Instance Pointcuts

Selecting Object Sets Based on Their Usage History

Christoph Bockisch

TRESE, University of Twente, 7500AE
Enschede, The Netherlands

c.m.bockisch@utwente.nl

Abstract

At runtime, how objects have to be handled frequently depends
on how they were used before. But with current programming-
language support, selecting objects according to their previous us-
age patterns often results in scattered and tangled code. In this
study, we propose a new kind of pointcut, called Instance Point-
cuts, for maintaining sets that contain objects with a specified us-
age history. Instance pointcut specifications can be reused, by re-
fining their selection criteria, e.g., by restricting the scope of an
existing instance pointcut; and they can be composed, e.g., by set
operations. These features make instance pointcuts easy to evolve
according to new requirements. Our approach improves modularity
by providing a fine-grained mechanism and a declarative syntax to
create and maintain usage-specific object sets.

Categories and Subject Descriptors
and Features]: [classes and objects]

D.3.3 [Language Constructs

General Terms Languages, Design

Keywords programming languages, aspect-oriented program-
ming, instance pointcuts, objects

1. Introduction

In object-oriented programming (OOP), the encapsulated state and
the provided behavior of objects is dictated by their type. Neverthe-
less, often objects of the same type need to be treated differently.
For example, consider a security-enabled system with a type for
users. The treatment of a user object depends on the user’s privi-
leges and possibly also on the past execution: Maybe we want to
reduce the privileges when the user did not change the password
for a while, or privileges are added or withdrawn at runtime in other
ways.

Software design patterns [10] are another popular, more general
example for dynamically varying the treatment of objects. Several
design patterns define roles for objects, which can be assigned
or removed at runtime, and the roles determine how an object is
handled. However, while the pattern localizes the handling of object
roles, the assignment of roles is usually scattered over multiple

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

PPPJ ’14, September 23 - 26 2014, Cracow, Poland.

Copyright © 2014 ACM 978-1-4503-2926-2/14/09. .. $15.00.
http://dx.doi.org/10.1145/2647508.2647526

Kardelen Hatun

TRESE, University of Twente, 7500AE
Enschede, The Netherlands

k.hatun@utwente.nl

27

Mehmet Aksit

TRESE, University of Twente, 7500AE
Enschede, The Netherlands

m.aksit@utwente.nl

source modules. As example, consider the observer pattern. To
assign the role of being observed to a subject, an observer must
be added to its observer list. The logic, which objects observe
which subjects, is typically not implemented locally, but there are
many different places in the code, where observers are added to
subjects. Other similar examples are the adapter, decorator, or
proxy patterns.

The need for influencing the handling of single objects, instead
of all instances of a type, has already been discussed in 2003 by Ra-
jan and Sullivan [19]. As a solution, they propose instance-level ap-
plication of aspects. Similar solutions exist in AspectScheme [22],
CaesarJ [1] or Steamloom [3]. However, all these approaches only
support programmatic deployment of aspects on single instances;
whereas our problem statement is that we need a way to modularly
and declaratively define selection criteria for relevant instances.

More generally, we can say that objects have a history, how they
were used, and we sometimes need to handle objects differently ac-
cording to their past usage pattern. Often, the changes to an object’s
usage pattern are implicitly marked by events, e.g., passing an ob-
ject from one client to another. We claim that to improve the mod-
ularity of source code, a declarative definition of the boundaries
of relevant object-usage patterns is necessary. Furthermore, it must
be possible to reify the set of objects that currently share a usage
pattern to consider this information when handling an object.

Providing such a reification of object sets, requires modifying
the source code by inserting bookkeeping code. Aspect-oriented
programming (AOP) can be applied to separate this bookkeeping
code from the business logic of the program. But in AOP, pointcuts
select sets of so-called join points, which are points in time during
the execution of the program. Current aspect-oriented languages
do not support a declarative specification of a group of objects,
which have been used in a similar way; instead an imperative
implementation, typically following the same pattern, is required
for collecting those objects.

A consequence of such an imperative solution is reduced read-
ability and maintainability due to scattering, tangling and boiler-
plate code. Another issue is the lack of composition and checking
mechanisms for the imperative bookkeeping. It is not possible to
reuse the previously written code, which results in code that is hard
to maintain and hinders software evolution. Also the warnings and
errors do not indicate the proper context and relevant information
to guide the programmer.

To offer better support for processing objects according to their
usage history, we propose a new mechanism, called instance point-
cuts, to select sets of objects based on the events in their execution
history. Instance pointcuts are used to declare the beginning and
the end of a relevant usage pattern as events. New instance point-
cuts can be defined by reusing existing ones in two ways: first, by

ProductManager

- OnlineShop
Discount
<- t-- m—e >—ui
[<-accep +submitDiscount() P displayList) ul
+withdrawDiscount()
OnlineShopUl
Extends
: vendors + display()

Product 1.
SurpriseDiscount
+ name: String duct:

Vendor

New feature

[}

Figure 1: Part of an online shop application

refining the expressions that define the relevant events and second,
by composing two or more instance pointcuts using set operators.

In this paper we present a prototype of instance pointcuts as an
extension to Aspect] [15] and explain its semantics by explaining
our compiler, transforms instance pointcuts to plain Aspect] and
advanced dispatching library calls.

We reuse the term pointcut for our concept, because it provides a
declarative way of specifying crosscuts. Nevertheless, the instance
pointcuts select objects whose usage crosscuts the program execu-
tion rather than points (or regions) in time [16] as traditional point-
cut do. Therefore, our instance pointcuts cannot immediately be ad-
vised by Aspect] advice, although we offer the possibility to advise
the points in time when the extent of instance pointcuts changes (cf.
Section 3.4.2).

Our initial performance measurements show that maintaining
object sets with our language extension is not slower than using
plain Java. And at the same time, the declarative nature of instance
pointcuts increases the modularity and extensibility of source code.
It furthermore gives rise to several compile-time checks, which are
not automatically possible with equivalent imperative code. Such
checks are important to notify the developer when the instance
pointcut set is guaranteed to be empty, incompatible types are used
in compositions and refinements, etc. These checks help the devel-
oper to implement his concern correctly and achieve consistency in
object sets representing the different usages of objects.

The rest of the paper is organized as follows, in Section 2
we present a small case study and explain our motivation for the
proposed approach, and we formulate a problem statement and
goals for our work. In Section 3, a detailed description of instance
pointcuts and its various features are presented. Section 4 explains
how instance pointcuts are compiled. We then present a discussion
on the validation of our approach and outline possible checks in
Section 5. We conclude by discussing related work and giving a
summary of our approach.

2. Motivation

An important goal in programming language research is to enable
modular extension of software, i.e, to facilitate that the implemen-
tation of new concerns can be added without modifying existing
code. In general, the implementation of new concerns must interact
with the already existing ones, and in object-oriented programming
this is typically done through the exchange of objects. We have
observed that often new concerns handle sets of objects from the
original program to manipulate them or use them in a new way.

Objects can be grouped according to how they are used (where
they are created, to which methods they are passed as argument,
act as receiver or sender, etc.) and concerns of an application may
be applicable only to objects used in a specific way. However,
the relevant sets of objects may not be explicitly available in the
original program. Thus, in this paper, we present a declarative
approach for defining sets of objects with the same usage pattern
by means of a dedicated language construct.

28

In Figure 1, we outline a part of the architecture of an online
shop application. We use this scenario to give examples of grouping
objects into sets according to how they are used, and how to use
these sets in the implementation of concerns.

2.1 Example Architecture

In an online shop application, objects of the same type can exist,
which nevertheless must be treated differently. In Figure 1 the static
structure of a simplified online shop is shown. This structure shows
part of the system from the Vendor and the OnlineShop’s perspective.
Vendors can submit different kinds of Discounts (not shown in the fig-
ure) to the ProductManager for the Products they are selling. Product is
the root of the type hierarchy that represents different kinds of items
that are sold in the online shop. Product is parent to classes such
as BeautyProduct, SportProduct (not shown in the figure). Through
the ProductManager, Discounts can be applied to and withdrawn from
a Product. The OnlineShop has a user interface represented by the
OnlineShopUI class, which is used to display information to the cus-
tomers.

2.2 Extensions

A new feature is added to the online shop, which requires creating
an alert when a product is applied a surprise discount. The list
of surprise discounted products should be available to the user at
any time. The surprise discounts are submitted by Vendors and they
can be submitted or withdrawn at any time. In order to realize this
extension in an OO-approach, we need to change several classes.

