
Generating Summary Documents for a Variable-Quality
PDF Document Collection

Jacob Hughes David F. Brailsford Steven R. Bagley Clive E. Adams
School of Computer Science

University of Nottingham

NOTTINGHAM NG8 1BB, UK

jxh00u@cs.nott.ac.uk

 School of Computer Science

 University of Nottingham

NOTTINGHAM NG8 1BB, UK

dfb@cs.nott.ac.uk

 School of Computer Science

University of Nottingham

 NOTTINGHAM NG8 1BB, UK

srb@cs.nott.ac.uk

Institute of Mental Health

 University of Nottingham

NOTTINGHAM NG7 2TU, UK

clive.adams@nottingham.ac.uk

ABSTRACT
The Cochrane Schizophrenia Group’s Register of studies details
all aspects of the effects of treating people with schizophrenia. It
has been gathered over the last 20 years and consists of around
20,000 documents, overwhelmingly in PDF. Document
collections of this sort – on a given theme but gathered from a
wide range of sources – will generally have huge variability in the
quality of the PDF, particularly with respect to the key property
of text searchability.

Summarising the results from the best of these papers, to allow
evidence-based health care decision making, has so far been done
by manually creating a summary document, starting from a visual
inspection of the relevant PDF file. This labour-intensive process
has resulted, to date, in only 4,000 of the papers being
summarised – with enormous duplication of effort and with many
issues around the validity and reliability of the data extraction.

This paper describes a pilot project to provide a computer-assisted
framework in which any of the PDF documents could be searched
for the occurrence of some 8,000 keywords and key phrases.
Once keyword tagging has been completed the framework assists
in the generation of a standard summary document, thereby
greatly speeding up the production of these summaries. Early
examples of the framework are described and its capabilities
illustrated.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search Process,
Selection Process; I.7.5 [Document Capture]: Optical Character
Recognition (OCR)

General Terms
Algorithms, Documentation, Languages

Keywords
Schizophrenia; PDF; OCR; document collections

FINAL DRAFT of Short Paper accepted for
DocEng’14, September 16–19, 2014, Fort Collins, CO, USA.
Copyright is held by the owner/author(s). Published version is at
http://dx.doi.org/10.1145/2644866.2644892

1. INTRODUCTION
In the field of medicine it is rarely the case that a single set of trials
can give a definitive answer about the efficacy of the treatment, or
treatments, under evaluation. A UK epidemiologist called Archie
Cochrane was one of the first to call for collecting all controlled trials
of health care and for combining results from similar, suitably
rigorous, trials, In this way one can deliver the most accurate estimate
of the effects of care.

Cochrane's influence led to the Cochrane Database of Systematic
Reviews and, in the case of schizophrenia, a repository collated over
20 years, comprising six decades of published evidence – now held at
the Institute of Mental Health at the University of Nottingham [1]. A
problem with combining several studies, however well conducted
they may have been, is that there is little chance that results are
recorded in a standard way, let alone any possibility of access to a
project's internal documentation to acquire results directly. The
20,000 documents of the Cochrane Schizophrenia Group’s Register
of Trials is overwhelmingly in the form of published papers archived
in Adobe's PDF. This format is far from ideal in terms of easy data
extraction but, being ubiquitous, it is in reality ‘the only show in
town’.

To make full use of these PDF files it is necessary to manually
extract all quantitative and qualitative data on methods, participants,
interventions and outcomes into a standardized format. Until now this
has required the effort of experienced researchers, often with a
suitable medical background. Only 20% of the total number of trials
have been data extracted – most data remain unused and potentially
useful evidence of the effects of care are not fully utilized.
Furthermore those data that have been extracted are often impossible
to verify, since their exact origin within the original document is not
transparent.

This paper describes a pilot project, representing the first stages of a
concerted effort to provide a computer-assisted framework for
tagging key phrases within this variable-quality PDF document
collection, followed by automated extraction and assemblage of the
tagged phrases into standardised summary documents.

