
Clinical Online Recommendation with Subgroup Rank
Feedback

Yanan Sui
California Institute of Technology

1200 E California Blvd
Pasadena, CA, USA
ysui@caltech.edu

Joel Burdick
California Institute of Technology

1200 E California Blvd
Pasadena, CA, USA

jwb@robotics.caltech.edu

ABSTRACT
Many real applications in experimental design need to make
decisions online. Each decision leads to a stochastic reward
with initially unknown distribution. New decisions are made
based on the observations of previous rewards. To maximize
the total reward, one needs to solve the tradeoff between ex-
ploring different strategies and exploiting currently optimal
strategies. This kind of tradeoff problems can be formalized
as Multi-armed bandit problem. We recommend strategies
in series and generate new recommendations based on noisy
rewards of previous strategies. When the reward for a strat-
egy is difficult to quantify, classical bandit algorithms are no
longer optimal. This paper, studies the Multi-armed ban-
dit problem with feedback given as a stochastic rank list
instead of quantified reward values. We propose an algo-
rithm for this new problem and show its optimality. A real
application of this algorithm on clinical treatment is helping
paralyzed patient to regain the ability to stand on their own
feet.
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Keywords
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1. INTRODUCTION AND MOTIVATION
Our problem is motivated by clinical research which aims

to recover motor function after severe spinal cord injury
(SCI). Previous research [4] has shown that electrical stim-
ulation applied to the spinal cord via electrodes arrays im-
planted in the epidural space over the lumbosacral area en-
ables paralyzed patients to achieve full weight-bearing stand-
ing, improvements in stepping, and partial recovery of lost
autonomic functions. The electrical stimulation must be
coupled with physical therapy to realize the best outcome.
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Figure 1: Clinical Treatment of Spinal Cord Injury

Stimulation consists of electrical pulse trains applied to
selected electrodes. However, the optimal stimulus pattern
(the choice of active electrodes and their polarity, the pulse
amplitude and width, and the pulse train frequency) varies
significantly across patients. And even for the same pa-
tient, the outcome of the same stimulus varies from trial to
trial, and the optimal stimulation varies over time due to
spinal cord plasticity. Hence, clinicians must determine the
optimal stimulus for each patient under noisy and mildly
non-stationary conditions. Currently, the search for the op-
timal stimulating parameters is a laborious and somewhat
ad-hoc approach which consumes valuable clinician and pa-
tient time, and does not currently guarantee an optimal out-
come.

Figure 1 shows the clinical treatment procedure for stand-
training. During a treatment/optimization session, a new
stimulus is recommended by our algorithm. The patient
then attempts to stand using the given stimulus, and the
observing clinicians then rank the patient’s resulting perfor-
mance. Using this noisy ranking as feedback, the algorithm
continues to explore for the optimal stimulus while also ex-
ploiting currently good ones. The algorithm must spend sig-
nificant time dwelling on good performing stimuli in order
to provide the patient with a good therapeutic experience.
Since clinical training has a fixed time horizon, we must
also maximize total performance during the limited period
within which we can search for the optimal solution.

This paper develops an algorithm to recommend optimal
stimuli based on the general setting of multi-armed bandit
problem. The classical bandit problem trades off between
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exploration and multi-armed bandit problem exploitation
among a number of different arms, each having a quantifi-
able, but stochastic, reward with initially unknown distri-
bution. The goal of a bandit algorithm is to maximize the
total reward. Since its introduction by Robbins [5], bandit
problems have been widely studied in many situations [2].
Many efficient algorithms have been developed based on the
work of Auer et al., [1].

However, for our clinical problem, the patient’s motor re-
sponse to stimulation is hard to quantify. Neither video
motion capture nor electromyograhic (EMG) recordings of
muscle activity can yet provide a consistent and satisfactory
measure of motor skill under stimulation. A good standing
performance might map to numerous combinations of mus-
cle activities, and it is not a stationary process. While the
patient’s performance under a specific stimulus is hard to
quantify, it can be compared to others. In the clinical set-
ting, we can obtain the ranking of a group of stimuli which
are performed within the short time period of one training
session. The dueling bandit problem [7] formalizes online
learning problems with preference feedback instead of abso-
lute rewards, and hence it can be used for problems with
unquantifiable reward. The algorithm we propose in this
paper is a variant of the dueling bandit problem which is
dictated by the clinical demands of our application.

At the start of the optimization process, we have little
information about the best stimulus for the patient, but we
have often have a pool of possibly useful stimuli. Our ap-
proach is based on the idea of successively removing subopti-
mal arms [3] while keeping the optimal one(s) in the sample
space. By setting proper confidence intervals, we can reach
the optimal reward within the time horizon.

