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ABSTRACT
This paper proposes a novel method to predict increases in YouTube
viewcount driven from the Twitter social network. Specifically, we
aim to predict two types of viewcount increases: a sudden increase
in viewcount (named as JUMP), and the viewcount shortly after
the upload of a new video (named as EARLY). Experiments on
hundreds of thousands of videos and millions of tweets show that
Twitter-derived features alone can predict whether a video will be
in the top 5% for EARLY popularity with 0.7 Precision@100. Fur-
thermore, our results reveal that while individual influence is in-
deed important for predicting how Twitter drives YouTube views, it
is a diversity of interest from the most active to the least active Twit-
ter users mentioning a video (measured by the variation in their to-
tal activity) that is most informative for both JUMP and EARLY pre-
diction. In summary, by going beyond features that quantify indi-
vidual influence and additionally leveraging collective features of
activity variation, we are able to obtain an effective cross-network
predictor of Twitter-driven YouTube views.

Category and Subject Descriptors H.2.8 DATABASE MANAGE-
MENT Database Applications — data mining

Keywords Popularity prediction; social media; YouTube; Twitter

1. INTRODUCTION
Predicting item popularity in social media is a well-recognized

open problem. Take YouTube videos, for example, where particu-
lar interesting and challenging questions include “will an obscure
video suddenly become very popular, and when?”, “which videos
will be the top 5% popular ones in 1, 2, or 3 months?”, and “when
will the attention on a very popular video fade out, if ever?” Ques-
tions like these are inherently difficult, because determining popu-
lar items in social media not only relates to the attention dynamics
of online videos, it is also affected by many complex factors from
virality to news events to seasonality that make it difficult to quan-
tify the interplay of such phenomena. Despite the mounting chal-
lenge, such prediction tasks are important both in their value for
understanding collective online behavior, and in a wide range of
applications from content discovery and recommendation to video
distribution infrastructure to online advertisement.
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This work is related to several areas in online video and so-
cial media popularity. Early studies included large-scale profiling
of content [5] and their social networks [7]. Subsequent measure-
ments provided statistics on video popularity [6] and its geographic
distribution [4]. A number of recent works focused on forecasting
popularity: YouTube video views are found to be predictable from
recent viewcount history [13, 15], aggregate video sharing behav-
ior is found to be related to geographical, social and temporal shar-
ing trends [16], and the lifecycle of trending topics in the news are
found to generalize from historically similar topics across multi-
ple information platforms [2]. More recently, researchers started to
examine video sharing behavior on microblogs. Abisheva et al [1]
performed a large-scale profiling of the YouTube video audience
by analyzing Twitter and Roy et al [14] used tweets to improve
YouTube video recommendation. In video popularity prediction,
viewcount-based methods tend to fit smooth trends well, but are in-
herently unable to predict sudden changes in popularity that may
be driven by external sources such as Twitter. Cross-platform so-
cial media content has seen recent success for predicting individ-
ual consumption [19]. In this paper, we investigate whether Twitter
feeds can also help predict YouTube video popularity.

This work investigates two particular challenging scenarios for
YouTube video popularity prediction. The first is a sudden increase
in viewcount, called “jumps”, which are often triggered by exter-
nal events and referrals. Fig 1(a) shows a short video having an
abrupt increase of 1.5 million views after receiving little attention
in the first 4 months after its upload – interestingly, we also note
a few hundred tweets linking to this video right around the jump.
The second scenario is predicting the popularity of newly uploaded
videos, when no or very little viewcount history is available; this
task can also be helped by information from external networks – as
shown in Fig 1(b), a wave of tweets about this video started right
around its upload, and viewcount continued to rise even after the
tweet volume faded out. Our insight for tackling these two chal-
lenging scenarios is the effective use of content and user informa-
tion from Twitter. Going beyond the conventional wisdom of social
influencers [8], we design features to capture the volume of tweets,
the network position and connectivity of users, and the dynamic in-
teractions among tweets and users. We train SVM classifiers using
these features for two prediction tasks, called JUMP and EARLY.