2. OVERVIEW OF PDF
In October 1993 Adobe Systems Inc. introduced the Portable
Document Format (PDF) and released viewer software for that
format called Acrobat, initially for Macintosh and MS-Windows
systems. PDF is an optimized development, (with document
portability in mind) of the earlier PostScript format that had
revolutionized typesetting in the 1980s.

 The acceptance of PDF for providing distributable ‘electronic
page masters’ was very rapid in the technical publication field.

Publishers soon became used to turning their PostScript files
(used for creating the hard-copy form of their journals) into the
equivalent PDF files, using Adobe’s own Distiller conversion
program. Acceptance of PDF took rather longer to happen in
fields such as law, business and medicine. Here the problems
included the legal acceptability of PDF master files (as opposed to
traditional ‘hard copy’) coupled with waiting patiently for
software such as word processors and spreadsheets to be able to
export output to PDF swiftly and efficiently. However, by 2005,
the status of PDF as an archival medium was becoming
sufficiently clear for ISO to begin work on making PDF be an
archival standard (PDF/A).

2.1 Varieties of PDF
 PDF offers a convenient way of making high-quality documents
be readily exchangeable. Ideally all the running text will be
formatted in the chosen body-text typefaces; lettering within
diagrams may be set in some different face. Line diagrams will be
drawn using the correct line-drawing primitives, while bitmapped
material such as photographs (either lossily or losslessly
compressed) is catered for by the PostScript/PDF image operator.
PDF files of this quality are referred to as PDF-FTG (i.e. ‘PDF,
Formatted Text and Graphics’)1. The key advantage of this format
is that text strings can usually be located within the PDF of the
body text.

It would be comforting to hope that all collected corpora of PDF
documents would be of PDF-FTG quality. More often than not
this fails to be achieved because the ‘umbrella’ nature of PDF
allows scanned-page documentation to be stored in PDF image
(PDF-I) format which can replicate, inside a PDF wrapper,
widely accepted image formats such as JPG or TIFF. However,
this PDF-I format, just like JPG and TIFF, is not text-searchable.

In 1994 Adobe introduced an OCR-based product called Acrobat
Capture. When applied to a PDF-I file it went beyond mere OCR
by creating an invisible, searchable, text overlay, using what was
technically called ‘Text Mode 3’ (see [2] page 306). By suitably
adjusting the point sizes and the inter-word spacing in this hidden
textual layer it was possible to make it be in exact registration
with the perceived words in the page image. Adobe named this
new hybrid format ‘PDF Image plus Hidden Text’ (PDF-IT). It
has the great virtue that searched-for words are highlighted via the
correct bounding box in the textual layer but they show up as
highlights in the exactly superposed image layer, thereby creating
the illusion of a textually searchable image.

For more than ten years the technology from Acrobat Capture has
been deployed in the full releases of Acrobat itself to satisfy a
demand for making potentially huge document-bases of scanned
material (e.g. in legal work) be text searchable.

3. FIRST STEPS
The long-term aim of this work is to fully realize the potential of
the schizophrenia register of trials in terms of extracting ‘best
practice’ procedures from sets of separate, but related, trials. In
moving from a fully manual scheme to a computer assisted one it
was immediately clear that it was vital to assess the relative
proportions of PDF-FTG, PDF-I and PDF-IT files within the
schizophrenia document-base

1 In earlier documentation Adobe referred to PDF files of this sort

as ‘PDF Normal’

3.1 Analyzing the documents
An analysis took place in early December 2013 of 17,990
documents available to us from the document set. The analysis
program was written in Objective C and used the Quartzcore
Framework to provide PDF analysis functionality. The analysis
algorithm relies on a function called getPageType which tests
to see if there is a whole-page image layer on the current page but
with no associated textual content stream; if so then the page is
Image Only. The second per-page test is to see if the word count
for invisibly-rendered text exceeds that for visibly rendered. If the
majority of the text is invisible, in most of the pages, then the
document is PDF-IT. Otherwise it is a PDF-FTG file.

