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Abstract
Automated inductive reasoning for term rewriting has been ex-
tensively studied in the literature. Classes of equations and term
rewriting systems (TRSs) with decidable inductive validity have
been identified and used to automatize the inductive reasoning. We
give procedures for deciding the inductive validity of equations in
some standard TRSs on natural numbers and lists. Contrary to pre-
vious decidability results, our procedures can automatically decide
without involving induction reasoning the inductive validity of ar-
bitrary equations for these TRSs, that is, without imposing any syn-
tactical restrictions on the form of equations. We also report on the
complexity of our decision procedures. These decision procedures
are implemented in our automated provers for inductive theorems
of TRSs and experiments are reported.

Categories and Subject Descriptors F.3.1 [Specifying and Ver-
ifying and Reasoning about Programs]: Mechanical verification;
F.4.1 [Mathematical Logic]: Mechanical theorem proving; I.2.3
[Deduction and Theorem Proving]: Deduction; F.4.2 [Grammars
and Other Rewriting Systems]: Decision problems

Keywords Inductive Theorems, Term Rewriting Systems, Deci-
sion Procedure, Initial Algebra

1. Introduction
Inductive reasoning on recursively defined data structures is ubiq-
uitous in the verification of formal specifications and software. In
equational logic, the properties to be checked are formalized as in-
ductive theorems of term rewriting systems (TRSs for short). It is
known that the methods for automatically proving inductive theo-
rems of TRSs easily diverge, the construction of effective inductive
theorem provers still remaining a hard challenge [15].

In [21], Kapur and Subramaniam initiated the problem of identi-
fying classes of conjectures and TRSs for which automated induc-
tive proof methods provide decision procedures. More precisely,
they gave syntactic conditions on structure of (recursive) function
definitions and of conjectures, and showed that if one runs a (pre-
fixed) implicit induction method in a (prefixed) particular strat-
egy for any conjecture and TRS satisfying these conditions, then it
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never diverges and positive/negative answer is found always. This
approach has been extended with other authors to more general
TRSs and classes of conjectures in [11–14, 23].

Our work is motivated by strengthening the power of automated
inductive reasoning, by invoking such decision procedures for in-
ductive theorems, inside automated induction provers such as the
authors’ [2, 28]. It is well accepted that, often, a key ingredient
of successful induction reasoning is the use of subsidiary lemmas
[15], and thus various methods for automatically generating lem-
mas have been inspected [3, 26, 31, 32]. But, as one might expect,
lemma generation methods often generate many incorrect conjec-
tures. Even if decision procedures are only effective for restricted
subclasses, and even if the given conjecture and TRS do not fall in-
side the scope of these classes, decision procedures could be helpful
for solving these lemma candidates, often automatically generated
while searching a successful inductive reasoning.

The decidability results obtained by the approach mentioned
above, however, turned out to be not very helpful for this purpose.
This is because usually conjectures satisfying the syntactic condi-
tions of decision procedures can already be proved solely by the
automated induction provers, as these decision procedures and the
automated induction provers are basically based on similar induc-
tion methods. This motivates us to investigate different approaches
for obtaining classes of equations and TRSs with decidable induc-
tive validity.

In this paper, we propose a new approach for deciding inductive
theorems of TRSs. Our essential idea is to use the validity in the
initial algebras of TRSs, instead of the validity guaranteed by
the existence of inductive proofs. For equations and TRSs, it is
known that the inductive validity and the validity in initial algebras
coincide. Thus, if we can decide the validity in initial algebras of
TRSs, then we get a decision procedure for inductive theorems
of TRSs. Furthermore, this approach is completely different from
finding induction proofs and it does not suffer from the weakness
of the Kapur and Subramaniam’s approach when used inside the
general automated induction proving methods.

Our approach seems very natural but, at the best of our knowl-
edge, such approach for proving inductive theorems has not been
investigated, albeit the usability of decidable arithmetic theories for
building induction schemes has been investigated in [8, 20]. An ob-
vious weakness of our approach is that it works only for specific
TRSs. On the other hand, our decision procedures impose no syn-
tactical conditions on the equations and do not require induction
reasoning, contrary to the known decision procedures for inductive
theorems. It may be also considered as a weakness that our ap-
proach does not provide induction proofs, which may be helpful to
give a strategy for constructing proofs in formal proof systems such
as Isabelle/HOL [24]. On the other hand, our approach may have
a similarity to the normalization by evaluation technique, which



accomplishes the syntactic goal (normalization) using semantics
(evaluation).

Because of the nature of our approach, our decision procedures
consist in checking the validity of equations in some models of
TRSs, i.e. in algebras. Hence, our decision procedures presented
can be fallen in the more general category of automated proving
methods. Naturally, the decidability of Presburger arithmetic (PA)
turned out to be very useful. In fact, one of our decidability results
is subsumed by the one using encoding to PA formulas theoreti-
cally. Throughout the paper, we also explain when known methods
for proving the validity of (initial) algebras are available—but we
would stress here that our central idea is rather not the introduction
of the decision procedures for these algebras, but their application
to obtain decision procedures for inductive theorems.

The rest of the paper is organized as follows. Section 2 covers
preliminaries. In Section 3, we give an exponential procedure for
deciding the inductive validity of the TRS consisting of the addi-
tion and multiplication on natural numbers. Then, we extend our
decision procedure by incorporating some standard list functions
such as append, reverse and length in Section 4. In Section 5, we
present some decision procedures for the inductive theorems of the
TRS with max and min functions on natural numbers. In Section 6,
we report on the implementation and experiments. Section 7 con-
cludes. Some of proofs have been put in the appendix.

2. Preliminaries
We assume basic familiarity with term rewriting and semantics of
equational logic [5, 19].

A many-sorted signature Σ = 〈S,F〉 consists of the set S of
sorts and the set F of many-sorted function symbols; f : α1 ×
· · · × αn → α0, with αi ∈ S and i, n ≥ 0, denotes the signature
of a function symbol f ∈ F . If S is a singleton set, say {α},
then the many-sorted signature is called a first-order signature.
In this case, α1 × · · · × αn → α0 is abbreviated by n, and
f : α1 × · · · × αn → α0 by f (n).

The S-sorted variables (or variables) are V =
⊎
α∈S V

α, where
each Vα is disjoint from the others. The set T(Σ,V)α of Σ-terms
(or terms) of sort α ∈ S is inductively defined by (1) Vα ⊆
T(Σ,V)α and (1) if f : α1 × · · · × αn → α ∈ F and ti ∈
T(Σ,V)αi for i = 1, . . . , n, then f(t1, . . . , tn) ∈ T(Σ,V)α.
The set of terms is given by T(Σ,V) =

⋃
α∈S T(Σ,V)α. The

set of variables (function symbols) in a term t is denoted by V(t)
(F(t), respectively). A term t is said to be ground if V(t) = ∅.
We denote an empty sequence by ε, and the positions in a term t,
denoted by Pos(t), by sequences of natural numbers. The symbol at
a position p ∈ Pos(t) is denoted by t(p), the subterm at a position
p ∈ Pos(t) by t|p, and the term replacing t|p with a term s of
the same sort by t[s]p. A context is a term t possibly containing
holes �. The term obtained from a context C by replacing the
holes with terms s1, . . . , sn of appropriate sort from left to right
is denoted by C[s1, . . . , sn]. A substitution is a finite mapping
σ : V → T(Σ,V) such that (1) dom(σ) = {x ∈ V | σ(x) 6= x} is
finite and (2) x ∈ Vα implies σ(x) ∈ T(Σ,V)α. Each substitution
is identified with its homomorphic extension T(Σ,V)→ T(Σ,V).
A substitution is said to be ground if σ(x) is ground for any
x ∈ dom(σ). Ground substitutions will be subscripted by g, for
example θg . We write tσ for σ(t) and call it an instance of t. It is
a ground instance if tσ is ground. We assume that when we write
tσg , tσg is a ground instance, i.e., V(t) ⊆ dom(σg).

A Σ-equation (or equation) s ≈ t is a pair of Σ-terms having
the same sort. A Σ-equation l ≈ r satisfying V(r) ⊆ V(l), l /∈ V
is called a Σ-rewrite rule (or rewrite rule), in which case, l ≈ r
may be written as l → r. A term rewriting system (TRS for short)
is a finite set of rewrite rules. Let R be a TRS. If l → r ∈ R,

we write s →R t if there exist p ∈ Pos(s) and substitution σ
such that s|p = lσ and s[rσ]p = t. We call s →R t a rewrite
step (from s to t). The reflexive transitive (equivalence) closure of
→R is denoted by ∗→R ( ∗↔R, respectively). A term s is said to be
R-normal if s →R t for no term t. The set of R-normal terms
is denoted by NF(R). If s ∗→R t and t ∈ NF(R), then t is said
to be the R-normal form of s. A TRS R is terminating if →R is
well-founded; R is confluent if ∗←R ◦

∗→R ⊆
∗→R ◦

∗←R; R is
convergent if it is terminating and confluent. If R is a convergent
TRS, any term s has a uniqueR-normal form, denoted by s↓R. Let
D = {l(ε) | l → r ∈ R}. A TRSR is sufficiently complete if, for
any ground term t there exists a ground term s such that t ∗↔R s
andF(s)∩D = ∅. The subscriptRwill be omitted if no confusion
arises.

The equation s ≈ t is an inductive theorem of a TRSR, denoted
by R |=ind s ≈ t, if sθg

∗↔R tθg , for any ground substitution
θg . Extended to any set E of equations, we write R |=ind E if
R |=ind s ≈ t, for all s ≈ t ∈ E.

Given a many-sorted signature Σ = 〈S,F〉, a Σ-algebra is a
pair A = 〈〈Aα〉α∈S , 〈fA〉f∈F 〉 of tuples where Aα (α ∈ S) are
mutually disjoint, and fA is a mapping Aα1 × · · ·×Aαn → Aα0 ,
for each f : α1 × · · · × αn → α0 ∈ F . The set A =

⊎
α∈S A

α

is called the carrier set of the Σ-algebra A and denoted by |A|.
If S = {α1, . . . , αm} and F = {f1, . . . , fk}, A is written like
〈Aα1 , . . . , Aαm ; fA1 , . . . , f

A
k 〉. The Σ-term algebra is a Σ-algebra

A = 〈〈Aα〉α∈S , 〈fA〉f∈F 〉 given by Aα = T(Σ,V)α for each
α ∈ S and fAi (s1, . . . , sn) = fi(s1, . . . , sn), for any fi ∈ F .
The Σ-term algebra is denoted by TΣ(V). Similarly, we can define
a ground Σ-term algebra as TΣ(∅), which will be denoted by TΣ.

