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Engineering models of human performance permit some aspects of usability of interface
designs to be predicted from an analysis of the task, and thus they can replace to some extent
expensive user-testing data. We successfully predicted human performance in telephone
operator tasks with engineering models constructed in the EPIC (Executive Process-Interac-
tive Control) architecture for human information processing, which is especially suited for
modeling multimodal, complex tasks, and has demonstrated success in other task domains.
Several models were constructed on an a priori basis to represent different hypotheses about
how operators coordinate their activities to produce rapid task performance. The models
predicted the total task time with useful accuracy and clarified some important properties of
the task. The best model was based directly on the GOMS analysis of the task and made
simple assumptions about the operator’s task strategy, suggesting that EPIC models are a
feasible approach to predicting performance in multimodal high-performance tasks.

Categories and Subject Descriptors: H.1.2 [Models and Principles]: User/Machine Sys-
tems—human information processing

General Terms: Human Factors

Additional Key Words and Phrases: Cognitive models, usability engineering

1. INTRODUCTION

Engineering models for human performance permit some aspects of user
interface designs to be evaluated analytically for usability, without con-
suming resources for empirical user testing, by making usability predic-

This work was supported by the Office of Naval Research Cognitive Sciences Program under
grant N00014-92-J-1173 and by NYNEX Science and Technology, Inc., who provided the data
videotapes and support for the digitization and transcription of the protocols.
Authors’ addresses: D. E. Kieras and S. D. Wood, Artificial Intelligence Laboratory, Electrical
Engineering and Computer Science Department, University of Michigan, 1101 Beal Avenue,
Ann Arbor, MI 48109-2110; email: kieras@eecs.umich.edu; D. E. Meyer, Department of
Psychology, University of Michigan, 525 East University, Ann Arbor, MI 48109-1109.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1997 ACM 1073-0516/97/0900–0230 $03.50

ACM Transactions on Computer-Human Interaction, Vol. 4, No. 3, September 1997, Pages 230–275.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F264645.264658&domain=pdf&date_stamp=1997-09-01


tions based on an analysis of the user’s task in conjunction with principles
and parameters of human performance [Card et al. 1983; John and Kieras
1996a]. This article, an expansion of Kieras et al. [1995], reports results on
a new class of engineering models for a multimodal high-performance HCI
task, namely the telephone operator tasks studied by Gray et al. [1993] in
Project Ernestine. By “high performance” we mean that the task is time-
stressed; the total execution time must be minimized, and the user of the
workstation (the telephone operator) is well-practiced. By “multimodal” we
mean that the task engages multiple perceptual-motor modalities: both
visual and auditory perception and both vocal and manual motor systems.
Such tasks are scientifically interesting because the multiple modalities
involve the overall human cognitive and performance system, and because
they are active system tasks [John and Kieras 1996a; 1996b] in that the
user must respond to events produced by the external environment, unlike
passive system text editing, which is basically paced by the user. As pointed
out by John and Kieras [1996a; 1996b], engineering models for active
system tasks are currently underdeveloped. Finally, predicting perfor-
mance in such tasks can be economically important; a detailed information-
processing analysis of telephone operator tasks, the Gray et al. [1993]
CPM-GOMS models, were of considerable economic value in this domain
where a second’s reduction in average task completion time represents
significant financial savings.

1.1 Background on CPM-GOMS

Since the CPM-GOMS methodology and its most noteworthy application in
Project Ernestine [Gray et al. 1993] is the precursor to the present work,
some background is important to make the contribution of the present work
clear (see also John and Kieras [1996a; 1996b] for a general discussion of
CPM-GOMS and other GOMS methodologies). CPM-GOMS is based on the
Model Human Processor (MHP) [Card et al. 1983], which is a proposal for
how human information processing is performed by a set of perceptual and
motor processors surrounding a cognitive processor; these processors oper-
ate in parallel with each other. During performance of a task, the human
engages in perceptual, cognitive, and motor activities; but since these
activities can overlap each other in time, the total time to execute the task
is often less than the total of the times for the individual activities.
Predicting the time required to execute the task thus requires determining
which individual perceptual, cognitive, and motor activities are overlapped.

In the CPM-GOMS methodology, the analyst constructs a schedule chart
(PERT chart) to represent the temporal dependencies between the various
sequential and parallel activities. Once this network of activities is con-
structed, the predicted execution time between the very first and the very
last activity is the total of the times on the critical path through the
network, which is the longest duration pathway along the dependencies
between the task start and completion. The critical path can then be
examined to find out which specific activities determine the time required
to complete the task.
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However, the practical problem with the CPM-GOMS methodology is
that constructing the schedule charts required to analyze an interface
design is quite labor-intensive. The analysis is performed on a set of
specific benchmark task scenarios, or benchmark task instances. For each
task instance and interface design, the interface analyst must choose the
particular hypothetical pattern of perceptual, cognitive, and motor activi-
ties and construct the schedule chart that shows which MHP processors are
active in what order and which processor actions depend on which other
actions. Of course, the analyst may be able to reuse large portions of the
schedule charts; for example, alternative designs or tasks that involve only
small variations can be represented just by rearranging portions of the
schedule charts (as in the Project Ernestine models). But due to the work
involved, the CPM-GOMS method is recommended for predicting execution
time only when there is a small number of benchmark tasks to be analyzed
(see John and Kieras [1996a]).

1.2 Generative Models of Procedures Using the EPIC Architecture

This article presents a new family of engineering models that are more
powerful and easier to apply than CPM-GOMS analysis. These models are
based on the EPIC (Executive Process-Interactive Control) human infor-
mation-processing architecture developed by Kieras and Meyer [Kieras and
Meyer 1997; Meyer and Kieras 1997a; 1997b], and the earlier so-called
Cognitive Complexity Theory (CCT) production-system analysis of human-
computer interaction [Bovair et al. 1990; Kieras and Polson 1985]. EPIC is
similar in spirit to the Model Human Processor (MHP) [Card et al. 1983],
but EPIC incorporates many recent theoretical and empirical results about
human performance, in the form of a computer simulation modeling soft-
ware framework. Using EPIC, a generative1 model can be constructed that
represents the general procedures required to perform a complex multimo-
dal task as a set of production rules. When the model is supplied with the
external stimuli corresponding to a specific task instance, it will then
execute the procedures in whatever specific way the task instance requires,
thus simulating a human performing the task and generating the predicted
actions and their time course. Such a model is also typically reactive (see
John and Kieras [1996a; 1996b], in that the procedural knowledge in an
EPIC model not only generates actions depending on the specific task
situation, but also reacts in simulated real time to events initiated by the
task environment.

The primary goal in the development of EPIC has been to account for
human multiple-task performance in situations such as aircraft cockpit
tasks. In these situations, the human has to perform two or more highly
reactive tasks simultaneously, meeting constraints such as enforcing the
relative priority of the tasks and performing at maximum speed consistent

1The term generative is used analogously to its sense in formal linguistics. The syntax of a
language can be represented compactly by a generative grammar, a set of rules for generating
all of the grammatical sentences in the language.

232 • David E. Kieras et al.

ACM Transactions on Computer-Human Interaction, Vol. 4, No. 3, September 1997.



with accuracy. Multiple perceptual and motor modalities are usually in-
volved. Despite the practical importance of such tasks, the empirical and
theoretical understanding of them has been quite limited. Nevertheless,
EPIC models have been successful at accounting for performance in labora-
tory versions of multiple-task situations with unprecedented accuracy
[Kieras and Meyer 1997; Meyer and Kieras 1997a; 1997b].

1.3 Can EPIC Models Predict Performance?

The work reported in this article shows further that the EPIC framework
can go beyond providing a scientific account of laboratory tasks to providing
engineering-style predictions of performance in a real-world task domain.
The telephone operator task was chosen for this study, although it is a
single-task situation, because (1) it involves multiple modalities, (2) the
design goal is performance speed, which EPIC currently characterizes well,
(3) the previous Project Ernestine work showed that the task domain is
tractable, and (4) the original data from Project Ernestine, consisting of
videotape recordings of actual operator performance, were available.

If a generative model based on EPIC can be applied to predicting
execution time in a high-performance task, it should be considerably more
efficient than the CPM-GOMS approach. Preliminary work with an EPIC
model of the telephone operator tasks was encouraging, showing fairly good
accuracy in predicting task and event times for a very small set of task
instances. However, this preliminary model was constructed in a “scientif-
ic” mode, in which the model was developed iteratively to provide a good fit
to a single protocol, and was then validated against two other protocols.
But for an engineering model to be most useful, it should be accurate in an
a priori mode, requiring little or no “tuning” based on empirical task
observation. For a priori models to succeed, they must be constructed under
constraints, here termed modeling policies, that govern how the capabili-
ties of the architecture should be applied in representing a specific class of
tasks.

Thus the work reported here investigated the extent to which accurate
predictions could be made with predictive EPIC models that are based on a
priori task analysis and principles of construction. The following topics are
treated in the remaining sections of this article: the EPIC architecture, the
telephone operator task modeled in this work, general issues of modeling
and the concept of modeling policies, a set of a priori models constructed
under the modeling policies, and finally a comparison of the EPIC model
predictions to a newly analyzed set of performance protocols for the
telephone operator task.

2. THE EPIC ARCHITECTURE

Figure 1 shows the overall structure of processors and memories in the
EPIC architecture. Although at this level EPIC bears a superficial resem-
blance to earlier frameworks for human information processing, EPIC
incorporates a new synthesis of theoretical concepts and empirical results,
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and so is more comprehensive, more formalized, and more detailed than
proposals such as MHP, HOS, SAINT, and so forth (see McMillan et al.
[1989]). It is important to note that EPIC was used “as is” for the modeling
work reported here; the details and parameters of the architecture had
been developed in other task domains and modeling projects.

EPIC was designed to explicitly couple basic information processing and
perceptual-motor mechanisms like those in the MHP with a cognitive
analysis of procedural skill, namely that represented by production system
models such as CCT [Bovair et al. 1990], ACT-R [Anderson 1993], and
SOAR [Laird et al. 1986]. Thus, EPIC has a production rule cognitive
processor surrounded by perceptual-motor peripherals; applying EPIC to a
task situation requires specifying both the production rule programming
for the cognitive processor and the relevant perceptual and motor-process-
ing parameters. EPIC computational task models are generative in that the
production rules supply general procedural knowledge of the task, and thus
when EPIC interacts with a simulated task environment, the EPIC model
generates the specific sequence of serial and parallel human actions

Fig. 1. Overall structure of the EPIC architecture simulation system. Task performance is
simulated by having the EPIC model for a simulated human (on the right) interact with a
simulated task environment (on the left) via a simulated interface between sensory and motor
organs and interaction devices. The EPIC architecture is shown with information flow paths
as solid lines and mechanical control or connections as dotted lines. The processors run
independently and in parallel with both each other and the task environment module.
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required to perform the specific tasks. Thus, the task analysis reflected in
the model is general to a class of tasks, rather than reflecting specific task
scenarios.

The software for constructing EPIC models includes not only the modules
for simulating a human, but also facilities for simulating the interaction of
the human with an external system such as a computer. Figure 1 shows at
the left a simulated task environment and on the right a simulated human
as described by the EPIC architecture, with objects such as screen items
and keys making up the physical interface between them. The task environ-
ment module assigns physical locations to the interface objects and gener-
ates visual events and sounds that the computer or other entities in the
environment produce in response to the simulated human’s behavior.
Having a separate environment simulation module greatly simplifies the
programming of a complete simulation and helps enforce the generality of
the procedural knowledge represented in the EPIC model. That is, the task
environment module is driven by a task instance description that consists
only of the sequence and timing of events external to the human user, and
the simulated user must deal with whatever happens in the simulated task
environment.