Listing 1 shows the modifications that must be made to the
implementation of our online shop to accommodate for this new
requirement. First, the class ProductManager should keep a set of
Products to which a surprise discount is applied, as shown on line 3.
This set is updated when a new discount of type SurpriseDiscount is
submitted or withdrawn (lines 4—14). There should also be some
changes in the OnlineShop class. A createDiscountAlert method should
be added. Also the displayList method should be updated to include
the surpriseDiscount list defined in the ProductManager class.

class ProductManager{

Set<Product> surpriseDiscount = createSet();
public void submitDiscount(Product p, Discount d){

if(d instanceof SurpriseDiscount){
surpriseDiscount.add(p);
OnlineShop.createDiscountAlert(p);

I

public boolean withdrawDiscount(Product p, Discount d){

if(d instanceof SurpriseDiscount)
surpriseDiscount.remove(p);

b}

class OnlineShop{

public void createDiscountAlert(Product p){
//create surprise discount alert for p

public void displayList(String listType){
if(listType.equals(‘‘surprise’’))
INSTANCE .getUI().display(ProductManager.surpriseDiscount);

oy

Listing 1: A Java implementation of discount alert concern

An aspect-oriented implementation can offer a better solution
by encapsulating the concern in an aspect. Listing 2 shows a pos-
sible solution. The set of products, which are applied a surprise
discount is kept in the aspect (line 2). The following two pointcuts
submit and withdraw select the products to which a SurpriseDiscount
is applied (lines 3—4). The corresponding advice declarations for

these pointcuts maintain the surpriseDiscount set. The submit pointcut
triggers the surprise discount alert method (line 8). There is also
the display pointcut (line 5), which intercepts the call to displayList
method and add the condition for the surprise discount list in an
around advice (lines 13—17). This aspect includes an inter-type dec-
laration, which adds the createDiscountAlert method to the OnlineShop
class.

aspect SDiscount{
Set<Item> surpriseDiscount = createSet();
pointcut submit(Product p): call(x »
ProductManager.submitDiscount(..)) && args(p,
SurpriseDiscount);
pointcut withdraw(Product p): call(x »
ProductManager.withdrawDiscount(..)) && args(p, ¥
SurpriseDiscount);
pointcut display(String listType): call(* OnlineShop.displayList(..)) && v
args(listType);
after(Product p): submit(p){
surpriseDiscount.add(p);
OnlineShop.INSTANCE().createDiscountAlert(p);

}
after(Product p):withdraw(p){
supriseDiscount.remove(p);

void around(String listType):display(listType){
if(listType.equals(*‘surprise’’))
OnlineShop.instance().getUI().display(surpriseDiscount);
proceed(listType);

public void OnlineShop.createDiscountAlert(Product p){
//create surprise discount alert for a product

b}

Listing 2: An Aspect] implementation of discount alert concern

2.3 Discussion

AOP already helps to localize the concern of maintaining a col-
lection of objects used in a specific way, and to add it without
the need to modify existing code. However maintenance of the
surpriseDiscount set requires the same boilerplate code as the OO so-
lution does. Essentially the code selects Product objects based on the
discount they are applied to and deselects them once they are rid of
this discount. None of the solutions presented in this section offer
declarative means to define such selection criteria. Furthermore,
reusing the existing definitions of object-set reifications by refin-
ing or composing them is not conveniently supported at all; e.g., if
we want to find the subset of BeautyProducts of the surpriseDiscount
set, we have to iterate over it and check instance types to create
a new set. Such imperative definitions are difficult or impossible
to analyze by the compiler. For instance, it may be desirable to
warn developers about instance pointcuts that provably will never
match any object, e.g., because the selection events will never hap-
pen. With a more declarative notation, a compiler would be able to
identify such situations.

2.4 Problem Statement

In this section we have demonstrated two things: First, the imple-
mentation of some concerns requires accessing groups of objects
with similar usage history. Second, making such groups accessible
to the program in a modular and re-usable way is not supported by
current programming languages.

Since creating object sets according to execution events is a
cross-cutting concern, we claim that a new programming technique
in the style of aspect-oriented programming is required for modu-
larizing concerns depending on object groups. Such a programming
technique must satisfy the following needs:

* A declarative way of selecting/de-selecting objects according to
the events they participate in should be provided.

29

* The selected objects should be accessible as a set.

* Changes to this set, i.e. adding or removing objects, should
create a notification.

* For compatible element types, the sets should be composable to
obtain new (managed) sets.

3. Instance Pointcuts

To support the requirements outlined in the previous section, we
propose a new kind of pointcut for declaratively selecting objects
based on their usage history. The beginning and the end of a rele-
vant usage pattern is marked by events. Instance pointcut is a lan-
guage construct that is used to reify and maintain a set of objects
based on these events. It allows to modularize the object selection
concern and makes it declarative.

In the remainder of this section, we will explain instance point-
cuts in detail. Instance poincuts can be implemented as an exten-
sion to arbitrary OO-based aspect-oriented languages. We have im-
plemented a prototype as an extension to Aspect]. Therefore, the
examples given throughout this paper are based on Aspect].

A concrete instance pointcut definition consists of a left hand-
side and a right-hand side (Figure 2, rule 1). At the left-hand side
the pointcut’s name and a type is declared. An instance pointcut
does not declare pointcut parameters since it has the specific pur-
pose of exposing one object from an event; it has a single implicit
parameter called instance of the declared type.

At the right-hand side the instance pointcut expression selects
the desired events from join points and then binds the exposed
object (represented by the instance parameter) as a member of the
instance pointcut’s set.

s

(instance pointcut) := ‘instance pointcut’ (name) ‘<

(instance-type) > <2 (ip-expr) (‘UNTIL’ (ip-expr))?

(ip-expr) ::= (after-event) ‘| |’ (before-event)
| (before-event) ‘| |’ {after-event)
| (after-event)
| (before-event)

(after-event) := ‘after’ ‘ (’(pointcut-expression)‘)’

(before-event) ::= ‘before’ © (’(pointcut-expression)‘)’

Figure 2: Grammar definition for instance pointcuts

3.1 Add/Remove Expressions

For each instance pointcut events must be selected at which objects
are added to its set, otherwise the instance pointcut set would
always be empty. Optionally, an instance pointcut can select events
at which objects are removed from its set. The ‘add to set’ and
‘remove from set’ operations are implicitly performed when certain
events specified in the corresponding instance pointcut expression
(ip-expr, cf. Figure 2, rule 1) occur. The first expression is the
mandatory add expression. After the UNTIL clause an optional
expression called the remove expression can be defined.

In Aspect] join points mark sites of execution; a join point by
itself does not define an event. Pointcut expressions select join
points and pointcuts are used with advice specifications to select
a particular event in that join point. As discussed by Masuhara et
al. [16] such a region-in-time join-point model hinders re-use of
pointcuts.

We combine pointcut expressions with advice specifiers and ob-
tain expression elements. Each expression element contains a point-

DR W —

cut expression, which matches a set of join points. Then, from these
join points, according to the advice specifier, the before or after
events are selected. Both add and remove expressions are composed
of expression elements, which can be a before element or an after
element (Figure 2, rule 3—4). In Figure 2 the second grammar rule
depicts this. An instance pointcut expression (add/remove expres-
sion) contains at least one expression element and at most two.

Restricting the syntax to only allow the specification of a single
before- or after event or a disjunction of both is without loss of gen-
erality: an event specification of the form before(<expression—-1>)]
before(<expression—2>) is equivalent to the event specification before(
<expression—1> || <expression-2>). The same holds for the specifica-
tion of after-events or the usage of conjunction instead of disjunc-
tion. Combining the specification of a before- and an after-event
with && is not supported as an event can never be “before” and
“after” at the same time (see also [4]). We require users to spec-
ify instance-pointcuts in such a normalized form, i.e., with at most
one before- and at most one after-event specification, so that we
have a unique way of referencing the different parts of an instance
pointcut definition, as will be further discussed in Section 3.3.

Rules 3 and 4 contain the (pointcut-expression) rule, which rep-
resents an Aspect] pointcut expression. In addition to the defined
syntax, we also define two semantic rues for the rules {(after-event)
and (before-event): First, it is mandatory to specify one binding
predicate (args, target etc.) that binds the instance parameter, since
it represents the object to be added or removed from the set. And
second, there cannot be more than one such binding predicate.