A valuation on a Σ-algebra A is a tuple ρ = 〈ρα〉α∈S of
mappings ρα : Vα → Aα. We abbreviate ρα(x) (with x ∈ Vα) as
ρ(x). Given a many-sorted signature Σ = 〈S,F〉 and a Σ-algebra
A = 〈〈Aα〉α∈S , 〈fA〉f∈F 〉, we define the interpretation [[t]]A,ρ
(which is abbreviated as [[t]]ρ for brevity) of a Σ-term t on A w.r.t.
a valuation ρ on A like this: [[x]]ρ = ρ(x) and [[f(t1, . . . , tn)]]ρ =
fA([[t1]]ρ, . . . , [[tn]]ρ). It is easily shown that [[t]]ρ ∈ Aα, for each
t ∈ T(Σ,V)α. A Σ-equation s ≈ t is valid on a Σ-algebra A
(denoted by A |= s ≈ t) if [[s]]ρ = [[t]]ρ, for any valuation ρ on A.
For set E of equations, A |= E is defined by A |= s ≈ t, for all
s ≈ t ∈ E.

Let A = 〈〈Aα〉α∈S , 〈fA〉f∈F 〉, B = 〈〈Bα〉α∈S , 〈fB〉f∈F 〉
be Σ-algebras. A Σ-homomorphism σ from A to B is a tu-
ple σ = 〈σα〉α∈S of mappings σα : Aα → Bα such that
σα(fA(a1, . . . , an)) = fB(σα1(a1), . . . , σαn(an)), for each f :
α1 × · · · × αn → α ∈ F . If S = {α} then σ is identified with
σα. Two Σ-algebras A and B are isomorphic (denoted by A ∼= B)
if there exists a Σ-homomorphism σ consisting of bijective map-
pings. Isomorphic Σ-algebras can be often identified.

Let Σ = 〈S,F〉 be a signature andA = 〈〈Aα〉α∈S , 〈fA〉f∈F 〉
a Σ-algebra. An equivalence relation∼ onA is said to be a congru-
ence (onA) if (1) a ∼ b implies a, b ∈ Aα for some α ∈ S, and (2)
for any f ∈ F and 1 ≤ i ≤ n, ai ∼ bi implies fA(a1, . . . , an) ∼
fA(b1, . . . , bn). We denote the ∼-equivalence class of a ∈ A
by [a]∼. If ∼ is a congruence on A then we obtain its quo-
tient Σ-algebra A/∼ = 〈〈(A/∼)α〉α∈S , 〈fA/∼〉f∈F 〉 by defin-
ing (A/∼)α = {[a]∼ | a ∈ Aα} and fA/∼([a1]∼, . . . , [an]∼) =
[fA(a1, . . . , an)]∼.

Let K be a class of Σ-algebras. A Σ-algebraA is said to be ini-
tial inK if, for any B ∈ K, there exists a unique Σ-homomorphism
A → B. The initial algebras are unique up to isomorphism. Let
R be a TRS, and K be the class of Σ-algebras satisfying R, i.e.,
K = {A | A |= R}. Then the quotient ground Σ-term algebra
TΣ/

∗↔R is initial in K, which is called the initial Σ-algebra ofR,



and denoted by IR. Validity on initial algebras and inductive theo-
rems correspond in the following way.

PROPOSITION 2.1 (e.g., [19]). Let R be a TRS over signature Σ
and s, t ∈ T(Σ,V). An equation s ≈ t is an inductive theorem of
R iff it is valid in the initial Σ-algebra ofR.

3. Deciding Inductive Theorems on Natural
Numbers with Addition and Multiplication

In this section, we consider a first-order signature Σ(×,+,s,0) =

〈{N},F(×,+,s,0)〉, where F(×,+,s,0) = {×(2),+(2), s(1), 0(0)}.
Let R(×,+) be the following TRS over Σ(×,+,s,0) that defines the
multiplication and addition on natural numbers encoded by 0 and
the successor function s.

R(×,+) =


+(0, y) → y
+(s(x), y) → s(+(x, y))
×(0, y) → 0
×(s(x), y) → +(×(x, y), y)


We present a decision procedure for R(×,+) |=ind s ≈ t with
s, t ∈ T(Σ(×,+,s,0),V).

Let N(×,+,s,0) = 〈N;×N,+N, sN, 0N〉 be a Σ(×,+,s,0)-algebra,
where N is the set of natural numbers, ×N and +N are multiplica-
tion and addition on natural numbers, respectively, and sN(n) =
n+ 1 and 0N = 0.

A key fact of our decision procedure is the following.

LEMMA 3.1. The initial Σ(×,+,s,0)-algebra of R(×,+) is isomor-
phic to N(×,+,s,0).

Let us next consider a first-order signature Σ(×,+,1,0) =

〈{N},F(×,+,1,0)〉, where F(×,+,1,0) = {×(2),+(2), 1(0), 0(0)}.
The sets of natural numbers and integers equipped with the usual
operations of multiplication, addition, 1 and 0 form Σ(×,+,1,0)-
algebras 〈N;×,+, 1, 0〉 and 〈Z;×,+, 1, 0〉, which will be abbre-
viated as N and Z, respectively, in what follows.

For Σ(×,+,1,0)-algebra K = 〈|K|;×,+, 1, 0〉, the carrier
set |K| will be identified with K. Let Σ(×,+,1,0)-algebra K =
〈|K|;×,+, 1, 0〉 be commutative ring. A zero ring is a ring with
a singleton carrier set where we have 0 = 1. A nonzero commuta-
tive ring K is said to be an integral domain if a × b 6= 0 for any
a, b ∈ K such that a 6= 0 and b 6= 0.

The polynomial ring over a commutative ring K and inde-
terminates x1, . . . , xn is denoted by K[x1, . . . , xn]. Elements of
K[x1, . . . , xn] are called K-polynomials; each element has its

canonical expression C1x
m1

1
1 · · ·xm

1
n

n + · · · + Ckx
mk

1
1 · · ·xm

k
n

n ,
where Ci ∈ K \ {0} and each tuple (mi

1, . . . ,m
i
n) ∈ Nn is

distinct, for all 1 ≤ i ≤ k. (Here, we use the usual abbrevia-
tion of multiplication.) The set K[x1, . . . , xn] forms an integral
domain with the usual multiplication and addition operations on
K-polynomials, 1 and 0 from K. For any a1, . . . , an ∈ K and
any ϕ ∈ K[x1, . . . , xn], we denote by ϕ(a1, . . . , an) the ele-
ment in K obtained by replacing each xi with ai in the canon-
ical expression of ϕ and applying operations over K according
to the canonical expression. For example, if we take the ring
K = Z of integers and ϕ = 2x2y + 3xy2 + 1 ∈ Z[x, y] then
ϕ(1, 1) = 2 × 12 × 1 + 3 × 1 × 12 + 1 = 6 ∈ Z. For any
a1, . . . , an ∈ K, the mapping ϕ 7→ ϕ(a1, . . . , an) is a ring homo-
morphism K[x1, . . . , xn]→ K.

For each Σ(×,+,1,0)-algebra K = 〈|K|;×,+, 1, 0〉, we define
its counterpart Σ(×,+,s,0)-algebra K◦ = 〈|K|;×,+, s◦, 0〉 by
putting s◦(x) = x + 1. Then, clearly N◦ ∼= N(×,+,s,0) and
Z◦ ∼= Z(×,+,s,0). The formal polynomial (|t|)K of t over the
indeterminates x1, . . . , xn is an element in K[x1, . . . , xn] defined

inductively as (|×(t1, t2)|)K = (|t1|)K × (|t2|)K , (|+(t1, t2)|)K =
(|t1|)K + (|t2|)K , (|s(t)|)K = (|t|)K + 1, (|0|)K = 0 and (|xi|)K =
xi. If obvious, the subscript K of (|t|)K is omitted. Note that
(|s|)(a1, . . . , an) ∈ K for any a1, . . . , an ∈ K.

LEMMA 3.2. Let K be a commutative ring, s ∈
T(Σ(×,+,s,0), {x1, . . . , xn}), and (|s|)K the formal polyno-
mial of s over the indeterminates x1, . . . , xn. Then, for any
valuation ρ on K◦, we have [[s]]K◦,ρ = (|s|)K(ρ(x1), . . . , ρ(xn)).

The correctness of our decision procedure is guaranteed by the
following basic property on polynomials.

PROPOSITION 3.3 (e.g., [33]). Let K be an integral domain and
ϕ,ψ ∈ K[x1, . . . , xn]. Suppose that there exist infinite sets
M1, . . . ,Mn ⊆ K such that ϕ(a1, . . . , an) = ψ(a1, . . . , an),
for any a1 ∈M1, . . . , an ∈Mn. Then, ϕ = ψ.

Since Z is an integral domain and N ⊆ Z is infinite, we have

LEMMA 3.4. Suppose s, t ∈ T(Σ(×,+,s,0),V) and V(s)∪ V(t) ⊆
{x1, . . . , xn}. Let (|s|), (|t|) ∈ Z[x1, . . . , xn] be formal polynomi-
als of s, t over the indeterminates x1, . . . , xn, respectively. Then
N(×,+,s,0) |= s ≈ t iff (|s|) = (|t|).

THEOREM 3.5. It is decidable in exponential time for given s, t ∈
T(Σ(×,+,s,0),V) whether the equation s ≈ t is an inductive theo-
rem ofR(×,+).