With regard to the EPIC architecture itself as shown in Figure 1, there is
a conventional flow of information from sense organs, through perceptual
processors, to a cognitive processor (consisting of a production rule inter-
preter and a working memory), and finally to motor processors that control
effector organs. As do CPM-GOMS models, EPIC goes beyond the MHP by
specifying (1) separate perceptual processors with distinct processing time
characteristics for each sensory modality and (2) separate motor processors
for vocal, manual, and oculomotor (eye) movements. There are feedback
pathways from the motor processors, as well as tactile feedback from the
effectors, which are important in coordinating multiple tasks. The declara-
tive/procedural knowledge distinction of the “ACT-class” cognitive architec-
tures (e.g., Anderson [1976]) is represented in the form of separate
permanent memories for production rules and declarative information.
Working memory (WM) contains all of the temporary information needed
for and manipulated by the production rules, including control information
such as task goals and sequencing indices, and conventional working
memory items, such as representations of sensory inputs. Each of these
processors will be described in more detail below. In what follows, parame-
ter values described as standard are current estimates that are assumed to
be constant for the architecture, while those described as typical are free to
vary depending on properties of the task situation.

2.1 Perceptual Processors

The perceptual processors require roughly the same amount of processing
time as assumed in the MHP, but have many differences. The perceptual
processors in EPIC are simple “pipelines,” in that an input produces
outputs at a certain later time, with no “moving window” time integration
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effect as assumed by the MHP. A single stimulus input to a perceptual
processor can produce multiple outputs to be deposited in WM at different
times. The tactile perceptual processor handles movement feedback from
effector organs; this feedback can be important in coordinating multiple
tasks [Meyer and Kieras 1997a; 1997b], but is not used in the models
presented in this article.

2.1.1 Visual Processor. EPIC’s model of the eye includes a retina that
determines what kind of sensory information is available about visual
objects in the environment based on the distance (in visual angle) on the
retina between the object and center of the fovea. EPIC’s current highly
simplified model of the retina contains three zones: the fovea (typical
radius: 1°), the parafovea (typical radius: 10°), and the periphery (typical
radius: 60°). Depending on the exact physical situation, certain informa-
tion, such as the contents of character strings, is typically available only in
the fovea, whereas cruder information, such as whether an area of the
screen is filled with characters, is available in the parafovea. Only severely
limited information is available in peripheral vision, such as the location of
objects, and whether an object has just appeared. The visual perceptual
processor maintains a representation of which objects are visible and their
properties in the visual working memory of the cognitive processor. Visual
working memory is “slaved” to the visual situation; it is kept up-to-date as
objects appear, disappear, or change color, and so forth, or as eye move-
ments or object movements change what visual properties are available
from the retina. In response to visual events, the visual processor can
produce multiple outputs with different timings. When an object appears,
the first output is a representation that a perceptual event has been
detected (standard delay: 50 msec.), followed later by a representation of
sensory properties (e.g., shape, standard delay: 100 msec.), and still later
by the results of pattern recognition, which might be task-specific (e.g., a
particular shape represents a left-pointing arrow, typical delay: 250 msec.).

2.1.2 Auditory Processor. The auditory perceptual processor accepts
(1) auditory input and (2) outputs to working-memory representations of
auditory events and sequences of auditory events (e.g., speech) that disap-
pear after a time. For example, a short tone signal first produces an item
corresponding to the onset of the tone (standard delay: 50 msec.), then at a
later time, an item corresponding to a discriminated frequency of the tone
(typical delay: 250 msec.), then an offset item (standard delay: 50 msec.).
After some time, all the items will disappear from auditory working
memory. For simplicity at this time, rather than a graded decay or
probabilistic loss function, items simply disappear after a fixed time
(typical delay: 4 sec.).

Speech input is represented as items for single words in auditory working
memory. The auditory perceptual processor requires a certain time to
recognize input words (typical delay: 150 msec. after the acoustic data are
present) and produces representations of them in auditory working mem-
ory. These items then disappear after a time, the same as other auditory
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input. To represent the sequential order of the speech input, the items
contain arbitrary symbolic tags for the previous and the next item that link
the items in sequence. Thus, a speech input word carries a certain next-tag
value, and the next word in the sequence is the item that contains the same
tag value as its previous tag. Using these tags, a set of production rules can
step through the auditory working-memory items for a series of spoken
words, processing them one at a time. For example, the models described in
this article process a spoken telephone billing number by retrieving the
recognized code for each digit in the tag-chained sequence and using it to
specify a key press action.

2.2 Cognitive Processor

2.2.1 Production Rules and Cycle Time. The cognitive processor is
programmed in terms of production rules, and so an EPIC model for a task
must include a set of production rules that specify what actions in what
situations must be performed to do the task. Example production rules for
the models described in this article will be presented below. EPIC uses the
Parsimonious Production System (PPS) interpreter, which is especially
suited to task modeling work, as in the CCT models [Bovair et al. 1990].
PPS rules have the format (^rule-name& IF ^condition& THEN ^actions&); the
rule condition can test only the contents of the production system working
memory. The rule actions can add or remove items from the working
memory or can send a command to a motor processor. Examples will be
given later in this article.

The cognitive processor operates cyclically; at the beginning of each cycle,
the contents of working memory are updated with the output from percep-
tual processors and the previous cycle’s modifications; at the end of each
cycle, commands are sent to the motor processors. The duration of a cycle is
a standard 50 msec., but EPIC can run in a mode in which the cycle
duration is stochastic, with a standard mean value of 50 msec. and all other
time parameters scaled to this stochastic value. Unlike many other produc-
tion system architectures, on each cognitive processor cycle, PPS will fire
all rules whose conditions match and will execute all of their actions. Thus
EPIC models can include true parallel cognitive processing; the EPIC
cognitive processor is not constrained to be doing only one thing at a time.
Rather, multiple processing threads can be represented simply as sets of
rules that happen to run simultaneously.

The multiprocessing ability of the cognitive processor, together with the
parallel operation of all the perceptual-motor processors, means that EPIC
models for multiple task performance do not conform to the traditional
assumption of limited central-processing capacity. Rather, EPIC empha-
sizes the role of executive process strategies in coordinating perceptual-
motor peripherals and other limited structural resources in order to perform
multiple tasks. As shown by the detailed quantitative modeling of a variety of
multiple-task data reported in Meyer and Kieras [1997a; 1997b] and Kieras
and Meyer [1997], EPIC and its approach to modeling multiple-task perfor-
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mance has excellent empirical support. However, for the single-task domain in
this article, only limited use is made of this parallel-processing capability.

2.2.2 Working Memory. The production system working memory is in
effect partitioned into several working memories.2 Visual, auditory, and
tactile working memory contain the current information produced by the
corresponding perceptual processors. The timing and duration characteris-
tics of these forms of working memory were described above. Motor working
memory contains information about the current state of the motor proces-
sors, such as whether a hand movement is in progress. This information is
updated on every cycle.

Two other forms of working memory deserve special note; these are
amodal in that they contain information not directly derived from sensory
or motor mechanisms. One amodal working memory is the control store,
which contains items that represent the current goals and the current steps
within the procedures for accomplishing the goals, as in the CCT models.
An important feature of PPS is that this control information is simply
another type of working memory item, and so it can be manipulated by rule
actions; this feature is critical for modeling multiple-task performance, in
that production rules for an executive process can control subprocesses
simply by manipulating the control store (see Meyer and Kieras [1997] for
more).

The second amodal working memory, simply termed WM at this time, can
be used to store miscellaneous task information, like the working memory
NOTEs in the CCT models. At this time EPIC does not include assumptions
about the decay, capacity, and representational properties of this general
working memory. Clearly, conventional working-memory capacity is lim-
ited, but the research strategy in developing EPIC has been to see what
constraints on the nature of WM are required to model task performance in
detail, rather than following the customary strategy in cognitive modeling
of assuming these constraints in advance. Such capacity and loss assump-
tions for these memory systems do not seem to be required to account for
performance in tasks modeled in EPIC thus far; rather, other limitations
determined by the perceptual and motor systems appear to dominate
performance. These substantial but underappreciated limitations would
have been obscured by gratuitous assumptions about central capacity or
working-memory limitations (see Meyer and Kieras [1997a; 1997b] for more
discussion). For similar reasons, at this time EPIC assumes that informa-
tion is not lost from the control store, and there is no limit on the capacity
of the control store.

2EPIC’s working-memory structure is not “hard-wired” into PPS. PPS actually has only a
single “working memory” which could more clearly be termed the “database” for the production
rules. PPS can be used as a multiple-memory system simply by following the convention that
the first term in database items indicates the “type” of memory item, as in the examples that
follow.
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2.3 Motor Processors

The EPIC motor processors are much more elaborate than those in the
MHP, producing a variety of simulated movements of different effector
organs and taking varying amounts of time to do so. As shown in Figure 1,
there are separate processors for the hands, eyes, and vocal organs, and all
can be in operation simultaneously. The cognitive processor sends a com-
mand to a motor processor that consists of a symbolic name for the type of
desired movement and any relevant parameters, and the motor processor
then produces a simulated movement with the proper time characteristics.
The different processors have similar structures, but different timing
properties and capabilities, based on the current human performance
literature in motor control (see Rosenbaum [1991]). The manual motor
processor has many movement forms, or styles, and the two hands are
bottlenecked through a single manual processor, and thus normally can be
operated either one at a time or synchronized with each other. The
oculomotor processor can generate eye movements either upon cognitive
command or in response to certain visual events. The vocal motor processor
produces a sequence of simulated speech sounds given a symbol for the
desired utterance.

2.3.1 Movement Preparation and Execution. The different motor pro-
cessors represent movements and movement generation in the same basic
way. Current research on movement control [Rosenbaum 1991] suggests
that movements are specified in terms of movement features and that the
time to produce a movement depends on its feature structure as well as its
mechanical properties.

The overall time to complete a movement can be divided into a prepara-
tion phase and an execution phase. The preparation phase begins when the
motor processor receives the command from the cognitive processor. The
motor processor recodes the name of the commanded movement into a set of
movement features, whose values depend on the style and characteristics of
the movement, and then generates the features, taking a standard 50 msec.
for each one. The time to generate the features depends on how many
features can be reused from the previous movements (repeated movements
can be initiated sooner) and how many features have been generated in
advance. Once the features are prepared, the execution phase begins with
an additional delay of a standard 50 msec. to initiate the movement,
followed by the actual physical movement. The time to execute the move-
ment depends on its mechanical properties, both in terms of which effector
organ is involved (e.g., the eye versus the hand) and the type of movement
to be made (e.g., a single finger flexion to press a button under the finger
versus a pointing motion with a mouse).

The movement features remain in the motor processor’s memory, so that
future movements that share the same features can be performed more
rapidly. However, there are limits on whether features can be reused; for
example, if a new movement is different in style from the previous
movement, all of the features must be generated anew. Also, if the task
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permits the movement to be anticipated, the cognitive processor can
command the motor processor to prepare the movement in advance by
generating all of the required features and saving them in motor memory.
Then when it is time to make the movement, only the initiation time is
required to commence the mechanical execution of the movement.

Finally, a motor processor can prepare the features for only one move-
ment at a time and will reject any commands received during the prepara-
tion phase, but the preparation for a new movement can be done in parallel
with the physical execution of a previously commanded movement. Once
prepared, the movement features are saved in motor memory until the
previous execution is complete, and the new movement is then initiated.
The cognitive processor production rules can take advantage of this capa-
bility by commanding a motor processor with a new movement as soon as it
is ready to begin preparing the features for the new movement. The result
can be a series of very rapid movements whose total time is little more than
the sum of their initiation and mechanical execution times.