The second restriction is defined because the binding predicate
also constrains the applicability of the (pointcut-expression); i.e.,
the pointcut expression only matches if the designated context
value is type-compatible with the instance pointcut’s (instance-
type). If we would allow multiple binding predicates, the desired
semantics would be unclear: should the whole pointcut expression
match only if all bound values are type-compatible? Or should all
type-compatible values be bound? If we encounter the need for
binding multiple values in one (after-event) or (before-event), then
we will determine what is the desirable behavior and potentially
extend our language to make this behavior configurable.

The binding predicates are extended to include the returning
clause. The returning clause binds the value returned by a method
or a constructor. In Aspect] the syntax is restricted and returning
can only be used in an after advice, since the returned value is
only available after a method finishes execution, this is also true
for Instance Pointcuts. Although we do not have this restriction
syntactically, we enforce that the returning clause is used only with
the after event selector by means of a semantic check.

In an instance pointcut expression, it is only possible to OR
a before event with an after event. The before clause selects the
start of executing an operation (i.e., the start of a join point in
Aspect] terminology) and the after clause selects the end of such
an execution. For two operations that are executed sequentially, the
end of the first and the start of the second operation are treated as
two different events. Thus, the before and after clauses select from
two disjoint groups of events and the conjunction of a before and
an after clause will always be empty.

static instance pointcut surpriseDiscount<Product>:
after(call(x ProductManager.submitDiscount(..))
&& args(instance, SurpriseDiscount))
UNTIL
after(call(* ProductManager.withdrawDiscount(..))
&& args(instance, SurpriseDiscount));

Listing 3: A basic instance pointcut declaration with add and
remove expressions

The instance pointcut in Listing 3 shows a basic example. The
left-hand side of the instance pointcut indicates that the pointcut is

©

30

called surpriseDiscount and it is interested in selecting Product objects.
On the right hand side, there are two expressions separated by
the UNTIL keyword. The first one is the add expression. It selects
the join-point marked by the method submitDiscount and from the
context of this event it exposes the Product object with the args
clause and binds it to the instance parameter. The second one is the
remove expression and it selects the after event withdrawDiscount
call and exposes the Product instance in the method arguments and
binds it to the instance. This pointcut is the solution of the set
maintenance problem presented in the motivation (Section 2).

It is not necessary that instances are added and removed in a
specific order, like in a first-in-first-out or a last-in-first-out fashion.
Rather, when either of the add or remove expressions matches a
join point, the specified instance is bound and added to the instance
pointcut, or removed respectively.

Note that instance pointcuts do not keep objects alive, as in-
stance pointcuts are non-invasive constructs, which do not affect
the program execution in any way. So even if the remove expres-
sion was not defined for the surpriseDiscount instance pointcut, when
the Product instances are collected by the garbage collector, they are
removed from the set.

3.2 Multisets

An instance pointcut reifies an object set as a multiset. A multiset
allows multiple appearances of an object. Every contained object
has a corresponding cardinality, which indicates its multiplicity in
the set. Multiset makes sure that the maintained object sets are
handled properly when an object enters and exits a relevant usage
pattern recursively.

As example, consider again the instance pointcut shown in List-
ing 3 and replace the binding expression on lines 3 and 6 with
args(instance, Discount), such that products are selected with any ap-
plied discount. Assume that different discounts are submitted for
the same product, then the product will be kept in the instance
pointcut’s object set until the same amount of discounts is with-
drawn from the product. If instance pointcuts only supported a set,
then as soon as one discount is removed from a product, it would
be removed and it would appear as if there are no more discounts
on that product.

3.3 Refinement and Composition

Instance pointcuts can be referenced by other instance pointcuts.
They can be refined in two ways and they can be composed together
to create new instance pointcuts.

3.3.1 Referencing and Type Refinement

Instance pointcuts are referenced by their names. Optionally the
reference can also take an additional statement for type refinement,
which selects a subset of the instance pointcut that is of the speci-
fied type. Type refinements require that the refinement type is a sub-
type of the original instance type. For example the instance pointcut
surpriseDiscount (Listing 3) can be refined as shown in Listing 4. The
refinement expression selects the subset of BeautyProduct instances
from the set of Product instances selected by the surpriseDiscount in-
stance pointcut. The surpriseDiscountBeauty instance pointcut is de-
fined using the result of this expression. Note that with this notation
objects that are of a subtype of BeautyProduct will also be selected.

static instance pointcut surpriseDiscountBeauty <BeautyProduct>:
surpriseDiscount<BeautyProduct>;

Listing 4: A type refined pointcut

3.3.2 Instance Pointcut Expression Refinement

In Section 3.1 we have introduced the instance pointcut expression,
which consists of two expressions (add and remove expressions).

We provide an expression refinement mechanism, which makes it
possible to reuse parts of the existing instance pointcut expressions
to create new ones. The add and remove expressions can be ac-
cessed individually to be extended by concatenating other primitive
pointcuts, so-called refinement expressions, with boolean operators.
We offer a naming convention to access parts of the instance point-
cut expression with different granularity. Note that this syntax is
only valid when used in the context of an expression refinement.

<ip-ref> When an instance pointcut is referenced directly then the
refinement expression is composed with the pointcut expression
in all of the before and after event selectors, in the add and
remove expressions.

<ip-ref>.add{remove} This provides access at the expression
level. The refinement expression is composed with the pointcut
expressions in referenced add or remove expression’s before
and after event selectors.

<ip-ref>.add{remove}_after{before} This naming convention
is used to access the pointcut expressions of the individual be-
fore and after event selectors and provides the finest granularity.
In fact the other two access statements can be written in terms
of this one, they just provide a short hand for the collective
expression refinements.

It is possible to compose any primitive pointcut, except the
binding predicates, with an expression. Although we chose not
to restrict this aspect, some compositions will not be meaningful
for selecting objects. For example composing an execution pointcut
with an expression that already includes a call pointcut will result
in a non-matching pointcut expression. This is further discussed in
Section 5.1.

Let us explain the usage of the expression access by ex-
amples. The example shown in Listing 5 shows a reuse of the
surpriseDiscount’s add and remove expressions to create a new in-
stance pointcut. The newly created pointcut’s expression can be
accessed through the aforementioned naming conventions. In or-
der to assign the expressions we use the ‘:’ assignment operator,
to provide a uniform syntax. It is not possible to assign a higher
granularity statement to a lower granularity one; i.e. the following
is illegal add_ before : <ip-ref>.add.
static instance pointcut surpriseDiscountOver50<Product>:

add: surpriseDiscount.add && if(instance.getPrice() > 50) UNTIL
remove: surpriseDiscount.remove;
Listing 5: Expression refinement of surpriseDiscount(Listing 3)
instance pointcut

The if pointcut in Listing 5 is appended to the add expression
of surpriseDiscount (Listing 3). The effect of this composition is as
follows; the if pointcut will be appended to all of the pointcut
expressions contained in the after and before event selectors. Since
the surpriseDiscount pointcut only has one after event in its add
expression, the resulting add expression is equivalent to:

after(call(x ProductManager.submitDiscount(..)) &&
args(instance, SurpriseDiscount) && if(instance.getPrice() > 50))

Expression refinements can also be used for more precise type
refinements. Revisiting the example given in Subsection 3.3.1, the
surpriseDiscountBeauty (Listing 4) instance pointcut can be con-
structed to include instances with the exact type BeautyProduct
(Listing 6). The effect is different from type refinement since
surpriseDiscountOnlyBeauty does not include subtypes of the class
BeautyProduct.

static instance pointcut surpriseDiscountOnlyBeauty <BeautyProduct>:
surpriseDiscount && if(instance.getClass().equals(BeautyProduct.class));

Listing 6: Type refinement by expression refinement

31

3.3.3 Instance Pointcut Composition

Instance pointcuts reify sets, for this reason we facilitate the com-
position in terms of set operations: intersection and union. In Fig-
ure 3, an extended version of the grammar definition is shown. The
composition of two instance pointcuts creates a composite instance
pointcut. Different from regular instance pointcuts, composite ones
are declared with the keyword composite and they do not have in-
stance pointcut expressions. Instead they monitor the component
instance pointcuts’ set change operations and update their own set
accordingly. In order to declare a set intersection the keyword inter
and to declare a set union the keyword union is used. Throughout the
text we will use the mathematical symbols for these operations, N
as intersection and U as union. Since composite instance pointcuts
do not have an instance pointcut expression they cannot be used in
expression refinement. However they can be type-refined; the re-
sult of the type refinement of a composite instance pointcut is also
a composite instance pointcut and must be declared as such.