Proof: From Proposition 2.1 and Lemma 3.1, it suffices to show
N(×,+,s,0) |=ind s ≈ t is decidable in exponential time. Hence, by
Lemma 3.4, it remains to give an exponential procedure to decide
(|s|)Z = (|t|)Z for given s, t ∈ T(Σ(×,+,s,0),V). First we translate
s ∈ T({0, s,+,×},V) to ŝ ∈ T({+,×} ∪ N,V) by replacing
every subterm sn(t) such that t(ε) 6= s with +(t, n) recursively,
and eliminating 0. Clearly, the translation from s to ŝ can be done
inO(|s|), and we have |ŝ| ≤ 2× |s|, where | · | is the size operator.
Let a monomial expression be 〈n, {x1, . . . , xp}m〉, where n, p ∈ N
and {x1, . . . , xp}m is a multiset of variables. Then one can com-
pute the list Mono(ŝ) of monomial expressions from ŝ recur-
sively like this: Mono(x) = [〈1, {x}m〉]; Mono(n) = [〈n, {}m〉];
Mono(+(u1, u2)) = Mono(u1)@Mono(u2), where @ is the con-
catenation operator for lists; Mono(×(u1, u2)) = [〈n × m,N ]
M〉 | 〈n,N〉 ∈ Mono(u1), 〈m,M〉 ∈ Mono(u2)]. Clearly this
computation can be done in O(2|ŝ|) and |Mono(ŝ)| is O(2|ŝ|). Fi-
nally, check whether Mono(ŝ) and Mono(t̂) denote the same for-
mal polynomial, i.e.,

∑
{n | 〈n,N〉 ∈ Mono(ŝ)} =

∑
{m |

〈m,N〉 ∈ Mono(t̂)}, for each N such that 〈n,N〉 ∈ Mono(ŝ) ∪
Mono(t̂) for some n. This can be done in O((|Mono(ŝ)| +
|Mono(t̂)|)2). Thus the overall procedure can be done in exponen-
tial time. �

The complexity of derivations in an equational proof system for
showing the identity of two formal polynomials has been studied
in [18]. Randomized algorithms for effectively checking the iden-
tity of formal polynomials have been studied, e.g., in [9, 25]. Thus,
Theorem 3.5 may be folklore but we could not find any literature
which reports on this. It is also known that even if we incorporate
the exponential function, the validity of equations on natural num-
bers is decidable [10]. However, the underlying decision procedure
given in [16], which checks that an equation is valid for all values
lower than some (calculated) upper bounds, can be hardly used in
practice (hence, to be used by inductive theorem provers).

EXAMPLE 3.6. Let s = ×(s(x), s(y)) and t = +(s(+(y,
x)),×(y, x)) Then we obtain (|s|) = (x + 1) × (y + 1) and
(|t|) = ((x + y) + 1) + (y × x). Since (x + 1) × (y + 1) =
xy + x + y + 1 = ((x + y) + 1) + (y × x), we conclude from
Theorem 3.5 thatR(×,+) |=ind s ≈ t is valid.



Let Σ(+,s,0) = 〈{N},F(+,s,0)〉, where F(+,s,0) = {+(2), s(1),

0(0)}, and R(+) = {l → r ∈ R(×,+) | l(ε) = +}. It is also easy
to see the following.

THEOREM 3.7. It is decidable in polynomial time whether for
given s, t ∈ T(Σ(+,s,0),V) the equation s ≈ t is an inductive
theorem ofR(+).

From the perspective of deciding the validity on natural num-
bers, the above results let us think that the situation is much nicer
for equations than for general first-order formulas: for an arbi-
trary first-order formula ϕ over Σ(×,+,s,0), N(×,+,s,0) |= ϕ (Peano
arithmetic) is undecidable, and even for the one over the signature
Σ(+,s,0), the complexity of deciding N(+,s,0) |= ϕ (PA) is doubly
exponential (e.g. [17]).

In fact, an exponential-time decision procedure for checking the
validity of universal PA formulas is known [6, 27], and one can use
this to decide N(+,s,0) |= s ≈ t1.

Similar to the Peano arithmetic case, one may be tempted
to expect deciding the validity of equations on natural num-
bers is often decidable—but it is not true; in fact, extending
N(×,+,s,0) with a simple function is enough to make the induc-
tive validity of equations undecidable. This follows from the well-
known result on the Hilbert 10th Problem [22]: it is undecid-
able whether ∃a1, . . . , an ∈ Z. ϕ(a1, . . . , an) = 0 for given
ϕ ∈ Z[x1, . . . , xn]. We now explain this, as the undecidability of
inductive theorems seems to be folklore which we could not find in
the literature.

Let us consider a first-order signature Σ(eq,×,+,s,0) =

〈{N}, {eq(2)} ∪ F(×,+,s,0)〉. Let R(eq,×,+) be the following TRS
over Σ(eq,×,+,s,0).

R(eq,×,+) = R(×,+) ∪


eq(0, 0) → s(0)
eq(s(x), 0) → 0
eq(0, s(x)) → 0
eq(s(x), s(y)) → eq(x, y)


In the proof of Theorem 3.5, we showed that the equality of two for-
mal polynomials (|s|) and (|t|) is decidable, for all natural numbers
(i.e. (|s|) = (|t|)). The idea here is to use the fact that it is unde-
cidable whether (|s|) and (|t|) are different for all natural numbers.
By the additional eq-rules, this problem can be encoded as whether
eq(s, t) ≈ 0 is an inductive theorem.

PROPOSITION 3.8 (Toyama [30]). It is undecidable whether for
given s, t ∈ T(Σ(eq,×,+,s,0),V) the equation s ≈ t is an inductive
theorem ofR(eq,×,+).

4. Deciding Inductive Theorems on Lists of
Natural Numbers

In this section, we extend the decidability results of pre-
vious section to lists of natural numbers. For this, we
assume a set F(len,rev,@,×,+,::,nil,s,0) = F(×,+,s,0) ∪
{lenL→N , revL→L,@L×L→L, ::N×L→L, nilL} of func-
tion symbols and consider the many-sorted signature
Σ(len,rev,@,×,+,::,nil,s,0) = 〈{N,L},F(len,rev,@,×,+,::,nil,s,0)〉.
We define the following TRS R(len,rev,@,×,+) over
Σ(len,rev,@,×,+,::,nil,s,0) that encodes append, reverse and length
functions on lists of natural numbers, where nil and :: are the list

1 Note that, as implied from the definition of the interpretation, N(+,s,0) |=
s ≈ t should be understood as N(+,s,0) |= ∀x1, . . . , xn. s ≈ t, where
{x1, . . . , xn} = V(s) ∪ V(t).

constructors:R(len,rev,@,×,+) =

R(×,+) ∪



@(nil, ys) → ys
@(::(x, xs), ys) → ::(x,@(xs, ys))
rev(nil) → nil
rev(::(x, xs)) → @(rev(xs), ::(x, nil))
len(nil) → 0
len(::(x, xs)) → s(len(xs))


We are now going to present a procedure to decide whether
R(len,rev,@,×,+) |=ind s ≈ t for given terms s, t ∈
T(Σ(len,rev,@,×,+,::,nil,s,0),V). In the following, we will of-
ten abbreviate the subscripts (len, rev,@,×,+, ::, nil, s, 0) and
(len, rev,@,×,+) as (len, . . .).

Let Σ(::,nil,s,0) = 〈{N,L}, {::N×L→L, nilL, sN→N , 0N}〉 be a
many-sorted signature. Consider a Σ(len,...)-algebra with the set LL

of lists of natural numbers and natural numbers LN as the car-
rier sets: L(len,...) = 〈L; lenL, revL,@L,×L,+L, ::L, nilL, sL, 0L〉
where lenL([ ]) = 0, lenL([a1, . . . , ak]) = k, revL([a1, . . . , ak]) =
[ak, . . . , a1], @L([a1, . . . , ak], [ak+1, . . . , al]) = [a1, . . . , al],
×L(x, y) = x × y, +L(x, y) = x + y, ::L(a0, [a1, . . . , al]) =
[a0, . . . , al], nilL = [ ], sL(x) = x+ 1 and 0L(x) = 0.

Again, a key fact of our decision procedure is the following.

LEMMA 4.1. The initial Σ(len,rev,@,×,+,::,nil,s,0)-algebra of
R(len,rev,@,×,+) is isomorphic to L(len,rev,@,×,+,::,nil,s,0).

We now present a decision procedure for the validity on
L(len,rev,@,×,+).

In the rest of this subsection, L(len,rev,@,×,+,::,nil,s,0) is abbre-
viated as L. In our decision procedure, we consider normal form
defined in terms of the function symbol single instead of ::. The
term single(x) is

interpreted as the singleton list ::(x, nil). Thus we consider a
signature Σ(single,len,rev,@,×,+,::,nil,s,0) = 〈{N,L}, {singleN→L} ∪
F(len,...)〉. We abbreviate {singleN→L}∪F(len,...) asF(single,...) and
Σ(single,len,rev,@,×,+,::,nil,s,0) as Σ(single,...).

Procedure list-check(s,t)

1. Normalize s and t by the following TRS: S(len,rev,::,@) =

@(xs, nil) → xs
@(nil, ys) → ys
::(x, xs) → @(single(x), xs)
rev(nil) → nil
rev(single(x)) → single(x)
rev(rev(xs)) → xs
rev(@(xs, ys)) → @(rev(ys), rev(xs))
len(nil) → 0
len(single(x)) → s(0)
len(rev(xs)) → len(xs)
len(@(xs, ys)) → +(len(xs), len(ys))


Note that S(len,rev,::,@) is convergent and each term has a unique
S(len,rev,::,@)-normal form. In the rest of this section, we will
abbreviate S(len,rev,::,@) as S, and the S(len,rev,::,@)-normal form
of a term u as u↓.
As we will see, if len(u) is a subterm of a S(len,...)-normal
term of sort N then u ∈ VL. To deal with such terms, let
len(VL) = {len(xs) | xs ∈ VL}, and Σ(×,+,s,0,len) =

〈{N,L},F(×,+,s,0) ∪ {lenL→N}〉.
2. Define (elem)-terms and (list)-terms by the following (ex-

tended) BNF.

(elem)-terms vi ::= xs | single(u) | rev(xs)
(list)-terms wi ::= nil | v1 @ · · ·@ vk



where xs ranges over VL, and u ranges over
T(Σ(×,+,s,0,len),V)N . Here, @ is assumed to be associative.
As we will see, s↓, t↓ are either terms in T(Σ(×,+,s,0,len),V)N

(if they have sort N ) or (list)-terms (if they have sort L).

