
On Combining Backward and Forward Chaining
in Constraint Logic Programming

Rémy Haemmerlé ∗

Universidad Politécnica de Madrid & IMDEA Software Institute, Spain

Abstract
We address the problem of designing constraint logic languages
that usefully combine backward and forward chaining in a sound
and complete way. Following the approach of Constraint Logic
Programming, we define a class of programming languages that
generalize both Constraint Logic and Concurrent Constraint Pro-
gramming. Syntactically, this class corresponds to Constraint Han-
dling Rules with disjunctions, but differ operationally by featuring
set-based semantics instead of multiset-based ones; i.e., conjunc-
tion and disjunction are idempotent. The assumption of program
confluence is the crux on which both the committed choice strat-
egy and the logical completeness of the languages rely.

Keywords CLP, backward & forward chaining, CHR, confluence.

Categories and Subject Descriptors F.3 [Theory of Computa-
tion]: Logic and Meaning of Programs

1. Introduction
Broadly understood, Constraint Logic Programming (CLP) is a
programming paradigm in which programs are viewed as sets of
logical implications executed on a principle of automated infer-
ence guided by a constraint solver. One of the main challenges
of this paradigm has always been the design of operationally effi-
cient yet logically sound and complete inference mechanisms. This
paradigm has given rise to a number of languages that can be classi-
fied according to the direction of the inference principle they work
with.

On one hand, some languages use backward chaining (or top-
down reasoning), an inference principle that works from conse-
quents toward antecedents. Among these languages are found the
original CLP languages introduced by Jaffar and Lassez [21]. Back-
ward chaining languages are characterized by their operational lo-

∗ The research leading to the results presented in this paper has received
funding from the Programme for Attracting Talent/young PHDs of the
Montegancedo Campus of International Excellence PICD, the European
Union 7th Framework Programme under grant agreement 318337 ENTRA,
Spanish MINECO TIN’12-39391 StrongSoft and TIN’08-05624 DOVES
projects, and Madrid TIC-1465 PROMETIDOS-CM project.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PPDP’14, September 8-10, 2014, Canterbury, UK.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2947-7. . . $15.00.
http://dx.doi.org/10.1145/2643135.2643144

cality: only one atomic object, usually called goal, is processed at a
time. This locality property gives such languages a high inference
rate (number of inference steps by unit of time). On the downside,
these languages yield a high level of nondeterminism that must be
handled by backtracking, often repeating the same inferences dur-
ing a computation, and may explore possibly infinite parts of the
search space where no solution exists.

On the other hand are the languages that use forward chaining
(or bottom-up reasoning), an inference principle that works from
antecedents toward consequents. The constraint databases [23] and
the Concurrent Constraint (CC) languages [32] constitute promi-
nent examples of forward chaining paradigms. Operationally, these
languages differ from backward chaining languages in that they are
global: they work in parallel with a set of objects, often called store.
In the case of CC, those objects are suspensions whose possible
wake-up must be considered each time a variable is further con-
strained. This operational globality provides forward chaining lan-
guages with better control over execution. It also limits backtrack-
ing, as inference steps become generally committed-choice. On the
downside, their inference rate of those languages is low, and may
even decrease as the store grows. Furthermore such language may
produce inference that do not contribute in any way to the answer
of the query.

It is natural to expect that the general efficiency of constraint
logic systems could be improved by combining the two kinds of
chaining. For instance, while carrying out a backward reasoning, it
may be advantageous to use forward reasoning to detect and cut out
those branches in the search tree which are trivially inconsistent.

Example 1. Consider the following set P1 of Horn clauses that
defines the “strictly less” relation over natural numbers:

0< s(x)← > s(x)< s(y)← x<y

When processed by standard backward chaining with respect to
P , a query such as (x<y ∧ y <x) loops without encountering
any solution. To avoid such pointless computation, the programmer
may use the asymmetry of the “strictly less” relation. This property,
which guarantees the above query has no solution, can be specified
by the multiheaded implication:

x<y ∧ y <x→ ⊥

To be effective, this rule must be handled by forward chaining inter-
leaved with the main backward chaining computation. In particular,
it must be applied as soon the antecedent is subsumed by the set of
goals currently being processed.

Conversely, when processing a program forward, one may want
to use backward reasoning to detect and discard from the store
redundant or tautological objects.

Example 2. Consider the following clauses that enforce the prop-
erties of transitivity and asymmetry on the “strictly less” relation
presented in the previous example:

x<y ∧ y < z → y < z x<y ∧ y <x→ ⊥

If handled by forward chaining, the first clause computes the tran-
sitive closure of the relation < defined by the atoms of the store,
while the second rule concurrently ensures that no two symmetric
atoms are present at the same time. Thus, when processing a store
that contains a chain of the form

0<s(0) ∧ . . . ∧ sn−1(0)< sn(0)

where sk(x) stands for the kth successor of x, the transitivity rule
will add a quadratic number of atoms to the store (i.e., all the atoms
sk(0)<sl(0) s.t. 0 ≤ k, k + 1 < l, and l ≤ n).

To control this explosion of the atoms, the programmer might
choose to use the definition of the relation < given at Example
1 in a backward manner, which guarantees that such atoms are
true in any model, and thus cannot contribute to any proof of
inconsistency.

However, to the best of our knowledge no attempt to combine back-
ward and forward chaining while preserving strict logical com-
pleteness has succeeded so far.

In this paper, we advance the thesis that the two forms of chain-
ing can be combined as described above while preserving logical
completeness. Our starting point is the class of CHR (Constraint
Handling Rules) languages [13], and more precisely its disjunctive
extension, CHR∨ [4].

CHR programs consist of sets of guarded rules that rewrite mul-
tisets of constrained atoms in a committed-choice manner. Declar-
atively, they can be understood as sets of logical equivalences ex-
ecuted on a particular forward inference principle, which can con-
sume the heads of the rule while preserving the logical equivalence
of the store. The main advantage of this inference mechanism over
standard forward chaining is that it allows a non-monotonic evolu-
tion of the store, hence limiting the explosion of atoms in the store.
On the downside, the language is logically incomplete in the gen-
eral case. This problematic behavior is due to the multiset nature of
CHR: The multiplicity of atoms matters for rule applications, while
it obviously does not from the point of view of logical deduction.

CHR∨ extends CHR by allowing disjunctions in the body of
rules. Originally, it was introduced as a general query language that
allows for backward and forward chaining in a unified framework.
Although CHR∨ opened promising perspectives, the formal study
of its logical foundations and theoretical properties has been elu-
sive. A noticeable exception is the work of Betz and Frühwirth [6],
which shows that the multiset semantics of CHR∨ is actually better
understood as pure forward chaining in linear logic. From the point
of view of classical logic, however, CHR∨ still faces the same prob-
lems of incompleteness as its nondisjunctive ancestor.

In order to overcome these logical weaknesses, we propose in
Section 2 an analytical set-based semantics (i.e., where conjunc-
tion and disjunction within states are idempotent) for CHR∨. This
set-based approach differs form other implementation-oriented set-
based semantics [11, 34] in the sense that rules may consume (or
not) atoms from their head in a nondeterministic manner. Formally,
these semantics are obtained through an extension with disjunc-
tion of the equivalence-based semantics of Raiser et al. [29] that
enforces the impotency of both conjunction and disjunction. It ap-
pears these general operational semantics capture backward chain-
ing when the rules are logically read backward (as implications
from right to left) and forward chaining when the rules are logi-
cally read forward (from left to right).

To determine the completeness of this language, we divide the
study of its logical properties in two. In Section 3, we focus on the
backward logical reading of programs. In particular, by using stan-
dard CLP tools, we establish that the smallest Tarski model of this
backward reading can be characterized as the smallest fixed point
over the so-called immediate consequence operator. Operationally,
we show that the set of answers with respect to the backward chain-
ing part of the general operational semantics fully abstracts this
fixed point. Conversely, in Section 4, we concentrate on the forward
logical reading. Specifically, we show the biggest Tarski models of
this forward reading can be captured using a greatest fixed point
over an operator dual to the one used previously. We also estab-
lish that the set of nonfailures with respect to the forward chaining
part of the general operational semantics fully abstract this greatest
fixed point.

Then, in Section 5, we combine the results of the two previous
sections. In particular, we show that the least model of full logical
reading (when the rules are read as equivalences) of a confluent
program coincides with the least of its backward readings, and
that, conversely, its greatest models coincide with the greatest of its
forward readings. Based on this, we establish the full completeness
of the language with respect to answers and accessible constraints.

Finally, implementation is briefly discussed in Section 6 and
related work is covered in Section 7.

2. The General Framework
In this section, we introduce the syntax, the declarative semantics,
and a general operational semantics of our language. For this pur-
pose, we will assume a language of (built-in) constraints containing
the equality =, ⊥, and > over some theory T . We define (user-
defined) atoms using a different set of predicate symbols.