2.3.2 Manual Motor Processor. EPIC’s manual motor processor repre-
sents several movement styles, including punching individual keys or
buttons already known to be below the finger, pecking keys that may
require some horizontal motion, posing the entire hand at a specified
location, pointing at an object, and plying a control (e.g., a joystick) to
position a cursor onto an object. Each style of movement has a particular
feature structure and an execution time function that specifies how long
the mechanical movement takes to actuate the device in the task environ-
ment.

An example movement style that has particular interest for this article is
the peck movement style, which is used to strike a key using a single finger
that moves about from one key to another (as in “hunt-and-peck” typing).
The cognitive processor commands the manual motor processor to perform
a peck movement with, for example, the right index finger to a specified
object in the physical environment (the key). This movement style involves
five features: the peck style, the hand, the finger, the direction of the
motion, and the extent of the motion, which is the distance between the
current location of the designated finger and the location of the target
object. If a previous movement was also a peck movement with the same
hand and finger, only the direction and extent might have to be generated.
If the movement is also similar in direction and extent to the previous
movement, then all of the features could be reused; none would have to be
generated. Once the features are generated, the movement is initiated. The
time required to physically execute the movement to the target is given by
Welford’s form of Fitts’ Law (see Card et al. [1983, Ch. 2]), with a standard
minimum execution time of 100 msec., reflecting that for small movements
to large targets there is a physiologically plausible lower bound for the
actual duration of a muscular movement. After the simulated finger hits
the key, it is left in the location above the key to await the next movement.
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2.3.3 Vocal Motor Processor. EPIC’s vocal motor processor is not elab-
orated very much at this time; it is based on the minimal facilities needed
to model certain dual-task situations (see Meyer and Kieras [1997a;
1997b]). A more complete version of the vocal motor processor would be
able to produce extended utterances of variable content, taking into ac-
count that the sequential nature of speech means that movements could be
prepared on-the-fly during the ongoing speech. However, the simple cur-
rent version sufficed for the present work because in the telephone operator
tasks considered in this article, the operator produced only three possible
utterances (i.e., “New England Telephone. May I help you?,” “New England
Public Telephone. May I help you?,” and “Thank you.”), and these are
heavily practiced and routine. The current version of EPIC assumes that
such utterances can be designated with a single symbol, and it requires
only the preparation of two features before execution begins. The actual
production of the sound is assumed to be delayed by about 100 msec. after
initiation and continues for a time estimated from the data. Further
development of the vocal motor processor is planned in the future.

2.3.4 Oculomotor Processor. EPIC’s eye movements are produced in
two modes: a voluntary and an involuntary (reflexive) mode. The cognitive
processor commands voluntary eye movements, which are saccades to a
designated object. A saccade requires generation of up to two features: a
direction and extent of the movement from the current eye position to the
target object. Execution of the saccade currently is estimated to require a
standard 4 msec./degree of visual angle which includes a residual compo-
nent duration for settling on the movement endpoint. Involuntary eye
movements were not involved in this work, but are either saccades or small
smooth adjustments made autonomously by the oculomotor processor in
response to changes in the visual situation (hence the arrow between the
visual perceptual processor and the oculomotor processor in Figure 1).
Visual changes that can trigger involuntary eye movements are a sudden
onset (appearance) of an object or the slow movement of a fixated object (cf.
Hallett [1986]). In the tasks reported in Kieras and Meyer [1997], EPIC can
follow moving objects with a mixture of voluntary and involuntary eye
movements.

2.3.5 Comparison with the MHP Motor Processor. While much more
complicated than the MHP, EPIC’s motor processors can be reconciled with
MHP’s by considering that the 70-msec. cycle time proposed for the MHP
motor processor is comparable to the total time required by EPIC’s manual
motor processor in a simple reaction time task. In such a task, there is only
a single response to be made to a stimulus, meaning that the style, hand,
and finger used for the response is fixed, and so the feature programming
for the response movement can be done in advance. When it is then time to
make the movement, only EPIC’s initiation time of 50 msec. would be
required to start the movement. In such a task, the finger is normally
positioned on top of a sensitive key, so only a finger twitch is required, a
movement style whose mechanical movement time is very small, only on
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the order of 20 msec. EPIC would thus produce the same motor processor
time (50-msec. initiation 1 20-msec. execution) as assumed in the MHP;
however, EPIC’s motor processors produce a wide variety of movement
latencies and execution times, and a much richer set of movements, than
originally proposed in the MHP.

3. THE TELEPHONE OPERATOR TASK

3.1 Task Description

Briefly, the task analyzed in this work is a subset of a task domain in
which a human operator sits at a computer-based workstation and assists a
customer to complete telephone calls. The general work domain is called
Call Completion Services (CCS), and the many possible CCS situations are
termed call types. The workstation consists of a conventional “dumb termi-
nal” display and a standard keyboard with additional key labels for special
functions and with a numeric keypad at one end. In the type of task
analyzed in this article, the customer dials “0” followed by the destination
telephone number, and then supplies orally a billing number to the
operator which needs to be entered into the computer and verified before
the call can go through. This call type is abbreviated as Bill-to calls in this
article. The timeline in Figure 2 illustrates a typical instance of this call
type, showing the actual events and their timing from the data. The total
time to complete the task is directly relevant to the cost of providing
operator assistance, and so minimizing total task time is a key goal of the
workstation design.

As shown in Figure 2, the task begins when the workstation beeps (the
Call Arrival Tone) and then displays several alphanumeric codes on the
screen about the call characteristics, the first of which is the code 01, and
another is a code that if present means that the customer is at a pay phone.
The operator must greet the customer with one of two standard greetings,
depending on whether the customer is calling from a private phone (as in

Fig. 2. Timeline of a typical task instance from the data. The horizontal time scale covers the
range from zero to 16 seconds. Events above the line are customer’s speech (italics) and events
displayed by the computer workstation. Events below the line are the operator’s speech
(italics) and keystrokes. Note how the keystrokes overlap with the customer’s speech and lag it
by a fairly constant amount.

242 • David E. Kieras et al.

ACM Transactions on Computer-Human Interaction, Vol. 4, No. 3, September 1997.



Figure 2) or a pay phone. The customer supplies the billing information for
the call by saying something like “Operator, bill this to 6-1-7 . . . .” At some
point after getting the billing information from the customer, the operator
says “Thank you.” From the screen information and the customer speech,
the operator determines which keys to press to specify the billing class of
the call. In this class of task, the operator first strikes the Station Special
Calling key on the main keyboard (hereafter abbreviated STA-SPL-CLG)
and then the Keypad Special key on the main keyboard (KP-SPL), followed
by the billing number digits on the numeric keypad, and finally presses the
START key on the main keyboard. The computer system then checks the
number for validity. If the number is valid, the computer flashes certain
codes on the screen (only one of which, AMA-VFY, is shown in Figure 2, to
be discussed later). The operator then presses the Position Release (POS-
RLS) key on the main keyboard to allow the call to proceed and then signal
readiness to handle the next call. As is obvious from Figure 2, the task
structure permits (but does not require) some of the activities to go on in
parallel, overlapped in time. For example, the operator may press keys
while the customer is still speaking and can overlap his or her own speech
with keystrokes.

3.2 Rationale for Using the Bill-to Call Type

The reasons for selecting the Bill-to call type for this work needs some
explanation in the context of the earlier Project Ernestine [Gray et al.
1993]. Project Ernestine addressed practical questions of how a new
workstation compared with the current workstation, and so it considered a
large variety of possible CCS call types. All of these call types involve
interacting via speech with the customer, but many types also involved
speech interaction with more than one customer, as in collect calls. While
the practical goals of Project Ernestine required analyzing the broad
spectrum of CCS call types, the work reported here had a much narrower
focus of verifying whether EPIC models could predict the time required for
the operator-computer interaction, and so only call types especially suited
to that goal were analyzed.

3.2.1 Internally and Externally Determined Events. When testing mod-
els against empirical task data, it is critical to distinguish between task
events whose content and timing are internally determined by the percep-
tual, cognitive, and motor mechanisms of the human, versus other task
events whose content and timing are externally determined by the behavior
of the task environment, which includes the computer system and the
customer. Like other models for human performance, EPIC attempts to
represent the processes underlying the internally determined events, not
those externally specified by the task environment. The other human (i.e.
the customer) who is part of the task environment is not interacting
directly with the computer system, but rather plays a role similar to the
computer system by acting as a source of operator inputs and a target of
operator actions. However, since predicting the content and timing of the
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customers’ speech is not currently practical, the only reasonable way to
include such speech interactions is to represent them as externally deter-
mined events.

3.2.2 Strong Tests of Models Require Internally Determined Events.
The problem with including externally determined event times in the
to-be-predicted total task time is that they will “automatically” help ac-
count for the empirical total task time; in an extreme case where the
operator’s task consisted solely of listening to the customer speaking, the
externally determined events would perfectly account for the total task
time. Thus, including the timing of externally determined events in the
total predicted task time tends to inflate the goodness of fit of a model,
resulting in an artificially good showing. So if testing a model is the
primary goal, it is important to minimize the influence of externally
determined events in the to-be-predicted times.

In addition, note that in the full CCS domain, the dominant activity in
terms of time will be the operator interacting with the other people, rather
than the operator interacting with the computer system, meaning that this
externally determined human-human time by far is the strongest determi-
nant of the time to complete the task, swamping the operator-computer
contribution. Because the time required for the human-human activity is
relatively unrelated to the effects of the user interface design on the time
required to interact with the computer, including the human-human activ-
ity contributes little to testing a model of how the interface design affects
the operator.

Thus the full Project Ernestine CCS call types would not be suitable for
testing EPIC because in many of them the externally determined events
dominate the situation and dilute the test of the models’ ability to predict
the internally determined events. Rather, to provide a more rigorous test of
the EPIC architecture and its ability to predict operator-computer interac-
tion, we chose as a task domain a subset of call types in which there was a
minimum of interaction between the operator and a single customer and a
maximum of interaction between the operator and the computer system. In
this subset of call types, the Bill-to type described above, the interaction
between the operator and customer is limited almost completely to the
customer supplying data to be entered into the computer system: the
operator greets the customer; the customer says the billing information;
and the operator thanks the customer. The interaction between the opera-
tor and the computer is relatively elaborate: the operator examines the
screen to determine the form of the greeting, keys in the type of billing,
keys in the billing number, waits for the system to verify the billing, and
then hits a final key to complete the call. Thus, the ability of EPIC models
to predict the details of human performance can be given a strong test.

4. MODELING THE TELEPHONE OPERATOR TASK

To simulate the operator’s performance of the selected Bill-to type of
telephone operator tasks, the task environment module of EPIC was
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programmed to generate simulated displays and customer input for this
class of calls, and EPIC’s cognitive processor was “programmed” with
production rules capable of performing all possible instances of the task.
Under direction of the cognitive processor, the perceptual and motor
processors move the eyes around, perceive stimuli on the operator’s work-
station screen, and reach for and strike keys. Before presenting the specific
models for the task, it is important to present some general issues in
predictive modeling and how these are implemented with EPIC.