3. Consider a set V ′N of new variables that is bijective to
len(VL). Let δ : len(VL) → V ′N be a bijection. Further-
more, for any u ∈ T(Σ(×,+,s,0,len),V)N , let Abs(u) be the
term in T(Σ(×,+,s,0),VN ∪ V ′N ) obtained by replacing every
len(xs) ∈ len(VL) in u with δ(len(xs)).
If s↓, t↓ have sort N , then check (|Abs(s↓)|) = (|Abs(t↓)|), i.e.
whether Abs(s↓) and Abs(t↓) are the same formal polynomial,
and use Theorem 3.5.

4. Consider now the remaining case when s↓, t↓ have the sort L.
For any (list)-termw, let List(w) be the list of its (elem)-terms,
i.e. if w = nil then List(w) = [ ] and if w = v1 @ · · ·@ vk then
List(w) = [v1, . . . , vk].
Take l1 = List(s↓) and l2 = List(t↓). Then, check l1 and
l2 have equal lengths, and that, for each pairs 〈vi, v′i〉 of i-the
elements of l1 and l2, either vi = v′i ∈ VL, vi = rev(xs) = v′i
for some xs ∈ VL, or vi = single(ui), v

′
i = single(u′i) for

some ui, u′i and (|Abs(ui)|) = (|Abs(u′i)|) holds.

LEMMA 4.2. Let s ∈ T(Σ(single,...),V). (1) If s has sort N then
Abs(s↓) can be computed in polynomial time. (2) If s has sort L
then List(s↓) can be computed in polynomial time.

It is easy to show that B ∪ →S is terminating, where B is the
proper subterm relation. This fact is a basis of the proof of the
following Lemma.

LEMMA 4.3. Let s ∈ T(Σ(single,...),V). (1) If s has sort N then
s↓ ∈ T(Σ(×,+,s,0,len),V)N . (2) If s has sort L then s↓ is a (list)-
term.

Note in the next lemma that it follows from Lemma 4.3 and
T(Σ(len,...),V)N ⊆ T(Σ(single,...),V)N that (1) for any s ∈
T(Σ(len,...),V)N , s↓ ∈ T(Σ(×,+,s,0,len),V)N , and hence Abs(s↓)
is defined, and (2) for any s ∈ T(Σ(len,...),V)L, s↓ is a (list)-term
and thus List(s↓) is defined.

LEMMA 4.4. 1. For s, t ∈ T(Σ(len,...),V)N , L |= s ≈ t iff
N |= Abs(s↓) ≈ Abs(t↓).

2. Let s, t ∈ T(Σ(len,...),V)L, List(s↓) = [u1, . . . , uk] and
List(t↓) = [v1, . . . , vl]. Then L |= s ≈ t iff k = l and for every
i = 1, . . . , k, either (i) ui = vi ∈ VL, (ii) ui = rev(xs) = vi
for some xs ∈ VL, or (iii) ui = single(ûi) and vi = single(v̂i)
with N |= Abs(ûi) ≈ Abs(v̂i).

Now we arrive at the main theorem of this section, claiming the
decidability of inductive validity ofR(len,rev,@,×,+).

THEOREM 4.5. It is decidable in exponential time whether for
given s, t ∈ T(Σ(len,rev,@,×,+,::,nil,s,0),V) the equation s ≈ t is
an inductive theorem ofR(len,rev,@,×,+).

Proof: We first claim list-check(s,t) can be done in ex-
ponential time. If s, t have sort N , then, by Lemma 4.2,
Abs(s↓),Abs(t↓) can be computed in polynomial time. Then, N |=
Abs(s↓) ≈ Abs(t↓) can be checked in exponential time by Theo-
rem 3.5. If s, t have sort L, then, by Lemma 4.2, List(s↓), List(t↓)
can be computed in polynomial time and the size of their elements
isO(s) orO(t). Thus, the condition of Lemma 4.4 can be checked
in exponential time by Theorem 3.5. Thus, list-check(s,t) can
be done in exponential time. The correctness follows from Lem-
mas 4.1 and 4.4 and Proposition 2.1. �

EXAMPLE 4.6. Let s = rev(@(rev(::(+(len(ys), len(xs)),
xs)), ys)) and t = @(rev(ys),@(::(len(@(xs, ys)), xs), nil)).
Our decision procedure for R(len,...) |=ind s ≈ t works as
follows. First, normalize s, t by S(len,...) to obtain List(s↓) =
[rev(ys), single(+(len(ys), len(xs))), xs] and List(t↓) =
[rev(ys), single(+(len(xs), len(ys))), xs]. Next, we compare each
components. Since the first and third components are identi-
cal, it remains to check N |= Abs(+(len(ys), len(xs))) ≈
Abs(+(len(xs), len(ys)). This is done in the procedure presented
in the proof of Theorem 3.5, and ’yes’ is returned as (|+(y, x)|) =
y+x = x+y = (|+(x, y)|). Hence, we conclude from Theorem 4.5
thatR(len,...) |=ind s ≈ t is valid.

We now focus on a fragment of R(len,rev,@,×,+) having a more
efficient decision procedure. For this, we consider a many-sorted
signature Σ(len,rev,@,+,::,nil,s,0) = 〈{N,L},F(len,...) \ {×}〉, and
R(len,rev,@,+) = {l→ r ∈ R(len,rev,@,×,+) | l(ε) 6= ×}.

THEOREM 4.7. It is decidable in polynomial time whether for
given s, t ∈ T(Σ(len,rev,@,+,::,nil,s,0),V) the equation s ≈ t is an
inductive theorem ofR(len,rev,@,+).

5. Deciding Inductive Theorems on Natural
Numbers with Max and Min

In this section, we consider the decidability of inductive theorems
of TRSs for other important functions defined on natural numbers,
namely the maximum max and minimum min functions. In contrast
to the previous sections, our results only cover the cases without
multiplication ×. Also, the complexity of the decision procedures
are exponential if max/min are combined with addition +.

In Section 5.1 we consider the case with both of max and
min, and in Section 5.2 (5.3) we consider the case with only max
(mix, respectively). Our presentation goes from broader classes to
narrower classes.

5.1 Decidability with Max and Min
Let Σ(max,min,+,s,0) = 〈{N},F(max,min,+,s,0)〉 be a first-order sig-
nature, where F(max,min,+,s,0) = {max(2),min(2)} ∪ F(+,s,0). Let
us consider

R(max,min) =



max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))


that encodes the maximum/minimum operations on natural num-
bers, and the TRS R(max,min,+) = R(max,min) ∪ R(+) over
Σ(max,min,+,s,0). It is easy to check that R(max,min,+) is convergent
and sufficiently complete [5].

Let N(max,min,+,s,0) = 〈N;maxN,minN,+N, sN, 0N〉 be a
Σ(max,min,+,s,0)-algebra where the operations are defined in a sim-
ilar way to N(×,+,s,0) with additionally defining maxN and minN

as: maxN(n,m) = n (minN(n,m) = m) if n ≥ m, and
maxN(n,m) = m (inN(n,m) = n, respectively), otherwise.

Again, a key fact of our decision procedure is the following.

LEMMA 5.1. The initial Σ(max,min,+,s,0)-algebra ofR(max,min,+) is
isomorphic to N(max,min,+,s,0).

We now explain that any validity of equations in N(max,min,+,s,0)

can be encoded in that of first-order (universally quantified) PA
formulas. (Universal quantification will be implicit below.)

For this, let consider a formula ϕ of the form x1 ≈
δ1(u1, v1) ∧ · · · ∧ xk ≈ δk(uk, vk) → s ≈ t, where



s, t ∈ T(Σ(max,min,+,s,0),V) and δi ∈ {max,min}, ui, vi ∈
T(Σ(+,s,0),V) for i = 1, . . . , k. Select a subterm occurrence
of δ(u′, v′) in s ≈ t with δ ∈ {max,min} and u′, v′ ∈
T(Σ(+,s,0),V), and the replace this occurrence with a fresh vari-
able z—let the result be s′ ≈ t′. Let the translation Pre be re-
placing ϕ by x1 ≈ δ1(u1, v1) ∧ · · · ∧ xk ≈ δk(uk, vk) ∧ z ≈
δ(u′, v′)→ s′ ≈ t′. Clearly, the translation Pre is terminating and
the final result Pren(ϕ) is of the form x1 ≈ δ1(u1, v1)∧· · ·∧xk ≈
δk(uk, vk) → s ≈ t with s, t ∈ T(Σ(+,s,0),V). Next, replace
each xi ≈ max(ui, vi) in Pren(ϕ) by (ui ≤ vi → xi ≈
vi) ∧ (vi < ui → xi ≈ ui) and xi ≈ min(ui, vi) in Pren(ϕ)
by (ui ≤ vi → xi ≈ ui) ∧ (vi < ui → xi ≈ vi) for each
i = 1, . . . , k. Clearly, the result thus obtained is a PA formula and
the translation preserves validity. Furthermore, the whole transla-
tion can be done in polynomial time. Thus, by the fact that the
validity of universal PA formula2is decidable in exponential time
[6, 27], the following corollary is obtained.

COROLLARY 5.2. It is decidable in exponential time whether for
given s, t ∈ T(Σ(max,min,+,s,0),V) the equation s ≈ t is an
inductive theorem ofR(max,min,+).

In the rest of this subsection, we show another decision pro-
cedure for a subclass of the problems in the hope that the pro-
cedure performs more efficiently experimentally, albeit in expo-
nential time complexity—namely, a decision procedure for the
fragment without addition + and successor function s. Thus, we
present a decision procedure of R(max,min) |=ind s ≈ t for
s, t ∈ T(Σ(max,min,0),V), where Σ(max,min,0) = 〈{N},F(max,min)〉
with F(max,min) = {max(2),min(2), 0(0)} and R(max,min) = {l →
r ∈ R(max,min,+) | l(ε) ∈ {max,min}}.

Let N(max,min,s,0) = 〈N;maxN,minN, sN, 0N〉 be a Σ(max,min,s,0)-
algebra, defined in a similar way to N(max,min,+,s,0). Note here that
the successor function s is necessary to construct N(max,min,s,0).

LEMMA 5.3. The initial Σ(max,min,s,0)-algebra ofR(max,min) is iso-
morphic to N(max,min,s,0).