In the following, variables will be denoted by lower case letters
from the end of the alphabet, such as x, y, z, . . . , while atoms and
atomic constraints will be indicated by lowercase letters from the
beginning of the alphabet, such as a, b, c, d, . . . Sets of constraints
and atoms will be denoted by blackboard capital letters, such as A,
B, C, D. By a slight abuse of notation, we will confuse conjunctions
and sets of constraints and atoms, forget braces around such sets,
and use commas for their unions. We will use fv(φ) to denote the
set of free variables of a formula φ.

2.1 States
A branch is a tuple (A|C), where A (the user store) is a finite set of
user-defined atoms and C (the built-in store) is a finite conjunction
of atomic built-in constraints. Sets of branches can be denoted by
Greek letters, ∆ or Γ. By a slight abuse of notation, we will confuse
disjunctions and sets of branches, forget braces around such sets,
and use semicolons for their unions. A state is a non-empty tuple
of the form:

〈(A1|C1) ; . . . ; (An|Cn)〉x̄
where the (Ai|Ci) are branches, and x̄ (the global variables) is a
finite sequence of variables. Unsurprisingly, the local variables of
a state are those variables of the state that are not global. When no
confusion can occur, we will syntactically merge user atoms and
built-in constraints within a branch. For the sake of conciseness,
we will sometimes denote disjunctions of branches within a state
as a finite family. For instance, the above state may be denoted by〈
(Ai|Ci)i∈I

〉
x̄

, where I stands for the set of indices {1, . . . , n}.
The set of all states will be denoted by Σ.

Branches may be logically understood as the conjunction of
their atoms and constraints. States may be understood as the dis-
junction of their branches where local variables are implicitly exis-
tentially quantified. Formally, the logical reading of the above state

is the quantified disjunctive normal form:

∃-x̄ (A1 ∧ C1 ∨ · · ·An ∧ Cn) 1

where the notation ∃-x̄ψ denotes the existential closure of the
formulaψ with the exception of the variables x̄. The logical reading
of a state S will be denoted by S†.

2.2 Programs
A program is a finite set of rules of the following form:

r @ H⇐⇒ G | (B1|C1); . . . ; (Bn|Cn).

where H (the head) is a nonempty set of atoms, G (the neck or
guard) is a conjunction of constraints, the (Bi|Ci) are branches
forming the so-called body, and r is an identifier assumed unique in
the program. An empty guard > can be omitted with the symbol |.
For the sake of simplicity, we will always assume the guard and the
body of a same rule share only variables that appear in their head.
Disjunctions of branches within the body of a rule may be denoted
by a finite family of branches in a way similar to branches within
a state. The local variables of a rule are those variables that appear
free in the body but do not appear either in the head or in the guard.

In the following, we distinguish special cases of rules.

• The so-called backward rules, which are those rules with the
head repeated as an independent branch in the body; that is to
say, rules of the form:

r @ H⇐⇒ G | (B1|C1) ; . . . ; (Bn|Cn) ; (H|Gρ) .

where ρ renames (fv(G) \ fv(H)) by fresh variables.
Such a rule can be written with the alternative syntax:

r @ H⇐= G | (B1|C1) ; . . . ; (Bn|Cn) .

• The so-called forward rules (or propagation rules), which are
those rules with the head repeated in each branch of the body;
that is to say, rules of the form:

r @ H⇐⇒ G | (H,B1|Gρ,C1) ; . . . ; (H,Bn|Gρ,Cn) .

where ρ renames (fv(G) \ fv(H)) by fresh variables.
Such a rule can be written with the alternative syntax:

r @ H =⇒ G | (B1|C1) ; . . . ; (Bn|Cn) .

Before considering the logical reading of programs, we intro-
duce our running example. This is an enhanced version of the clas-
sic CHR introductory example.

Example 3. Assume T is the equality theory as defined by Clark [10],
and consider the following program P3:

leq 0 @ 0≤x⇐= >.
leq s @ s(x)≤ s(y)⇐= x≤ y.
transitivity @ x≤ y, y≤ z =⇒ x≤ z.
antisymmetry @ x≤ y, y≤x⇐⇒ x = y.

The two first rules define the “less or equal” predicate, as could
be done in classical logic programming. The two following rules
define the three usual properties of the partial order. On one hand,
the rule transitivity states that the relation is transitive. On the
other hand, the rule antisymmetry captures the antisymmetry and
reflexivity properties, reading from left to right and right to left,
directions respectively.

Logically, a rule can be understood as a logical equivalence
between the head and the body. Formally, the backward (logical)

1 Within this paper we use the usual precedence for logical connectives, that
is ∃, ∀, ∧, ∨,→, and↔ in the order of decreasing precedence.

reading of the rule given at the beginning of this section is the
logical implication:

∀ (G ∧ (B1 ∧ C1 ∨ · · · ∨ Bn ∧ Cn)→ H)

while its forward (logical) reading is the implication:

∀ (G ∧H→ ∃-H (B1 ∧ C1 ∨ · · · ∨ Bn ∧ Cn))

The backward (respectively, forward) reading of a program P
is the conjunction of the backward (forward) readings of its rules,
and is denoted by

←−
P (
−→
P). The logical reading of a program P ,

denoted by
←→
P , is the the conjunction of its backward and forward

readings.
Note that the backward reading of a forward rule is of the form

∀ (φ ∧ ψ1 ∨ · · · ∨ φ ∧ ψm → φ), while the forward reading of a
backward rule is of the form ∀ (φ→ ψ ∨ φ). In other words, both
are tautologies and can thus be safely ignored. It is also worth
noting the backward reading of a rule is of the form

∀(φ1 ∨ · · · ∨ φm → a1 ∧ · · · ∧ an)

which is equivalent to the conjunction of the Horn clauses

{∀(φi → aj) | i ∈ 1, . . . ,m & j ∈ 1, . . . , n}
In other words, one may logically understand the backward reading
of a program as a standard CLP program.

Example 4. The backward reading of the program P3 given at
Example 3 is (after removing tautological clauses):

∀x (> → 0≤x)∧
∀xy (x≤ y → s(x)≤ s(y))∧
∀xy (x = y → x≤ y)

while its forward reading is:

∀xyz (x≤ y ∧ y≤ z → x≤ y ∧ y≤ z ∧ x≤ z)∧
∀xy (x≤ y ∧ y≤x→ x = y)

2.3 Analytical Operational semantics
The operational semantics of our language can be represented by a
simple transition relation defined modulo a state equivalence.

2.3.1 State subsumption, state equivalence
The following state equivalence is an extension of Raiser et al.’s
equivalence [29], which handles disjunctions and enforces the
idempotence of both conjunction and disjunction. In particular,
this equivalence is defined as the least symmetric relation con-
taining a notion of state subsumption. In the rest of this paper,
state subsumption will be an invaluable tool for characterizing
some fundamental aspects of our semantics (in particular, over-
and under-approximation).

Definition 5 (State Subsumption & State Equivalence). Given two
states 〈(Ai|Ci)i∈I〉x̄ and 〈(Bj |Dj)j∈J〉ȳ , we will say that the
branch (Ai|Ci) covers the branch (Bj |Dj) (i ∈ I and j ∈ J),
if the following implication holds:

T � Ci → ∃-(Ai,x̄) (Dj ∧ (Ai ⊇ Bj))

with the side condition that fv(Ai,Ci) ∩ fv(Bj ,Dj) ⊆ x̄ ∩ ȳ.
State subsumption is the least partial order w closed under

alpha-renaming of local variables that satisfies R w S if every
branch of R covers some branch of S. State equivalence is then
equivalence induced by state subsumption, i.e., R ≡ S iff R w S
and S w R.

The state subsumption can be roughly understood as a contain-
ment order where the conjunction is interpreted as a union and the

disjunction as an intersection. The main difference between state
equivalence and the full logical equivalence rests on the fact that in-
comparable (in the sense of logical entailment) built-in stores can-
not be merged into a common branch. (See the non-equivalence
(3) in Example 6.) This property captures the fact that, in general,
constraint solvers poorly deal with the implications involving dis-
junctive formulas. In the following Σ≡ will denote the quotient of
the set Σ by ≡ and [S] the equivalence class of the state S by ≡.

Example 6. Let us assume T be an axiomatization for a finite
domain solver [18], where a constraint of the form (x in t1..t2)
forces the value of x to be an integer between t1 and t2.

Consider first the subsumption (1):

〈(p(x)|x in 0..2) ; (p(x),q(x)|x in 0..3)〉 w 〈(p(x)|x in 0..3) ; Γ〉

The relation holds because both branches (p(x)|x in 0..2) and
(p(x),q(x)|x in 0..3) cover (p(x)|x in 0..3). We can see that a
branch covers another branch if it contains more “information”.
This additional information can take the form of stronger built-in
constraints (second branch case), i.e.,

T � x in 0..2→ x in 0..3 ∧ ({p(x)} ⊇ {p(x)})

or additional user atoms (first branch case), i.e.,

T � x in 0..3→ x in 0..3 ∧ ({p(x), q(x)} ⊇ {p(x)})

Note that the subsumption holds for an arbitrary Γ, since the def-
inition of w only requires that the right-hand side branches cover
some (but not all) left-hand side branches.