4.1 General Modeling Properties of EPIC

4.1.1 Fixed and Free Parameters. The presentation of any modeling
approach should document what aspects or parameters of the modeling
framework are fixed and are thus supposed to generalize across applica-
tions, and what parameters have to be estimated from data specific to the
situation being modeled. In EPIC, the fixed aspects and parameters are: (1)
the connections and mechanisms of the EPIC processors; (2) most time
parameters in the processors (the ones described as standard above); and
(3) the feature structure of the motor processors. Thus adopting the EPIC
framework entails committing to all these details of the modeling frame-
work. The model properties and parameters that are then free to vary from
model to model or task to task are: (1) the task-specific production rule
programming, which is constrained to some extent because it must be
written to execute the task correctly and reasonably efficiently, and as
described below, can be based on a simple GOMS model for the task; (2) the
task-specific perceptual encoding types and times (i.e. the typical times
above) involved in the task, which must be defined in terms of the
production rules, and are constrained to be similar and constant over
similar perceptual events; (3) the style of movements used to control the
device (e.g., touch-typing versus visually-guided pecking), if it is not
constrained by the task.

4.1.2 What Goes In and What Comes Out? Similarly, any modeling
approach should document what information the model builder has to
supply in order to construct the model and what information the con-
structed model will then produce in return for the supplied information. To
construct an EPIC model, the model builder has to supply the information
corresponding to the free parameters described above, namely (1) a produc-
tion rule representation of the task procedures, (2) task-specific perceptual
processor encodings and timings, and (3) any movement styles not deter-
mined by the task requirements. In addition, the model builder must
supply (4) the simulated task environment, which includes the physical
locations and characteristics of relevant objects external to the human, and
(5) a set of task instances whose execution time is of interest; these
instances must specify only environmental events and their timing and are
used to control only the environment module of the simulation.

In return for these inputs, an EPIC model will generate the predicted
sequences of simulated human actions required by each task instance, and
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the predicted time of occurrence of each action. If the production rules were
written to describe general procedural knowledge of how to perform the
task, these predictions can be generated for any task instance subsumed by
these general procedures.

4.2 Choosing Task Strategies for Models: The Need for Modeling Policies

A key insight from the modeling work done thus far with EPIC and other
cognitive architectures is that the architecture itself does not necessarily
determine the strategy that should be used to represent the task. There are
many alternative strategies for accomplishing a task that differ in how the
human abilities and limitations represented in the architecture will be
manifested in performance. For example, in modeling multiple-task situa-
tions using EPIC (see Meyer and Kieras [1997a; 1997b]), there are multiple
possibilities for how the activities in different tasks that involve different
stimulus and response modalities can be overlapped, both with each other
and with cognitive activities.

One way to identify the specific strategy governing overlapping in a task
is to propose a strategy, generate predicted performance under that strat-
egy, compare the predicted performance to empirical data, and repeat until
the predicted data matches the empirical results. In typical scientific
cognitive modeling work devoted to verifying a cognitive architecture and
understanding how a task might be done, it is acceptable to arrive at task
strategies in this post hoc model-fitting mode.

However, using EPIC, or any other cognitive architecture, for predictive
engineering purposes requires the ability to develop reasonably accurate
task strategies in an a priori mode. That is, the whole rationale for
engineering models is to predict performance independently of empirical
observation of the task in question. Indeed, once scientific work on cogni-
tive architectures has progressed beyond simple demonstrations of feasibil-
ity, success at a priori prediction success is also required to fully establish a
body of theory on scientific grounds. Predicting performance on an a priori
basis requires not only a usefully accurate cognitive architecture, but also a
set of modeling policies for how to choose and represent task strategies that
are usefully accurate on an a priori basis. In particular, the modeling
policies specify which of the possible approaches permitted in EPIC should
be used to deal with each specific modeling issue for how the strategy
utilizes the EPIC architecture. The ideal modeling policy would be directly
related to the results of an a priori task analysis, easy to represent as an
EPIC model, and empirically accurate.

4.3 Some Possible Policies for Overlapping Task Activities

Table I lists the modeling issues that arise from applying EPIC to tasks
such as the telephone operator task, along with some possible policies for
each issue that are relevant to the models in this article. The next section
presents a series of models that represent interesting combinations of these
policies.
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4.3.1 Procedure Representation. The first modeling issue in Table I
concerns procedure representation, the basic approach by which the proce-
dures involved in the task will be represented in terms of production rules.
The policy used throughout this article is that the production rules follow a
GOMS model format (see Card et al. [1983] and John and Kieras [1996b]).
A GOMS model consists of a set of methods for accomplishing task goals. A
method is a series of steps containing elementary operators that when
executed will accomplish the goal. Selection rules specify which method to
apply, depending on the specific situation. Earlier work in the Cognitive
Complexity Theory approach (CCT) by Kieras and Polson [1985] and Bovair
et al. [1990] developed a format for representing GOMS methods with
production rules in a simplified cognitive architecture. The present work is
an extension and refinement of that approach.

4.3.2 Method Structure. Given that the GOMS procedural knowledge
is represented in production rules, exactly how should the methods be
represented? The first policy listed in Table I is that the goal and method
structure is hierarchical with multiple subgoals and subprocedures, reflect-
ing the hierarchical task decomposition typically used in a GOMS analysis.
The second policy is that there is a single flat, or nonhierarchical, method.
Note that just because the analytic task decomposition is hierarchical does
not mean that the internal representation of the human procedural knowl-
edge is also hierarchical; for example, extreme practice might well produce
a more efficient flattened method representation. The EPIC work on
multiple-task performance assumes partially hierarchical methods, but

Table I. Modeling Issues and Alternative Modeling Policies Used in Constructing the A
Priori Models

Modeling Issues Alternative Modeling Policies

Procedure Representation Production rules in GOMS format

Method Structure Hierarchical methods
Single flat method

Coordination within a Motor Modality Complete all movement phases before executing
the next method step

Prepare the next movement while current
movement is executing

Coordination between Motor Modalities Move eye to target before keystrokes
Do not overlap movements in different

modalities
Overlap eye, hand, and vocal movements

Movement Anticipation Prepare features for next movement as far in
advance as possible

Preposition the eyes and hands to next
locations as far in advance as possible
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typical experiments do not involve the extreme amounts of practice that
telephone operators have.

4.3.3 Coordination within a Motor Modality. This modeling issue con-
cerns how a single motor processor is used by the cognitive processor. A
simple policy is to wait for a motor processor to complete both preparation
and execution phases for a movement before proceeding to the next step,
producing very deliberate step-by-step activity. The second policy is to
prepare the next movement while the current one is executing, enabling
the next movement to start execution sooner.

4.3.4 Coordination between Motor Modalities. This issue concerns how
the cognitive processor coordinates the different motor systems. There are
two different subissues and corresponding policies. The first involves
eye-hand coordination. Based on research on human aimed movements
(e.g., Abrams et al. [1990]), the proposed policy is that when making
keystrokes, the eye must be moved in advance to the vicinity of the target
keys, and that when the visual system has acquired them (e.g., the shape of
the keys is available), the location of the target key is then known; the
manual motor processor can then be instructed to make the keystroke
movement. The second subissue concerns whether the task strategy makes
use of the ability of the motor processors to operate overlapped, in parallel.
While overlapping can result in much faster task execution, as shown in
the multiple-task modeling (see Meyer and Kieras [1997a; 1997b], such
strategies to coordinate the use of the different motor processors can be
quite complex. Two possible policies are the simple strategy of not using
any motor parallelism, while the other policy is the opposite, using the
parallel capability of the motor processors to fully overlap movements.

4.3.5 Movement Anticipation. Often a task permits movements to be
anticipated, whereupon they can be made sooner than otherwise; the issue
is whether the task strategy takes advantage of this possibility. Three
possible policies are shown. The first is to make no use of any sort of
movement anticipation. Second, the cognitive processor could instruct the
motor processor to prepare the features for a later movement in advance,
thereby saving time when the movement is to be actually made. Third, the
eyes or the hands could be actually premoved into position before the
movement would ordinarily be made, thereby again saving time by reduc-
ing the physical distance that must be traveled when it is time to actually
make the movement. The premovement would then be followed by an
advance preparation of the anticipated movement. Note that advance
movement and preparation might not be of value; the extent of time
savings depends on subtle details of how long prepositioning movements
take and whether the overhead of managing advance preparation exceeds
the resulting motor time savings.
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5. A SET OF A PRIORI MODELS

A variety of policies for representing tasks are meaningful and reasonable.
Our approach to understanding which policies would be most useful for
tasks such as the telephone operator task was to propose several models
that implemented different policies and then determine which could ac-
count for performance. It is important to keep in mind that the purpose of
this work is to attempt to predict performance on an a priori basis, so the
approach was to generate the alternative models based on the task analy-
sis, the EPIC architecture, and the modeling policies; none of the models
were subsequently altered to provide a better fit to the data.

Choice of Models. We constructed a series of models, listed in Table II,
to represent points on a policy continuum starting with a nonoptimized
purely hierarchical and sequential description of task performance,
through models that took advantage of the parallel-processing possibilities
of the cognitive architecture, to models that represented highly optimized
utilizations of the architecture. Thus, the sequence of models represents
sets of policies that describe a hypothetical increase in processing efficiency
and sophistication, which presumably would be related to the degree of
practice in the task.

As shown in Table II, only a small subset of the possible combinations of
policies were developed in the set of a priori models; the number of possible
models is quite large, and so only a subset is feasible to develop and test.
The subset chosen was based on which combinations of features seemed
most likely to occur and which models would be most useful to test. For
example, the Hierarchical Fully-Sequential model is closely related to the
earlier Bovair et al. [1990] CCT production rule models, and so it provides a
conceptual baseline for the more complex models. The other Hierarchical
models differ in one policy each to help understand the effects of each
policy. The Flattened methods models should reflect the effects of extreme
practice on the task procedures; accordingly, only two of them were
included: the Flattened Motor-Parallel model provides again a conceptual
baseline in that it is the simplest model with Flattened methods; in
contrast, the Flattened Premove Prepared Motor-Parallel model represents
the likely additional effects of extreme practice. That is, if operators were
so practiced as to have developed flattened methods, then it seems likely
that they would also be fully anticipating movements with both premove-
ments and preparation. Since the operators in this task domain are highly
experienced, we expected that one of the more optimized models would
provide the best account of their performance, but as it happens, one of the
simpler models and policies appears instead to provide the best fit.

Each of the models and how they implement the corresponding policies
will be described with example production rules in the following sections.

Simplifications Based on the Operator’s Expertise. In this task domain,
and in the data for this work, the operators are very well practiced, having
years of experience in the task. Such experience would determine certain
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Table II. A Priori Models Developed for the Telephone Operator Task and the Policies
Represented in Them

A Priori Models Policies

Hierarchical Fully-Sequential
Model

Production rules in GOMS format
Hierarchical methods
Complete all movement phases before executing the

next step
Do not overlap movements in different modalities

Hierarchical Motor-Parallel
Model

Production rules in GOMS format
Hierarchical methods
Prepare next movement while current movement is

executing
Overlap eye, hand, and vocal movements

Hierarchical Prepared Motor- Production rules in GOMS format
Parallel Model Hierarchical methods

Prepare next movement while current movement is
executing

Overlap eye, hand, and vocal movements
Prepare features for next movement as far in advance

as possible

Hierarchical Premove Prepared
Motor-Parallel Model

Production rules in GOMS format
Hierarchical methods
Prepare next movement while current movement is

executing
Overlap eye, hand, and vocal movements
Prepare feature for next movement as far in advance

as possible
Preposition the eyes and hands to next location as far

in advance as possible

Flattened Motor-Parallel Model Production rules in GOMS format
Single flat method
Prepare next movement while current movement is

executing
Overlap eye, hand, and vocal movements

Flattened Premove Prepared
Motor-Parallel Model

Production rules in GOMS format
Single flat method
Prepare next movement while current movement is

executing
Overlap eye, hand, and vocal movements
Prepare features for next movement as far in advance

as possible
Preposition the eyes and hands to next locations as

far in advance as possible

Policies that distinguish a model from those previously listed are shown in italics.
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features of the task strategy followed by operators. Thus, the models made
certain general strategy assumptions, some of which are similar to the
extreme expertise assumption underlying the CPM-GOMS modeling ap-
proach (see Gray et al. [1993] and John and Kieras [1996b]).