2. PROBLEM SETUP
The classical dueling bandit problem receives feedback in

the form of a comparison between a pair of bandits in each
test. When the size of the decision set, K, is large, it is
unavoidable to carry out a very large number of tests before
the algorithm converges to its optimal solution. In some
applications like our clinical example, each test is expensive
and time consuming. The number of tests - time horizon of
an algorithm - is often predetermined by clinical conditions.
It is infeasible to apply the dueling bandit algorithm directly.

However, our training and optimization procedure allows
for patients to not only compare successive stimulations, but
to also rank the performances for a modest-sized group of
stimulations (the number which can be tested in one clinical
session before the patient fatigues). Thus, feedback con-
sists of a ranked list of at most d (d < K) chosen arms.
More precisely, the feedback for each test consists of a com-
bined scoring of 4 different standing criteria by the observing
clinicians, and the combined score is used to rank the tests
within one session. We show below that this feature helps us
to reduce the total number of tests significantly, while also
dovetailing well with current clinical practice.

Our procedure can be described as follows. There are K
arms {b1, · · · , bK}, and a total number of T tests to be per-
formed. Each test physically corresponds to a ∼90-second
stimulation period with a specific stimulus (arm) chosen
from the K arms. T is determined before we run the al-
gorithm, and is generally assumed to be an integer multiple
of d: T = d∗G, where G is the number of ranking sessions,
with each session producing a noisy ranked list of d arms.

Algorithm 1 Rank-Comparisons

1: Input: {b1, ..., bK}, d, G // Total tests T = d ·G
2: Input: cδ(n) =

√
(1/n)log(1/δ)

3: Run: [Parameters-Initialization]
4: Run: [Active-Elimination]
5: return b∗ // Optimal arm

Algorithm 2 Parameters-Initialization

1: Input: {b1, ..., bK}, d, G

2: Input: cδ(n) =
√

(1/n)log(1/δ)
3: W1 ← {b1, ..., bK} // set of active arms
4: `← 1 // rounds
5: ∀b ∈W`, nb ← 0 // comparisons
6: ∀b ∈W`, wb ← 0 // priorities

7: ∀b ∈W`, P̂b ≡ wb/nb, or 1/2 if nb = 0
8: n∗ ≡ minb∈W`nb
9: c∗ ≡ cδ(n∗), or 1 if n∗ = 0 // confidence radius

10: g ← 0 // total number of ranks
11: T ← d ·G
12: return all new parameters

We follow the the original notation of the dueling bandit
problem [7]. For two arms bi and bj , where i, j ∈ {1, · · · ,K},
we write the comparison factor as:

ε(bi, bj) = P (bi � bj)− 1/2

where P (bi � bj) is the probability that bi dominates bj
and ε(bi, bj) ∈ [−1/2, 1/2] represents the priority between
bi and bj . We define bi � bj ⇔ ε(bi, bj) > 0. We use
the notation εi,j ≡ ε(bi, bj) for convenience. Note that
ε(bi, bj) = −ε(bj , bi) and epsilon(bi, bi) = 0. We assume
the distribution of reward for each arm is stationary so that
all comparison factors converge in [-1/2,1/2]. We also as-
sume w.l.o.g. that the bandits are indexed in preferential
order b1 � b2 � · · · � bK so that there is one preferred arm.

The total reward is defined in terms of regret as in the
classical bandit problem setting. In the online setting, let
b(t) be the arm chosen at test t. We define total regret as
follows:

RT =

T∑
t=1

ε(b1, b(t))

The total regret RT = 0 if we constantly choose b(t) = b1
during the experiment. RT = Θ(T ) is linear w.r.t. T if we
constantly choose b(t) ∈ {b1, · · · , bK}.

We also inherit two important properties of the compari-
son factors from the original dueling bandit problem:

Strong Stochastic Transitivity. For any triplet of
arms bi � bj � bk, we assume εi,k ≥ max{εi,j , εj,k}.

Stochastic Triangle Inequality. For any triplet of
arms bi � bj � bk, we assume εi,k ≤ εi,j + εj,k. This can be
viewed as a diminishing returns property.

An optimal method is proposed for our problem which has
a finite-time regret bound of order O(K

d
logT ) where T is the

time horizon.