(instance-pointcut) ::= ‘composite instance pointcut’
(name) (‘<’ (instance-type) >")? “:° ...
| (comp-expr)

(comp-expr) ::= (comp-expr) ‘inter’ (comp-expr-t)
| (comp-expr-t)

(comp-expr-t) ::= (comp-expr-t) ‘union’ (comp-expr-f)
| (comp-expr:f)

(comp-expr-f) ::= (ip-ref)
| “C (comp-expr) <)’

(ip-ref) ::= (name)
| (name)(‘<’ (refined-instance-type) *>°)?

Figure 3: Syntax for instance pointcut composition

The type of a composite instance pointcut must be assignment
compatible to the types of the component instance pointcuts. It is
also possible to leave out the type declaration and let the compiler
assign the type. For a composition of two instance pointcuts, the
type of the composite one can be determined depending on the
relation of the types of the component instance pointcuts. For
illustration of this type inference, consider the type hierarchy in
Figure 4a: R is the root of the hierarchy with the direct children
A and B (i.e., these types are siblings); C is a child of B. Table 4b
shows four distinct cases: Either the type of one of the instance
pointcuts is a super type of the other one’s type (second row), or
both types are unrelated (third row); and the composition can either
be N (third column) or U (fourth column).

When composing two instance pointcuts with types from the
same hierarchy, the type of the composition is the more specific
type (C in the example) for an N composition and the more gen-
eral type (B) for an U composition. When composing two instance
pointcuts with sibling types, for the N operation the resulting com-
position cannot select any types since the types A and B cannot have
a common instance. The U operation will again select a mix of in-
stances of type A and B, thus composed instance pointcut must have
the common super type, R in the example.

Because instance pointcuts are reified as multisets, these oper-
ations are different from the regular set operations. The definition
of the intersection and union operations for multiset is given in the
next definition.

[N SETCRRCp

(a) A simple type
hierarchy
pcl pc2 n u
type type
B C C B
B A %] R

(b) Instance pointcut compositions and effect on the
captured instance type

Figure 4: An example to illustrate composition’s effect on types

DEFINITION 1. Assume (X, f) and (Y,g) are multisets, where
X, Y represents the elements and f, g represents a function, which
maps each element to a cardinal number.

The intersection of these sets is defined as (V, h) where,

V=XnY
and NYv € V' the multiplicity of v is defined as
h(v) = min(f(v), 9(v))
The union of these sets is defined as (Z,1) where,
Z=XuY
and ¥ z € Z the multiplicity of z is defined as
i(z) = maz(f(2),9(2))
3.4 Using Instance Pointcuts

Up to now we have explained the syntax and semantics for defini-
tions of instance pointcuts. In this section we will explain how to
use instance pointcuts in the context of an AO language, namely,
Aspect]. As example, throughout this section, we will use the
instance pointcut defined in Listing 7, which maintains a set of
Products that are currently out of stock. Instance pointcuts are static
members of classes and can have any visibility modifier. Thus, all
modules, aspects as well as classes, that can see an instance point-
cut can use it in the ways described below.

static instance pointcut outOfStock<Product>:
after(call(* Product.outOfStock(..)) &&
target(instance))
UNTIL
after(call(* Vendor.stock(..))
&& args(instance));

Listing 7: An instance pointcut for out of stock products

3.4.1 Set Access

Instance pointcuts reify a set of objects, which are used in a similar
way, and this set can be accessed through a static method, which
has the same name as the instance pointcut identifier. Only the get
methods of the collection interface can be used to retrieve objects
from the set. We ensure this by returning an UnmodifiableSet from
the set access methods. In Listing 8 the outOfStock() method (line 3)
returns the set of Products that are currently out of stock. Write
methods, which modify the contents of the set, are not allowed
since they create data inconsistencies like adding an object, which

[T S R

32

is not used in the same way as the ones selected by the instance
pointcut. The usage of write methods may result in concurrent
modification exceptions.
public static double calculateDamages() {

double damage = 0;

for(Product p: MyAspect.outOfStock())

damage = damage + p.getPrice();
return damage;

Listing 8: Calculate a damage estimate for out of stock products

3.4.2 Set Monitoring

An instance pointcut definition defines two set change events, an
add event and a remove event. In order to select the join points
of these events, every instance pointcut definition automatically
has two implicit regular pointcuts. These implicit pointcuts have
the following naming conventions, (name) instanceAdded,
(name)_instanceRemoved, where (name) is the name of
the instance pointcut. In Listing 9, a before advice using the
outOfStock_instanceAdded pointcut is shown. When a product is
marked out of stock and it is added to the set, a notification is
sent to the related Vendor indicating that the product is out of stock.

before(Product p): outOfStock_instanceAdded(p) {
OnlineShop.notifyVendor(p.getVendor, STOCK_MSG);
}

Listing 9: Set monitoring pointcut used to notify vendors

4. Compilation of Instance Pointcuts

A goal for our compiler implementation is to support modular com-
pilation. This means to compile an aspect with instance pointcuts
that refer to instance pointcuts defined in other aspects, it must
be sufficient to know their declaration (i.e., the name and type);
it should not be necessary for the compiler to know the actual ex-
pression or the referenced instance pointcuts.

We have implemented the instance pointcut language using
code transformation employing two tools. First, the parser of our
language and the code generation templates are implemented with
the EMFText' language workbench. For this purpose, we have de-
fined the Aspect] grammar by using J aMoPP? [14] as the founda-
tion and extended it with the grammar for instance pointcuts, which
was presented interspersed with the previous section.

Second, the generated code uses the ALIA4P [6] framework
for so-called advanced dispatching language implementations. The
term advanced dispatching refers to late-binding mechanisms in-
cluding, e.g., predicate dispatching and pointcut-advice mecha-
nisms. At its core, ALIA4J contains a meta-model of advanced
dispatching declarations, called LIAM, in which Aspect] pointcut
and advice, as well as instance pointcuts can be expressed.

We use ALIA4]J to realize the crosscutting behavior of our lan-
guage instead of Aspect] because the way Aspect] handles binding
of values and restricting their types in pointcuts would prohibit a
modular compilation of instance pointcuts. While in instance point-
cuts the value binding is uniformly expressed in a pointcut expres-
sion, in Aspect] binding the result value must be specified in the ad-
vice definition (via the after returning keyword) and all other values
are bound in pointcut expressions. Therefore, Aspect] code gener-
ated for an instance pointcut expression would have to depend on

VEMFText, see http: //www.enftext .org/

2 JaMoPP: Java Model Parser and Printer, see http://jamopp.inf.
tu-dresden.de

3The Advanced-dispatching Language Implementation Architecture for
Java. See http://www.aliadj.org/aliadj/.

which value is bound; this means that the code generation for a de-
rived instance pointcut would also depend on the binding predicate
(an implementation detail) of the referenced one. It is not possi-
ble to work around this, using Aspect]’s reflective thisJoinPoint key-
word, as it does not expose the result value at all. Another, similar
limitation is that Aspect] does not allow to narrow down the type
restriction for the bound value of a referred pointcut. Thus, in order
to be able to transform an instance pointcuts with type refinement
to Aspect], it is necessary to know the definitions of the referenced
instance pointcut and inline its definition.

Our compiler generates different code depending on whether
the instance pointcut is a composite one or not and whether it is a
refinement of an instance pointcut or not. Common to all cases is
the code for managing the data of the instance pointcut. Listing 10
exemplary shows that code; the variables ${Type} and ${ipc} stand
for the instance pointcut’s type and name, respectively. The natural
text written in the comments provides a description of the code for
which it stands.

First, to store the instances currently selected by an instance
pointcut as a multiset, a WeakHashMap is defined (cf. line 1); the
keys of the map are the selected objects and the mapped value is the
cardinality. We use weak references to avoid keeping objects alive,
which are not reachable from the base application anymore. The
generated method ${ipc} returns all objects, which are currently
mapped (cf. lines 2—4).