Consider now the equivalence (2):

〈(p(x), q(x)|x in 0..3) ; (p(x)|x in 0..2)〉 ≡ 〈(p(x)|x in 0..2)〉

This latter holds because the branches (p(x), q(x)|x in 0..3) and
(p(x)|x in 0..2) both cover the branch (p(x)|x in 0..2) (for the
left-to-right subsumption) and because the branch (p(x)|x in 0..2)
covers the branch (p(x)|x in 0..2) (for the reverse subsumption).
This relation illustrates how state equivalence can prune (when
used from left to right) or create (when used from right to left)
branches that contain more atoms or are more constrained.

Now consider the nonequivalence (3):

〈(p(x)|x in 0..3)〉 6≡ 〈(p(x)|x in 0..1) ; (p(x)|x in 2..3)〉

This illustrates that logically equivalent states may not be equiva-
lent with respect to ≡. Indeed, despite the fact that the two states
have equivalent logical readings, the left-hand branch covers none
of the branches in the right-hand state.

Lastly, consider the equivalences (4) and (5):

〈(∅|>) ; Γ〉x̄ ≡ 〈(∅|>)〉x̄ and 〈(∅|⊥)〉x̄ ≡
〈
(Ai|Ci)i∈I

〉
x̄

The left-hand side equivalence holds for any set of branches Γ, i.e.,
any branch covers (∅|>). However the right-hand size equivalence
holds only if T � Ci → ⊥ holds for any i ∈ I , i.e., only
inconsistent branches cover (∅|⊥).

2.3.2 Analytical Operational Semantics
Once the state equivalence has been defined, the operational se-
mantics can be stated by a single rule.

Definition 7 (General operational semantics). Formally, the ana-
lytical (operational) semantics, is the least binary relation P−→ on
Σ≡ satisfying for a given program P the following rule:(

r @ H⇐⇒ G | (Bi|Ci)i∈I
)
∈ Pρ[

〈(H,A|G,D) ; Γ〉x̄
] P−→

[〈
(Bi,A|G,Ci,D)i∈I ; Γ

〉
x̄

]

where ρ renames the local variables of P with fresh variables. P−→∗
will denote the reflexive transitive closure of P−→. For all states S
and S′ we may write S P−→ S′ instead of [S] P−→ [S′].

Example 8. Consider the rule antisymmetry of the program P3

given at Example 3. The analytical operational semantics can han-
dle nondeterministically such a rule in three different ways, de-
pending how state equivalence is used. First, they can apply the
rule in a “combined mode”, replacing the head of a rule by its body
in a committed choice way, exactly as classical CHR would do.

〈(x≤ y, y≤x)〉xy
P3−−→ 〈(x = y)〉xy

Alternatively, they can process the rule in a “backward mode”.
In this case, a new branch is first created by duplicating and further
constraining an existing branch in such a way that the rule becomes
applicable. Then the rule proceeds by applying to this new branch.
Such a creation of branches captures the “don’t know” nondeter-
minism of backward chaining.

〈(x≤ y)〉xy ≡ 〈(x≤ y, y≤x) ; (x≤ y)〉xy
P3−−→〈(x = y) ; (x≤ y)〉xy

Finally, the semantics can treat the rule in a “forward mode”. In
this case, the hypotheses of the rule within a branch are duplicated
by state equivalence before the rule is applied. In this way, none of
the atoms of the original branch will be consumed by the transition.
The fact that this application strategy does not create more branches
than the body of a rule imposes gives an account of the “don’t care”
nondeterminism of forward chaining.

〈(x≤ y, y≤x)〉xy ≡ 〈(x≤ y, x≤ y, y≤x, y≤x)〉xy
P3−−→〈(x≤ y, y≤x, x = y)〉xy ≡ 〈(x≤x, x = y)〉xy

The precise operational semantics depend on the choice of ob-
servable. We shall consider successes, nonfailures, answers, and
accessible constraints.

Definition 9 (Observables). Let P be a program.

• A success for P is a state S such that S P−→∗ 〈(∅|>)〉.
• A nonfailure for P is a state S such that S 6P−→∗ 〈(∅|⊥)〉.
• An answer for a state S w.r.t. P is a quantified conjunction of

constraints ∃-x̄C s.t. S P−→∗ 〈(∅|C) ; Γ〉x̄.
• An accessible constraint for a state S w.r.t. P is a quantified

conjunction of constraints ∃-x̄C s.t. S P−→∗
〈
(Bi|C,Di)i∈I

〉
x̄

.

Note that unlink within CLP, in our language the set of an-
swers for a state is necessarily closed by subsumption. Indeed as
explained in Example 6 if T � D → ∃x̄C then 〈(∅|C) ; Γ〉x̄ ≡
〈(∅|D) ; (∅|C) ; Γ〉x̄, in other words if ∃-x̄C is answer for some state
S, then the stronger constraint ∃-x̄D is also answer for S.

As the name suggests, analytic semantics are specially designed
to be as close as possible to the logical meaning of programs, but
not to be easily implementable. In particular, it may seem that
whenever the program is not empty, it will never terminate. The
reason for this is illustrated by the following example: it is always
possible to convert a given state into an equivalent one that contains
the head of an arbitrary rule, hence making the rule applicable.
In particular the answers are not terminating in our framework.
Nevertheless it is worth noting that application of any rule on an
answer is idempotent: if 〈(∅|C)〉x̄

P−→ S then S ≡ 〈(∅|C)〉x̄. The
issue of non-termination is discussed later in Example 6.

Example 10. Consider the rule antisymmetry of the program P3

given at Example 3 and a consistent state of the form 〈(A|C)〉x̄

that does not contain any atom built with the ≤ symbols.

〈(A|C)〉x̄ ≡ 〈(x≤ y, y≤x,A|C) ; (A|C)〉x̄
P3−−→〈(x = y,A|C) ; (A|C)〉x̄ ≡ 〈(A|C)〉x̄

2.3.3 Logical Soundness
As in the original CHR, our language features a strong logical
soundness. Basically, transitions preserve the logical meaning of
states with respect to the constraint theory and the program.

THEOREM 11 (Soundness).

If R P−→∗ S, then T
←→
P � R† ↔ S†

Unsurprisingly, completeness results are more difficult to estab-
lish. The three following sections will be dedicated to tackling this
problem.

3. Backward Models
This section is dedicated to relating backward models of any pro-
gramP (i.e. the Tarski’s models of the backward reading of the pro-
gram) to the backward chaining processing of the program. For this
purpose, we introduce a restriction of the general operational se-
mantics, the so-called minimal semantics, which process every rule
as a backward rule, similarly to how CLP processes constrained
Horn clauses.

3.1 Minimal Operational Semantics
The so-called minimal operational semantics prevent the rules from
consuming any atoms in a branch: the result of each rule’s appli-
cation is stored in a new branch, while the original branches are
kept intact. We argue that they capture the pure backward chaining
transitions of the general semantics.

Definition 12 (Minimal Semantics). The minimal (operational)
semantics of a program P are given by the least relation P−⇁ on
Σ≡ satisfying the following rule:(

r @ H⇐⇒ G | (Bi|Ci)i∈I
)
∈ Pρ[

〈(H,A|G,D); Γ〉x̄
] P−⇁

[〈
(Bi,A|G,Ci,D)i∈I ; (H,A|G,D); Γ

〉
x̄

]
where ρ renames the local variables of P with fresh variables. P−⇁∗
will denote the reflexive transitive closure of P−⇁. For all states S
and S′ we may write S P−⇁ S′ instead of [S] P−⇁ [S′].

The following example show how the minimal semantics apply
on our running example.

Example 13. The following derivation step is obtained by applying
the minimal semantics on the rule antisymmetry of the program P3

from Example 3. One may observe such step corresponds to the
“backward mode” described at Example 8.

〈(x≤ y, y≤ z)〉xyz
≡〈(x≤ y, y≤x, x = z) ; (x≤ y, x≤ z)〉xyz

P3−−⇁ 〈(x = y, x = z) ; (x≤ y, x≤ z)〉xyz
Note that any minimal derivation step corresponds to some possibly
multi-step CLP derivation defined with respect to the backward
reading of the rule that have been applied. In the present case the
backward reading of antisymmetry is the clause (x≤ y ← x = y)
and the corresponding derivation is:

(x≤ y,y≤ z)→CLP (x = y,y≤ z)→CLP (x = y,x = z)

Inversely to any CLP derivation step corresponds a minimal step.
For instance the first CLP step in the derivation above corresponds

to the following minimal step:

〈(x≤ y, y≤ z)〉xyz
≡〈(x≤ y, y≤x, y≤x) ; (x≤ y, x≤ z)〉xyz

P3−−⇁ 〈(x = y, y≤ z) ; (x≤ y, x≤ z)〉xyz
One may remark that the minimal semantics are idempotent when
applied to forward rules. For instance, consider the following step,
obtained by applying the rule transitivity of P3:

〈(x≤ y, y≤ z)〉xyz
P3−−⇁ 〈(x≤ y, y≤ z, x≤ z) ; (x≤ y, y≤ z)〉xyz
≡〈(x≤ y, y≤ z)〉xyz

The following proposition justifies the name of the semantics.
It basically states that the minimal semantics underapproximate (in
the sense of state subsumption) the general semantics.