Having applied the above algorithm to the full set of 17,990 PDF
files the following breakdown of the document set was obtained
(actual numbers of files are in parentheses)

 PDF-FTG 62.8% (11,296)

 PDF-I 32.2% (5,796)

 PDF-IT 5.0% (898)

3.2 Converting PDF-I to PDF-IT
By applying the OCR functionality of the Acrobat Capture plugin,
with the batch processing capability contained in the full Acrobat
product, from Acrobat 7.0 onwards, it was possible to automate the
conversion of the 5796 PDF-I files into the PDF-IT format. Details of
the required procedure are given on an Adobe Web site [3].
Preliminary tests showed that, on average, each of these file
conversions took just over 2 minutes using Acrobat X Pro running on
a 2.4 GHz Pentium system. This led to an estimate of 8 days to
complete the conversion task — an estimate which turned out to be
remarkably accurate.

Given that almost a third of the document collection was PDF-I, and
hence not text-searchable, it was a vital first step, in contemplating
automated keyword recognition for the whole document collection,
to establish that this retrofitting of searchability was indeed feasible.

4. SYSTEMATIC REVIEWS
The Cochrane Group currently organises a large number of
medical professionals to undertake systematic reviews of health
care topics based on reports of trials. A systematic review
attempts to identify, appraise and incorporate all relevant
evidence that meets pre-specified criteria, in order to answer a
given research question. Data harvested from the trials, as
recorded in the PDF, are manually entered into a separate system
called RevMan [4]. This software – a writing and analysis tool –
helps prepare data for meta-analysis and publication.

The current process of data input for systematic reviewing is as follows:

1. Read through the PDF for the chosen clinical trial.

2. Identify a piece of data (quantitative or qualitative)
within the PDF, that is relevant for extraction.

3. Manually input this data into RevMan

An important requirement here is for total accuracy in identifying
and transferring information in steps 2 and 3. Furthermore, for
data-checking at a later stage, the page number and location of all
data items should be logged as part of stage 3. It is precisely
these two activities that could benefit most from an automated
system.

Note also that the conversion of PDF-I files to PDF-IT, described
in the previous section, is yet another big bonus for transferring

data into RevMan, because cut-and-paste of text from a PDF file
is not possible for PDF-I – in this case the reviewer would have
to manually type all of the relevant data into RevMan.

5. HIGHLIGHTS AND LINKS IN PDF FILES
PDF itself defines various ways in which selected objects such as
images, text, section headings and so on can be highlighted or made
the target of hyperlinks either internally (e.g. from a table of
contents) or externally from an incoming link. This latter often
originates in HTML but can finish on a fixed destination page
within the PDF file using the so-called Named Destinations facility.

These features are challenging indeed to add, programmatically,
into arbitrary PDF material of variable quality, as encountered in
the current studies. Nevertheless Adobe’s (very costly) Acrobat
SDK will enable a JavaScript programmer to add exactly these
features, thereby enhancing the original PDF. We shall call this a
direct editing system because it alters the original PDF file.

 For all the above reasons of technical difficulty, third-party PDF
analysis and augmentation systems commonly display page
images of the PDF and create the illusion of genuine PDF
highlights by holding the PDF’s text, in HTML, alongside the
page image. Any requested annotations or highlighting are
superposed on the page image using a variety of ingenious
methods, often known generically as standoff markup [5], for
cross linking the HTML to the image. This is an example of an
indirect editing system, where the PDF file itself is not altered.

In wanting to create an environment for automating the
highlighting of key phrases, and for extracting data from our
schizophrenia documents, we looked at a few indirect systems
already available, such as Document Cloud and ExaCt. Both of
these provided some aspects of the facilities we were seeking but
neither of them provided all we wanted. For this reason we chose
to implement our own system.

6. A PROTOTYPE SYSTEM IN PDF.js
Part of the core functionality required for our text highlighting
and extraction system (PET) was the ability to interact with a
PDF document;. An Open Source library called PDF.js [6] has
been found that provides this functionality by creating a platform
on which an interaction API can be developed.