Eye movements can be made directly to the fields on the computer
display; visual search for the task-relevant information is not required.
Note that because of the fairly large distance observed on the videotape
between the operators’ eyes and the display, certain fields on the display
can be seen in parafoveal vision well enough for the task. So although
separate eye movements are made to these fields, the information may be
available in visual working memory sooner.

As a simplifying assumption, the words of the customer request consist of
either utterances that can be ignored, or an utterance that means “bill this
call to the following number.” Once this bill-to utterance is heard, the
model proceeds to strike the STA-SPL-CLG key (Station Special Calling,
meaning “bill to another number”) and the KP-SPL key (Keypad Special,
meaning a keypad entry follows). If digits are heard before such an
utterance, it is assumed that the same call type is intended.

In accordance with the policy on eye-hand coordination, before the
STA-SPL-CLG and the KP-SPL keys can be pressed, the eye must be moved
to them, and their shape must be available in visual working memory.
Likewise, before the digit keys can be pressed, the eye must be moved to
the center key of the keypad (the FIVE key), and its shape must be
available in visual working memory; however, eye movements to individual
digit keys are not required. But, because of the high frequency of the
striking the POS-RLS key (Position Release, meaning that the call process-
ing is complete), no eye movement to it or visual acquisition of it is
required.

The operator says “thank you” after the customer has finished speaking,
regardless of whether other actions are still under way.

The operator knows that the call has been verified when a certain
designated screen event occurs.

5.1 Hierarchical Method Models

5.1.1 The Hierarchical Fully-Sequential Model. This first model and
its production rule representation will be described in some detail, because
it represents the simplest combinations of modeling policies; all of the other
models were more optimized versions of this one, and they can be explained
very briefly after this detailed introduction. In accordance with the policy
on representing the task procedures in terms of a GOMS model, the model
was developed by starting with a GOMS model for the task which was then
translated into production rules. As shown in Table II, this model assumed
hierarchical methods, but was strictly sequential in that the policies
followed for both within-modality and between-modality motor coordination
required all movement phases to be complete before the next movement
was commanded, with either the same or a different motor processor. This
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represents a simple “baseline” model that takes advantage only of the
ability of the perceptual processors to operate in parallel with the rest of
the system.

We started with a GOMS model of the NGOMSL type (see John and
Kieras [1996a; 1996b]). This type of GOMS model describes the task
procedures as a hierarchical set of methods consisting of sequential exe-
cuted actions, both perceptual and motor. Figure 3 shows the hierarchy of
Goals and Methods, and Figure 4 contains an excerpt of the GOMS
methods as they were expressed in the natural-language-like NGOMSL
notation (see Kieras [1988; 1998]). Constructing this GOMS model was a
routine activity needing no special explanation here (see John and Kieras
[1996a; 1996b] for discussion) and was performed as part of the preliminary
modeling work described by Wood, Kieras, and Meyer.3 Then a set of
production rules were written to implement this GOMS model in a style
similar to the CCT templates described in Bovair et al. [1990].

Figure 5 shows example production rules for some of the NGOMSL
methods shown in Figure 4. The production rules in EPIC conform to the
Parsimonious Production System format described in Bovair et al. [1990];
each is in the format (^name& IF ^condition& THEN ^actions&). The condition

3S. Wood, D. Kieras, and D. Meyer, “An EPIC Model for a High-Performance Task.” A poster
presented at the CHI ’94 ACM Conference on Human Factors in Computing (Boston, Mass.,
April 25–28).

Fig. 3. The hierarchy of goals and methods in the GOMS model for the telephone operator
task. Connections labeled as selection rules indicate possible additional subgoals.
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is a list of clauses (e.g., (GOAL DO CCS TASK)), all of which must match
items in working memory for the rule to fire. Each item in working memory
consists simply of a list of symbols. A clause in a rule condition may contain
a wildcard term (three consecutive question marks) or a variable (a term
denoted by a symbol with a question mark as a prefix) which can be bound
to the corresponding symbol in a working-memory item. By convention,
each rule has control store conditions of a GOAL clause and a STEP clause
that determine the flow of control, typically followed by additional clauses
that test the contents of other partitions of working memory.

Fig. 4. Excerpt of NGOMSL methods for a subset of telephone operator tasks.
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The actions in the rules usually include removing the current step clause
from the working-memory database (with DELDB) and adding the step
clause corresponding to the next step in the procedure (with ADDDB). This
chain structure results in the rules firing one at a time in sequence as in
the CCT models, implementing the step-by-step execution of NGOMSL

Fig. 5. Example production rules from the Hierarchical Fully-Sequential model that imple-
ment the top-level method for the telephone operator task.
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methods. Note that EPIC and PPS can fire multiple rules on each cycle, but
the Hierarchical Fully-Sequential model makes no use of this capability.

The example in Figure 5 shows the production rules for the top-level
method in Figure 4, Method for goal: Do CCS Task. The first rule, named
*MFG-Do-CCS, is an initial housekeeping rule that also initializes the eye
location. The rule named *Do-CCS*Wait-for-CAT implements Step 1 of the
method by waiting for the onset event of the Call Arrival Tone, (AUDITO-
RY DETECTION EVENT ONSET), to arrive in auditory working memory.
The next rule, *Do-CCS*Look-at-CLG-Type, does Step 2 by instructing the
ocular motor processor to move the eye to the location where the type of the
call will appear on the screen. The clause (MOTOR OCULAR MODALITY
FREE) in the rule means that the rule will not fire unless the motor
partition of working memory contains the information that the ocular
motor system (modality) is idle; an eye movement is neither being executed
nor being prepared. The rule *Do-CCS*Handle-Call performs Step 3 by
waiting until the visual perceptual processor has deposited the contents of
the calling-type field in working memory as the value of the variable
?TEXT, and then it sets up a subgoal to be accomplished by adding the item
(GOAL Handle CLG type) to working memory. The appearance of this item
will trigger the startup rule for the corresponding submethod.

The next rule, *Do-CCS*Release-Pos, waits for two things: the previously
called submethod to signal completion by depositing the item (WM CLG-
type Done) in working memory and the appearance of (MOTOR MANUAL
MODALITY FREE) in working memory, which means that the manual
modality has finished any keystrokes that were under way in the sub-
method. When these conditions are met, the rule fires, instructing the
manual motor processor to “peck” the POS-RLS key. The final rule,
*Do-CCS*RGA, corresponds to the final Step 5 in the method; when the
manual modality becomes idle upon completion of the POS-RLS keystroke
from the previous rule, control returns to the calling method.

The main features of this example can be summarized: (1) each GOMS
method entails a pair of “housekeeping” productions corresponding to the
NGOMSL method statement (name prefixed by convention with MFG) and
the return statement (postfixed with RGA); (2) there is a separate produc-
tion rule for each basic perceptual or motor operator step in the method; (3)
the production rule for a step always waits for any motor action to be
completed before it fires to instruct the next motor action, or to invoke a
submethod; (4) likewise, if an action such as an eye movement was made to
acquire perceptual information, the rule for the next step always waits
until the perceptual information becomes available; (5) when a submethod
is invoked, execution of the next step waits for a signal that the submethod
is completed.

This set of features implements the policy for representing the GOMS
methods in terms of EPIC production rules that results in a model that
corresponds closely to the original CCT models for text editing. In particu-
lar, the elapsed time between each production rule firing contains not just
the cognitive processor cycle time, but all perceptual time associated with
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the rule conditions and all times resulting from motor processor activities
initiated by the previous step. Thus, each production rule is constrained to
act as a single step in the NGOMSL analysis; each step in each method is
fully executed before the next step is executed; and the execution of a
submethod suspends execution of the calling method (see John and Kieras
[1996b] for a related discussion). This model had a total of 50 production
rules; one rule for each step in each method plus the additional “housekeep-
ing” rules for each method.

Although it had strictly sequential methods, the Hierarchical Fully-
Sequential model overlaps some aspects of the task; for example, typing the
billing number can begin while the customer is still speaking digits. Figure
6 shows the production rule *Enter-number*Get-next-digit that does this
work. Each recognized spoken digit is represented as a sequentially tagged
item in auditory working memory, of the form (AUDITORY SPEECH
PREVIOUS ?prev NEXT ?next TYPE DIGIT CONTENT ?digit), where the
variable ?digit represents a recoding supplied by the auditory perceptual
processor that designates the physical target of the corresponding key. The
rule *Enter-number*Get-next-digit uses a “pipeline” approach similar in
spirit to John’s [1996] model of transcription typing: as each digit arrives in
working memory, the cognitive processor waits until the manual motor
processor has finished the previous keystroke and then sends the keystroke
command corresponding to the digit to the manual motor processor and
updates a “pointer” in WM to the next speech item in auditory working
memory to be processed. In conformance with the eye-hand motor coordina-
tion policy, the rule requires that before the digit can be typed, the shape of
the center key on the keypad, the FIVE key, must be in visual working
memory to ensure that the target key is in view.

5.1.2 The Hierarchical Motor-Parallel Model. This model took advan-
tage of the parallel operation capabilities of the motor processors and
removed the heavy sequential constraints of the first model. As shown in
Table II, the Motor-Parallel model is like the Fully-Sequential model except
that it does not wait for all motor activity to be completed before starting a
step, and it takes advantage of the motor processor’s ability to prepare the
next movement while a prior movement is currently under way.

Fig. 6. Production rule that enters each digit in the Hierarchical Fully-Sequential model.
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The policy represented by the Hierarchical Motor-Parallel model was
implemented by starting with the production rules from the Hierarchical
Fully-Sequential model, and then each condition clause of the form (MO-
TOR ^type& MODALITY FREE) was either deleted or changed to the form
(MOTOR ^type& PROCESSOR FREE), which indicates that the motor
processor is free to accept instructions for a new movement preparation.
The clause was deleted if the rule did not instruct the corresponding motor
processor; the clause was changed to the processor-free form if the rule
instructed that motor processor. The two panels of Figure 7 illustrate the
modification. In the Fully-Sequential model, each rule did not fire until all
previously initiated motor activity was fully completed, as in rule *Get-
Billing-Number*Press-STA-SPL-CLG. The effect of the change to the Mo-
tor-Parallel form is that each rule waits only the minimum time for motor
activity to finish. Each rule that instructs a motor processor merely waits
for that same motor processor to be ready to prepare a new movement, even
if a movement is still being executed.

Thus, in the Motor-Parallel model, activities involving different proces-
sors are performed in parallel; preparations for the next movement are
made in parallel with the execution of a movement; and rules wait on motor
processors only the minimum required by the architecture. As a result,
many purely cognitive activities, such as the rules performing method
housekeeping, execute while perceptual-motor actions are taking place. The
Hierarchical Motor-Parallel model still follows strict hierarchical GOMS
methods, but takes full advantage of the ability of the perceptual and motor
mechanisms to run in parallel both internally and with other processors,
including the cognitive processor. The time occupied by each step in the
methods is now a complex function that depends on the exact timing
relationships between perceptual and motor processes.

5.1.3 The Hierarchical Prepared Motor-Parallel Model. This next
model took further advantage of the motor processors. As shown in Table
II, this model assumes that the operator would anticipate eye or hand
movements by instructing the motor processors to prepare the movements
in advance, as soon as it was ready to accept movement preparation
instructions and as early as logically possible. This advance preparation
results in substantial time savings (typically 100–250 msec.) when the
movement is actually made. Note that EPIC’s motor processors do not
impose a time penalty for a movement preparation that is subsequently not
used or is overwritten by a different movement instruction. Thus, it is
possible to speed up performance if the likely next keystroke can be
predicted; there is no slowing down of movement preparation if the predic-
tion is incorrect.