PROPOSITION 14. For any program P and all states S, S′, and
R the following propositions hold: (Soundness) If S P−⇁ S′ then
S P−→ S′. (Completeness) If S P−→ S′ and S w R, then there exists
R′, such that R P−⇁∗R′ and S′ w R′.

3.2 Inductive Semantics
In order to relate the logical model of the backward reading of a
program and the minimal operational semantics, we borrow CLP
theory’s fixed point semantics. In fact, the present subsection sim-
ply transposes well-known results from the CLP state of the art [22]
to our language.

3.2.1 Inductive Semantics w.r.t. Constraint Models
Let S be an interpretation of the constraint language. An S-
interpretation is an interpretation that agrees with S on the con-
straint symbols. The S-base, denoted by BS , is the set of atoms
valued in S. An S-interpretation can thus be identified with a sub-
set of BS formed of the atoms that are true in the interpretation. An
S-model for a formula φ is an S-interpretation that models φ. A
backward S-model of a program P is an S-model for

←−
P . Clearly,

BS is the largest backward S-model of every program. We will
show now the existence of a unique least one.

Definition 15 (Inductive Semantics w.r.t. Constraint Models). Assume
S is an interpretation of the constraint language. The immediate
(backward) consequences operator with respect to a program P
and S is the function 〈P〉S : 2BS → 2BS , defined as:

〈P〉S (X)
def
= { aρ |

(
H⇐⇒ G| (Bi|Di)i∈I

)
is a rule of P ,

ρ is an S-valuation, and j is an index in I s.t.
S � (G ∧ Dj)ρ, Bjρ ⊆ X and a ∈ H }

The inductive semantics of a program P with respect to S is the
set inductively defined by the immediate consequence operator
associated with P and S, i.e., the intersection of the prefixed points
of 〈P〉S .

ISP
def
=
⋂{

X | 〈P〉S(X) ⊆ X
}

The inductive semantics provides a least logical model for the
backward reading of a program.

THEOREM 16 (Least backward S-model). Let S be an model for
T , andP be a program.

←−
P has a least S-model. This latter is equal

to ISP .

3.2.2 Inductive Semantics w.r.t. the Constraint Theory
The denotational semantics can alternatively be defined on the
lattice of constrained atoms. A constrained atom is a tuple of the
form (a|C), where a is an atom and C a conjunction of constraints.
In the following, we will confuse a branch (a1, . . . , an|C) with the
set of constrained atoms {(a1|C) . . . , (an|C)}. The power set of
the constrained atoms form a complete lattice called the T -base
and denoted by BT . A T -interpretation is a subset of the T -base.

Definition 17 (Inductive Semantics w.r.t. the Constraint Theory).
The immediate (backward) consequence operator with respect to a
program P and the theory T is the function 〈P〉T : 2BT → 2BT ,
defined as:

〈P〉T (X)
def
= { (a|C) |

(
H⇐⇒ G| (Bi|Di)i∈I

)
is a rule of P

renamed apart and j is an index in I s.t. (Bj |E) ⊆ X , and
T � C→ (a ∈ H) ∧G ∧ Dj ∧ E }

We defined the inductive semantics of a program P with respect
to T as the set inductively defined by the immediate consequence
operator associated with P and T , that is:

ITP
def
=
⋂{

X | 〈P〉T (X) ⊆ X
}

The inductive semantics provide accurate denotational seman-
tics for the minimal operational semantics. Indeed, the inductive
semantic precisely describe the answers of a program with respect
to the minimal semantics.

THEOREM 18 (Full Abstraction of Answers).

(A|C) ⊆ ITP iff 〈(A|>)〉x̄
P−⇁∗ 〈(∅|C) ; Γ〉x̄

3.2.3 Relating Inductive Semantics
There is complete adequacy between the two kinds of inductive
semantics. For a given interpretation S for the constraint theory,
the set of S-instances associated to a T -interpretation X is defined
as:

JXKS = {aρ ∈ BS | (a|C) ∈ X & S � Cρ}

PROPOSITION 19. For any interpretation S of T and any program
P ,

q
ITP

y
S = ISP

The results of the present section would allow us to establish
the strong completeness of minimal semantics with respect to the
backward reading of a program. However, we delay the statement
of a more general version of those results to Section 5.

4. Forward Models
This section will relate the models of the forward forward models
of a program (i.e., the logical models its forward reading) to the
forward chaining processing of the program. For this purpose, we
first introduce operational semantics dual to the minimal ones.
These semantics, which we call maximal semantics, are defined
such that all the rules are processed as forward rules.

4.1 Maximal Operational Semantics
The so-called maximal semantics prevent rules from consume their
heads. Furthermore, they never create more branches than the body
of a rule imposes. We argue that this captures the pure forward
chaining transitions of the general semantics.

Definition 20 (Maximal Semantics). The maximal (operational)
semantics of a program P are given by the least relation P−⇀ on Σ≡
satisfying the following rule:(

r @ H⇐⇒ G | (Bi|Ci)i∈I
)
∈ Pρ[

〈(H,A|G,D); Γ〉x̄
] P−⇀

[〈
(H,Bi,A|G,Ci,D)i∈I ; Γ

〉
x̄

]

where ρ renames the local variables of P with fresh variables. P−⇀∗
will denote the reflexive transitive closure of P−⇀. For all states S
and S′ we may write S P−⇀ S′ instead of [S] P−⇀ [S′].

The following example shows how the maximal semantics ap-
ply to our running example.

Example 21. The following step is obtained by applying the maxi-
mal semantics on the rule antisymmetry of the program P3 given at
Example 3. It may be observed that such a step corresponds to the
“forward mode” described at Example 8.

〈(x≤ y, x≤ y)〉xy
P3−−⇀ 〈(x≤ y, x≤ y, x = y)〉xy ≡ 〈(x≤x, x = y)〉xy

It is also worth noting that the maximal semantics is idempotent
when applied on the backward rule. For instance, consider the
following derivation obtained by applying the rule leq s of P3:

〈(s(x)≤ s(y))〉xy
P3−−⇀ 〈(s(x)≤ s(y)); (s(x)≤ s(y), x≤ y)〉xy ≡ 〈(s(x)≤ s(y))〉xy

The following proposition states that the maximal semantics
overapproximate the general semantics.

PROPOSITION 22. For any program P and all states S, S′, and
R the following propositions hold: (Soundness) If S P−⇀ S′ then
S P−→ S′. (Completness) If S P−→ S′ and R w S then there exists
R′ such that R P−⇀∗R′ and R′ w S′.

4.2 Coinductive Semantics
To relate the forward model to the maximal operational semantics,
we introduce fixed point semantics dual to those presented in Sec-
tion 3.2. Unlike the inductive semantics, which are directly bor-
rowed from CLP theory, the so-called coinductive semantics have
been developed for the context of this paper. However we will
see those semantics have close relationship with the greatest fixed
points of the immediate consequence operator in CLP theory.

4.2.1 Coinductive Semantics w.r.t. Constraint Models
In Section 3.2.1, we have seen that, for a fixed interpretation S of
the constraint theory, there exists a unique greatest and a unique
least S-model for the backward reading of a program. On one
hand, the greatest S-interpretation is clearly a model for backward
reading. One the other hand, we were able to characterize the
least model as the fixed point of some monotonic operator over
S-interpretations.

Here, the situation is dual. Indeed, the least S-interpretation
(i.e., the one that maps no atom to true) obviously models the
forward reading of every program. However such a reading may
have no unique greatest models. For instance, {a} and {b} are
the two greatest incomparable models for the multi-headed rule
(a, b=⇒⊥). It appears that the notion of an S-interpretation is not
convenient for characterizing the possibly infinite number of such
models. To circumvent this problem, we introduce a new construct
that will be able to capture a possibly infinite number of models as
a single object.

Let S be an interpretation of the constraint language. The S-
cobase, denoted by B̄S , is the set of finite S-interpretations (i.e.,
the set of finite sets of atoms valued in S). An S-cointerpretation
is a subset of B̄S . We say that an S-cointerpretation Y is an S-
comodel for a formula φ, if for anyX ∈ Y there exists an S-model
for φ that contains X . Thus, an S-comodel for a formula φ can
be understood as a set of finite subsets of models of φ. A forward

S-comodel for a program P is an S-comodel for
−→
P . Obviously

the empty S-cointerpretation is the least forward S-comodel of
every program. Furthermore, since S-comodels are clearly stable
by union, we know that any program has a greatest forward S-
comodel.

Before introducing the so-called immediate cause operator as
the dual of the immediate consequence operator, we introduce
a notion of breadth-first coverage inspired by previous works of
Bezem and Coquand on coherent logic [7].

