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ABSTRACT
We propose an automatic Maya hieroglyph retrieval method
integrating shape and glyph context information. Two re-
cent local shape descriptors, Gradient Field Histogram of
Orientation Gradient (GF-HOG) and Histogram of Orien-
tation Shape Context (HOOSC), are evaluated. To encode
the context information, we propose to convert each Maya
glyph block into a first-order Markov chain and apply the
co-occurrence of neighbouring glyphs. The retrieval results
obtained based on visual matching are therefore re-ranked.
Experimental results show that our method can significantly
improve the glyph retrieval accuracy even with a basic co-
occurrence model. Furthermore, two unique glyph datasets
are contributed which can be used as novel shape bench-
marks in future research.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Search and Retrieval; I.4 [Image Processing and Com-
puter Vision]: Feature Measurement—Feature representa-
tion

Keywords
Maya hieroglyph, image retrieval, shape descriptors, glyph
co-occurrence, Markov model

1. INTRODUCTION
The Maya civilization is one of the major cultural develop-

ments in ancient Mesoamerica. It began to flourish during
the Pre-Classic period (2000 BC to AD 250), reached the
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Figure 1: Codex Dresden. Main hieroglyphic text
on page 65a. Green arrows indicate reading order
of the glyph blocks.

peak of development during the Classic period (AD 250-
900), and continued throughout the Post-Classic period.

Most Maya texts were written during the Classic period
on ceramic vessels and stone monuments to record historical
events. There are also Maya texts written on personal items
such as wooden lintels, mural paintings, bones, etc. A spe-
cial type of Maya textual sources are the so called Codices,
which are stuccoed and painted bark paper books, folded
in laparello format. Such books usually contain both tex-
tual and iconographic information, survived from the Post-
Classic period. Fig.1 illustrates one exemplified main text
from page 65a of the Dresden Codex (high resolution images
of this codex are available at the SLUB website [2]).

Maya texts are usually composed of glyph blocks arranged
in double-columns. The usual reading order is from left to
right and from top to bottom by means of double columns
(Fig.1). Due to the flexibility in artistic freedom of Maya
writing, diverse forms and different glyph-variants were in
used. Thus the graphic conventions within a glyph block can
vary greatly. One glyph block could contain one or multiple
glyphs; and it could correlate with a morpheme, an individ-
ual word, or even an entire sentence. The choice could be
due to economic, religious or aesthetic reasons. Individual
glyph recognition is crucial to Maya script decoding.

Maya decipherment has about 200 years of scholarly tra-
dition. Over 1000 signs have been discovered. While about
80% of signs can be read phonetically, the meaning of some
40% logograms remain unknown [8]. Epigraphers often spend
a tremendous amount of time looking at traditional printed
catalogs to identify unknown glyphs. Therefore, the aim of
this work is to facilitate these tasks by automatic recogni-
tion of Maya glyphs using shape and context information.
Related work. Computer vision algorithms have shown
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Figure 2: (a) Original glyph (taken from [12]); (b)
thinning; (c) HOOSC spatial quantization of a given
pivot; (d) gradient field for GF-HOG computation.

the potential of providing new insights in automatic visual
analysis of cultural heritage, which can significantly facili-
tate the daily work of related scholars. Previous works ad-
dress Maya glyph retrieval as a shape matching problem.

Shape based retrieval systems include curve fitting [4],
point-to-point matching [3], grid based matching [5], etc.
These works either do not scale well over large datasets,
or only offer limited flexibility over affine transformation.
Recently, local shape descriptors [6, 7, 9] have been pro-
posed and used in a Bag-of-Visual-Words (BoVW) frame-
work for shape based retrieval. Such method can be scaled
sub-linearly with appropriate search structures, and also of-
fers certain degrees of freedom of affine invariance. Our work
follows this approach.

One of the first attempts of automatic Maya glyph re-
trieval is [10], where shape context is used to represent and
match between single glyphs. A shape descriptor (HOOSC)
is proposed in [9], and used in the BoVW system for Maya
glyph retrieval. The retrieval performance is improved in
[11] by using only the intermediate spatial scope, as well
as carefully pre-processing glyphs into thinned edges, and
evenly pick pivot points. In another direction, GF-HOG [7]
was recently developed in the context of sketch based re-
trieval to overcome the limitation of HOG-like local shape
descriptors when applied to shapes rather than images.

These previous Maya glyph retrieval works have framed
the glyph retrieval problem without considering any specific
structure of Maya writing as a language. In contrast, lan-
guage modelling has been widely used in machine translation
and speech recognition. Glyph context information has re-
cently been applied in [6] for Egyptian hieroglyph analysis
with limited performance improvement. To the best of our
knowledge, Maya glyph co-occurrence that captures context
information in language has never been considered in auto-
matic Maya glyph analysis systems.
Contribution. In this paper we investigate the following
questions. First, given the promising results GF-HOG has
achieved for sketch-based image retrieval, how would it per-
form on glyph data? Second, would glyph co-occurrence in-
formation help improve the shape based glyph retrieval accu-
racy? As exemplified by [6], co-occurrence appears not con-
sistent enough for the task of Egyptian hieroglyph retrieval.
Another contribution of this paper regards two glyph datasets
collected and produced from multiple sources (see section
4.1). Both datasets can be used as shape benchmarks, and
one of them can also be used to further study the Maya
language model. Expert epigraphers in our team contribute
tremendous effort in creating these two datasets.