We are now going to present a decision procedure for
R(max,min) |=ind s ≈ t for s, t ∈ T(Σ(max,min,0),V), where
Σ(max,min,0) = 〈{N}, {max(2),min(2), 0(0)}〉.

Let us denoted by P(X) the powerset of a set X .

Procedure max-min-check(s,t)

1. Normalize s and t by the following TRS: S(max,min) ={
min(max(x, y), z) → max(min(x, z),min(y, z))
min(x,max(y, z)) → max(min(x, y),min(x, z))

}
Note that S(max,min) is convergent and each term has a
unique S(max,min)-normal form. In the rest of this subsection,
s↓S(max,min)

is abbreviated as s↓.

2. We define (min)-terms and (max)-terms by the following BNF.

(min)-terms vi ::= 0 | x | min(v1, v2)
(max)-terms wi ::= v1 | max(w1, w2)

where x ranges over variables. Obviously, s↓, t↓ are (max)-
terms. For each (min)-term v, define a set [v]min ∈ P(V)∪{>}
as follows: [v]min = > if v is a (min)-term containing 0, and
[v]min = V(v), otherwise. For each (max)-term v, define a set
[v]max ⊆ P(V) ∪ {>} as follows: by [v]max = {[v]min} for

2 Note that one has to check the validity of formulas of the form
∀x1, . . . , xk. ψ for quantifier-free ψ, and not that of the form
∃x1, . . . , xk. ψ (satisfiability problem of quantifier-free PA formula),
which is in NP.

(min)-terms v, or by [max(w1, w2)]max = [w1]max ∪ [w2]max ,
otherwise. Compute U = [s↓]max and V = [t↓]max .

3. For each X,Y ∈ P(V) ∪ {>}, define X ⊆◦ Y by X◦ ⊆ Y ◦,
where X◦ = X for X ⊆ V and >◦ = V . For each set
A ⊆ P(V) ∪ {>}, letMin(A) be the set of minimal elements
of A w.r.t. the set inclusion ⊆◦, i.e.

Min(A) = {X ∈ A | ∀Y ∈ A. (Y ⊆◦ X ⇒ X = Y )}

Compute the sets of variables S = Min(U) and T =
Min(V ). Then return ‘yes’ if S = T and ‘no’ otherwise.

LEMMA 5.4. max-min-check(s,t) can be done in exponential
time.

To show the correctness of the procedure, we need some techni-
cal definitions and lemmas. To interpret (min)-terms, we introduce
a function Minρ.

DEFINITION 5.5. For any valuation ρ : V → N, we define Minρ :
{X ⊆ V | X 6= ∅, |X| < ∞} ∪ {>} → N as follows: (1)
Minρ(>) = 0, and (2) Minρ(A) = min{ρ(x) | x ∈ A}, for finite
non-empty A ⊆ V .

Some properties of Minρ follow.

LEMMA 5.6. Let ρ : V → N be a valuation, and
A,B ⊆ V finite non-empty sets. Then, (1) Minρ(A ∪ B) =
min{Minρ(A),Minρ(B)}, and (2) A ⊆ B implies Minρ(B) ≤
Minρ(A).

LEMMA 5.7. Let A,B ∈ {X ⊆ V | X 6= ∅, |X| < ∞} ∪ {>}.
Then A ⊆◦ B implies Minρ(B) ≤ Minρ(A).

The correspondence of the function Minρ and the interpretation
of (min)-terms is expressed like this:

LEMMA 5.8. Let ρ : V → N be a valuation. Then, for any (min)-
term v, Minρ([v]min) = [[v]]ρ.

Next, we introduce a function Maxρ to interpret (max)-terms.

DEFINITION 5.9. Let ρ : V → N be a valuation. For any finite
S ⊆ {X ⊆ V | X 6= ∅, |X| < ∞} ∪ {>}, define Maxρ(S) =
max{Minρ(X) | X ∈ S}.

The correspondence of the function Minρ and the interpretation
of (min)-terms is extended to that of Maxρ and the interpretation
of (max)-terms.

LEMMA 5.10. Let ρ : V → N be a valuation. Then, for any
(max)-term w, Maxρ([w]max ) = [[w]]ρ.

Some properties of Maxρ follow.

LEMMA 5.11. Let ρ : V → N be a valuation. Then, for any
finite non-empty S ⊆ {X ⊆ V | X 6= ∅, |X| < ∞} ∪ {>},
Maxρ(S) = Maxρ(Min(S)).

LEMMA 5.12. Let S, T ⊆ {X ⊆ V | X 6= ∅, |X| < ∞} ∪ {>}
be finite and non-empty. Suppose that S (T ) consists of elements
minimal w.r.t. ⊆◦, i.e. X ⊆◦ Y implies X = Y for any X,Y ∈ S
(for any X,Y ∈ T , respectively). Then S = T iff ∀ρ.Maxρ(S) =
Maxρ(T )

Now we can prove the correctness of the procedure.

LEMMA 5.13. For any s, t ∈ T(Σ(max,min,0),V),
max-min-check(s,t) returns ‘yes’ iff N(max,min,s,0) |= s ≈ t.



Proof: In the following, let us abbreviate N(max,min,s,0) as
N. First, note that we have N |= min(max(x, y), z) ≈
max(min(x, z),min(y, z)) and N |= min(x,max(y, z)) ≈
max(min(x, y),min(x, z)). Thus, N |= s ≈ t iff N |= s↓ ≈ t↓
holds. Thus it remains to show that max-min-check(s,t) returns
‘yes’ iff N |= s↓ ≈ t↓.
(⇒) Suppose max-min-check(s,t) returns ‘yes’. Then, by
definition of the procedure, Min([s↓]max ) = Min([t↓]max ).
Clearly, [s↓]max and [t↓]max are finite and non-empty. Thus,
using Lemmas 5.11 and 5.10, for any valuation ρ : V →
N, [[s↓]]ρ = Maxρ([s↓]max ) = Maxρ(Min([s↓]max )) =
Maxρ(Min([t↓]max )) = Maxρ([t↓]max ) = [[t↓]]ρ. Hence, N |=
s↓ ≈ t↓.
(⇐) Suppose N |= s↓ ≈ t↓. Again, using Lemmas 5.11
and 5.10, we know that, for any valuation ρ : V → N,
Maxρ(Min([s↓]max )) = Maxρ(Min([t↓]max )) holds. Since each
ofMin([s↓]max ) andMin([t↓]max ) consists of elements minimal
w.r.t. ⊆◦, by Lemma 5.12,Min([s↓]max ) =Min([t↓]max ). Thus,
max-min-check(s,t) returns ‘yes’. �

THEOREM 5.14. It is decidable in exponential time whether for
given s, t ∈ T(Σ(max,min,0),V), the equation s ≈ t is an inductive
theorem ofR(max,min).

EXAMPLE 5.15. Let s = max(min(y, 0),max(min(y, z), x))
and t = max(x, min(max(x, y), z)). Then we can es-
tablish that [s↓]max = [s]max = {>, {y, z}, {x}} and
[t↓]max = [max(x,max(min(x, z),min(y, z)))]max =
{{x}, {x, z}, {y, z}}.

max-min-check(s,t) returns ‘yes’, as Min({>, {y, z},
{x}}) = {{y, z}, {x}} = Min({{x}, {x, z}, {y, z}}). Hence,
we conclude from Theorem 5.14 that R(max,min) |=ind s ≈ t is
valid.

5.2 Decidability with Max
In the previous subsection, we considered the case that both of max
and min are presented. In this section, we consider the case that
only max is presented, i.e. decidability of inductive theorems of
R(max,+) = {l→ r ∈ R(max,min,+) | l(ε) ∈ {max,+}}. 3

We first explain a corollary that follows from an existing work.
In [1], an exponential decision procedure for N(max,+,0) |= s ≈ t
for s, t ∈ T(Σ(max,+,0),V) is presented, where N(max,+,0) and
Σ(max,+,0) are given in the obvious way.

We now briefly explain the decision procedure of [1]. Given an
equation s ≈ t of Σ(max,+,0), normalize s, t by the following TRS:

+(max(x, y), z)→ max(+(x, z),+(y, z))
+(z,max(x, y))→ max(+(z, x),+(z, y))
max(x, 0)→ x
max(0, y)→ y


Let s′ ≈ t′ be an arbitrary but fixed result. Let (max)-contexts be
given by the following BNF.

(max)-contexts vi ::= � | max(v1, v2)

Then s′ and t′ are 0 or of the from C[u1, . . . , um] for some
(max)-contexts C and u1, . . . , un ∈ T(Σ(+),V). The case ei-
ther s′ = 0 or t′ = 0 is clear, so we suppose otherwise.
Clearly, C[u1, . . . , um] ≈ C′[u′1, . . . , u

′
n] is valid if and only if

ui ≤ C′[u′1, . . . , u
′
n] is valid for all 1 ≤ i ≤ m and u′j ≤

C[u1, . . . , um] is valid for all 1 ≤ j ≤ n. Thus, it suffices to de-
cide the validity of inequations u ≤ C[v1, . . . , vm], for any (max)-
context C and u, v1, . . . , vn ∈ T(Σ(+), {x1, . . . , xn}). Let the
formal polynomials of u, v1, . . . , vm be (|u|) = c1x1 + · · ·+ cnxn
and (|vi|) = di1x1 + · · · + dinxn (1 ≤ i ≤ m). Corollary 3.17

3 A decision procedure for Min can be built similarly.

of [1] shows that the inequation u ≤ C[v1, . . . , vm] is valid if
and only if there exist the non-negative real numbers λ1, . . . , λm
and γ1, . . . , γn such that

∑
i λi = 1 and, for each j = 1, . . . , n,

(
∑
i dijλi)−γj = cj . The latter is a linear programming problem,

which is known to be solvable in polynomial time.
Thus, the next corollary immediately follows from [1].

COROLLARY 5.16. It is decidable in exponential time whether for
given s, t ∈ T(Σ(max,+,0),V), the equation s ≈ t is an inductive
theorem ofR(max,+).