Definition 23 (S-Coverage). Let S be a model for the constraint
theory, and assume P is of the form:

{(H1⇐⇒ G1 | Γ1) , . . . , (Hm⇐⇒ Gm | Γm)}
and X is a finite S-interpretation. Now, consider all closed in-
stances Hiρ of the rule heads of P which are in X and satisfy
S � Giρ. There exist at most finitely many such instances and we
may enumerate them all by Hi1ρ1, . . . ,Hinρn. We will say that a
finite S-interpretation X ′ is a (breadth-first forward) S-coverage
for X with respect to P if:

X ′ = X ∪ B0[~y\d̄0]ρo ∪ · · · ∪ Bn[ȳ\~dn]ρn

for some branch (Bj |Dj) ∈ Γj and some S-values d̄j , such that
S � (Gij ∧ Dj)[~y\d̄j]ρj (for j ∈ 1, . . . ,m). In such a case, we
write X .SP X

′.

Intuitively we can understand the notion of S-coverage with
respect to a program P as a kind of coinductive evidence for
satisfiability with respect to

−→
P . Indeed, on one hand, it is easy

to verify that a set of valued atoms which has no coverage is
not included in any model of

−→
P . Conversely, as the following

proposition shows, a set X0 is satisfiable if it has a coverage X1,
which in turn has a coverage X2, and so on infinitely.

PROPOSITION 24. Let S be a model of the constraint theory and
P a program. Let {Xi}i∈N be a family of finite S-interpretations,
such that Xi .SP Xi+1 (for any i ∈ N). The union of the Xi is an
S-model for

−→
P .

Based on this notion of coverage, we define an algebraic se-
mantics for the forward reading of a program as the greatest fixed
point over an operator dual to the immediate consequence operator.
Basically, the fixed point computation iteratively removes from the
S-cobase all those sets with no coverage.

Definition 25 (Coinductive Semantics w.r.t. Constraint Models).
Let S be a model for the constraint theory. For a given program P ,
the immediate (forward) cause operator with respect to a program
P and S, [P]S : 2B̄

S
→ 2B̄

S
is defined as:

[P]S (Y)
def
=
{
X ∈ B̄S | there is X ′ ∈ Y such that X .SP X

′
}

The coinductive semantics of a program P with respect to S is
defined as the set coinductively defined by the immediate cause
operator associated with P and S, i.e., the union of the postfixed
points of [P]S :

CSP
def
=
⋃{
Y ∈ 2B̄

S
| Y ⊆ [P]S (Y)

}
The coinductive semantics capture all backward models of a

program.

THEOREM 26. (GREATEST BACKWARD S-COMODEL) Let S be
a model of the constraint theory T , and P be a program. CSP is the
greatest S-comodel for

−→
P .

4.2.2 Coinductive Semantics w.r.t. the Constraint Theory
As with the immediate consequence operator, we will extend the
immediate cause operator for a given particular model to the con-
straint theory itself. Since the immediate cause operator is based on
the notion of coverage on a valued set of atoms, we need first to
extend this notion to a constrained set of atoms. The power set of
the consistent branches forms a complete lattice, which we call the
T -cobase and denote by B̄T . A T -cointerpretation is a subset of
the T -cobase.

Definition 27 (T -Coverage). Assume given a program P and a
branch (A|C) that do not share any variables. Now consider
all pairs (A′, (H⇐⇒ G | Γ)) such that A′ is a subset of A
and (H⇐⇒ G | Γ) is a rule of P that satisfies the implication
T � C → ∃-A (A′ =H ∧G). Then there exist at most finitely
many such pairs, which we may enumerate thus:

(A1, (H1⇐⇒ G1 | Γ1)) , . . . , (An, (Hn⇐⇒ Gn | Γn))

where the variables of each rule have been previously renamed
apart. We will say that the branch (E|F), which equals

(A,B1, . . . ,Bn|C,A1 =H1,D1,G1, . . . ,An =Hn,Dn,Gn)

is a (breadth-first forward) T -coverage for (A|C) if for any j ∈
1, . . . , n, (Bj |Dj) ∈ Γj . In this case, we write (A|B) .TP (E|F).

We understood T -coverage as an evidence for nonfailure. In-
deed, in a coverage relationship, the right-hand branch is always
more constrained than the left-hand branch. Therefore, an incon-
sistent branch has no consistent coverage. More interestingly, the
following proposition establishes that a branch (A|B) covered by
a branch (E|F) cannot produce with one step branches more con-
strained than (E|F). Consequently, a branch covered by a consistent
branch cannot be made inconsistent in at most one derivation step.
As previously, this notion of evidence is coinductive, in the sense
that nonfailure is guaranteed by an infinite chain of consistent evi-
dence.

PROPOSITION 28. Let 〈(A|C)〉x̄
P−⇀ 〈(Bi|Di)i∈I〉x̄ be a valid

derivation and (E|F) be a breadth-first forward T -coverage of
(A|C). If for any i ∈ I T � Di → ∃-x̄,Bi ((E ⊆ Bi) ∧ F), then
there exists j ∈ I such that T � F→ ∃-x̄,Bj ((Bj ⊆ E) ∧ Dij).

We extend the coinductive semantics to the theory by substi-
tuting the coverage relation. As previously, the fixed point com-
putation removes those branches that have no consistent evidence.
Here, it is worth remembering the cobase B̄T is the set of consistent
branches.

Definition 29 (Coinductive Semantics w.r.t. the Constraint Theory).
For a given program P , the immediate (forward) cause operator
with respect to a program P and the theory T , [P]T : 2B̄

T
→ 2B̄

T

is defined as:

[P]T (Y)
def
= {(A|B) ∈ B̄T | there is (E|F) ∈ Y

such that (A|B) .TP (E|F)}
The coinductive semantics of a program P with respect to the the-
ory T is defined as the set coinductively defined by the immediate
cause operator associated with P and T :

CTP
def
=
⋃{
Y ∈ 2B̄

T
| Y ⊆ [P]T (Y)

}
Similar to the case of inductive semantics, the coinductive se-

mantics provide an accurate denotation for the maximal opera-
tional semantics. In fact, the coinductive semantics precisely de-
scribe nonfailures.

THEOREM 30. (FULL ABSTRACTION OF NONFAILURES)

(A|C) ∈ CTP iff 〈(A|C)〉x̄ 6
P−⇀∗ 〈(∅|⊥)〉

It is worth noting that the coinductive semantics for CHR pro-
grams have a strong relationship with the greatest fixed point of the
immediate consequence operator, which abstracts non-failures of
CLP programs [22]. However, such a characterization is simpler in
the particular context of CLP, since it can be done within the stan-
dard T -base, while the equivalent characterization in CHRmust be
done within the T -cobase. This relative simplicity comes from the
fact that CLP rules are monoheaded.

4.2.3 Relating Coinductive Semantics
In the general case, we can show that the semantics defined with
respect to the theory abstract the ones defined with respect to a
model of the theory. For this purpose, we define an abstraction that
maps any S-cointerpretation to a T -cointerpretation. Formally, for
a given interpretation S of the constraint language Lc, we define
the abstraction of an S-cointerpretation Y as:

JYKS-1
def
=
{

(A|C) ∈ B̄T | Aρ ∈ Y & S � Cρ
}

PROPOSITION 31. For any model S of T ,
q

CSP
y
S-1 ⊆ CTP .

However, unlike in the case of inductive semantics, it is not
possible in the general case to establish full adequacy between
the two kinds of conductive semantics. Indeed, as shown by the
following example, the coinductive semantics with respect to T
may contain nonground branches to which there correspond no
instances in the coinductive semantics defined with respect to any
model of T . In other words, there may exist nonground branches
in CTP that are satisfiable with respect to no model of

−→
P .

Example 32. Assume the constraint theory contains only the axiom
∀x(c(x) ∨ d(x) and consider the program P32 consisting of the
following rules:

p(x) =⇒ c(x) | ⊥ p(x) =⇒ d(x) | ⊥

While CTP32
contains branches such as 〈(p(x, y))〉, for any S of T ,

CSP32
is empty.

To circumvent this problem, we restrict the form of the the
constraint theory. We will say that a constraint theory is simple if
its nonlogical axioms are of the form:

C→ ∃x̄D
where C and D are conjunctions of built-in constraints. Such an
assumption is standard in concurrent constraint programming [12,
33]. It is worth noting that a number of constraint theories, such as
Clark’s equality theory, are simple theories.

PROPOSITION 33. If T is a simple and consistent constraint the-
ory, then there exists a model S of T such that

q
CSP

y
S-1 ⊇ CTP .

In general, the models for which the proposition holds are not
the intended ones. For instance, in the case of Clark’s equality the-
ory, the domain of such models is typically the complete Herbrand
Universe [24] (i.e., the set of finite and infinite terms). Nevertheless,
we will see later that this result is sufficient to establish the com-
pleteness of our language for failures and accessible constraints
with respect to the constraint theory.

The results of this section would also allow us to establish
that the maximal semantics is complete for failures and accessible
constraints. Nonetheless, we delay the statement of this result until
the more general context of the next section. (Refer to Theorem

40.) The completeness result extends the previous work of Bezem
and Coquand [7] by showing that the geometric logic extended with
a simple constraint theory (in particular native equational logic) is
complete with respect to Tarskian truth.