Our prototype PDF extraction tool (PET) was implemented within
the PDF.js library, initially created by Mozilla (and which is still
in the early stages of development). PDF.js renders PDF files to a
native HTML format using Javascript.

A large proportion of this HTML version of the PDF is
constructed of HTML DIV tags, which are used to denote a
division or section within an HTML file. Each DIV contains a
text area that has been transformed to align with the original
PDF’s text. In this sense it resembles the approach taken by the
hidden text layer within a PDF-IT file.

Below is an example of what a small segment of this HTML code
looks like when displaying a few lines of text in a PDF file, using
the PDF.js library.

Figure 1. PDF text as an HTML <DIV> within PDF.js

One of the problems posed by PDF.js is that it does not support
the display of some extra objects, optionally present in a PDF file,
such as Named Destinations, Article Threads and highlighted text.
It also does not provide the ability to ‘write back’ data into the
PDF source file, to enhance the richness of the original document.

Despite the fact that PET had to be prototyped as an indirect
editing system we were fully aware that any such system has the
huge drawback that any enhancements to the PDF file are visible
only within the indirect framework (DocumentCloud, ExaCT,
PET etc.). Ultimately this means that anyone wanting to see the
PDF enhancements has to install a copy of the indirect system.

The first requirement of the PET functionality was to identify,
and link back to, the page on which a particular keyword
occurred. It was already known that this could be achieved in
PDF itself by a facility known as Named Destinations, held within
the root node of the PDF tree. Equally, PDF itself implements its
own highlighting facility (located on the actual PDF pages) which
can easily reproduce any indirect highlights added within PET.

If we could find a way to make PET be a more direct system and
to overwrite the source PDF file with Named Destinations and
highlights then we would achieve the goal of making the
summary XML document, and its corresponding enhanced PDF,
be a free-standing pair of documents – not at all dependent on the
PET framework for visual display, nor for acting as an
independent resource for further research.

6.1 Text highlighting in PET
So far we have described how an experienced researcher might
transfer tagged phrases from a PDF file into RevMan either by
cut-and-paste or via direct text input. The PET environment
provides automated assistance by allowing a researcher to
highlight key phrases in the PDF image, by simply dragging the
mouse over them. Further assistance is at hand in the shape of a
dataset of 8,000 keywords and key phrases (painstakingly built up
over 20 years). This keyword dataset takes the form of row entries
in a spreadsheet file that can readily be converted into database
entries in some suitable format.

The architecture of PET is based around communicating client
and server processes. The front-end client allows for the display
of highlighted tagged phrases either manually or automatically
generated and for later editing, or even complete removal, of the
highlighted phrase. The server process handles the generation of a
suitable subset of keywords from the keyword database and it also
copes with writing out the final XML summary document,
together with a revised version of the input PDF. This revised
version of the PDF uses Named Destinations to implement a
bounding box and a page number for each highlighted keyword.

6.2 Auto-generation of highlighted tags
The main driver for generating highlighted tags for keywords was
the dataset of keywords and key phrases. To speed up the tagging
process this dataset was used, first of all, to search the PDF file
under analysis, very quickly, for whether any of these words or
phrases actually occurred. At this stage no attempt was made to
find the page number, or page position, of each occurrence. Once
the ‘used subset’ of the 8,000 keywords had been found, the
second pass of the tagging process could start to create tags that
include page position and page number.

We should note, at this stage, that problems sometimes occurred
with the PDF file’s textual content, which is contained within
HTML DIV markers inside the PET/PDF.js environment. The

text blocks on a PDF page are not always rendered to the screen
in what the user might think of as “correct reading order”. For this
reason, when PDF.js converts the text streams of the PDF into
HTML DIVs, the reading order may not look correct and this can
be particularly problematical if a key phrase straddles more than
one DIV. The problem is neatly solved by being prepared to
shuffle the DIVs around into a correct reading order, as
determined by their textual placement co-ordinates.