Furthermore, methods are generated to access, increase or de-
crease the counter of selected objects; if an object does not have
an associated counter yet or the counter reached zero, the object
is added to or removed from the map, respectively (cf. lines 5—
15). After having performed their operations, ${ipc} _addInstance and
${ipc}_removelnstance methods invoke an empty method, passing the
added or removed object. We generate a public, named pointcut
selecting these calls, exposing the respective events (cf. lines 18
and 19).

private static WeakHashMap< ${ Type}, Integer> ${ipc}_data = new »
WeakHashMap< ${ Type}, Integer>();
public static Set<${ Type} > ${ipc}() {
return Collections.unmodifiableSet(${ipc} data.keySet());

public static void ${ipc} addInstance(${ Type} instance) {
//increase counter associated with instance by the ${ipc}_data map
${ipc}_instanceAdded(instance);

public static void ${ipc} removelnstance(${ Type} instance) {
//decrease counter associated with instance by the ${ipc}_data map
//if the counter reaches 0, remove instance from the map
${ipc} _instanceRemoved(instance);

}

public static int ${ipc} _cardinality(${ Type} o) {..}

private static void ${ipc} _setCardinality(${ Type} o, int c){..}

private static void ${ipc} _instanceAdded(${ Type} instance) {}

private static void ${ipc} _instanceRemoved(${ Type} instance) {}

public pointcut ${ipc} instanceAdded(${ Type} instance) : call(private v
static void Aspect.${ipc} instanceAdded(${ Type})) && »
args(instance);

public pointcut ${ipc} _instanceRemoved(${ Type} instance) : v
call(private static void »
Aspect.${ipc} _instanceRemoved(${ Type})) && args(instance);

Listing 10: Template of generated code for instance set

management.

Next, these bookkeeping methods have to be executed at events
corresponding to the instance pointcut definitions. Below, we elab-
orate on the code generation for instance pointcuts defined in the
different possible ways.

4.1 Non-Composite Instance Pointcuts

A non-composite instance pointcut, generally consists of four un-
derlying pointcut definitions: specifying join points (1) before or

B w0 o~

33

Q
L) l

’ Context ‘ ’ Predicate ‘ Pattern ‘

(0

<>| AtomicPredicate

Figure 5: Meta-model of a Specialization in ALIA4].

(2) after which an instance is to be added to the selected instances;
and specifying join points (3) before or (4) after which an in-
stance is to be removed. For each pointcut definition, we generate
a method that creates a corresponding LIAM model; the methods
are called ${ipc} add_before, ${ipc}_add_after, ${ipc} _remove_ before,
and ${ipc}_remove_after.

In LIAM, a Specialization can represent a partial Aspect] point-
cut and a full pointcut expression can be represented as the disjunc-
tion of a set of Specializations (discussed in detail elsewhere [5]).
Figure 5 shows the meta-model for a Specialization in ALIA4J con-
sisting of three parts. A Pattern specifies syntactic and lexical prop-
erties of matched join point shadows. The Predicate and Atomic
Predicate entities model conditions on which the dynamic state of
pointcut designators depend. The Context entities model access to
values like the called object or argument values. Contexts which are
directly referred to by the Specialization are exposed to associated
advice (i.e., they represent binding predicates).

Depending on the definition of the instance pointcut, LIAM
models of the underlying pointcuts have to be created in different
ways. All four underlying pointcuts are optional; a missing pointcut
can be represented as an empty set of Specializations in LIAM.

Plain Instance Pointcuts For pointcut expressions that are di-
rectly provided, we use a library function provided by ALIA4J,
which takes a String containing an Aspect] pointcut as input. We
have extended this library to also accept the returning pointcut des-
ignator.

static instance pointcut ${ipc}<${ Type}>:

before(${pc_add before}) after(${pc_add_after}) UNTIL
before(${pc_remove_before}) after(${pc_remove_after};

Listing 11: Example of a plain instance pointcut

For the example instance pointcut presented in listing 11,
we show the code generated for the method creating the LIAM
model for the add_ before pointcut in listing 12; the other meth-
ods are generated analogously. Line 4 shows the transformation
of an Aspect] pointcut into a set of Specializations in the LIAM
meta-model by passing the pointcut as a String—represented by
${pc_add_before} in listings 11 and 12—to the above mentioned
library function.
private static Set<Specialization> ${ipc}_add_ before;
public static Set<Specialization> ${ipc} add_before() {

if (${ipc}_add_before == null) {

${ipc}_add_before = Util.toSpecializations(" ${pc_add_before}", v

${Type});

}
return ${ipc} add_ before;

Listing 12: Template for creating the LIAM model for the add_ -
before expression

Type Refinement An instance pointcut can also be defined by
referring to another instance pointcut whereby a type restriction for
the selected instances can be defined. A template for an instance
pointcut defined as such is as follows:

AU AW -

static instance pointcut ${ipc}<${ Type}>: ipc1<${ Type}>;

For such an instance pointcut also methods are created to pro-
duce LIAM models for the four underlying pointcuts (see the tem-
plate in listing 13). These methods first invoke the corresponding
methods of the referenced instance pointcut (cf. line 3). Second,
the type restriction is added to the Predicates of the retrieved Spe-
cializations (cf. line 4) with the method addTypeConstraint.

public static Set<Specialization> ${ipc} add_before() {

Set<Specialization> ipRef = ipcl_add_ before();
${ipc}_add_before = Util.addTypeConstraint(ipRef, ${ Type});

}

Listing 13: Template for creating the LIAM model for the type-
refined instance pointcut

Expression Refinement When defining a new instance pointcut
through expression refinement, for each of the four underlying
pointcut expressions, a plain pointcut expression can be anded or
ored with the underlying pointcut expression of the referenced in-
stance pointcut. As explained in the previous section, refinement
pointcut expressions must not include a binding predicate. The
referred instance pointcut expression already has a binding pred-
icate, which is carried over to be used as the binding predicate
for the newly composed pointcut expression. The template for
the generated method for creating the add/before LIAM model is
shown in listing 14. It assumes that the instance pointcut is named
${ipc} and it refines another instance pointcut ${ipc1} by anding the
pointcut expression ${ipcl_add_before} to the add/before underly-
ing pointcut. If the pointcuts are ored, correspondingly the method
orSpecializations is used in line 5.

These utility methods are provided as runtime library for the
instance pointcuts. The method andSpecializations forms the conjunc-
tion of the Predicates and Patterns of the passed Specialization sets.
If ipRef is empty, the conjunction is also empty and an empty set is
returned. Otherwise, the Context declared by the Specializations
ipRef is copied to the ones newly created by the andSpecializations
method. The method orSpecializations is implemented similarly. But
it forms the disjunction of Predicates and Patterns and if ipRef is
empty, an exception is raised.

public static Set<Specialization> ${ipc}_add_ before() {

Set<Specialization> plainlPExpr = v

Util.toSpecializatons(" ${pc_add_ before}", ${ Type});
Set<Specialization> ipRef = ipcl_add_ before();
${ipc}_add_before = Util.andSpecializations(ipRef, plainlPExpr);

}

Listing 14: Generated code for creating the LIAM model for the
add/before pointcut of the instance pointcut created with expression
refinement

Deployment 1In each of the above cases, the created LIAM mod-
els of the pointcuts must be associated with advice invoking the add
or remove method for the instance pointcut. In a LIAM model this
is achieved by defining an Attachment, which roughly corresponds
to a pointcut-advice pair. An Attachment refers to a set of Special-
izations, to an Action, which specifies the advice functionality, and
to a Schedule Information, which models the time relative to a join
point when the action should be executed, e.g., “before” the join
point (cf. line 6).

Listing 15 shows the generated code for creating and deploying
the bookkeeping Attachments. The first Attachment uses the set of
Specializations returned by the ${ipc}add_before method (cf. line 4)
and specifies the ${ipc}_addlnstance method as action to execute

[S

34

at the selected join points (cf. line 5). As relative execution time,
the Attachment uses a “SystemSchedulelnfo”; this is provided by
ALIA4] for Attachments performing maintenance whose action
should be performed before or after all user actions at a join point,
such that all user actions observe the same state of the maintained
data. Thus, when reaching a selected join point the instance is
added to the instance pointcut’s multiset before any other action
can access its current content. The other Attachments are created
analogously. In the end, all Attachments are deployed through the
ALIA4]J System (cf. line 2).

public static void ${ipc} deploy() {
org.alia4j.fial.System.deploy(

new Attachment(
${ipc}_add_before(),
createStaticAction(void.class, ${Aspect} .class, v

"${ipc}_addInstance”, new Class[]{${ Type}.class})

SystemSchedulelnfo. BEFORE_FARTHEST),

//Create Attachments for the other three parts analogously.

//For the “after’’ parts, use SystemSchedulelnfo. AFTER _FARTHEST.