This model was constructed by adding additional production rules to the
Motor-Parallel model to send the preparation instructions to the motor
processors at the right time. Rather than inserting the preparation rules
into the existing methods, the implementation of the policy took advantage
of PPS’s parallel rule-firing ability by simply attaching these rules to the
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Fig. 7. Example modifications made to transform the Hierarchical Fully-Sequential rules
(top panel) into the Hierarchical Motor-Parallel form. The only change is in the condition
clauses that test the motor states. The Fully-Sequential model tests for all active modalities to
be free (idle) before performing the actions for the next step; the Motor-Parallel model tests
only that the relevant motor processor is free to accept a command for a new movement.
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existing methods as separate execution threads. Figure 8 shows an exam-
ple of rules for preparing a movement in advance. During the step of
greeting the customer in one of the submethods, the rule *Handle-Zero-
Plus-Call*PrepareSTA-SPL-CLG fires, enabling rule *Prepare*STA-SPL-
CLG which waits until the manual motor processor is free to prepare the
STA-SPL-CLG keystroke. Thus once the method has advanced to the
customer-greeting step, the preparation rules fire independently of what
the other rules are doing. Making these rules be potentially executable in
parallel with the preexisting task rules requires no modification of the
preexisting rules. This policy thus uses the parallel capabilities of the
cognitive processor as well as those of the motor processors.

Such preparation was possible only for movements that could be assumed
to be constant at that point in the task; for example, typing a digit of the
billing number could not be prepared in advance, since the billing number
would always vary from one task instance to the next. In contrast, pressing
the billing category key could be prepared far in advance, given that the
task structure makes it reasonable to assume that this key is probably the
next one to be hit. Thus, the policy was to identify the earliest possible
preparation point for each predictable keystroke and attach the prepara-
tion rules to the corresponding procedure step.

5.1.4 The Hierarchical Premove Prepared Motor-Parallel Model. Table
II shows that this model went even further in the direction of anticipating
movements by incorporating premovements of the eyes or hands. For
example, certain keystrokes could be anticipated by moving the hand to the
location of the key in advance (a pose style movement, comparable to a
home movement in CPM-GOMS) and then preparing the actual keystroke
movement. Thus, both the physical movement and the motor preparation
were done as much in advance as possible, further speeding task execution.
The implementation for this policy was like that of the Prepared model; an
example is shown in Figure 9. During the greet-customer step, the hand is

Fig. 8. Example rules for preparing a movement in the Hierarchical Prepared Motor-Parallel
model.
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posed at the key and then prepared to peck it. Thus, this policy attempts to
optimize execution speed as much as possible within the confines of the
hierarchical method structure.

5.2 Flattened-Method Models

The original Hierarchical Motor-Parallel model was then modified in a
different direction, flattening the methods, along the lines suggested by
widely accepted principles of learning of cognitive skill, such as those
proposed in learning theories such as ACT [Anderson 1976; 1987] and
SOAR [Laird et al. 1986]. Extreme practice of a skill should cause the
method housekeeping and other such rules to be replaced by a more
efficient set of rules that effectively turn “subroutine” methods into “in-
line” methods. For example, a rule that invoked the submethod for entering
a billing number would be replaced by a rule that simply performed the
first substantive step for entering the billing number and then chained to
the next step. The resulting rule set could be represented as a tree, in
which each class and subclass of the task would be performed by a sequence
of rule firings along a single linear path through the tree, and each rule
performs some substantive task action or decision, with no housekeeping
rules. However, as in the Hierarchical Motor-Parallel models, the percep-
tual-motor activities can overlap substantially. The flattened-method mod-
els are perhaps closest to the CPM-GOMS models for the telephone

Fig. 9. Example rules for making a prepositioning movement to a key followed by advance
preparation for a subsequent keystroke in the Hierarchical Premove Prepared Motor-Parallel
model.
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operator tasks [Gray et al. 1993], in that the methods consist simply of
sequences of operators, with no hierarchical submethod structure and
consequently no cognitive execution overhead (see John and Kieras [1996b]
for more discussion of this distinction). As mentioned above, only two
models of this type were developed here.

5.2.2 The Flattened Motor-Parallel Model. The rule set for this model
was constructed under a policy of modifying the Hierarchical Motor-
Parallel model to eliminate the housekeeping rules by concatenating the
substantive steps of the separate methods, with selection rules being
replaced by simple conditional tests on each branch. Thus, the hierarchical
method structure was flattened into a single method with branches. This
model provides a conceptual baseline for assessing the effect of method
flattening in that, as Table II shows, the flattened methods are the only
modeling policy different from the Hierarchical Motor-Parallel model.

Figure 10 shows a portion of the single resulting method which can be
compared to the rules for the top-level method in the original hierarchical
model (Figure 5). In the original model, the second rule is chained to a rule
that invoked a submethod via a selection rule for the Bill-to call type.
However, here there is a single flat method, in which the second rule,
*Do-CCS*01Look-at-Coin-Pre, fires only if the call type is 01 (Bill-to) and
then chains directly to the rule for the next step of looking at the coin prefix
field, which then chains directly to one of two rules that instructs the vocal
motor processor with the appropriate greeting. Thus, all of the intermedi-
ate layers of method overhead have been removed; the task is executed
with a minimum number of rules firing; and all of these rules test
perceptual input or instruct motor processors.

5.2.3 The Premove Prepared Flattened Motor-Parallel Model. Finally,
as Table II shows, this model incorporated the same advance movement
and preparation as the Premove Prepared Hierarchical Motor-Parallel
model. The movement anticipation followed the same approach shown in
Figure 9 of attaching independent sets of rules to the appropriate steps in
the main method. As discussed above, it seems that if operators had
practiced the procedures to the point of fully flattening the methods, they
would also have fully anticipated the movements with both premovements
and advance feature preparation; hence there was no model using only one
of these anticipation policies. Because the minimum number of activities
are on the critical path, this model produces the fastest execution times.

6. COMPARISON OF THE MODELS TO EMPIRICAL DATA

6.1 Observed and Predicted Times

The basic question concerns how well the a priori constructed models
predict actual total task performance time. While both the model and the
data contain keystroke-by-keystroke times, practical engineering models
will be generally more concerned with completion times for whole tasks,
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and so this presentation is limited to total task time prediction. Some
discussion of individual keystroke-level events appears in Meyer and
Kieras [1997b] and Kieras and Meyer [1997].

We selected Bill-to call type task instances from the videotaped task
performances of experienced operators collected, but not analyzed, during
the Gray et al. [1993] Project Ernestine. In the selected task instances, the
operators followed the same basic procedure covered by the models and

Fig. 10. Example production rules from the Flattened Motor-Parallel model; compare these
with Figure 5 containing the top-level method for the Hierarchical Motor-Sequential model.
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made no substantial overt errors, and the customers provided the relevant
task information smoothly, without discussion or interaction with the
operator. Unfortunately, despite the many hours of task performance
available in the recordings, the number of task instances meeting these
requirements was severely limited, resulting in a set of four task instances
for each of two operators. While a larger sample size would be obviously
desirable, this data set was also remarkable in that it contained detailed
recordings for users who were extremely highly practiced at a real-world
task. Such data is not easily obtained, so the decision was made to model
this small sample of realistic data; much larger data sets from laboratory
tasks have already been modeled extensively using EPIC (see Meyer and
Kieras [1997a; 1997b] and Kieras and Meyer [1997]).

6.1.1 Details of the Videotaped Data. The Project Ernestine videotapes
contain staged calls to actual operators who used actual operator equip-
ment, but who were aware that they were in an experiment. The staged
calls followed a script that was prepared not with detailed model-fitting or
traditional experimental design in mind, but rather to collect a sample of
behavior that was intended to represent actual customer behavior and
telephone operator activity. Thus, compared to a standard laboratory
study, the task instances were selected in a way that could be called
“realistically haphazard,” rather than fully balanced and replicated. In
many cases the customer behavior contains pauses, corrections, or subopti-
mal behaviors, such as forcing the operator to prompt the customer for the
required information. Together with the lack of replications of call types, as
well as errors or hesitations on the part of the operator, the result is that
often there is no “clean” version of a particular call type in which the
normative procedure is followed by both customer and operator.

The eight different telephone operators each handled from as few as 9 to
as many as 57 staged calls, with about 20 calls being typical, for a total of
187 recorded task instances. A total of 56 task instances were of the Bill-to
type used in this modeling. Of these, many involved errors, hesitations, or
additional verbal interactions, leaving 25 that were deemed “clean” task
instances. Of these, 9 involved an alternative task procedure,4 and 5 were
from a single operator who used a touch-typing style on the keypad, as
opposed to the pecking style used by the other operators. Setting these
cases aside left 11 candidate task instances, which were almost all contrib-
uted by only 2 operators. The final selection was to use the same number of
cases from these 2 operators to produce the most stable data set available

4The workstation will accept the STA-SPL-CLG “bill to another number” key after the billing
number is entered, as well as before the KP-SPL key that starts the billing number entry.
Apparently, neither the operator training nor the workstation documentation dictate a single
procedure. Note that such procedural indeterminacy may affect which actions are on the
critical path for completing the task and thus determine the overall task completion time.
Therefore, training can be as important as workstation design for such tasks. For simplicity,
this work used only the procedure described earlier, which seems to be the trained procedure
and appears most often in these data.
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for the model testing. The result was 4 task instances from each of these
two operators.

The video and audio recordings of the selected task instances were
digitized at full frame rate, and the times of the roughly 50 individual
events (display changes, words of speech, and keystrokes) in each task
instance were determined to the nearest video frame (1/30 sec., 33 msec.).
The externally determined events (e.g., response time of the workstation,
content and timing of each word of the customer’s speech measured from
the operator’s greeting) were used to program the environment simulation
module. The internally determined observed events (i.e., the operator’s
speech and keystrokes) were used to test the accuracy of the models.

6.1.2 Details of the Simulation Process. Each of the eight task in-
stances was simulated with the EPIC models by programming the environ-
ment simulation module with the externally determined events and then
running the EPIC system with the production rules for each model. The
EPIC models generated the sequence of observed operator actions and the
predicted time at which each action occurred.

For each task instance, a script for the task environment module was
prepared. It contained the information from the videotaped task instance
that represented the behavior of the workstation and customer and in-
cluded measured values for the operator’s speech duration. Specifically, the
environment module was programmed with the following items for each
task instance:

(1) The time delay measured from the call arrival tone for the appearance
of each item initially displayed on the screen, e.g., COIN-PRE.

(2) The duration of the operator’s vocal greeting and “Thank you” speech,
since these are not currently predicted by EPIC’s vocal processor.

(3) The time delay of each phrase or digit spoken by the customer,
measured from the end of the operator’s greeting, and a definition of
the recognized content (e.g., “uh operator bill this to” is recognized as
the symbol BILL-TO; “five” is recognized as FIVE key).

(4) The time delay for the appearance of each of the final items displayed
on the screen, e.g., AMA-VFY, measured from the START keystroke.

Note that the environment module programming does not include when
the vocal greeting starts or when the operator makes keystrokes; these
events are under the control of the simulated operator represented by the
EPIC model.

The predictions for the models were obtained by running each model on
each task instance. Note that running the simulation is the easiest way to
generate the predicted total task times because the exact timing of the
events in a specific task instance can depend in subtle ways on exactly
what happens to be on the critical path, which depends in turn on the exact
timing of the preceding input and output events.