A sample of highlighted text, as it appears in PET, and
corresponding to the coding in Figure 1, is shown below

 Figure 2. Highlighting and tagging of keywords

At the end of the tagging process (which may involve a mixture
of auto-generated and manually added tags) an XML-structured
file of these tags is handed back from client to server as shown in
the sample below.

Figure 3. A portion of the XML summary document

Each individual data tag was assigned its own unique ID,
generated using the exact date and time of its creation,. Using this
ID it is possible to edit and remove tags either individually or in
groups. The unique ID was also ideally suited for the generation
of a unique name when each of the tags was converted into a
Named Destination.

6.3 Implementation of Named Destinations
In addition to making the XML summary file of Figure 3
available as one of the standard outputs from PET there was also
a need to write back an enhanced PDF file, ideally with a Named
Destination for each tag and with PDF highlighting of those same
tags. Given that we have used PDF.js and Python hosted on the
cloud compute platform provided by Google, specifically GAE
(the Google App Engine), to create an ‘indirect’ system, it comes
as no surprise that it lacks the ability to alter the input PDF file by
writing back an enhanced version of it. For this reason the server
side of the PET system calls on a separate module, written in C, to
perform this task. It takes as its input a comma-separated variable
(CSV) list denoting each of the desired Named Destinations This
module was written by one of us (SRB) using technology from
the COGs [7] project.

A glance at page 82 of the PDF reference manual [2] shows that
Named Destinations are located at the root of the PDF tree and
are therefore relatively easy to insert. However, the related desire
to make all these places be PDF highlights, to mirror those
highlights we created in the PET environment (see Figure 2), is a
much harder task. Highlights in PDF are located on the actual
PDF pages. Some very careful calculations have to be performed
to convert the bounding boxes of the PET highlights into PDF
format, followed by equally careful tree traversal, inside the PDF,
to plant the highlights in the correct format on the correct page.

7. DISCUSSION AND CONCLUSIONS
The work described here was a pilot project to try out an editing
and creation environment (PET) for use by researchers when
tagging and highlighting key words and phrases in a database of
randomized trials. An important issue was whether, when tagging
was complete, other medical sub-specialties could get benefit
from this markup in the form of an enhanced PDF file and an
XML summary document i.e. without having to install the entire
PET environment.

The results we obtained are very encouraging. Much work
remains to be done in reducing the number of ‘hits’ that result
when the dataset of keywords is processed against the content of
the target paper. A greater degree of context sensitivity is needed
possibly coupled with a learning mechanism connected to
gathering data about which of the auto-inserted key phrases the
researcher chooses to accept or discard. As noted in the previous
section there is also a large amount of work to be done in writing
back the corrected highlights into the PDF file.

Encouraged by what has been achieved already a consortium of
enthusiastic medical-informatics professionals has now submitted
a major bid for European funding so that the full potential of the
schizophrenia register of trials can be exploited.

8. REFERENCES
[1] C. E. Adams, The Cochrane Schizophrenia Group’s

Specialised Register of trials, 2014.
http://szg.cochrane.org/cszg-specialised-
register

[2] Adobe Systems Inc, PDF Reference (Third Edition; PDF
1.4), Addison Wesley, 2002.

[3] Rick Borstein, Batch Processing using Acrobat Professional,
2005. http://blogs.adobe.com/acrolaw/2005/10

[4] Cochrane Informatics and Knowledge Management Dept.,
RevMan,. http://tech.cochrane.org/Revman

[5] Peter L. Thomas and David F. Brailsford, “Enhancing
Digital Documents using XML-based Standoff Markup”,
Proceedings ACM Document Engineering Symposium
(DocEng05), pp. 177–186, Nov. 2005.

[6] Mozilla (Open Source), PDF.js.
https://wiki.mozilla.org/PDF.js

[7] Steven Bagley, David Brailsford, and Matthew Hardy,
“Creating well-structured PDF as a sequence of Component
Object Graphic (COG) elements”, Proceedings ACM
Document Engineering Symposium (DocEng03), pp. 58–
67, Nov. 2003.