In the rest of this section, we show that by replacing addition
+ with successor function s, one can obtain a polynomial decision
procedure, i.e.R(max) |=ind s ≈ t is decidable in polynomial time
for s, t ∈ T(Σ(max,s,0),V), where Σ(max,s,0) = 〈{N},F(max,s,0)〉,
F(max,s,0) = {max(2), s(1), 0(0)} and R(max) = {l → r ∈
R(max,min,+) | l(ε) = max}. Note that since N(max,+,0) cannot
encode s and N(max,s,0) cannot encode +, this result does not follow
from Corollary 5.16.

LEMMA 5.17. The initial Σ(max,s,0)-algebra of R(max) is isomor-
phic to N(max,s,0).

We now present a decision procedure for the validity on
N(max,s,0).

Procedure max-check(s,t)

1. Normalize s, t by the following TRS:

S(max) =
{

s(max(x, y))→ max(s(x), s(y))
}

Note that S(max) is convergent and each term has a unique
S(max)-normal form. In the rest of this subsection, s↓S(max)

is
abbreviated as s↓.

2. We define (s)-terms and (max)-terms by the following BNF.

(s)-terms ui ::= x | 0 | s(u1)
(max)-terms vi ::= u1 | max(v1, v2)

where x ranges over variables. Obviously, s↓, t↓ are (max)-
terms. From each (max)-term v, define a set [v] of (s)-terms
by [u] = {u} if u is an (s)-term, [max(v1, v2)] = [v1] ∪ [v2]
otherwise. Compute the sets U = [s↓] and V = [t↓] of (s)-
terms.

3. Define a relation ≺ on (s)-terms by s ≺ t if either (1) sn(u) ≺
sm(u), for some n < m and u ∈ V ∪ {0}, or (2) sn(0) ≺
sm(x), for some n ≤ m and variable x ∈ V . For each set X of
(s)-terms, letMax≺(X) be the set of maximal elements of X
w.r.t. ≺:

Max≺(X) = {s ∈ X | s ≺ t for no t ∈ X}
Compute the sets S =Max≺(U) and T =Max≺(V ) of (s)-
terms. Then return ‘yes’ if S = T and ‘no’ otherwise.

LEMMA 5.18. max-check(s,t) can be done in polynomial
(quadratic) time.

LEMMA 5.19. For any s, t ∈ T(Σ(max,s,0),V), max-check(s,t)
returns ‘yes’ iff N(max,s,0) |= s ≈ t.

THEOREM 5.20. It is decidable in polynomial time whether for
given s, t ∈ T(Σ(max,s,0),V) the equation s ≈ t is an inductive
theorem ofR(max).

EXAMPLE 5.21. Let s = max(s(x), x) and t = max(s(0), s(x)).
Then max-check(s,t) returns ‘yes’, as we have
Max≺([s↓S(max)

]) = Max≺({s(x), x}) = {s(x)} and
Max≺([t↓S(max)

]) = Max≺({s(0), s(x)}) = {s(x)}. Thus,
we conclude from Theorem 5.20 thatR(max) |=ind s ≈ t is valid.



It is not difficult to give a decision procedure and obtain the next
theorem in the similar way to Theorem 5.20.

THEOREM 5.22. It is decidable in polynomial time whether for
given s, t ∈ T(Σ(min,s,0),V) the equation s ≈ t is an inductive
theorem ofR(min).

6. Experiments
The decision procedures of the paper have been implemented in the
SPIKE4 prover [7, 28].

For the experiments, we take into account some categories and
construct collections of conjectures randomly for each category.
Each collection gathers equalities of same inductive validity and
built over one of the following signatures:

• Σ(+,s) and its extension with 0, Σ(+,s,0),
• Σ(×,+,s) and its extension with 0, Σ(×,+,s,0),
• Σ(len,rev,@,×,+,::,nil,s,0) by considering equalities between terms

of list sort,
• Σ(max,min,0),
• Σ(max,s,0) and similarly Σ(min,s,0).

For each category, we excluded trivial equations and equations
whose roots of both sides of the equation is s. All equalities have at
most three distinct variales of each sort and the depth of both sides
is smaller than five. The number of examples widely varies between
each category. Furthermore, since most of the randomly generated
conjectures are not inductive theorems, we have additionally incor-
porated several ad-hoc heuristics to generate a sufficient number of
inductive theorems to reach a target of 100 examples (we failed for
only one category).

The numbers of examples and the summary of experiments are
shown in Table 1. Each test was performed on a PC with one
2.50GHz CPU and 4G of memory. For any information of the form
a(b) in the table, a (resp. b) represents the number of examples that
has (resp. has not) been successfully checked within the 10 seconds.

Our decision procedures successfully solved all these examples,
as shown in the column entitled “SPIKE + direct”. For comparison,
we also tested the examples with SPIKE integrating an incomplete
solver for PA, as previously described in [4, 29]. The figures from
the column entitled “SPIKE + PA (Cor. 5.2)” (resp., “SPIKE +
PA([4])”) give the statistics about the use of the PA solver with
a prior encoding of equalities to PA, according to Corollary 5.2,
(resp., without encoding). In the categories to which our decision
procedures and the PA solver are applicable, the first are 2–6 times
faster; the latter failed at some examples due to lack of additional
resources.

When the decision procedures and the PA solver are disabled,
SPIKE acts as an implicit induction theorem prover, able to per-
form several induction and rewrite steps during a proof session. We
used a unique proof strategy for all tests and no additional lem-
mas (0-knowledge proofs). Apart from the TRS and the conjec-
ture to be proved, we additionally provided a unique precedence
suitable for ensuring the termination of the input TRS. For some
categories, SPIKE inductively proved/disproved most of the exam-
ples, as shown in the column “SPIKE (induction) [28]”. However,
for some categories more than half of the examples have not been
solved or require more than 10s to be solved. A special category,
involving equations over the extended signature Σ(max,min,+,s,0),
helped to better compare with the PA solver. ‘-’ means that the
TRS category cannot be solved by the corresponding SPIKE con-
figuration, hence it matches the values from the last column. We

4 https://code.google.com/p/spike-prover/

can safely conclude that SPIKE has become more effective by in-
corporating our decision procedures.

The collection of examples and details of the experiments are
available on the webpage http://www.nue.riec.tohoku.ac.
jp/tools/experiments/ppdp14/.

7. Conclusion
We have given decision procedures for checking the inductive va-
lidity of equations built over common function symbols defined on
natural numbers and lists. Our results are summarized in Table 2.
In contrast to the line of research from [11–14], our decidability
results do not impose any syntactical conditions on the equations
or induction reasoning albeit specific to some TRSs. Experiments
show that our decision procedures are effective for enhancing in-
ductive theorem provers.

Our strong restriction on TRSs can be slightly relaxed. For ex-
ample, the decidability result forR(×,+) also applies to the follow-
ing variation R′(×,+), which is convergent, sufficiently complete
and has the same initial algebra asR(×,+):

R′(×,+) =


+(x, 0) → x
+(x, s(y)) → +(s(x), y)
×(x, 0) → 0
×(x, s(y)) → +(x,×(x, y))


As future works, we would like to tackle some problems which

are left open in the current contribution: extending the decision
procedure of [1] to equations over Σ(max,+,s,0) and to equations
over Σ(min,+,0), obtaining a decision procedure for equations over
Σ(max,×,+). We also intend to find other standard TRSs for which
our approach works, and how to (semi-)automatically find induc-
tively valid equations that sufficiently characterize the validity in
initial algebras. We also intend to apply our approach for classes of
conditional TRSs and (conditional) equations.
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A. Proofs
Proof: [of Lemma 3.1] First, it is easy to check that R(×,+) is
convergent and sufficiently complete [5]. Hence any ground term
t ∈ T

(
Σ(×,+,s,0)

)
has a unique normal form t↓ ∈ T

(
Σ(s,0)

)
.

Thus the mapping given by ϕ : [t] 7→ t↓ is a bijection
from T

(
Σ(×,+,s,0)

)
/
∗↔R(×,+)

to T
(
Σ(s,0)

)
. Let N(×,+,s,0) =

〈T
(
Σ(s,0)

)
;×N ,+N , sN , 0N 〉 be a Σ(×,+,s,0)-algebra, where op-

erations are given by ×N (s, t) = ×(s, t)↓, +N (s, t) = +(s, t)↓,
sN (t) = s(t) and 0N = 0. Then it is easy to check that ϕ
is a Σ(×,+,s,0)-homomorphism, and thus, IR(×,+)

∼= N(×,+,s,0).
Since N(×,+,s,0) is isomorphic to N(×,+,s,0) via an obvious bijec-
tion {n 7→ sn(0) | n ∈ N}, the claim follows. �

Proof: [of Lemma 3.2] By induction on s. �

Proof: [of Lemma 3.4] (⇒) Suppose N(×,+,s,0) |= s ≈ t.
Then, for any valuation ρ : V → N, we have [[s]]N(×,+,s,0),ρ =
[[t]]N(×,+,s,0),ρ. Since N◦ is a subalgebra of Z◦, it follows that, for
any valuation ρ : V → N, [[s]]Z◦,ρ = [[t]]Z◦,ρ. Hence by Lemma 3.2,
(|s|)Z(a1, . . . , an) = (|t|)Z(a1, . . . , an) for any a1, . . . , an ∈ N.
Since N ⊆ Z is an infinite set and 〈Z;×,+, 1, 0〉 is an integral
domain, we have (|s|) = (|t|) by Proposition 3.3.
(⇐) If (|s|) = (|t|) then (|s|)(a1, . . . , an) = (|t|)(a1, . . . , an)
for any a1, . . . , an ∈ Z. Hence, by Lemma 3.2, [[s]]Z◦,ρ =
[[t]]Z◦,ρ for any valuation ρ on Z◦. In particular, [[s]]N(×,+,s,0),ρ =
[[t]]N(×,+,s,0),ρ for any valuation ρ on N◦, as N(×,+,s,0) ∼= N◦ is a
subalgebra of Z◦. �

Proof: [of Theorem 3.7] As for Theorem 3.5 but taking into
account that the computation of the list of monomial expressions
Mono(ŝ) can be done in O(|ŝ|) if the term ŝ does not contain the
multiplication ×. �

Proof: [of Proposition 3.8] Let us denote by Z+[x1, . . . , xn]
the set of formal polynomials over the indeterminates x1, . . . , xn
with natural number coefficients. First note that ∃a1, . . . , an ∈
Z. ϕ(a1, . . . , an) = 0 iff ∃a1, . . . , an ∈ N. ϕ(δ1a1, . . . , δnan) =
0 for some δ1, . . . , δn ∈ {−1, 1}, where ϕ ∈ Z[x1, . . . , xn]; thus,
it is a corollary of the undecidability of Hilbert’s 10th problem that
it is undecidable whether ∃a1, . . . , an ∈ N. ϕ(a1, . . . , an) = 0
for given ϕ ∈ Z[x1, . . . , xn] (†). For any ϕ ∈ Z[x1, . . . , xn],
there exist ϕp, ϕn ∈ Z+[x1, . . . , xn] such that ϕ = ϕp −
ϕn. Since ∃a1, . . . , an ∈ N. ϕ(a1, . . . , an) = 0 iff
∃a1, . . . , an ∈ N. ϕp(a1, . . . , an) = ϕn(a1, . . . , an), it fol-
lows from (†) that it is undecidable whether ∃a1, · · · , an ∈

N. ϕ(a1, . . . , an) = ψ(a1, . . . , an) for given ϕ,ψ ∈
Z+[x1, . . . , xn] (‡). Let u, v ∈ T(Σ(×,+,s,0),V). It is easy to
check that R(eq,×,+) is convergent and sufficiently complete [5],
and hence R(eq,×,+) |=ind eq(u, v) ≈ 0 iff (|u|)(a1, . . . , an) 6=
(|v|)(a1, . . . , an) for any a1, . . . , an ∈ N. If it is decidable
whether R(eq,×,+) |=ind eq(u, v) ≈ 0, then so is whether
∀a1, . . . , an ∈ N. (|u|)(a1, . . . , an) 6= (|v|)(a1, . . . , an) and so
is ∃a1, . . . , an ∈ N. ϕ(a1, . . . , an) = ψ(a1, . . . , an) for given
ϕ,ψ ∈ Z+[x1, . . . , xn]. This contradicts (‡). �

Proof: [of Lemma 4.1] Similar to Lemma 3.1. Note that it is
easy to check that R(len,rev,@,×,+) is convergent and sufficiently
complete [5]. �

Proof: [of Lemma 4.2] Let s ∈ T(Σ(single,...),V). First, eliminate
all occurrences of :: by the third rule. The size of the term is at
most doubled by this. Then, normalize recursively using len-rules
the outermost subterms of the form len(u) with u /∈ V . Next,
normalize using rev-rules by counting the number k of occurrences
of rev along the path, swapping arguments of @ if k is odd and
eliminating rev. Finally, if s has sort N replace each len(xs) with
δ(len(xs)), else (i.e. if s has sort L) change the final (list)-term to
a list of (elem)-terms by listing up all non-nil (elem)-terms from
left to right. Clearly, Abs(s↓) (or List(s↓)) is obtained, and each
step can be done in O(|s|). Thus overall computation can be done
in polynomial time. �

Proof: [of Lemma 4.3] We show (1) and (2) simultaneously by
Noetherian induction on s w.r.t. B ∪→S .
(1) All cases satisfying s(ε) 6= len are straightforward by the
induction hypothesis. Suppose s = len(ts). By induction hy-
pothesis, ts↓ is a (list)-term. If ts↓ = xs ∈ V then s↓ =
len(xs) ∈ T(Σ(×,+,s,0,len),V)N and the claim follows. Otherwise,
s = len(ts)

∗→S len(ts↓) →S s′ for some s′. Then, by induction
hypothesis, s↓ = s′↓ ∈ T(Σ(×,+,s,0,len),V)N .
(2) We distinguish six cases:

1. s ∈ VL. Then s↓ (= s) is an (elem)-term, which is a (degener-
ated) (list)-term.

2. s = nil. Then s↓ (= s) is a (list)-term.

3. s = ::(t1, t2). Then s →S @(single(t1), t2) = s′. By induc-
tion hypothesis, t1↓ and t2↓ are (list)-terms, so s↓ (= s′↓) is a
(list)-term.

4. s = single(t). Then, by induction hypothesis, t↓ ∈
T(Σ(×,+,s,0),VN ∪ {len(xs) | xs ∈ VL}). Since s↓ =
single(t↓), s↓ is a (list)-term by definition.

5. s = rev(ts). Then by induction hypothesis ts↓ is a (list)-term.
If ts↓ /∈ V then s = rev(ts)

∗→S rev(ts↓)→S s′ for some s′.
By induction hypothesis, s′↓ is a (list)-term, so s↓ is it, too. If
ts↓ ∈ V then, by definition, rev(ts↓) (hence s↓) is a (list)-term.

6. s = @(t1, t2). By induction hypothesis, for each i = 1, 2,
ti↓ = wi is a (list)-term.
We distinguish two cases.

(a) w1 = nil or w2 = nil. Then s ∗→S @(w1, w2) →S s′ for
some s′. The claim follows from s↓ = s′↓ and the induction
hypothesis.

(b) Otherwise, for i = 1, 2, either wi = @(w′i, w
′′
i ),

wi = xs ∈ VL, wi = single(ui) for some ui ∈
T(Σ(×,+,s,0,len),V)N , or wi = rev(xs). In either cases,
@(w1, w2) is a (list)-term.

�



Proof: [of Lemma 4.4] For any l → r ∈ S and valuation ρ on
L, [[l]]ρ = [[r]]ρ. Hence L |= s ≈ s↓ and L |= t ≈ t↓. Thus
L |= s↓ ≈ t↓ iff L |= s ≈ t.
1. Let s, t ∈ T(Σ(len,...),V)N . Let u ∈ T(Σ(×,+,s,0,len),V)N .
Since the length of lists ranges over natural numbers, for any valua-
tion ρ on N, there exists a valuation ρ′ on L such that [[Abs(u)]]ρ =
[[u]]ρ′ and vice versa. Thus, it follows from Lemma 4.3 and
T(Σ(len,...),V)N ⊆ T(Σ(single,...),V)N that if [[s↓]]ρ 6= [[t↓]]ρ then
[[Abs(s↓)]]ρ′ 6= [[Abs(t↓)]]ρ′ for some ρ′, and if [[Abs(s↓)]]ρ 6=
[[Abs(t↓)]]ρ then [[s↓]]ρ′ 6= [[t↓]]ρ′ for some ρ′. Thus the claim fol-
lows.

2. (⇒) If k 6= l, then take a valuation ρ such that ρ(xs) = [0]
for all xs ∈ VL. Then, for any (elem)-term v, [[v]]ρ is a singleton
list, and thus the length of [[s↓]]ρ equals to k and that of [[t↓]]ρ equals
to l. Hence, [[s↓]]ρ 6= [[t↓]]ρ. Next, suppose otherwise, i.e. k = l. We
show if there exists some i such that none of (i), (ii), (iii) holds, then
[[ui]]ρ 6= [[vi]]ρ (and hence [[s↓]]ρ 6= [[t↓]]ρ) holds for some ρ. We
distinguish six cases, where we omit the symmetric case.

1. ui = xs and vi = ys with xs 6= ys. Then it’s easy to see
[[ui]]ρ 6= [[vi]]ρ for some ρ.

2. ui = xs and vi = single(v̂i). Then it suffices to take ρ such
that ρ(xs) = [ ].

3. ui = xs and vi = rev(ys). If xs 6= ys then it’s easy to see
[[ui]]ρ 6= [[vi]]ρ for some ρ. If xs = ys then it suffices to take ρ
such that ρ(xs) = [0, 1], as [[ui]]ρ = [0, 1] 6= [1, 0] = [[vi]]ρ.

4. ui = single(ûi) and vi = single(v̂i). Then we have ûi 6= v̂i
and hence [[ûi]]ρ 6= [[v̂i]]ρ for some ρ by the case (1). This
implies [[ui]]ρ 6= [[vi]]ρ.

5. ui = single(ûi) and vi = rev(xs). Then it suffices to take ρ
such that ρ(xs) = [0, 1].

6. ui = rev(xs) and vi = rev(ys) with xs 6= ys. Then it’s easy
to see [[ui]]ρ 6= [[vi]]ρ for some ρ.

(⇐) Suppose k = l and for each 1 ≤ i ≤ k, either (i), (ii) or (iii)
holds. It suffices to claim L |= ui ≈ vi for all 1 ≤ i ≤ k. Cases (i)
and (ii) are trivial. Case (iii) follows by (1). Hence L |= ui ≈ vi
for all i.

�

Proof: [of Theorem 4.7] Similar to the proof of Theorem 4.5,
using Theorem 3.7 instead of Theorem 3.5. �

Proof: [of Lemma 5.3] Similar to Lemma 3.1. �

Proof: [of Lemma 5.4] Procedure max-min-check(s,t) can be
implemented like this:

1. For a (max)-term u, let Φ(u) be given recursively like this:
Φ(x) = {{x}}, Φ(0) = {{0}}, Φ(min(u, v)) = {X ∪
Y | X ∈ Φ(u), Y ∈ Φ(v)} and Φ(max(u, v)) = Φ(u) ∪
Φ(v). Then it is easy to see Φ(u) = [u↓] for u ∈ {s, t}.
Compute Φ(s) and Φ(t). Clearly, Φ(s) (Φ(t)) can be computed
in O(2|s|) (resp. O(2|t|)), and since Φ(s) is a set of sets of
variables in s, we have |Φ(s)| ≤ 2|s|.