5. Combining Chainings
In this section, we aim to combine the results of the previous sec-
tions to obtain strict completeness results for the answers and ac-
cessible constraints with respect to the whole logical reading of
a given program, including both backward and forward readings.
The crucial property we will use here is the notion of confluence.
Confluence is a fundamental property that guarantees that the com-
putations are not dependent on rule application order.

5.1 Confluence
Before getting into the substance of the completeness results, we
formalize the notion of confluence and completion. Basically, this
property refers to the fact that two finite computations starting from
a common state can always be prolonged so as to eventually meet
in a common state again. This fundamental property justifies the
committed choice policy of rule application.

Definition 34 (Confluence). Formally a program P is confluent if
for all states S, S1, and S2 such that S P−→∗ S1 and S P−→∗ S2,
there exists a state S′ such that S1

P−→∗ S′ and S2
P−→∗ S′.

Example 35 presents examples of confluent and non-confluent
program.

Example 35. Consider our running example, P3. Several rules
match the state 〈x≤ 0, 0≤ y〉 and may then produce incomparable
states, e.g.:

〈(x≤ 0, 0≤x)〉x
antisymmetry−−−−−→ 〈(x = 0)〉x

〈(x≤ 0, 0≤x)〉x
leq 0−−→ 〈(x≤ 0) ; (x≤ 0, 0≤x)〉x ≡ 〈x≤ 0〉x

One can verify that the two resulting states cannot be rewritten
to a common state: P3 is not confluent. Nevertheless P3 can be
completed [1], that this to say that one can add rule to P3 in order
to make it confluent. For instance consider the program P35 built
by adding to P3 the following rule. It is interesting noting this rule
corresponds to the Clark’s completion of the backward reading of
P3:

completion @ x ≤ y =⇒ x = 0;x = s(x′), y = s(y′), x′≤ y′

In P35 the two problematic states can be joined as follows:

〈x≤ 0〉x
completion−−−−→

〈
(x≤ 0, x = 0) ;

(
x≤ 0, x = s(x′), 0 = s(y′), x′≤ y′

)〉
x

≡〈(0≤ 0, x = 0) ; (⊥)〉x
leq 0−−→〈(x = 0) ; (0≤ 0, x = 0) ; (⊥)〉x
≡〈(x = 0)〉x

Because of space limitations, we will not further discuss how
the confluence of programs can be demonstrated, but leave this
problem open for future work.

We will, however, refer to a technical report [15], in which
we establish that (perhaps surprisingly) confluence with respect to
the classical multiset-based semantics implies confluence with re-
spect to the set-based semantics presented here. This suggests that
the confluence proof techniques for classical CHR—such as those
based on local confluence [2], strong confluence [16], or decreas-
ing diagrams [14]—can be extended to deal with the semantics pre-
sented here.

5.2 Completeness of Answers
The following theorem shows that the inductive semantics of a con-
fluent program coincide with the least model of its whole logical
reading. Note that this does not require T to be simple.

THEOREM 36. (LEAST S-MODEL) Let S be a model of the con-
straint theory T . If a program P is confluent, then its logical read-
ing
←→
P has a least S-model. This latter is equal to ISP .

As a corollary, we see that the logical reading of a confluent pro-
gram is consistent. This idea can be traced back to the pioneering
works about CHR confluence [2], but the constructive characteriza-
tion of the least model for confluent programs is more recent [17].
The proof of this characterization is, however, more involved in the
original settings of CHR because of the multiset nature of atoms.
To the best of our knowledge, the characterization of the biggest
models are new.

Combined with Theorem 18 and Proposition 19 this theorem
allows us to establish the completeness of our language with respect
to answers.

THEOREM 37. (COMPLETENESS OF ANSWERS) Let P be a con-
fluent program and R P−→∗ S be a valid derivation. If the implica-
tion T

←→
P �C→R† holds, then there is a derivation of the form

S P−⇁∗
〈
(∅|Di)i∈I ; Γ

〉
x̄

such that T � C→∃-x̄
(∨

i∈I Di
)
.

By contraposition, we obtain that if a state does not reduce to
the trivial state 〈(∅|>)〉, then its logical reading is not valid with
respect to the logical reading of the program. Of course, there is no
effective way to determine when a state lacks consistent answers—
the problem being clearly undecidable—but we can identify some
particular cases. Given a program P , we will say that a state R is
minimally saturated with respect to P if for any state S, R P−⇁ S
implies R v S. Because the number of ways a rule may apply on
a given state is finite, minimal saturation is decidable whenever the
constraint theory is.

COROLLARY 38. (SOUNDNESS OF MINIMAL SATURATION) Let
P be a confluent program. If a state S derives to a minimally
saturated state R, then T

←→
P � S† iff R ≡ 〈(∅|>)〉.

5.3 Completeness of Accessible Constraints
Conversely, the following theorem states that the coinductive se-
mantics coincide with the greatest S-comodel of the whole pro-
gram.

THEOREM 39. (GREATEST S-COMODEL) Let T be a simple and
consistent constraint system. If a programP is confluent, then there
exists a model S of T such that its greatest S-comodel is CSP .

By combining this theorem with Theorem 30 and Propositions
31 and 33, we obtain a strong completeness result with respect to
accessible constraints.

THEOREM 40. (COMPLETENESS OF ACCESSIBLE CONS-
TRAINTS) Let T be a simple constraint theory, P be a conflu-
ent program, and R P−→∗ S be a valid derivation. If the implication
T
←→
P � R†→∃x̄C holds, then there exists a derivation of the form

S P−⇀∗
〈
(Bi|Di)i∈I

〉
ȳ

such that T �
(∨

i∈I Di
)
→∃x̄C.

It is worth noting that this theorem generalizes the complete-
ness of the so-called negation-as-failure for CLP programs [21, 22].
This property states that if a query is false with respect to the Clark
completion of a program, then its standard CLP evaluation finitely
fails. Indeed the previous theorem can be applied to Clark com-
pleted CLP programs as they are trivially confluent. (Just notice
that a failure is a state that has ⊥ as accessible constraint.)

By contraposition of Theorem 40, we see that if a state does not
reduced to the inconsistent state 〈(∅|⊥)〉, then is logical reading is
satisfiable with respect to the program. We identify special cases
of such states as duals of minimally saturated states. We will say
that a state R is maximally saturated with respect to a program P
if, for any valid derivation of the form R P−⇀ S, R w S holds.
As for minimal saturation, maximal one is decidable whenever the
constraint theory is.

COROLLARY 41. (SOUNDNESS OF MAXIMAL SATURATION) Let
us assume the constraint theory T is simple, and P is a confluent
program. If a state S reduces to a maximally saturated state R,
then T

←→
P � S† → ⊥ iff R ≡ 〈(∅|⊥)〉.

6. Toward Implementation
As explained previously, we designed the analytical semantics to
be as close as possible to the classical logic meaning of a program,
without too much concern about their implementability. In this sec-
tion, we do not study the details of possible implementations of the
whole language in full, as this is beyond the scope of the present
paper. Instead, we briefly discuss how existing CHR frameworks
can benefit from the theoretical results of this paper. For this pur-
pose, we divide the discussion into two, according to the principal
objective of the inference that a user may run. Given a program P
and a state, this main objective may be to find the solutions for the
state (i.e., those constraints that make the state valid with respect to
the logical reading of the program) or, conversely, to prove that the
state is (un)satisfiable with respect to the program.

6.1 Solution-Oriented Implementation
In this section, we are interested in finding all the solutions of a
given confluent program. For this purpose, we propose a simple
source-to-source translation intended to be executed by a standard
(i.e., multiset-based) CHR∨ implementation.

The translation P� of a program P is defined as follows:

step 1 First, for each user-defined symbol p, add in P�, a simpaga-
tion rule of the form (p(~x) \ p(~x)⇐⇒>). Such a rule, which
particularly makes sense in a muliset-based setting, launches
only if two occurrences of p(~x) are present in the store. It then
removes the older of the two occurrences. From a logical point
of view, this rule is read as a tautology.

step 2 Next, the forward reading of P is naively translated as
forward rules, and added to P�.

step 3 Finally, the backward reading of P is first translated to
a CLP program (following the remark at the end of Section
2.2), and then translated back to CHR∨ using Clark’s comple-
tion [10] (as described by Abdennadher and Schütz [4]). It is
then added to P�. Repeated and tautological CLP clauses are
eliminated during the process.

Example 42. The translation P�3 of the running example is as fol-
lows:

set @ x≤ y \ x≤ y⇐⇒>.
trans′ @ x≤ y , y≤ z =⇒ x≤ y.
anti′ @ x≤ y , y≤x =⇒ x = y.

back @ x≤ y⇐⇒ x = 0;x = s(x′), y = s(y′), x′≤ y′;
x = 0, y = 0;x = y.