For each simulation of a task instance, the task environment module
starts the simulated task by producing the call arrival tone and putting the
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initial items on the screen. When the simulated operator says the appropri-
ate greeting, the task environment module then produces each unit of the
customer’s speech at the observed delays from the greeting. In response,
the simulated operator presses the appropriate keys based on the content of
the customer’s speech. For example, in response to “bill this to five, seven
. . .” the simulated operator hits the keys STA-SPL-CLG, KP-SPL, 5,
7, . . . START, with from 4 to 14 digits being involved. Then the task
environment module puts up the final screen items with the observed
delays after the START key is hit. The simulated operator then responds to
these items with the final keystrokes to complete the task.

During the simulation runs, all EPIC parameters were kept fixed at the
values mentioned above in the architecture description. These values were
the fixed architectural parameter values set during the development of
EPIC and modeling other tasks (given above as the standard and typical
values) and a single task-specific value that was determined during the
preliminary model-fitting work in this task domain,5 namely the time to
recode a spoken digit to the name of a key (also given above as a typical
value). The execution time predictions produced by the different models
differed only as a result of how the production rules controlled the EPIC
architecture; parameters such as perceptual encoding times were not
changed from one model or task instance to the next. For each policy model,
all the sample task instances were performed by the same set of production
rules; the rules were not altered to fit specific task instances.

6.1.3 A Baseline Model. To provide a basis for judging the relative
contribution of the EPIC models, the total task execution time was pre-
dicted for each task instance using the Keystroke-Level Model (KLM)
which usually produces usefully accurate results in ordinary computer
interface applications [Card et al. 1983; John and Kieras 1996a; 1996b].
The KLM-predicted task execution time was simply the total of the ob-
served relevant workstation response times, the customer and operator
speaking times, and the total time for keystrokes (280 msec. each) and
homing operators for movements of the right hand to and from the keypad
(400 msec. each).

7. RESULTS

7.1 Prediction of Total Task Execution Times

7.1.1 Definition of Total Task Execution Time. The telephone company
defines the total task execution time as the time during which the operator
and the workstation are occupied by a call, which is the duration between
the initial call arrival signal tone and the last keystroke, the POS-RLS
(Position Release) key that indicates that the call processing is completed.

5S. Wood, D. Kieras, and D. Meyer, “An EPIC Model for a High-Performance Task.” A poster
presented at the CHI ’94 ACM Conference on Human Factors in Computing (Boston, Mass.,
April 25–28).
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However, this definition of total task time is a poor choice for testing the
models. First, as mentioned both by our informants and Gray et al. [1993,
p. 264], the POS-RLS keystroke is not constrained very much by the task
structure; the key can be struck at a variety of valid times, no one of which
seems to be tightly specified in the training materials or common practice
in the task domain. Second, the total time terminated by POS-RLS includes
a large externally determined time during which the computer searches the
billing number database. Accordingly, we used a more stable and more
internally determined definition of the total task execution time: the time
between the call arrival tone and the time to press the penultimate key, the
START key, which is struck immediately after the last digit of the billing
number is entered and which initiates the search through the database to
verify the billing number. Some implications of the reaction time for the
POS-RLS key will be discussed below.

7.1.2 Goodness-of-Fit Measures. A popular way to assess the goodness-
of-fit of model predictions to data is to calculate regression equations and
coefficients. However, such a calculation is not very informative in this case
for two reasons. First, all of the models, even the Keystroke-Level Model,
accounted for 83% or more of the variance (r2) in the task execution times,
which was statistically significant (p , 0.05) in all cases. This result is not
as surprising as it might seem. For this call type, the major determinant of
the task execution time is the length of the billing number supplied by the
customer, and all the models (along with common sense) predict that the
execution time will be longer as the length of the billing number increases.

Second, the goal of engineering models is to supply predicted values of
usability metrics that are not merely correlated with the empirically
measured values, but are actually similar in numerical value. If the
predictions are close to the actual empirical values, the regression equation
will have an intercept close to zero and a slope close to one, but this is not
reflected by the correlation coefficient, making the traditional r2 metric a
poor choice for a figure of merit.

Thus, a measure of the actual difference between the predicted values
and the observed values is more informative than correlation measures.
The mean error is a poor choice because the goal of engineering models is to
obtain accurate predictions for each task instance considered; underpredic-
tions of some situations must not be allowed to compensate for overpredic-
tions in others. Thus, the best choice for a simple summary statistic for the
accuracy of the models is the average absolute error of prediction; the
difference between predicted and observed task times was calculated for
each task instance, and then the absolute values of these differences were
averaged and expressed as a percentage of the average observed value.
Engineers often use a rule of thumb which says that predictions accurate
within 10–20% are useful for design purposes.

Finally, another issue of goodness of fit concerns whether the model
generally over- or underpredicts the data. These models, like most other
engineering models, are idealizations. They apply a task strategy consis-
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tently and correctly and do not suffer from lapses of attention, slips of the
finger, and so forth. Thus, such models are generally more efficient than a
human who is attempting to follow the same strategy, so the model should
underpredict, i.e., predict execution times that are less than the observed
values (cf. Gray et al. [1993]). Therefore, if a model overpredicts by
predicting times longer than the observed values, then either the parame-
ters in the model are incorrect, or the model can be rejected as following an
incorrect strategy. Since most of the parameters in the EPIC architecture
are fixed, a model that seriously overpredicts the data can be ruled out as
misrepresenting how the task is done.

7.1.3 Model Accuracy. Table III lists the average total task execution
time for the observed data and each model, along with the average absolute
error of prediction for each model. The average absolute error of prediction
ranges from 6.6% for the Hierarchical Motor-Parallel model to 14.3% for
the worst-fitting EPIC model to 28.4% for the Keystroke-Level Model. The
question is which models predicted better than others.

Using the engineer’s 10–20% rule of thumb, all of the EPIC models
appear to be usefully accurate in predicting total task execution time, while
the Keystroke-Level model appears to be inadequate. The EPIC models are
all reasonably accurate because they all represent to some extent how the
task activities can be overlapped with each other (e.g., the billing number
can be keyed in while the customer is still speaking the digits). This is the
critical determinant of execution time in this task. In contrast, the Key-
stroke-Level model does not overlap any activities; so it not only produced
the largest average absolute error, but it overpredicted every one of the
task instances, with an error over 30% in five cases. In fact, the Keystroke-
Level model was within 10% only on two rather brief task instances that
involved entering only four digits, which of course present far fewer
opportunities for overlapping task activities. Clearly the Keystroke-Level
model is quite inappropriate for predicting execution times in the tasks
studied here.

Comparing the EPIC models to each other is technically difficult due to
the small sample size and apparently nonnormal distributions of the

Table III. Quality of Fit between Models and Observed Total Task Execution Times

Model Type
Total Task Time

(msec.) Error

Observed 9292
Hierarchical Methods

Fully-Sequential 9887 8.8%
Motor-Parallel 8672 6.6%
Prepared Motor-Parallel 8447 9.5%
Premove/Prepared Motor-Parallel 8290 11.7%

Flattened Methods
Motor-Parallel 8415 9.6%
Premove/Prepared Motor-Parallel 8065 14.3%

Keystroke-Level Model 12094 28.4%
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prediction errors; conventional significance tests cannot be trusted to be
accurate under these conditions. Instead, the Wilcoxon Signed-Ranks test
was used to calculate the statistical significance for two-tailed planned
comparisons of the absolute error of prediction on each task for the
different models. This procedure tests the null hypothesis that the differ-
ences between paired interval-scale values are symmetric about zero and
then produces exact probabilities for the test statistic under this hypothe-
sis. Rejecting this null hypothesis means that one of the models produces
errors that tend to be less than the other. Unless stated otherwise, all
claimed differences are significant at the 0.05 level or better.

The Hierarchical Motor-Parallel model (6.6% error) produced prediction
errors that were significantly less than all of the other EPIC models except
for the Hierarchical Fully-Sequential model (8.8%). Even though the Hier-
archical Fully-Sequential model was fairly accurate, it also suffers from a
problem in overprediction like the Keystroke-Level model; it overpredicts
the task instances in all but one case. With regard to other models, the
least accurate EPIC model, the Flattened Premove Prepared model (14.3%
error), is significantly less accurate than the Hierarchical Prepared Motor-
Parallel model (9.5%) and the Flattened Motor-Parallel model (9.6%). This
leaves the Hierarchical Motor-Parallel model as the best-fitting model,
being both simple and the most accurate of the models that underpredict
the data.

The major surprise in the results is that the Hierarchical Motor-Parallel
model, which is only moderately efficient, is more accurate than the more
optimized models, even though the human operators are very highly
practiced in the task. Apparently, operators take advantage of the parallel
preparation and execution capabilities of their motor processors to speed up
their performance, but they make little use of prepositioning the eyes and
hands in advance, at least in the task instances studied. This conclusion is
consistent with informal observation from the videotapes that operators did
not seem to engage in prepositioning of the hands very often; eye and head
positions generally could not be observed in the videotapes. Performance
slower than architecturally possible could stem from the fact that very fast
performance is either not needed or is not sustainable in the task environ-
ment; this will be discussed more below.

The Flattened method models represent an even more extreme effect of
practice, but they are also less accurate than the simple Hierarchical
Motor-Parallel model, and in fact the most “expert” model, the Flattened
Premove Prepared model, was the least accurate. Based on these results,
one would be tempted to conclude that there is no evidence that “flattening”
of methods takes place as a result of extreme practice. However, there are
two caveats about this conclusion. First, although consistent, the difference
between the Hierarchical Motor-Parallel model and the Flattened Motor-
Parallel model on these task instances is not large, being only about an
average of 200 msec. An examination of how the models execute the task
instances shows that in the Hierarchical Motor-Parallel model, the rules
for submethod “calls” and “returns” tend to be overlapped with perceptual

268 • David E. Kieras et al.

ACM Transactions on Computer-Human Interaction, Vol. 4, No. 3, September 1997.



motor processing or external events, so the cognitive overhead does not
contribute much to the total task execution time. A different type of task in
which the overhead of submethods was proportionately larger would pro-
vide a stronger test of this important hypothesis about the effects of
practice. Second, again as will be discussed more below, this task domain
may not in fact require or encourage extremely optimized performance,
despite the amount of practice.

7.1.4 Comparison of EPIC Models to CPM-GOMS. A natural question
is how the EPIC models compare to the Gray et al. [1993] CPM-GOMS
models. A fundamental difference is that the EPIC models are based on an
a priori task analysis and modeling policies that specified a single task
strategy for each model that was then used to generate predictions for each
of the 8 task instances. Thus, the EPIC models attempt to account for all of
the task instances with a single task strategy, and they do so with an
average absolute error of 7–14%. In contrast, the CPM-GOMS models in
Gray et al. were individually constructed to fit each of a set of selected
benchmark task instances, and they predicted these task times quite well,
with an average absolute error of only 3%. However, these benchmark
models did not predict a set of field trial data very well, producing an
average absolute error of about 25%, because the benchmarks were not
accurately representative of the field data tasks. The accuracy of EPIC
models in the same situation would likewise depend on whether they were
supplied with representative task instances. However, the generative prop-
erty of EPIC models would make it a simple matter to obtain predictions
for a large number of different task instances chosen to produce a represen-
tative cross section of the actual task. In contrast, performing CPM-GOMS
analysis is not practical for a large number of benchmarks. In summary,
the EPIC models succeeded at generating usefully accurate predictions for
the selected task instances and could be readily applied to a larger number
of task instances, but we do not yet know the predictive accuracy of
CPM-GOMS for a comparable situation. See the Appendix for a more
detailed discussion.