2. Compute Min(Φ(s)) and Min(Φ(t)). This can be done in
O(|Φ(s)|2) + O(|Φ(t)|2).

3. Finally checkMin(Φ(s)) = Min(Φ(t)). This can be done in
O(|Φ(s)| × |Φ(t)|).

Thus the overall computation can be done in O(2(|s|+|t|)). �

Proof: [of Lemma 5.6] (1) This holds, since min(A ∪ B) =
min{min(A),min(B)} holds for any non-empty A,B ⊆ N. (2)
For any non-empty A,B ⊆ N, A ⊆ B implies min(B) ≤

min(A): The case A = B is trivial. Otherwise B = A ∪ C
for some non-empty C, and so, min(A) = min(B ∪ C) =
min{min(B),min(C)} ≤ min(B). The claim follows immedi-
ately from this. �

Proof: [of Lemma 5.7] The case A,B ∈ {X ⊆ V | X 6=
∅, |X| < ∞} follows from Lemma 5.6 (2). If A = >, then
A ⊆◦ B implies B = >. Thus the claim follows trivially. If
B = >, then Minρ(B) = 0, and thus Minρ(B) ≤ Minρ(A) holds
for any A. �

Proof: [of Lemma 5.8] If v contains 0 then, clearly, [[v]]ρ = 0.
Thus, Minρ([v]min) = Minρ(>) = 0 = [[v]]ρ. It remains to show
the case that v does not contain 0. We prove Minρ([v]min) =
[[v]]ρ for any (min)-term v not containing 0 by induction on v. If
v = x ∈ V then Minρ([x]min) = Minρ({x}) = min{ρ(x)} =
ρ(x) = [[x]]ρ. Otherwise v = min(v1, v2), for v1, v2 not contain-
ing 0. As v1, v2 does not contain 0, [min(v1, v2)]min = [v1]min ∪
[v2]min . Hence, by Lemma 5.6 (1) and induction hypothesis, we
have Minρ([min(v1, v2)]min) = Minρ([v1]min ∪ [v2]min) =
min(Minρ([v1]min),Minρ([v2]min)) = min([[v1]]ρ, [[v2]]ρ) =
[[min(v1, v2)]]ρ. �

Proof: [of Lemma 5.10] By induction on w, we have the follow-
ing cases:

• w is a (min)-term. Then, using Lemma 5.8,
we have Maxρ([w]max ) = Maxρ({[w]min}) =
max{Minρ([w]min)} = Minρ([w]min) = [[w]]ρ.
• w = max(w1, w2). Then, we have
Maxρ([w]max ) = Maxρ([w1]max ∪ [w2]max ) =
max{Maxρ([w1]max ),Maxρ([w2]max )} =
max{[[w1]]ρ, [[w2]]ρ} = [[max(w1, w2)]]ρ = [[w]]ρ.

�

Proof: [of Lemma 5.11] Suppose A,B ∈ S and A ⊆◦ B 6= A.
Then by Lemma 5.7, Minρ(B) ≤ Minρ(A). Thus Maxρ(S) =
Maxρ(S \ {B}). The claim readily follows from this. �

Proof: [of Lemma 5.12] (⇒) Obvious. (⇐) Let X = {x ∈ V |
∃X. x ∈ X ∈ S ∪ T}. Suppose ∀ρ. Maxρ(S) = Maxρ(T ).
Suppose > ∈ S. Then, by minimality of S, S = {>}. If > ∈ T
then, by minimality of T , T = {>} = S. Otherwise, T ⊆ {X ⊆
V | X 6= ∅, |X| < ∞}. Then, since T is non-empty, we have
Maxρ(T ) = 1 by taking ρ = {x 7→ 1 | x ∈ X}. Since
Maxρ(S) = 0, this is a contradiction. Thus, T = {>} = S if
> ∈ S ∪ T . Therefore it remains to show the case > /∈ S ∪ T , i.e.
S, T ⊆ {X ⊆ V | X 6= ∅, |X| < ∞}. Suppose S 6= T . Then
w.l.o.g. one can assume that there existsA ∈ S \T . We distinguish
two cases.

1. There exists B ∈ T such that B ⊆ A 6= B. Let ρ = {x 7→
1 | x ∈ B} ∪ {x 7→ 0 | x ∈ X \ B}. Clearly, Minρ(B) = 1.
Since A \ B 6= ∅, Minρ(A) = 0. Let A′ ∈ S \ {A}. Then
we have A′ \ A 6= ∅ by minimality, and hence A′ \ B 6= ∅ by
B ⊆ A. Hence Minρ(A

′) = 0. Thus, since Minρ(A
′) = 0 for

all A′ ∈ S, we have Maxρ(S) = 0. On the other hand, since
[[B]]ρ = 1, we have Maxρ(T ) ≥ 1. This is a contradiction.

2. There exists no B ∈ T such that B ⊆ A 6= B. Let ρ = {x 7→
1 | x ∈ A} ∪ {x 7→ 0 | x ∈ X}. Then we have [[A]]ρ = 1. On
the other hand, for any B ∈ T , we have B \ A 6= ∅, and hence
[[B]]ρ = 0. Thus Maxρ(S) = 1 and Maxρ(T ) = 0. This is a
contradiction.

�

Proof: [of Theorem 5.14] For the correctness of
max-min-check(s,t), by Lemmas 5.3 and 5.13,R(max,min) |=ind



s ≈ t iff N(max,min,s,0) |= s ≈ t iff max-min-check(s,t) returns
‘yes’. By Lemma 5.4, the procedure max-min-check(s,t) runs
in exponential time. �

Proof: [of Lemma 5.17] Similar to Lemma 3.1. �

Proof: [of Lemma 5.18] Procedure max-check can be imple-
mented more efficiently like this:

1. For each occurrence of u ∈ V ∪ {0} in s, count the number
k of s from the root of the term to that occurrence, and collect
all 〈k, u〉. This can be done in O(|s|). Let the collection be
S. Clearly, |S| ≤ |s|. Compute a set T by applying the same
procedure to t.

2. Eliminate non-maximal elements w.r.t. ≺ in S (T ). This can be
done in O(|S|2) (resp. O(|T |2)).

3. Check S = T (as sets of (s)-terms). This can be done in
O(|S| × |T |).

Thus the overall procedure is O((|s| + |t|)2). Hence the claim
follows. �

Proof: [of Lemma 5.19] In the following, let us abbreviate
N(max,s,0) as N, u↓ as u↓ for u ∈ {s, t}. Since N |=
s(max(x, y)) ≈ max(s(x), s(y)), we have N |= s ≈ t iff
N |= s↓ ≈ t↓. Thus it remains to show that max-check(s,t)
returns ‘yes’ iff N |= s↓ ≈ t↓.

For any non-empty finite set U = {u1, . . . , un} of (s)-terms,
let Max(U) = max(u1,max(u2, . . . ,max(un−1, un) · · · )). Then
N |= u↓ ≈ Max([u↓]) for u ∈ {s, t} by definition.

For any u = sn(z) and v = sm(z) with n ≤ m (z ∈ V ∪ {0}),
we have N |= max(u, v) ≈ v. For u = sn(0) and v = sm(x)
with n ≤ m, we have N |= max(u, v) ≈ v. Thus for any (s)-
terms u, v such that u ≺ v, we obtain N |= max(u, v) ≈ v.
Hence, we have N |= Max(Max≺(U)) ≈ Max(U) for any
non-empty finite set U of (s)-terms. Hence we have N |= u↓ ≈
Max([u↓]) ≈ Max(Max≺([u↓])) for u ∈ {s, t} by definition. Let
S =Max≺([s↓]) and T =Max≺([t↓]).

Suppose max-check(s,t) returns ‘yes’. Then, by the definition
of the procedure, we have S = T . Then, N |= s↓ ≈ Max(S) ≈
Max(T ) ≈ t↓, and thus N |= s↓ ≈ t↓. Thus it remains to show the
converse.

Suppose N |= s↓ ≈ t↓. By N |= s↓ ≈ Max(S) and N |= t↓ ≈
Max(T ), we have N |= Max(S) = Max(T ). By the definition of
the procedure, it suffices to show S = T .

Let X = {x ∈ V | sn(x) ∈ S ∪ T, for some n ∈ N} and
Y = {x ∈ V | sn(x) ∈ T, for some n ∈ N}. Let ρ = {x 7→ 0 |
x ∈ X ∪ Y } and k = max{[[u]]ρ | u ∈ S ∪ T}.

Firstly, we claim X = Y . For this, we suppose X 6= Y and
show the contradiction. W.l.o.g. assume sn(x) ∈ S and x /∈ Y .
Then by taking a valuation δ = {x 7→ k + 1} ∪ {y 7→ 0 |
x 6= y, y ∈ X ∪ Y }, we have [[Max(S)]]δ ≥ k + n + 1 > k =
[[Max(T )]]δ . This is a contradiction. Thus we have X = Y .

Next we show that if sn(x) ∈ S and sm(x) ∈ T then n =
m. Suppose to the contrary that there exists x ∈ V such that
sn(x) ∈ S and sm(x) ∈ T with n 6= m. Then by taking
δ = {x 7→ k + 1} ∪ {y 7→ 0 | x 6= y, y ∈ X ∪ Y }, we have
[[Max(S)]]δ = n + k + 1 6= m + k + 1 = [[Max(T )]]δ . This is a
contradiction. Thus sn(x) ∈ S and sm(x) ∈ T imply n = m.

Let U = {sn(x) | sn(x) ∈ S, x ∈ V}. We have shown
that either S = U or S = U ∪ {sn(0)} and either T = U
or T = U ∪ {sm(0)} for some n,m. If S = U = T , we
are done. Suppose S = U and T = U ∪ {sm(0)}. Then, by
definition of ≺, we have m > n for any sn(x) ∈ U . Thus, by
taking a valuation ρ = {x 7→ 0 | x ∈ X}, [[Max(S)]]ρ =
max{n | sn(x) ∈ U} < m = [[Max(T )]]ρ. This is a contradiction.
Similarly, it does not happen the case S = U ∪ {sn(0)} and

T = U for some n. It remains to show that if S = U ∪ {sl(0)}
and T = U ∪ {sm(0)} then l = m. Suppose l 6= m. Suppose
S = U ∪ {sl(0)} and T = U ∪ {sm(0)}. Then by definition of ≺,
we have l,m > n for any sn(x) ∈ U . Thus, by taking a valuation
ρ = {x 7→ 0 | x ∈ X}, [[Max(S)]]ρ = l 6= m = [[Max(T )]]ρ. This
is a contradiction. Thus, in all cases, we conclude S = T .

Therefore, N |= s↓ ≈ t↓ implies S = T . Hence
max-check(s,t) returns ‘yes’ iff N |= s↓ ≈ t↓. �

Proof: [of Theorem 5.20] By Lemmas 5.17 and 5.19,
R(max) |=ind s ≈ t iff N(max,s,0) |= s ≈ t iff max-check(s,t)
returns ‘yes’. The procedure max-check(s,t) can be done in
polynomial time by Lemma 5.18. �
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