Our results demonstrate that Twitter information can be effec-
tively used to predict YouTube viewcount, with a prediction sys-
tem built from tens of thousands of videos mentioned by millions
of tweets during a 3-month period in 2009. We observe that for
viewcount JUMP, leveraging Twitter features nearly quadruples the
performance from viewcount history, with a 0.46 Precision@100,
compared to 0.12 using viewcount alone. When viewcount history
is not available (EARLY), we can predict the top 5% popular videos
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(a) A video ranked highly by the JUMP predictor

ID: X0-Sv6YnxEc
Upload date: 2009-05-21
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(b) A video ranked highly by the EARLY predictor

ID: DFM140rju4k
Upload date: 2009-10-03

Figure 1: Examples of top predictions for JUMP and EARLY. (a) A video having less than 9000 views in its first 3 months, and then
gaining 1.2 million views within 15 days (date format of x-axis: yy-mmm-dd). The insert shows a tweet linking to this video by
celebrity user Alyssa Milano2. (b) A video with a few dozen Twitter mentions and nearly 2× 105 views in its first 15 days. Note that
the video popularity continues to rise even after the tweet volume has tapered off, illustrating the prediction power of “early tweets”.

over their first 90 days with a 0.70 Precision@100, using only Twit-
ter information from the first 15 days. Among many critical in-
sights, we note that Twitter features describing user interactions
are more predictive than features describing their social network
derived influence; furthermore, aggregating these user interaction
levels by standard deviation is most predictive of a video’s popu-
larity in both EARLY and JUMP, indicating that a diverse range of
interactions is more important than average or total interactions.

2. DATA PROCESSING
We used three data sources: the YouTube video history providing

total viewcounts received over time, a subset of tweets over a three-
month period, and the Twitter user graph from the same period.

We obtain YouTube viewcount history from a video’s web-
page, when it’s made available by the video owner. This history
contains the number of views a video has received since its up-
load, in 100 evenly spaced time intervals, with daily viewcount
obtained by temporal interpolation3. We use a collection of 467-
million tweets of from 2009 [17]; this sample is estimated to con-
tain about 20-30% of all posts published on Twitter during the 6-
month period, and was authored by about 20 million users. Each
tweet is represented as three fields: author, e.g., http://twitter.com/
annieng ; timestamp, e.g., 2009-06-07 02:07:42; tweet content, e.g.
“in LA now”. We use a snapshot of the Twitter user graph from
2009 [11], with each user as a node, and each following relationship
as a directed edge from a user to one of his/her followers.

We extracted URLs from all tweets and resolved shortened URLs,
retaining references to YouTube videos. We found 1, 624, 274 Twit-
ter users tweeted YouTube video links at least once and that there
are 2, 350, 881 unique videos, of which 1, 549, 532 (65.9%) are
still online as of Oct 2013. Within this subset, 1, 067, 895 (68.9%),
have their viewcount history publicly available. We call the sub-
set of tweets containing videos with available history video tweets.
We match the tweets and the Twitter user graph dataset in order
to extract the user graph information of the observed video tweets.
About 80% of the users can be identified by matching the username
directly, for 20% of the users we did not find a match. A tweet is
dropped from the collection if its author cannot be identified.

We process tweets to extract tags and user interactions. We rely
on text processing for this since our historical tweets collection
does not contain the full Twitter API feed (where many interac-
tions are already encoded). We extract hashtags and mentions by
2 http://en.wikipedia.org/wiki/Alyssa_Milano
3The temporal granularity of viewcount history is about 12 days
(with 1,100+ days between August 1, 2009 and data collection in
Oct 2012) and varies depending on the video upload date.

finding words prefixed with # and @ symbols. We also extract non-
broadcasting tweets (nbcTweet) – when a tweet starts by mention-
ing a user, it is treated as a targeted interaction between the author
the user being mentioned, and the followers of the author will not
see this tweet in their timeline. We extract variations of retweet
(RT). Symbols for retweeting have evolved since the early days of
Twitter [10], and there are still a diverse set of symbols in use in the
2009 data. We extract ten major variants, i.e., RT, R/T, via, HT, H/T,
OH, retweet, ret, plus two variants of the “recycle” symbol (A).