3. ALGORITHM
Our Rank-Comparison algorithm (Algorithm 1), which is

a modified version of ”Beat-the-Mean” [8], is based on the
idea of successively removing suboptimal arms while keeping
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Algorithm 3 Active-Elimination

1: Input: {b1, ..., bK}, d, G
2: Input: parameters generated in [Parameters-

Initialization]
3: while |W`| > 1 and g ≤ G do
4: if |W`| ≥ d then
5: select b′1, ..., b

′
d ∈W` at random with no repeats

6: else
7: r ← d%|W`|
8: p← (d− r)/|W`|
9: select b′1, ..., b

′
r ∈W` at random with no repeats. In

addition, select each arm in W` p times
10: end if
11: test selected arms and get rank of the selection
12: for all commutable pairs (b′i, b

′
j) in the selection do

13: if b′i � b′j , wb′i ← wb′i + 1
14: nb′i ← nb′i + 1

15: if minb′∈W`
P̂b′ + c∗ ≤ maxb∈W` P̂b − c

∗ then

16: b′ ← arg minb∈W` P̂b
17: ∀b ∈W`, delete comparisons with b′ from wb, nb
18: W`+1 ←W`\{b′} // update working set
19: `← `+ 1 // new round
20: end if
21: end for
22: end while
23: return b∗ = arg maxb∈W` P̂b

the optimal one(s) in the sample space. The inputs to Rank-
Comparison are the K arms, the largest group size d, and
total number of groups G: T = d ·G.

Parameters-Initialization (Algorithm 2) defines the set of
active arms W`, whose size shrinks as more tests are com-
pleted. For each arm b, let nb be the total number of com-
parisons between b and other arms, and let wb be the total
number of wins against all other arms. Let P̂b be the em-
pirical average of P (b � b′) for all b′ in W`, and let P̂b,n be

the value of P̂b after n comparisons between arm b and any
other arms. Set the confidence interval of P (b � b′) as:

Ĉb,n = (P̂b,n − cδ(n), P̂b,n + cδ(n))

where cδ(n) =
√

(1/n)log(1/δ), and δ is the confidence that

P (b � b′) lies in Ĉb,n. The function cδ(n) decreases as the
number of comparisons n increases. By properly setting
parameter δ, the optimal reward can be reached within the
fixed time horizon.

Active-Elimination (Algorithm 3) is the key part of Rank-
Comparison. For each group of tests, d arms are randomly
chosen from W` with no repeats when d < |W`|. Otherwise,
we pick each arm equally and pick the rest arms randomly
according to lines 7-9 in Algorithm 3. The randomized selec-
tion method provides low-variance total regret. Each group
of tests results in a ranking of d arms, which can be regarded
as d(d− 1)/2 comparisons among the d arms. For each arm

b, the values of wb, nb and P̂b are updated, as is the corre-
sponding confidence radius c∗. For any pair of arms b and
b′, one dominates the other if their confidence intervals do
not overlap, and the less superior arm is eliminated from
W`. The algorithm runs until the time horizon T = d ·G is
reached, or only one active arm remains.

4. THEORETICAL RESULTS
The patients can rank performances d stimuli at most. For

fixed time horizon T , choose the size of groups equals the
maximum group size d. It will maximize the number of total
comparisons extracted from the ranks, which is d(d− 1)/2.

Let ε = ε1,2 to be the comparison factor between the best
and second best arms. Obviously, we have ε ≤ ε1,j for all
j. The upper bound of the expected total regret for Rank-
Comparison is given in the theorem below.

Theorem 1. The expected regret generated by running
Algorithm 1 is bounded from above by O( K

ε·d logT ).

As compared to the classical dueling bandit regret bound
of O(K

ε
logT ), Rank-Comparison has an extra divisor fac-

tor of d. This tighter bound is realized because for each
group of d tests, order O(d2) comparisons are extracted
from the ranking test. Recall that RT = 0 if the optimal
arm b(t) = b1 is constantly chosen, and RT = Θ(T ) is linear
w.r.t. T if we constantly choose b(t) ∈ {b1, · · · , bK}. The

factor O( K
ε·d logT ) lies in the region between 0 and Θ(T ). As

T increases, O( K
ε·d logT ) is significantly less than Θ(T ).

By extending Theorem 4 of [7], we can form a lower bound
on regret in expectation, as stated in Theorem 2, for any al-
gorithm which solves the rank comparison problem. Which
means no algorithm can achieve lower regret than Rank-
Comparison in expectation.

Theorem 2. Any algorithm for the rank comparison prob-
lem has a regret bounded from below by Ω( K

ε·d logT ).

