting non-injective relationships. By
aligning measurements from different motes, they obtained much
better SINR vs. PRR relationship, reducing the width of the inter-
mediate range significantly. They suggested that this may explain
much of the imperfect relationship observed in [24].

Measurement-based approaches have also been proposed in the
context of 802.11 [13, 31, 33], where carrier sense and control
packets complicate the picture. Recent efforts have focused on re-
ducing the required measurements by deducing interference using,
e.g., linear algebra [30] or regression [18]. Boano et al. [4] also
studied the impact of external interference on sensor-network MAC
protocols, and identified mechanisms to improve their robustness.

The engineering literature has introduced various extensions in
order to capture reality more faithfully. In the two-ray model [10],
which captures reflection off the ground, signal decays in the near-
term as a certain polynomial, but as a higher degree polynomial

further away. More generally, the multi-ray model has the signal
(in dBm, log scale) decaying via a piecewise linear model with
segments of increasing slopes. The function is typically empirically
determined. We note that these models can be captured by MB-
SINR, with ¢ as the steepest slope.

There are also empirical models [10], such as the Okumura and
Hata models, that take the environment into account. These could
also be used to generate a gain matrix. Also, accurate estimates can
be obtained via general ray tracing when highly detailed informa-
tion is available.

Some studies have allowed signal strength to fluctuate from the
geometric path loss by up to a constant factor [28, 11]. This is of
limited help in general, however, since even minor fluctuations of
the value of «v can cause arbitrarily large changes in signal strength
[12].

Various probabilistic models also exist. On one hand, they are
means to prescribe non-geometric components to signal reception,
which is useful for simulation studies (which MB-SINR cannot pro-
vide), but which could be captured more accurately by actual mea-
surements. On the other hand, these can also model aspects that
are necessarily random, in which case they could complement the
deterministic MB-SINR.

6. CONCLUSION

Effective use of the wireless spectrum requires an understanding
of interference from theoretical and experimental vantage points. A
growing body of algorithmic work on worst-case wireless interfer-
ence under the SINR threshold model assumes that signals decay
geometrically with distance, the GEO-SINR model.

We outlined an approach for incorporating realism into the inter-
ference model while seamlessly generalizing previous theoretical
results. By leveraging a matrix of pairwise RSS between wireless
motes instead of geometric path loss, the MB-SINR model predicted
PRR performance significantly better in our experiments on two in-
doors testbeds. The RSS matrix also appears resilient to temporal
factors, with prediction accuracy of 95% when using an RSS matrix
created weeks in advance.

We defined the notion of metricity, which quantifies the proxim-
ity of the RSS matrix to a distance metric. Through experiments,
we showed how the concept effectively measures the complexity
of the underlying environment. With metricity as a harness, worst-
case theoretical results that hold under general metrics in the GEO-
SINR model can now be translated with trivial modifications to the
more realistic MB-SINR model. Moreover, the translation retains
almost identical performance ratios for all such algorithms, with
the metricity parameter ¢ replacing the path loss constant « in the
GEO-SINR model.

As a case study of the metricity concept, we addressed multi-path
fading by allowing transmitters to choose between several frequen-
cies. We found that environments with extensive multi-path effects
exhibited better metricity values. By fusing empirical measure-
ments into an analytical model commonly used for worst-case the-
oretical analysis, our approach suggests a methodology for harmo-
nizing algorithmic theory of wireless interference with real-world
observations.
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