//For the “remove’’ parts, specify method ${ipc}_removelnstance.

}

Listing 15: Deployment of the bookkeeping for an instance
pointcut.

4.2 Composite Instance Pointcuts

Composite instance pointcuts require a different compilation strat-
egy because they do not have the four underlying pointcut expres-
sions. The data of a composite instance pointcut changes when the
data of one of its referenced instance pointcuts is updated. The cor-
responding events happen during the execution of the generated
methods ${ipc} _addinstance and ${ipc}_removelnstance. Therefore, a
different mechanism is needed than for the non-composite instance
pointcuts, which depend on user events.

Intersection and Union 'When an instance pointcut ${ipc} is com-
posed by forming the union or intersection of other instance point-
cuts (${ipcx}), the content of the maintained multiset potentially
changes whenever an instance is added to or removed from one of
the referenced instance pointcuts—events already exposed through
${ipcX} _instanceAdded Or ${ipcX}_instanceRemoved pointcuts. For the
maintenance of a composite instance pointcut a method is gener-
ated, which reacts to the join points matching the disjunction of
all these pointcuts. The argument of this method is the instance
exposed by these pointcuts, i.e., the instance that has either been
added to or removed from a reference instance pointcut. When the
maintenance method is invoked, we know the cardinality of this in-
stance potentially changes in the multiset of the instance pointcut
${ipc}. The cardinality of other instances cannot change. The gener-
ated method, therefore, re-calculates the cardinality of the affected
instance and changes its value in ${ipc}_data.

To generate appropriate code, the compiler first builds a binary
expression tree for the composition expression. Next, it traverses
this tree and generates different code for the cases that the visited
node is an instance pointcut reference, or an inter or union op-
erator. For an instance pointcut reference, code is generated that
retrieves the cardinality of the instance in the multiset of the refer-
enced instance pointcut. For an inter and union operator, code
is generated that calculates the minimum and maximum, respec-
tively, of both expressions. Finally, the cardinality in ${ipc}_data is
updated.

As example, listing 16 shows the generated code for a com-
posite instance pointcut with the set expression $({ipcl} union v
${ipc2})inter ${ipc3}. Besides, the generated code remembers the
old cardinality; when the cardinality changes from O to > 0 or vice
versa, the generated method invokes the method ${ipc} _instanceAdded
${ipc}_instanceRemoved, respectively.

public static void ${ipc} update(Object o) {
int oldCardinality = ${ipc} _cardinality(o);
int newCardinality =
Math.min(
Math.max(
${ipcl} _cardinality(o),
${ipc2} _cardinality(o)),
${ipc3} _cardinality(o));
${ipc}setCardinality(o, newCardinality);
if (oldCardinality == 0 and newCardinality > 0)
${ipc}_instanceAdded(o);
else if (oldCardinality > 0 and newCardinality == 0)
${ipc}_instanceRemoved(o);

Listing 16: The update method generated from a composition
expression

As in the case of non-composite instance pointcuts, a LIAM At-
tachment is generated and deployed, which associates the Special-
izations corresponding to the pointcuts with the generated method.

Type Refinement for Composite Instance Pointcuts Instance
pointcuts which are defined by means of type refined composite
instance pointcuts, are treated similar to the case above. A method
is generated which is executed when the referenced instance point-
cut changes. The method checks whether the type of the added
or removed object is assignment compatible with the type restric-
tion. If this is the case, the same operation (adding or removing
the instance) is performed on the multiset of the refining instance
pointcut.

4.3 Compiling Plain Aspect] constructs

To ensure consistent ordering between Aspect] advice and our im-
plementation of instance pointcuts (i.e., that our bookkeeping ad-
vice are executed before user advice), the Aspect] pointcut-advice
definitions must be processed by ALIA4]J. This is possible because
ALIA4] can integrate with the standard Aspect] tooling. Using
command line arguments the AspectJ compiler can be instructed to
omit the weaving phase. The advice bodies are converted to meth-
ods and pointcut expressions are attached to them using Java’s an-
notations, which are read by the ALIA4J-Aspect] integration and
transformed into Attachments at program start-up. The code gen-
erated by our compiler consists of the above explained methods, as
well as plain Aspect] definitions. When compiling this code with
the mentioned command line options, the regular Aspect] pointcut-
advice and the behavior of the instance pointcuts are both executed
by ALIA4J, thus ensuring a consistent execution order.

5. Validation
5.1 Enabled Checks

The instance pointcuts approach satisfies the goals we have stated
at the beginning of Section 2.4 and in Section 4 we have shown
that instance pointcuts can be compiled modularly. Our approach
provides:

* A concise syntax, which is used to generate the necessary book-
keeping code,

* additional features to declaratively create refined sets, reusing
already created instance pointcuts, and

* a composition mechanism, which uses set operations, that al-
lows modular definition of instance pointcuts.

Let us revisit the problem we have identified in Section 2 and
provide an implementation that uses instance pointcuts shown in
Listing 17 (this listing only includes the changed code, the rest is
identical to Listing 2). The instance pointcut surpriseDiscount suc-
cessfully encapsulates the bookkeeping concern, which reduces the

35

concern specific lines of code to a third of the Aspect] solution. The
discount alert advice now uses the surpriseDiscount _instanceAdded set
monitoring pointcut (lines 4-6). Also, in order to access the in-
stance pointcut set, the code now uses the set access method as in
line 10. Introducing new concerns to this code, like refining the
surpriseDiscount instance pointcut to select objects with prices that
are higher than 50$ (Listing 5) requires very little amount of code.
aspect SDiscount{
static instance pointcut surpriseDiscount<Product>: after(call(* »
ProductManager.submitDiscount(..)) && args(instance,
SurpriseDiscount))
UNTIL after(call(x ProductManager.withdrawDiscount(..)) && v
args(instance, SurpriseDiscount));

after(Product p):surpriseDiscount__instanceAdded(p){
OnlineShop.INSTANCE().createDiscountAlert(p);

void around(String listType):display(listType){

OnlineShop.instance().getUI()
.display(SDiscount.surpriseDiscount());

¥
}
Listing 17: The instance pointcut implementation of the discount
alert concern

A declarative syntax such as that of instance pointcuts, gener-
ally allows performing various checks, generate well-placed error
or warning markers and informative warning/error messages. In the
following we discuss checks we deem useful and possible to im-
plement based on our language. Proving their feasibility by imple-
menting the checks is subject to future work.

Non-existent/Incompatible types 1f the type declared by the in-
stance pointcut does not exist, this is a compile error. Instance
pointcuts provide an additional check during type refinement; it is
a compile error if the refinement type is not a subtype of the refer-
enced pointcut’s declared type. In the Java solution the error marker
is placed at the line of the instanceof check, without giving any con-
text to why the instanceof check is performed. The instance pointcut
error marker is placed at line of the refinement, with an elaborate
error message explaining the type mistake.

Type compatibility is also an issue while composing instance
pointcuts. The typing effects of the composition is previously men-
tioned in Section 3.3.3. If in a composite instance pointcut decla-
ration, the instance type is explicit, then the type compatibility be-
tween the composite and the component instance pointcuts’ should
be checked. The compiler determines the appropriate type for every
composite instance pointcut, whether the instance type is explicit or
not. The computed type is then compared to the declared type; the
declared type must be the same or a super type of the computed
type. If there’s an incompatibility, we put an error marker at the
line where the type was declared, indicating the composed type is
not compatible with the declared type of the composite instance
pointcut.

Empty Sets The add expression of an instance pointcut is respon-
sible for populating the instance pointcut set. If the pointcut expres-
sions defined in the add expressions do not match any join-points
then it is guaranteed that the instance pointcut set will always be
empty. This case is displayed as a compile-time warning, which
indicates that no objects will be selected. During the expression
refinement, composition of the new pointcuts and the referenced
one may result in non-matching pointcut expressions. Currently we
do not perform any control-flow analysis to check for empty sets.
Such a check will help us to identify cases where even if the add
expression matches, no objects are added to the set.

Double selection Instance pointcut syntax allows selecting the
same join-point in both before and after events in the same expres-
sion. In Listing 18 such a case is illustrated. The Product object is

AU oA W -

added before it is applied a discount, and once again after the dis-
count is applied. This will increment the cardinality of the same
object twice. The analogous case exists for the remove expressions.
The object is removed from the set rwice. This behaviour is consis-
tent with an instance pointcut’s regular behaviour, but we still raise
a separate warning for the add and remove cases to notify the de-
veloper, in case of a copy-paste error.

static instance pointcut surpriseDiscountDouble<Product>:
before(call(* ProductManager.submitDiscount(..))
&& args(instance, SurpriseDiscount))

after(call(* ProductManager.submitDiscount(..))