7.2 Implications of Individual Keystroke Time Predictions

7.2.1 Speech Recognition Delay and Input Rate. The main thrust of
this work was to use EPIC models to predict total task times, but the
models also predicted the timing of individual keystrokes. Most of the
keystrokes involved typing the digits of the billing numbers in response to
the customer’s speaking them. These keystroke reaction times were pre-
dicted very poorly by some of the models and only moderately well by the
best-fitting Hierarchical Motor-Parallel model, so a detailed presentation of
the predicted and observed keystroke reaction times is not justified in this
article. However, some important implications can be summarized.

Detailed examination shows, in the observed task instances, that the
customer speaks the digits at a rate typically slower than the model can
make the corresponding keystrokes, often pausing at apparent “chunk”
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boundaries in the billing number. However, exactly how the model re-
sponds to these pauses and the speaking rate depends on the exact
relationship of the various processing delays involved. A pause in the input
may or may not produce a pause in the keystroking output, depending on
whether the model has been keeping up with the input or lagging behind.
In turn, whether the model keeps up with the input depends heavily on an
estimated perceptual processing parameter, the time required to recode a
spoken digit or phrase into the identity of the corresponding key. The value
estimated from the preliminary model work appears to be too inaccurate to
predict closely these complex timing relationships, but because the percep-
tual recoding process is often not on the critical path, the total task time
can still be predicted reasonably accurately. Kieras and Meyer [1997]
report some results in which individual keystroke times can be accurately
modeled in these data. This better-fitting model is not included here,
because it was constructed post hoc to fit the data, while the goal of the
present work is a priori prediction. Future predictive modeling in the
telephone operator domain should of course be informed by such additional
results.

In the meantime, these observations suggest that the major bottleneck in
the task execution time is the rate at which the customer speaks the digits,
not the rate at which the operator can type. A related conclusion appears in
Gray et al. [1993], in that the speech interaction occupies most of the
critical path through the task. A second implication is that perhaps the
reason why operators appear to be following a task strategy that is only
moderately efficient is that the task is so limited by the customer’s
speaking rate that there is little need for the greater efficiency of the more
highly optimized strategies.

7.2.2 What Controls the POS-RLS Keystroke? As discussed above,
POS-RLS (Position Release), the last keystroke in the task, is problematic.
Gray et al. [1993, p. 264] and our informants point out that the POS-RLS
keystroke can be made at a variety of times, even in advance of the
system’s billing number verification. That is, no harm is done if the
operator strikes the key before the system has completed verification: the
system will halt and wait for the operator to resolve the situation if the
billing number is invalid or will simply allow the call to go through
immediately if the number is valid. Once POS-RLS is struck, the worksta-
tion will accept the next arriving call. Thus striking the key early would
result on average in the call being completed more quickly and the next call
being processed sooner. However, according to the workstation training
materials, a certain screen event indicating a successful billing verification
is the proper signal for hitting POS-RLS, and this was assumed in the
GOMS analysis underlying the models (cf. Gray et al. [1993]).

Given that the system verification process is relatively long, the operator
should be idle at the time of the relevant screen event, so the latency of the
POS-RLS keystroke should depend on only a simple reaction to the screen
event. However, the timing of this keystroke was quite unstable in the
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observed data and did not appear to be systematically related to any of the
events on the computer screen. In fact, in one case, the operator was not
even looking at the workstation while making the keystroke! Furthermore,
the observed reaction time for the keystroke was quite large: the POS-RLS
keystroke is made an average of 1581 msec. after the very last screen event
that could reasonably serve as a stimulus, the AMA-VFY event shown in
Figure 2. In contrast, the otherwise well-fitting Hierarchical Motor-Parallel
model, which performs no advance prepositioning or preparation, predicts a
reaction time to this same event averaging only about 727 msec. The more
optimized models predict even shorter times. A longer reaction time could
be produced by adding an eye movement and a perceptual delay to locate
the key before launching the keystroke, but this artificial move would still
leave a large amount of the time discrepancy unaccounted for.

Thus this keystroke takes much longer than it should according to the
EPIC architecture. A possible explanation is that the keystroke is not being
made with maximum speed in response to a screen event, but rather it is
under the control of some other aspect of the task situation. Since POS-RLS
indicates that the operator is ready to accept another call, perhaps the
operator is delaying this keystroke in order to insert a bit of “breathing
room” before the next call arrives. Given that this task is normally done all
day by the operator, it is not surprising that the task strategy might
involve such workload regulating techniques. EPIC’s a priori predictions
help reveal the presence of such task factors by providing a “best-case”
execution time based on the human cognition and performance architec-
ture. Thus, discrepancies between predicted and observed results signal the
possible presence of factors not represented in the model strategy or the
architecture. In this way, EPIC models can help identify task properties
that are not a matter of human information-processing characteristics.

8. CONCLUSIONS

Some EPIC models for a high-performance task were constructed using a
priori task analysis, modeling policies, and parameter values, and these
models were able to predict total task execution times with an accuracy
high enough to be useful as engineering models for interface design. These
results show the potential for EPIC to provide a framework for engineering
models in complex, high-performance domains in which the operator’s
performance time depends on the overlapped activity of separate processing
capabilities.

Of particular interest was the result that the most accurate model was
rather easy to construct because it followed very simple modeling policies
corresponding to fairly unoptimized performance. The accuracy of this
relatively unoptimized model contrasts sharply with the observations in
Meyer and Kieras [1997a; 1997b] and Kieras and Meyer [1997] that in
many laboratory tasks people follow highly optimized strategies which
often involve advance movement preparation like those in the more opti-
mized models tested here. Apparently, the telephone operator task does not
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involve such highly optimized task strategies, although the operators are
very practiced, and execution speed is important. As discussed above, the
task speed is limited in ways that may make highly optimized strategies of
little value; overlapping helps the manual activity to keep up with the
input, but there is little utility in spending energy over the course of a day
on movement propositioning and preparation in this task. Taking into
account the larger context of a task, such as whether it has to be done for
hours at a stretch, is not the norm in cognitive modeling. But the fact that
the corresponding strategies are distinguishable in the data argues that
such considerations are critical for practical task modeling. Thus, a possi-
ble heuristic for a priori task modeling is to select a modeling policy that is
no more optimum than the overall task situation makes energetically and
economically worthwhile. An important goal for engineering model re-
search will be to try to characterize this larger context of task performance.

The effort required to construct EPIC models seems to be considerably
less than that for CPM-GOMS. In both approaches, the analyst must make
many decisions about the details of task execution, such as when eye
movements are necessary, but for EPIC models, these decisions are made
only once for the general task procedures, rather than possibly multiple
times in each specific benchmark task instance. Constructing the present
models was relatively easy. The initial GOMS model was routine once the
information on the actual task procedures became available, and building
the production rule models was a matter of applying readily standardizable
templates. Finally, the EPIC architecture itself was fixed and required no
development for this analysis. In return for the rather modest construction
effort, the resulting EPIC model can generate predicted execution times for
all possible task instances within the scope of the GOMS model. Thus EPIC
models would appear to be very efficient engineering models for multimo-
dal high-performance tasks.

At this point, EPIC is definitely a research system, and certainly it is not
ready for routine use by interface designers. However, in some situations,
such as the Gray et al. Project Ernestine, the economics of the interface
evaluation problem can make even a novel and demanding analysis ap-
proach a practical and useful solution. Following the precedent of the CCT
and NGOMSL models [John and Kieras [1996a; 1996b], as the EPIC
architecture stabilizes and as experience is gained in applying it to inter-
face analysis problems, it should be possible to develop a simplified method
of analysis that will enable designers to conveniently apply engineering
models based on EPIC.

APPENDIX

The exact set of models, data, and evaluations of prediction accuracy
appearing in the Gray et al. [1993] CPM-GOMS study is rather complicated
and must be summarized here. Their overall execution time analyses used
both unweighted predictions and weighted predictions that take the fre-
quency of different call types into account, but for present purposes, only
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the unweighted values of prediction error are relevant. For each of 15
selected call types, they first devised a “benchmark” scenario intended to
represent that call type and collected videotaped task instances from
several operators performing each benchmark task. Then they selected 15
individual performances, one of each type, and constructed a specific
CPM-GOMS model for each one of these benchmark task instances as
performed on a current workstation, giving 15 models, one for each of the
selected task instances. As in the present EPIC models, the times for
externally determined events and the operator’s speech duration were
estimated from the data and included in the model. They reported an
average unweighted error of 3% when these models were used to predict
the total task time for the same task instances used to construct them.
Since the models all underpredicted the task times, this result is equiva-
lent to an average absolute error of 3%.

Gray et al. then modified the models to produce predicted execution times
for the same task instances as they would be performed on a new worksta-
tion, giving a second set of 15 CPM-GOMS models. Both the first and
second set of models were compared to execution time data from a large-
scale field trial that included both the current and the new workstations.
Gray et al. report an average unweighted error of about 11% and 12% when
the two sets of 15 models predicted the observed average execution times
for the current and the new workstations, respectively.

However, there are two problems with this initially impressive result.
First, using the average error allows overpredictions to compensate for
underpredictions; the average absolute error can be calculated from the
data reported in Gray et al., and this is substantially greater, about 26%
and 25% error for the current and the new workstations, respectively.
These substantially greater errors are due to the second problem, which
Gray et al. term benchmark selection error: the benchmark tasks were
supposed to be representative of the actual tasks in the field data, but in
fact they turned out not to be very representative. This is shown by the fact
that the observed times on the benchmark tasks predicted the observed
field data times for the same call type and workstation only slightly better
than the models; the average error was about 8%, and the average absolute
error was almost 25%. Since the CPM-GOMS models were constructed to
predict the benchmark task data, they could not predict the field data any
better than the benchmark task data themselves. Hence, to a great extent,
the accuracy of the CPM-GOMS models for predicting the field data was
limited by the accuracy of the benchmark tasks used to represent the
corresponding field data. Gray et al. point out that future applications of
the CPM-GOMS methodology should take steps to ensure that the modeled
benchmarks are accurately representative.

It is tempting to compare the EPIC model accuracy with the CPM-GOMS
accuracy, but first note that any comparison must be done with the same
measure of error, with the average absolute error being the most suitable.
The two modeling efforts have two major differences. First, the data being
predicted is rather different. Gray et al. used POS-RLS to mark the end of
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the task execution; START was used in the present results. Furthermore,
the Gray et al. data consisted of either single instances of 15 call types or
averaged field trial data for the same 15 call types. The data predicted in
the present work consisted of 8 instances of a single call type that
subsumes several of the Gray et al. types (e.g., Gray et al. classify
pay-phone Bill-to calls as a separate type from ordinary Bill-to phone calls).
The Gray et al. data would seem to be more general and were certainly
appropriate for the practical goals of their work, but the call type selected
for the present work has a maximum of internally determined events and a
minimum of externally determined ones. The more externally determined
events there are in a task instance, the easier it will be to get a good fit to
the total execution time, but to what extent this might have affected the
Gray et al. results versus the present results would have to be determined.

Second and most important, the ground rules for prediction in the two
projects were rather different. While both approaches used parameters
estimated both inside and outside the task domain, the EPIC models were
based on an a priori task analysis and modeling policies that specified a
single task strategy for each model that was then used to predict each of
the eight task instances. In contrast, the CPM-GOMS models in Gray et al.
were individually constructed to fit each benchmark task instance. The
CPM-GOMS models then predicted their construction benchmarks quite
well, but due to the error in selecting benchmarks, did not do very well in
predicting the field data. If the problem was indeed due to a poor selection
of benchmarks, then the conclusion is that at least for this domain, we do
not yet know how accurately CPM-GOMS models can predict times for task
instances other than the benchmark instances used to construct the models.
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