The rules trans′ and anti′ correspond to the forward reading of the
transitivity and antisymmetry rules, respectively. On the other side,

the back rule corresponds to Clark’s completion of the backward
reading.

We argue that, if evaluated by the standard CHR∨ system, this
translation is sound and complete for the solutions of the original
program. Formally, a constraint c is a solution of a state w.r.t. a
program P iff and only if there is a finite set of answers d1, . . . , dn
for P� when processed by the standard multiset semantics, such
that T � d1 ∨ · · · ∨ dn → c. The proof can be sketched as follows:

By Theorem 37, we know that (1) the minimal semantics can
find any solution of a confluent program P without loss of gener-
ality. On the other hand, as explained in Section 3, we also know
that (2) the minimal semantics correspond exactly to the CLP pro-
cessing of the backward reading of P . Furthermore, Abdennadher
and Schütz [4] showed that (3) the classical operational semantics
of a CLP program are equivalent to the CHR∨ multiset semantics
operating on its Clark’s completion [4]. By combining (1), (2), and
(3), we infer that a constraint is a solution of P iff it is an answer
obtained by processing only the rules resulting from step 3 of the
translation with multiset semantics.

We still need to show that the whole program P� has no more
solutions than P . Since a CLP program and its completion have
the same least models, so do P and P�. Hence, for any state,
P � c → S holds iff P� � c → S. We conclude using soundness
of CHR.

We now conclude the section with some remarks. First, note
that, while the set-based evaluationP never terminates, the multiset
P� evaluation may terminate. In particular, if the latter fails, we
know the former has no solutions. Secondly, we remark that the
multiset interpretation of P may have no answers, whereas the
same interpretation of P� is complete for answers.

6.2 Satisfiability-Oriented Implementation
In this section, we are interested in proofs of the (un)satisfiability
of a state with respect to a program. In this context, we discuss how
results from Section 5.2 can be used in the context of the set-based
semantics of Sarna-Starosta and C.R. Ramakrishnan [34], and those
of Duck [11]. These semantics, which we will call naive set seman-
tics, have been developed for the purpose of implementation, but
to the best of our knowledge their mathematical properties have
not been formally studied. They differ from the semantics we have
proposed, in the sense that they force the consummation of all the
atoms of the head of a rule in a state. In order to better understand
the different classes of semantics, we propose to simplify the for-
malizations of these classes.

In order to better understand the different classes of semantics
we propose formalizations of each of them. For the sake of sim-
plicity, we limit our discussion to the propositional case. Hence,
the propositional version of the classical multiset semantics �m,
the analytical semantics �α presented at Section 2, and the naive
set semantics �s can be defined by the following rules:

H⇐⇒ B ∈ P
〈(A]H)〉 �m 〈(A] B)〉

H⇐⇒ B ∈ P
〈(A ∪H)〉 �α 〈((A ∪ B)〉

H ⊆ A H⇐⇒ B ∈ P (A \H) ∪ B 6= A
〈(A)〉 �s 〈((A \H) ∪ B)〉

Based on these formalization, we can make several remarks.
First, naive set semantics break the monotonicity of transitions—
one of the most important properties of CHR (See Chapter 4 in

Früwirth’s book [13].). Indeed, we have

〈(A)〉�m〈(A′)〉 implies 〈(A] B)〉�m〈(A′] B)〉, and
〈(A)〉�α〈(A′)〉 implies 〈(A ∪ B)〉�α〈(A′ ∪ B)〉

but

〈(A)〉�s〈(A′)〉 does not imply 〈(A ∪ B)〉�s〈(A′ ∪ B)〉

(take B = A as a counterexample). Note that such behavior should
in principle complicate any confluence proofs at the naive set level,
since all the CHR confluence proof techniques we are aware of
heavily rely on transition monotonicity.

Secondly, the naive set semantics, just like the multiset seman-
tics, are trivially incomplete with respect to both success and fail-
ure. For instance, consider the program

p⇐⇒ q. p⇐⇒ q. p, q⇐⇒ c.

where c stands for > or ⊥. Clearly, we have T
←→
P � p ↔ c but

〈(p)〉 6�m 〈(c)〉 and 〈(p)〉 6�s 〈(c)〉.
The naive semantics have, however, some interesting properties

when compared with the analytical semantics: The naive set se-
mantics are analytically sound (i.e., R�s S implies R�α S),
and if P is a set of forward rules, they are analytically complete
(i.e., R�α S implies R�≡s S).

We can obtain a naive implementation complete for unsatisfia-
bility with respect to an (analytically) confluent program by simply
running the forward reading according to naive set-based seman-
tics. The proof can be sketched as follows: Theorem 39 ensures
that if a state is unsatisfiable, then there is a maximal derivation
that leads this state to the inconsistent state >. Since the maxi-
mal semantics ignore backward rules, such a derivation can be ob-
tained by considering only the forward reading. We conclude with
the analytical completeness of the naive set semantics for forward
rules. This shows that an unsatisfiability-complete implementation
of confluent program can be reached. This solution is, however,
not satisfactory, as it does not allow any form of combination of the
two kinds of chainings. We leave the question of how to incorporate
some form of backward chaining, while preserving completeness,
for future investigations.

Before concluding, we can underline that Corollary 41 ensures
that naive set semantics is sound for stability. In other words, as-
suming that the program is consistent, if a state derives to a termi-
nal and consistent state (different from 〈(∅|⊥)〉), then the state is
satisfiable with respect to the program. This result rests on the an-
alytical completeness for forward rules, which implies that states
terminal with respect to the naive set semantics are maximally sat-
urated with respect to the analytical semantics. In the same context,
the analytical semantics can be also helpful in proving the consis-
tency of program processing, since analytical confluence (which, as
explained previously, is simpler to establish than confluence with
respect to other semantics) ensures the consistency of the program
(by Theorem 36).

7. Related Work
Although not explicit, the procedural interpretation of CLP clauses
as presented by Jaffar and Lassez [21] already combines backward
and forward reasoning. On one hand, the definite clauses handle the
general control of the program, while the constraint theory tack-
les native data-type operation manipulations. The processing of the
clauses is of course based on a backward chaining, but the con-
straint solver, seen as a black box, can be implemented using any
kind of reasoning, and in particular can employ forward chaining
that well accommodates solver incrementality—a key property for

efficient implementations of CLP [28]. Examples of forward rea-
soning within constraint solvers are the first order term unifica-
tion [31]2, and the local propagation mechanism of finite domain
solvers [18].

The present work gives a partial account of this hierarchical
phenomenon in a one-level formalism. Indeed, one can understand
the CLP clauses as a set of backward rules and the constraint solver
as an arbitrary confluent program, with both sets of rules using dis-
joint alphabets of predicate symbols for their heads. Thanks to the
modularity of confluence [13, 14] (i.e., the union of nonoverlapping
confluent programs is confluent), the results presented here ensure
the soundness and completeness of a general operational semantics
for CLP, where the implementation of the solver would be made
explicit.

ALPS is a class of flat committed-choice logic languages pro-
posed by Maher as a concurrent framework suitable for algorithmic
programming [26]. Roughly, ALPS programs are sets of mono-
headed backward rules implicitly completed by Clark’s comple-
tion. Operationally, a rule applies either when its guard is entailed
by the current store (in a forward-like manner) or when it is the only
one satisfiable among all the rules with same head (in a backward-
like manner). For deterministic programs (i.e., programs whose
guards are mutually exclusive) such derivation steps correspond to
applications of the analytical semantics that do not create branches.
Abdennadher et al. have already identified the strong relationship
between deterministic ALPS programs and confluent CHR pro-
grams [2], but only the general framework presented in this paper
captures both types of rule application. Indeed, in standard CHR,
rules apply if and only if their guards are implied by the built-in
store. In fact, the soundness and completeness theorems presented
here thoroughly generalize all similar results proved by Maher for
ALPS.

In the context of (constraint) deductive databases, Magic Sets
and their extensions [5, 30] introduce some elements of back-
ward chaining into the purely forward processing of the deductive
database. In those approaches, the program is first processed to col-
lect the so-called predicate adornments—i.e., the calling patterns
involved in the backward processing of a query. Then, based on
these adornments, the program is transformed, before being eval-
uated by the standard fixed-point forward processing. As a result,
this approach does not generate more facts than the standard back-
ward processing would , but better preserves termination proper-
ties. On the downside, it is typically inefficient when one is looking
for only one solution. Compare this to the approach proposed in this
paper, where the combination of backward and forward chaining is
dynamic. In contrast, the combination in the Magic Sets approach is
completely static. The Magic Sets approach also differs from ours
in the sense that the clauses within a program are all treated in the
same way, while in our framework, logical implications are pro-
cessed differently, depending on the way they are written.

In the field of linear logic programming, the LolliMon [25] sys-
tem extends the natural backward chaining operational semantics
of the Lolli [19] system with forward chaining inside a monad. In
this approach, the monad plays a similar role to the commutation
property we assume here, to prevent logical interference between to
the two forms of computation. The focusing strategy for the inverse
method of Chaudhuri et al. [9] is an other way for combining the
different forms of chainings within the intuitionistic linear logic.
This approach differs from ours in the sense that the discrimina-
tion of behaviour is based on atoms (i.e., some atoms are processed

2 While the original presentation of the unification by Robinson is purely
algorithmic, Huet later showed it can be viewed as a forward reasoning [20].

backward, others forward), while in our framework, it is based on
implications (i.e., some implications are handled backward, others
forward).