&& args(instance, SurpriseDiscount))
Listing 18: Adding the same object before and after the same join-
point

Expression Refinement Checks During expression refinement
there is a special case when the refined instance pointcut is refer-
encing a non-existent event selector and the || boolean operator is
used. Assume that ipcl only has an add_before expression. While
refining this instance pointcut the developer mistakenly writes the
following:

ipc2<T>: add_ before:ipcl.add__before
add_ after: ipcl.add_after || call(..);

This definition refers to the non-existent add_after expression.
This is a compile error since, while the call pointcut is selecting
joinpoints, no objects are bound. This is illegal to have in an
instance pointcut expression. Note that if the operation was &&
there would be no compile error since, the add_after expression of
ipc2 would simply be empty and ip2’s add expression would only
comprise of ipcl’s add_before event selector.

5.2 Real-World Example

The Git Repository Hosting site called github offers a mobile ap-
plication to access its services via Android smart phones. We have
performed a preliminary study on this application to show the ben-
efits of using instance pointcuts in a real-life application. An An-
droid application consists of Activity objects which are application
components users can interact with to perform a task. Each activity
is further divided into Fragments, which represents a portion of that
Activity. Fragments have a number of states which mark the beginning
and the end of their lifecycle. The users of github can be associated
with certain organisations, which gives them access to repositories
which are not publicly available but only available through organi-
sation permissions.

The classes which were affected by the addition of this feature
can be seen on commit with ID 044262d on the git repository of the
project.* This particular commit includes changes to HomeActivity,
RepositoryListFragment, MembersFragment and UserNewsFragment. It also
adds two new interfaces OrganizationSelectionListener and Organization—
SelectionProvider. All of these classes except RepositoryListFragment
belong to the same package. All of the listed fragments start their
lifecycle with a call to the onActivityCreated and they end their life-
cycle with a call to the onDetach. Fragments register themselves as a
OrganizationSelectionListener When they are created to the HomeActivity.
In the implementation of these methods we see the same bookkeep-
ing code repeated in the listing below. The purpose of this code is
to listen to the changes of the selected organisation for the active
user and update the related UI fragments accordingly.

[RepositoryListFragment,MembersFragment,UserNewsFragment] extends
Fragment implements OrganizationSelectionListener {

4See
044262d.

https://github.com/github/android/commit/

36

@Override //Fragment

public void onDetach() {
OrganizationSelectionProvider selectionProvider =

(OrganizationSelectionProvider) getActivity();

if (selectionProvider != null) selectionProvider.removeListener(this);
super.onDetach(); }

@Override //Fragment

public void onActivityCreated(Bundle savedInstanceState) {
org = ((OrganizationSelectionProvider) getActivity()).addListener(this);
\\rest of the implementation is different in each class ...

@Override //OrganizationSelectionListener
public void onOrganizationSelected(final User organization) {...} }

The HomeActivity class implements the OrganizationSelectionProvider
interface which offers the addListener(OrganizationSelectionListener)
and removelistener(OrganizationSelectionListener) methods. The added
listeners are kept in the orgSelectionListeners set. When a user
selects an organisation, each listener is notified in a for loop by
calling their onOrganizationSelected method. From this implementa-
tion we can see that the bookkeeping of these listeners is scattered
among 3 classes, a total of 6 methods. In order to modularise this
concern, we have replaced this listener add/remove implementation
with an instance pointcut which is shown in the listing below.

public aspect OrganizationSelectionProviderAspect{
static instance pointcut
orgSelectionListeners<OrganizationSelectionListener>:
before(call(* RepositoryListFragement.onActivityCreated(..))
call(* MembersFragement.onActivityCreated(..))
call(x UserNewsFragement.onActivityCreated(..)) && this(instance)) v
UNTIL

before(call(x RepositoryListFragement.onDetach())
call(* MembersFragement.onDetach()))
call(x UserNewsFragement.onDetach()) && this(instance));

This has resulted in the following code quality improvements in
the affected classes.

The overridden onDetach method is removed from all fragment
classes, since its only purpose was to remove the listeners from the
provider. This is now managed by the orgSelectionListener instance
pointcut. This is a quality improvement since we were able to
eliminate redundant code from these classes. This has reduced a
total of 21 lines of code from three classes.

* The first line of the onActivityCreated method was removed, re-
ducing 3 lines in total.

* We have removed the OrganizationSelectionProvider interface, the
implementation of its methods and the orgSelectionListeners set
from HomeAdctivity class, reducing in total 11 lines of code.

* The removal of the OrganizationSelectionProvider interface also
makes the dependency to this class obsolete and makes it pos-
sible to remove this dependency from the affected Fragment
classes. The removal of this interface also simplifies the type-
hierarchy.

We were able to localise the bookkeeping of the listener in
a single module resulting in more maintainable code; instead of
altering three different classes the developer can write a single
instance pointcut. Besides modularising the implementation of this
concern, the solution with instance pointcuts is also more concise.
The 35 lines of the scattered implementation were replaced by 16
lines for an aspect with an instance pointcut. This reduced the size
of the implementation of this concern by more than 50%.

5.3 Performance

We have used the Caliper [12] micro-benchmarking framework
for measuring the execution time of our language extension. In
this experiment, we measured the performance of add and remove

1 testAsduniquelpe

i testAddiniaueipe 361,996
358,938
RIRIS |
3793334 1
36,376.621 W
37,349,409

358,660, 564 -

363,596, 699 .

adsanelava 16.827

Figure 7: Benchmark results for adding the same object

operations of instance pointcuts, once with our implementation
and once with semantically equivalent plain Java code. The two
scenarios we have measured are as follows:

* Adding/removing unique objects to the instance pointcut set will
result in a growing data structure with objects of cardinality
value one, similarly removing these objects will shrink the data
structure.

* Adding/removing the same object more than once to the in-
stance pointcut set will result in a set with a single element and
a cardinality greater than one. The remove operation will only
reduce this cardinality, until the cardinality becomes zero. Then
the object is removed from the set.

We have performed our experiments on a laptop running Mac-
OSX v10.9.1 with 2.4 Ghz Intel Core i7 processor and 8GB of
RAM with the Jave version JRE 1.7.0u40 64-bit. We have used the
default setting of Caliper and instructed the framework to record 10
measurements for each benchmark.

Figure 6 shows the results for adding unique objects to the
instance pointcut. And Figure 7 shows the results for adding the
same object. We show the results for adding objects only ad the
results for removing objects are equivalent.

In these results, the average of the plain Java case is slightly
faster than using instance pointcuts. Nevertheless, the confidence
intervals overlap and thus it cannot be said that the plain Java ver-
sion is actually faster. Therefore, we can conclude that there is no
or no significant performance loss when using instance pointcuts,
while the program quality increases.

6. Related Work

AOQO-extensions for improving aspect-object relationships are pro-
posed in several studies. Sakurai et al. [21] proposed Association
Aspects. This is an extension to aspect instantiation mechanisms in
Aspect] to declaratively associate an aspect to a tuple of objects.
In this work the type of object tuples are declared with a perobjects
clause and the specific objects are selected by pointcuts. This work
offers a method for defining relationships between objects. Sim-
ilar to association aspects, Relationship Aspects [18] also offer
a declarative mechanism to define relationships between objects,
which are cross-cutting to the OO-implementation. This work fo-
cuses on managing relationships between associated objects. Bod-
den et al. [7] claim that the two above approaches lack generality

37

and propose a tracematch-based approach. Although the semantics
of the approaches are very similar, Bodden et al. combine features
of thread safety, memory safety, per-association state and bind-
ing of primitive values or values of non-weavable classes. Our ap-
proach, also extending AQO, differs from these approaches since our
aim is not defining new relationships but using the existing struc-
tures as a base to group objects together for behaviour extensions.
Our approach also offers additional features of composition and re-
finement.

The “dflow” pointcut [17] is an extension to Aspect] that can
be used to reason about the values bound by pointcut expressions.
Thereby it can be specified that a pointcut only matches at a join
point when the origin of the specified value from the context of this
join point did or did not appear in the context of another, previous
join point (also specified in terms of a pointcut expression). This
construct is limited to restricting the applicability of pointcut ex-
pressions rather than reifying all objects that match certain criteria,
as our approach does.