3. PREDICTING VIDEO VIEWS
We begin describing the features and prediction tasks by defin-

ing units of data over time. We take a sliding time window of length
τ as a unit for feature extraction and viewcount prediction. We de-
fine time index t ∈ {0, 1, . . . , T} with increments of τ . With slight
overload of notation, index 0 may represent the real-world inter-
val [0, τ), or time point t = 0, the interpretation should be clear
from context. For a YouTube video v, denote its total viewcount
(i.e. number of views received since upload) on time t as cv(t),
and the viewcount increment between t and t + 1 as ∆cv(t). We
use Uv(t) to denote the set of Twitter users who tweeted video v
in time interval t. In this work, the prediction targets are videos
tweeted between August and November 2009 with T = 93 days,
and τ = 15 days due to viewcount data granularity. Tweets pub-
lished before August are used to compute features.

3.1 Features from YouTube and Twitter
We extract one set of YouTube features and four sets of Twitter

features for prediction. There are two general types of aggregated
Twitter features we investigate: those directly involving TWEETs
on the video and those involving the users who have tweeted on a
video. Among the latter type, we further make distinctions among
ACTIVE, PASSIVE, and social GRAPH features of those users.
YT-VIEWS is the number views a video v receives in two time
intervals before time t on which we are making a prediction, i.e.
[∆cv(t− 2), ∆cv(t− 1)]. Historical viewcount is shown to highly
correlate with future viewcounts [15], and using more than one his-
torical interval is shown to further improve prediction [13]. We
chose two intervals via cross-validation. This feature is compara-
ble to those used in prior work [15, 13], and used as the baseline
for predicting JUMP .
TWEET includes five counting metrics that describe the properties
of video tweets about video v in interval t: T.tweet(v, t) is the
number of video tweets; T.hashtag(v, t) is the number of times
a hashtag is used; T.mention(v, t) and T.nbcTweet(v, t) are the
numbers of broadcasting and non-broadcasting mentions, respec-
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Table 1: Six summary statistics for user features. u: a Twitter user; U :
a set of Twitter users; f(u): a user feature.

Name Description
sum-log

∑
u∈U log(f(u) + 1)

log-sum log(
∑

u∈U (f(u)) + 1)

mean-log 1
|U| (

∑
u∈U log(f(u) + 1))

log-mean log(( 1
|U| (

∑
u∈U f(u)) + 1))

std-log std({log(f(u) + 1)}u∈U )
log-std log(std({f(u)}u∈U ) + 1)

tively; T.RT (v, t) is the number of retweets for each of the 10
variants. Intuitively, videos are likely to obtain more views when
they are tweeted or are part of twitter interactions (via hashtags,
mentions, or retweets).
GRAPH consists of three features computed from the Twitter user
graph. For a Twitter user u, G.outdegree(u) is the number of fol-
lowers he/she has. G.pagerank(u) contains the pagerank score
of a user, robust measure of a user’s influence for hashtag adop-
tion [18]. G.hubauthority(u) contain a pair of hub and authority
scores [9]. A Twitter user has high hub score if her followees have
high authority scores; she has high authority scores if her followers
have high hub scores.
ACTIVE consists of five types of behavior features for Twitter user
u up to time t−1. They are denoted asA.tweet(u),A.hashtag(u),
A.mention(u), A.nbcTweet(u), A.RT (u) to capture the users’
tweet volume, use of hashtags, sending of broadcasting and non-
broadcasting mentions and retweet behaviors, respectively. More-
over, each feature type is represented with a number of metric vari-
ants. A.tweet(u) includes four variants: the total and per-day av-
erage of all and unique tweets. Each interaction feature (hashtag,
nbcTweet, mention, RT) includes four variants: the total number of
interactions, its average per day; the number of unique user-to-user
interactions, and its average per day.
PASSIVE consists of three behavior features that Twitter user u re-
ceives from other users up to time t−1. Denoted asP.nbcTweet(u),
P.mention(u) and P.RT (u), they represent interactions where
user u is mentioned in broadcasting or non-broadcasting tweets,
and retweeted, respectively. Each of these interactions features has
the same metric variants as those for ACTIVE features.