Notice that Theorem 2 lower bounds total regret on the
same order as the upper bound in Theorem 1. So we have
Ω( K

ε·d logT ) = E[RT ] = O( K
ε·d logT ), from which we can

conclude that total regret is order Θ( K
ε·d logT ) for Rank-

Comparison.
Theorems 1 and 2, whose detailed proofs can be found in

the supplementary [6], show that our algorithm is optimal
in terms of the expected total regret.

Unlike the classical multi-armed bandit problem, which
only focuses on expected total regret, many applications
must constrain the regret’s variation. In our context, if a
stimulus optimization algorithm provides good results in the
majority of patients, but bad results in a few, the variation
is large. Such an algorithm is not practically useful, even
if total regret is small. By randomizing the choice of arms
within each test group, the randomized comparison strategy
of Rank-Comparison provides low-variance regret in expec-
tation.

5. EXPERIMENTS
We first evaluate the algorithm by simulation. The reward

for each arm bi is modeled as a Gaussian distribution with
mean µi and standard deviation σi. All arms are indepen-
dent with each other. Obviously, the distributions generated
in this way satisfies the Strong Stochastic Transitivity and
Stochastic Triangle Inequality. Then we sample the arms for
each group and rank them by using the Rank-Comparison
algorithm. We calculated the expected regret rt = Rt/t (in-
stead of total regret Rt) where t is the number of tests. In
the simulation, we consider the total number of arms is 10
and we can get rank list with dimension no larger than 5.
The reward of each arm bi follows a Gaussian distribution

291



Figure 2: Mean Regret against Number of Tests

with mean µi ∈ [0, 1] and standard deviation σi = 0.2. Set
the confidence parameter δ = 10−2.

Under this setting, the arms are hard to be distinguished
from each other due to the large variances. Figure 2 shows
the mean regret rt vs. time t for Rank-Comparison (blue
curve) and Beat-the-mean [8] (red curve) with fixed hori-
zon T = 1000. Blue curve is the mean regret of Rank-
Comparison, while the red curve is the mean regret of Beat-
the-Mean algorithm. For both algorithms, the mean regret
is high during exploration, and then drops quickly after the
algorithms converge to the optimum. We can see that Rank-
Comparison finds the optimum within 150 tests, and there-
after exploits it to reduce the mean regret. However, Beat-
the-Mean did not converge to the optimum within the time
horizon for the same parameter settings. We hypothesize
that Rank-Comparison outperforms Beat-the-Mean because
of the utility of finer feedback information.

We have applied Rank-Comparison to a SCI patient im-
planted with Medtronic electrode arrays (16 electrodes) driven
by a Restore Advanced impulse generator. This system can
apply more than 109 unique stimuli. Searching through the
whole space of possible stimuli is neither feasible nor neces-
sary for the clinical experiment.

For the first clinical treatment, the initial space for explo-
ration is composed of around 20 stimuli. We have run Rank-
Comparison for the stimuli recommendation. The algorithm
has not converges to a single arm but has eliminated the ma-
jority of them. Since the number of current clinical tests is
small, we have not seen the logarithmic convergence of the
regret. The reason is that elimination precess is still ongo-
ing and we are exploring more for the early experiments. We
will keep running the Rank-Comparison algorithm on new
clinical treatments.

6. DISCUSSION AND CONCLUSION
This paper proposed a Rank-Comparison algorithm to

efficiently solve a specific bandit problem using subgroup
rank feedback. This optimal strategy (Theorems 1 and 2)
provides clinical recommendation which explore for optimal
stimuli while exploiting high performing stimuli for SCI ther-
apy. The main advantages of Rank-Comparison are:

• Fast convergence, which is a necessity for applications
which are characterized by expensive explorations.

• low variance of the reward/regret (RT ), which guar-
antees that the approach performs uniformly on the
majority of patients.

Rank-Comparison decomposes test group rankings into
equally weighted comparisons. One might reasonably as-
sume that arms far apart in rank may be more distinguish-
able than adjacent ones, and thus employ different confi-
dence parameters as appropriate. This feature can reduce
total regret under the same problem setting. From the clin-
ical point of view, this method avoids the varying effect of
human judgement by using robust comparisons instead of
volatile quantitative values, which may be non-stationary in
our application. However, the time varying characteristics of
human motor performance due to fatigue in the short term,
and spinal plasticity over the long term, is a real theoretical
and clinical issue we must address.

Additionally, the classical bandit problem’s assumption of
independent arms does not hold for the spinal cord stimu-
lation where anatomical principles and electrical properties
suggest a coupling occurs. Using a measure of similarity be-
tween stimuli based on the physical properties, we can build
a prior distribution on unknown arms to guide our search.
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