In the context of theorem proving, the Prolog implementation of
the model generator SATCHMO [27] allows the combination of the
two forms of reasoning into a logic more restricted than ours. By
default, SATCHMO rules are processed on a forward principal, but
on the other hand, rules in the scope of Horn Logic can be specified
as ordinary Prolog. The basic algorithm is to incrementally search
for forward rules that have a head satisfied by the current state of
the model being constructed, and to incrementally add to the model
the corresponding bodies. Specifically, the system builds the model
by asserting ground facts into the Prolog internal database, and tests
for satisfiability by means of Prolog evaluation over the program,
which consists of the Prolog rules together with the asserted facts.

The model generation algorithm of SATCHMO is not directly
related to the operational semantics presented here, but looks more
like the program completion. Indeed, Theorem 36 ensures that
completable programs have a Tarski model. Further investigations
are required to better understand the relationship between comple-
tion and model generation.

In the context of pure forward chaining provers, the CPUHR
tableaux [3] are an extension with the constraints of the PUHR
tableaux [8], the underlying theoretical foundation of SATCHMO.
In this formalism, the rules correspond to the forward rules without
existential quantification, and are processed in a way similar to the
maximal semantics where the guard entailment check is replaced
by the so-called ∃-unification. ∃-unification differs from entailment
checks in the sense that rather than just answering the question of
whether the built-in store entails a guard, it computes a disjunction
of constraints that represents the set of instances of the store that
imply this guard. Hence, CPUHR tableaux can deal with non-
simple constraint system, but are in general incomplete with respect
to failure.

8. Conclusions
In this article, we have aimed to combine backward and forward
chaining in a CLP framework in a logically complete way to take
advantage of the strengths of each type of chaining. Specifically,
by enforcing the idempotence of both conjunction and disjunction
within states, we have derived from CHR∨ a new class of constraint
logic programming languages. We argue that these new languages
capture both backward chaining, when the programs are read from
right to left, and forward chaining, when the programs are read
from left to right. We have also demonstrated that the least and the
greatest Tarski models of the confluent programs can be captured
by a least and a greatest fixed point, respectively. Based on this, we
have established the completeness of the languages with respect to
answers and accessible constraints.

Acknowledgments
We would like to thank the reviewers for their useful comments.

References
[1] S. Abdennadher and T. W. Frühwirth. On completion of Constraint

Handling Rules. In CP, volume 1520 of LNCS, pages 25–39. Springer,
1998.

[2] S. Abdennadher, T. W. Frühwirth, and H. Meuss. Confluence and
semantics of Constraint Simplification Rules. Constraints, 4(2):133–
165, 1999.

[3] S. Abdennadher and H. Schütz. Model generation with existentially
quantified variables and constraints. In ALP/HOA, volume 1298 of
LNCS, pages 256–272. Springer, 1997.

[4] S. Abdennadher and H. Schütz. Chrv: A flexible query language. In
FQAS, volume 1495 of LNCS, pages 1–14. Springer, 1998.

[5] C. Beeri and R. Ramakrishnan. On the power of magic. In PODS,
pages 269–284. ACM, 1987.

[6] H. Betz and T. W. Frühwirth. Linear-logic based analysis of Constraint
Handling Rules with disjunction. ACM Trans. Comput. Log., 14(1):1,
2013.

[7] M. Bezem and T. Coquand. Automating coherent logic. In LPAR,
volume 3835 of LNCS, pages 246–260. Springer, 2005.

[8] F. Bry and A. H. Yahya. Positive unit hyperresolution tableaux and
their application to minimal model generation. J. Autom. Reasoning,
25(1):35–82, 2000.

[9] K. Chaudhuri, F. Pfenning, and G. Price. A logical characterization
of forward and backward chaining in the inverse method. J. Autom.
Reasoning, 40(2-3):133–177, 2008.

[10] K. L. Clark. Negation as failure. In Logic and Data Bases, pages
293–322, 1977.

[11] G. J. Duck. SMCHR: Satisfiability modulo Constraint Handling Rules.
TPLP (ICLP’12 Special Issue), 12(4-5):601–618, 2012.

[12] F. Fages, P. Ruet, and S. Soliman. Linear concurrent constraint pro-
gramming: Operational and phase semantics. Inf. Comput., 165(1):14–
41, 2001.

[13] T. W. Frühwirth. Constraint Handling Rules. Cambridge University
Press, 2009.

[14] R. Haemmerlé. Diagrammatic confluence for Constraint Handling
Rules. TPLP (ICLP’12 Special Issue), 12(4-5):737–753, 2012.

[15] R. Haemmerlé. On the confluence of analytical semantics of CHR.
Technical Report CLIP-2/2014.0, CLIP Lab, 2014.
http://cliplab.org/papers/HaemmerleCLIP14.pdf

[16] R. Haemmerlé and F. Fages. Abstract critical pairs and confluence
of arbitrary binary relations. In RTA, volume 4533 of LNCS, pages
214–228. Springer, 2007.

[17] R. Haemmerlé, P. López-Garcı́a, and M. V. Hermenegildo. CLP
projection for Constraint Handling Rules. In PPDP, pages 137–148.
ACM, 2011.

[18] P. V. Hentenryck, V. A. Saraswat, and Y. Deville. Design, implemen-
tation, and evaluation of the constraint language cc(fd). J. Log. Pro-
gram., 37(1-3):139–164, 1998.

[19] J. S. Hodas and D. Miller. Logic programming in a fragment of
intuitionistic linear logic. Inf. Comput., 110(2):327–365, 1994.

[20] G. Huet. Résolution d’équations dans des langages d’ordre
1, 2, . . . , ω. PhD thesis, Université Paris VII, 1976.

[21] J. Jaffar and J.-L. Lassez. Constraint logic programming. In POPL,
pages 111–119. ACM Press, 1987.

[22] J. Jaffar, M. J. Maher, K. Marriott, and P. J. Stuckey. The semantics of
constraint logic programs. J. Log. Program., 37(1-3):1–46, 1998.

[23] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint query
languages. J. Comput. Syst. Sci., 51(1):26–52, 1995.

[24] J. Lloyd. Foundations of Logic Programming. springer, 1987.
[25] P. López, F. Pfenning, J. Polakow, and K. Watkins. Monadic concur-

rent linear logic programming. In PPDP, pages 35–46. ACM, 2005.
[26] M. J. Maher. Logic semantics for a class of committed-choice pro-

grams. In ICLP, pages 858–876. MIT Press, 1987.
[27] R. Manthey and F. Bry. Satchmo: A theorem prover implemented in

prolog. In CADE, volume 310 of LNCS, pages 415–434. Springer,
1988.

[28] K. Marriott and P. J. Stuckey. Programming with Constraints: an
Introduction. MIT Press, 1998.

[29] F. Raiser, H. Betz, and T. W. Frühwirth. Equivalence of CHR states
revisited. In CHR, Report CW 555, pages 34–48. Kath. Univ. Leuven,
2009.

[30] R. Ramakrishnan. Magic templates: A spellbinding approach to logic
programs. J. Log. Program., 11(3&4):189–216, 1991.

[31] J. A. Robinson. A machine-oriented logic based on the resolution
principle. J. ACM, 12(1):23–41, 1965.

[32] V. A. Saraswat and M. C. Rinard. Concurrent constraint programming.
In POPL, pages 232–245. ACM Press, 1990.

[33] V. A. Saraswat, M. C. Rinard, and P. Panangaden. Semantic founda-
tions of concurrent constraint programming. In POPL, pages 333–352.
ACM Press, 1991.

[34] B. Sarna-Starosta and C. R. Ramakrishnan. Compiling Constraint
Handling Rules for efficient tabled evaluation. In PADL, volume 4354
of LNCS, pages 170–184. Springer, 2007.

http://cliplab.org/papers/HaemmerleCLIP14.pdf

	Introduction
	The General Framework
	States
	Programs
	Analytical Operational semantics
	State subsumption, state equivalence
	Analytical Operational Semantics
	Logical Soundness

	Backward Models
	Minimal Operational Semantics
	Inductive Semantics
	Inductive Semantics w.r.t. Constraint Models
	Inductive Semantics w.r.t. the Constraint Theory
	Relating Inductive Semantics

	Forward Models
	Maximal Operational Semantics
	Coinductive Semantics
	Coinductive Semantics w.r.t. Constraint Models
	Coinductive Semantics w.r.t. the Constraint Theory
	Relating Coinductive Semantics

	Combining Chainings
	Confluence
	Completeness of Answers
	Completeness of Accessible Constraints

	Toward Implementation
	Solution-Oriented Implementation
	Satisfiability-Oriented Implementation

	Related Work
	Conclusions