Both active and passive features have been recognized as captur-
ing user influence within Twitter [18], here we use them to infer
YouTube popularity. Note that features from tweets are computed
from dataset inception, i.e. 2009-05-31 [17]. Furthermore, we ag-
gregate the GRAPH, ACTIVE and PASSIVE features from the set
of users tweeting about the same video into six summary statistics.
These statistics incorporate three kinds of aggregation – sum, mean,
standard deviation (std); over two scaling variants – log-aggregate
or aggregate-log. The method to compute them can be found in Ta-
ble 1. This is to account for the variable number of users tweeting
each video, and being able to generalize across users. An overview
of all features is in Table 2. Note that the feature dimensionality
includes summary statistics for all user features and all metric vari-
ants, e.g., A.RT (and P.RT) has 10 RT literals × 4 metric variants
× 6 summary statistics, totaling 240 dimensions.

3.2 Two Prediction Tasks
JUMP captures cases when a video gains a large number of views

in a relatively short period of time. For video v, denote the total
viewcount gained between time 0 and T as ∆cv(0, T ); we compute
the normalized gain during interval t as rv(t) = ∆cv(t)/∆cv(0, T ).
For a video v, a jump is deemed to have occurred in time t if ∆cv(t)
has more than 50 views; ∆cv(t−1) is not more than ∆cv(0, T )/T ,
the average gain over interval [0, T ); and rv(t) ≥ α with pre-
defined threshold α. Defining jumps using such normalized incre-

Table 2: Youtube and Twitter feature summary (Sec 3.1)
Feature group Feature name # of dimensions
YT-VIEWS viewcount 2

TWEET

T.tweet 1
T.hashtag 1
T.mention 1
T.nbcTweet 1
T.RT 10

GRAPH
G.outdegree 6
G.pagerank 6
G.hubauthority 12

ACTIVE
A.tweet 24
A.hashtag 24
A.mention 24
A.nbcTweet 24
A.RT 240

PASSIVE
P.mention 24
P.nbcTweet 24
P.RT 240

ments allows us to compare videos that undergo popularity changes
at very different levels, e.g., from hundreds to millions of views.

EARLY captures cases when a video receives a significant num-
ber of views just after being uploaded. We take the most popular
videos as prediction targets, i.e., those having the most viewcount
in their first τ̂ days, denoted as ∆cv(0, τ̂) > β, with a pre-defined
threshold β. Prior approaches that rely on historical viewcount [13,
15] cannot be used to analyze such phenomenon.

Binary classifiers are trained with linear support vector machines
for each task. We use α = 0.5, and β = 104, high thresholds that
yield popular videos which are likely to be mentioned in tweets.
The empirical YouTube viewcount distributions are long-tailed, and
do not show a clear separation around these (or any other) values.
To this end, thresholds separating the top few percent videos are
equally valid conceptually. Fig 1 (a) and (b) contain example videos
in the respective JUMP and EARLY classes, which are ranked highly
by our algorithm.

4. EXPERIMENTS
We evaluate JUMP and EARLY prediction with the following set-

tings. For JUMP, each time interval t with at least one tweet about
video v becomes an instance, there are 6,156 positive JUMP in-
stances with a random guess prior of 1.2%. The five feature groups
are specified in Section 3, and ALL is a result of concatenating fea-
tures from all available groups. For EARLY, each video (in its first τ̂
days) becomes an instance. Results are reported on 29,998 videos,
out of which about 5.3%, or 1,591 are positive examples. We report
average precision (AP) [12] and Precision@100, with the average
and the 95% confidence interval over 5-fold cross-validation with
stratified sampling (preserving the random guess probability).