Another related field is Object Query Languages (OQL), which
are used to query objects in an object-oriented program (e.g., [8]).
However OQLs do not support event based querying, which selects
objects based on the events they participate in, as presented in our
approach. It is interesting to combine instance pointcuts with OQL.
For example instance pointcuts can be used as a predicate in OQL
expressions, in order to select from usage-pattern-specific object
sets. We will explore possible applications in future work.

Typestates [9] allow users to define a state chart for a type. This
specifies which states an object of that type can be in and what
causes state transitions. Similar to our approach, state transitions
are triggered by runtime events. However unlike instance pointcuts,
in typestates an object’s state can only change at method calls
where the object is the receiver; with instance pointcuts, objects
life-cycle phases can be defined more flexibly by referring to any
event where the object is in the dynamic context, e.g., passed as
argument or result value. The purpose of the typestates approach
is to facilitate more powerful invariant checking at compile-time,
whereas we provide a mechanism to actually track object sets
at runtime. It would be interesting to investigate possibilities for
combining both approaches in the future.

7. Conclusion and Future Work

In our work we have presented instance pointcuts, a specialized
pointcut mechanism for reifying sets of objects, which have a sim-
ilar usage history. Our approach provides a declarative syntax for
defining events when a relevant usage pattern starts or ends being
applied to an object. Instance pointcuts maintain multisets provid-
ing a count for objects, which enter and exit the same usage pat-
tern more than once. Instance pointcut sets can be accessed eas-
ily and any changes to these sets can also be monitored with the
help of automatically created set monitoring pointcuts. The sets can
be declaratively composed, which allows reuse of existing instance
pointcuts and consistency among corresponding multisets. Finally,
we have presented our modular compilation approach for instance
pointcuts based on Aspect] and the ALIA4]J Language implemen-
tation architecture. ALIA4J provided us with the flexibility Aspect]
lacked in instance pointcut composition and type refinement.

The syntax and expressiveness of instance pointcuts partially
depend on the underlying AO language; this is evident especially
in our usage of the Aspect] pointcut language in the specification
of events. Since Aspect]’s join points are “regions in time” rather
than events, we had to add the “before” and “after” keywords to
our add and remove expressions. Thus, compiling to a different
target language with native support for events (e.g., EScala [11] or
Composition Filters [2], the point-in-time join-point model [16])
would influence the notation of these expressions.

We think the instance pointcut concept is very flexible and can
be useful in various applications. It eliminates boilerplate code to
a great extent and provides a readable syntax. We believe that the
reuse and composition mechanisms offered by instance pointcuts
are beneficial for software evolution since they make it easy to
create tailored variations according to new requirements.

One relevant field of application for instance pointcuts are de-
sign patterns, which are known to be good examples for aspect-
oriented programming [13]. Many design patterns exist for defining
the behaviour for groups of objects; thus implementing them with
our instance pointcuts seems to provide a natural benefit.

In future work, we would also like to combine our Instance
Pointcuts approach with our work on “An Adapter-Aware, Non-
Intrusive Dependency Injection Framework for Java” [20]. This
framework can inject objects into target locations (e.g., instance
fields) and at the same time adapt the objects should they not
be type compatible with the target site. Currently, the framework
offers limited means to select objects for the injection and injection
targets; we intend exploring the use of Instance Pointcuts for these
purposes.

References

[1] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann. An overview of
caesarj. In A. Rashid and M. Aksit, editors, Transactions on Aspect-
Oriented Software Development I, pages 135—173. Springer-Verlag,
Berlin, Heidelberg, 2006.

[2] L. M. Bergmans and M. Aksit. How to deal with encapsulation in
aspect-orientation. In Proceedings of OOPSLA 2001 Workshop on
Advanced Separation of Concerns in Object-Oriented Systems, 2001.

C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann. Virtual ma-
chine support for dynamic join points. In Proceedings of the 3rd inter-
national conference on Aspect-oriented software development, AOSD
’04, pages 83-92, New York, NY, USA, 2004. ACM.

C. Bockisch and M. Mezini. A flexible architecture for pointcut-
advice language implementations. In VMIL ’07 : proceedings of
the 1st Workshop on Virtual Machines and Intermediate Languages
for Emerging Modularization Mechanisms, New York, March 2007.
ACM.

C. Bockisch and M. Mezini. A flexible architecture for pointcut-advice
language implementations. In Proceedings of the 1st Workshop on Vir-
tual Machines and Intermediate Languages for Emerging Modulariza-
tion Mechanisms, VMIL. ACM, 2007.

C. Bockisch, A. Sewe, H. Yin, M. Mezini, and M. Aksit. An in-depth
look at ALIA4]. Journal of Object Technology, 11(1):1-28, 2012.

[7] E. Bodden, R. Shaikh, and L. Hendren. Relational aspects as trace-
matches. In Proceedings of the 7th international conference on
Aspect-oriented software development, pages 84-95. ACM, 2008.

[3]

[4

=

[5

=

[6]

[8] S. Cluet. Designing oql: Allowing objects to be queried. Information
systems, 23(5):279-305, 1998.

[9] R. DeLine and M. Fahndrich. Typestates for objects. In M. Odersky,
editor, ECOOP 2004 - Object-Oriented Programming, volume 3086 of
Lecture Notes in Computer Science, pages 465-490. Springer Berlin
Heidelberg, 2004.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, Massachusetts, 1995.

V. Gasiunas, L. Satabin, M. Mezini, A. Nufiez, and J. Noyé. Es-
cala: modular event-driven object interactions in scala. In Proceedings
of the tenth international conference on Aspect-oriented software de-
velopment, AOSD 11, pages 227-240, New York, NY, USA, March
2011. ACM.

Google. Caliper: Microbenchmarking framework for java. http:
//code.google.com/p/caliper/, 2014.

[10]

(1]

[12]

[13

[t

J. Hannemann and G. Kiczales. Design pattern implementation in Java
and Aspect]. In Proceedings of the 17th ACM conference on Object-

38

oriented programming, systems, languages, and applications, pages
161-173. ACM Press, 2002.

F. Heidenreich, J. Johannes, M. Seifert, and C. Wende. Closing the
gap between modelling and java. In M. van den Brand, D. Gasevic,
and J. Gray, editors, Software Language Engineering, volume 5969 of
Lecture Notes in Computer Science, pages 374-383. Springer Berlin /
Heidelberg, 2010. 10.1007/978-3-642-12107-4 _25.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Gris-
wold. An overview of aspectj. ECOOP 2001 Object-Oriented Pro-
gramming, pages 327-354, 2001.

[14]

[15]

[16] H. Masuhara, Y. Endoh, and A. Yonezawa. A fine-grained join point
model for more reusable aspects. In N. Kobayashi, editor, Program-
ming Languages and Systems, volume 4279 of Lecture Notes in Com-
puter Science, pages 131-147. Springer Berlin / Heidelberg, 2006.

10.1007/11924661 _8.

H. Masuhara and K. Kawauchi. Dataflow pointcut in aspect-oriented
programming. In In APLASO3 - the First Asian Symposium on Pro-
gramming Languages and Systems, pages 105-121, 2003.

[18] D. Pearce and J. Noble. Relationship aspects. In Proceedings of the 5th
international conference on Aspect-oriented software development,
pages 75-86. ACM, 2006.

H. Rajan and K. J. Sullivan. Eos: instance-level aspects for integrated
system design. In Proceedings of the 11th ACM SIGSOFT Symposium
on Foundations of Software Engineering 2003 held jointly with 9th
European Software Engineering Conference, ESEC/FSE 2003, pages
291-306, 2003.

A. Roemers, K. Hatun, and C. Bockisch. An adapter-aware, non-
intrusive dependency injection framework for java. In Proceedings of
the International Conference on Principles and Practices of Program-
ming on the Java Platform: virtual machines, languages and tools,
PPPJ ’13. ACM, 2013.

K. Sakurai, H. Masuhara, N. Ubayashi, S. Matuura, and S. Komiya.
Design and implementation of an aspect instantiation mechanism.
Transactions on aspect-oriented software development I, pages 259—
292, 2006.

E. Tanter. Expressive scoping of dynamically-deployed aspects. In
Proceedings of the 7th international conference on Aspect-oriented
software development, AOSD ’08, pages 168—179, New York, NY,
USA, 2008. ACM.

(17]

[19]

[20]

[21]

[22]