Table 3 summarizes the performance of different features for
JUMP . We can see that among the four types of Twitter features,
each improves upon results using viewcount history only. The best
predictor doubles the AP and nearly quadruples the Precision@100
vs. viewcounts, and with Precision@100 at 0.46, almost half of the
top-ranked videos actually contain a JUMP . In addition, differenti-
ating users and taking into account user history (with GRAPH, AC-
TIVE and PASSIVE) perform significantly better than viewcounts or
tweet properties.

Table 4 summarizes the prediction performance of EARLY , with
the same feature groups as JUMP except that YT-VIEWS is unavail-
able for newly uploaded videos. The prediction is done for the first
15 days, and then τ̂ = 30, 60 and 90 days. Longer term predictions
are done with ACTIVE features, because (1) it is best-performing
feature group – only 0.05 away from ALL in prec@100; (2) these
features only need user history for the video tweets, and do not
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Table 3: Performance for JUMP prediction. See Sec 4.
Features Avg Prec Prec@100
Random 0.012 0.012
YT-VIEWS 0.056± 0.006 0.125± 0.028
YT-VIEWS+TWEET 0.058± 0.002 0.204± 0.041
YT-VIEWS+GRAPH 0.097± 0.007 0.406± 0.023
YT-VIEWS+ACTIVE 0.105± 0.003 0.432± 0.057
YT-VIEWS+PASSIVE 0.104± 0.005 0.444± 0.044
ALL 0.113± 0.008 0.460± 0.053

Table 4: Performance for EARLY prediction. See Sec 4.
τ̂ Feature Avg Prec Prec@100
all Random 0.053 0.053
15-d TWEET 0.248± 0.142 0.450± 0.229
15-d GRAPH 0.382± 0.030 0.646± 0.044
15-d ACTIVE 0.441± 0.027 0.702± 0.058
15-d PASSIVE 0.375± 0.055 0.656± 0.088
15-d ALL 0.463± 0.029 0.750± 0.045
30-d ACTIVE 0.421± 0.023 0.686± 0.060
60-d ACTIVE 0.435± 0.024 0.722± 0.018
90-d ACTIVE 0.424± 0.026 0.720± 0.043
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Figure 2: Box plots of mutual information grouped by feature
aggregates. The most informative features are generated by std
aggregation for both JUMP and EARLY .

need Twitter GRAPH or PASSIVE interactions, which are expensive
to obtain. It is encouraging to see that the top 5% most popular
videos can be predicted with an AP of more than 0.40, and there
are 70+ correct entries in the top 100. Moreover, this accuracy is
maintained from 15 to 90 days.

We perform an analysis on the informativeness of individual fea-
ture dimensions described in Sec 3. We compute the mutual infor-
mation between the target class Y ∈ 0, 1 and each feature X , as
I(X;Y ) =

∑
x

∑
y p(x, y) log p(x,y)

p(x)p(y)
. The larger the mutual

information, the more informative a feature is towards predicting
the target. Fig 2 contains box plots of such mutual information on
user features (GRAPH, ACTIVE and PASSIVE) grouped by the three
feature aggregation methods: std, sum, and mean. We can see that
the majority of most informative features (e.g. top 1/6 above the
median for std) are std-features, with sum features moderately in-
formative and mean features the least informative. A high standard
deviation for a feature implies that there is broad interest across a
spectrum of users with a range of activity and interaction levels.
This concurs with a recent observation on hyperlinks in Twitter [3]
– that having a diverse set of users (std) mentioning an item is help-
ful for improving its popularity.

5. CONCLUSION
In this work, we showed user and content information from Twit-

ter can be effectively used to predict content popularity on YouTube,
as shown in two challenging tasks – predicting viewcount JUMP and
EARLY popularity – both with significant and quantifiable perfor-
mance gains. These results are encouraging in that they show view-

counts are predictable from one external source alone, without tak-
ing into account the influence from many other social and tradi-
tional media sources (Reddit, Tumblr, Pinterest, Facebook, . . . ).
Furthermore, the results show the predictive power of different fea-
tures and aggregation methods and reveal that having a diverse
range of users and associated tweeting activities is more informa-
tive than the total or average volume of activity of these users and
also more informative than other features – including those based
on social network derived measures of influence. This work raises
many interesting avenues of future work, such as leveraging dif-
fusion patterns on Twitter to further improve popularity prediction
and quantifying the roles of “influencers” vs. “grassroots” users.

Acknowledgments NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communications and the Dig-
ital Economy and the Australian Research Council through the ICT Cen-
tre of Excellence program.This work was supported in part by the US Air
Force Research Laboratory, under agreement number FA2386-12-1-4041
and Australian Research Council under project DP140102185.

6. REFERENCES
[1] A. Abisheva, V. R. K. Garimella, D. Garcia, and I. Weber. Who

watches (and shares) what on youtube? and when?: using twitter to
understand youtube viewership. In WSDM, pages 593–602, 2014.

[2] T. Althoff, D. Borth, J. Hees, and A. Dengel. Analysis and
forecasting of trending topics in online media streams. In ACM
Multimedia, 2013.

[3] E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts. Everyone’s
an influencer: quantifying influence on twitter. WSDM ’11, pages
65–74, 2011.

[4] A. Brodersen, S. Scellato, and M. Wattenhofer. Youtube around the
world: geographic popularity of videos. WWW ’12.

[5] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon. I tube, you
tube, everybody tubes: analyzing the world’s largest user generated
content video system. IMC ’07, pages 1–14, 2007.

[6] G. Chatzopoulou, C. Sheng, and M. Faloutsos. A first step towards
understanding popularity in youtube. In INFOCOM Workshops,
pages 1–6, 2010.

[7] X. Cheng, C. Dale, and J. Liu. Statistics and social network of
youtube videos. In Quality of Service, 2008. IWQoS 2008. 16th
International Workshop on, pages 229–238, 2008.

[8] M. Gladwell. The tipping point: How little things can make a big
difference. Hachette Digital, Inc., 2006.

[9] J. M. Kleinberg. Authoritative sources in a hyperlinked environment.
Journal of the ACM (JACM), 46(5):604–632, 1999.

[10] F. Kooti, H. Yang, M. Cha, K. Gummadi, and W. A. Mason. The
emergence of conventions in online social networks. In AAAI
ICWSM, 2012.

[11] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social
network or a news media? In WWW, pages 591–600. ACM, 2010.

[12] C. D. Manning, P. Raghavan, and H. Schütze. chapter Evaluation in
information retrieval. Cambridge University Press, 2008.

[13] H. Pinto, J. M. Almeida, and M. A. Gonçalves. Using early view
patterns to predict the popularity of youtube videos. WSDM ’13.

[14] S. D. Roy, T. Mei, W. Zeng, and S. Li. Socialtransfer: cross-domain
transfer learning from social streams for media applications. In ACM
Multimedia, pages 649–658. ACM, 2012.

[15] G. Szabo and B. A. Huberman. Predicting the popularity of online
content. Commun. ACM, 53(8):80–88, Aug. 2010.

[16] Z. Wang, L. Sun, X. Chen, W. Zhu, J. Liu, M. Chen, and S. Yang.
Propagation-based social-aware replication for social video contents.
MM ’12, pages 29–38, 2012.

[17] J. Yang and J. Leskovec. Patterns of temporal variation in online
media. WSDM, pages 177–186, 2011.

[18] L. Yang, T. Sun, M. Zhang, and Q. Mei. We know what @you #tag:
does the dual role affect hashtag adoption? WWW ’12, pages
261–270, 2012.

[19] Y. Zhang and M. Pennacchiotti. Predicting purchase behaviors from
social media. In WWW ’13, pages 1521–1532, 2013.

872


	Introduction
	Data Processing
	Predicting Video Views
	Features from YouTube and Twitter
	Two Prediction Tasks

	Experiments
	Conclusion
	References