2. SHAPE BASED GLYPH RETRIEVAL
Each glyph is represented by a set of local shape descrip-

tors. The BoVW approach is then applied.

T0501 T0502 T0668 T0757 T0102 T0103

/b’a/ /ma/ /cha/ /b’a/ /ki/ /ta/

Table 1: Thompson numbers, visual examples, and
the syllabic values of glyph pairs. Each pair contains
two different signs of similar visual features. All
images are taken from [12]

2.1 Shape representation
We use the local shape descriptors HOOSC and GF-HOG

for our glyph retrieval tasks. Since they achieves the current
state-of-the-art performance on shape based Maya hiero-
glyph retrieval and sketch based image retrieval separately.
HOOSC. Since Maya glyphs often present stroke lines with
different degrees of thickness, we first apply a thinning al-
gorithm [11] to get a thinned version of the glyph, see Fig.2
(b) for example. A uniformly sampled subset of points along
the contour is then selected as the pivot set. For each pivot
point, we calculate the HOOSC descriptor by computing the
histogram of orientation within each spatial bin of a local
grid centred at the pivot’s location, as illustrated in Fig.2
(c). We consider 8 orientations and 2 rings. The outer ring
covers the average pairwise distance between each pair of
points along the contour; the inner ring covers half of this
distance. The final descriptor of a given point is the concate-
nation of histograms of 16 grids. We use a 8 bin histogram
for each grid, which forms a 128-dimensional feature vector.
GF-HOG. Compared with natural images, shapes like glyphs
provide only sparse spatial information. Thus, instead of
computing HOG on the sparse gradient field along the con-
tour, GF-HOG aims to encode a richer structure information
within each local window. This is achieved by interpolating
a dense gradient field from the sparse orientation field us-
ing a Laplacian constraint. It can be solved using a Possion
equation with Dirichlet boundary condition. See [7] for de-
tail. In our work, the gradient field is generated from the
thinned glyph (Fig.2 (b)). Fig.2 (d) shows an example of
the extracted gradient field. HOG descriptors are then ex-
tracted from the dense gradient field around each pivot point
using a 4 × 4 grid. A 8-bin orientation histogram is com-
puted within each grid. This results in a 128-dimensional
feature vector. Following [7], we compute HOG descriptor
over three window sizes to improve the scale invariance.

2.2 BoVW based retrieval system
BoVW approach is applied to quantify local features and

represent the full shape with a histogram. Specifically, given
the local descriptors extracted from each glyph, k-means
clustering is applied to generate a set of k clusters. Each
cluster is referred to as a ‘visual word’ and the set of k
clusters defines the vocabulary of the system. A frequency
histogram which represents the count of the visual words
extracted from an image is then used as a global descriptor.

Given a query G and a database glyph D represented by
their histograms HG and HD, we compute the Cityblock
distance to measure the dissimilarity between G and D:

d(G,D) =
∑

1≤i≤k

|HG(i)−HD(i)| (1)

where each histogram is normalized so that
∑

1≤i≤k

H(i) = 1.



glyph block glyph string

Table 2: Generating glyph strings from blocks.

3. GLYPH CO-OCCURRENCE
Using shape alone to represent and distinguish between

glyphs is often ambiguous for many reasons. First, different
signs often share similar visual features, see for example Ta-
ble 1. Furthermore, glyphs of the same sign category vary
with time, location, as well as with individual styles, cal-
ligraphies and renderings of different artists. For example,
the first block in table 2 and the third block in Fig.3 are
both cha-ki (the name of the rain god). Finally, the surviv-
ing historical Maya scripts often lose their visual quality over
time; as such, it is often the case that noise is introduced
and data is partially missing. Therefore, we propose to use
glyph co-occurrence to complement the visual information
and help improve the retrieval accuracy.

3.1 Glyph co-occurrence in Maya writing
In Maya hieroglyphic writing, glyph blocks were frequently

composed of combinations, conflations and mergings of in-
dividual signs. Glyph co-occurrence within single glyph
blocks could encode valuable information. The reading order
within a block usually follows the basic rule of left-to-right
and top-to-bottom. We propose to convert each glyph block
into a linear string of glyphs, according to this reading or-
der, as shown in Table 2. Given a glyph string, we consider
the 1st-order co-occurrence of neighbouring glyphs.
Co-occurrence model. We extract glyph co-occurrence
information from the classic Thompson hieroglyphic catalog
[12]. Despite its outmoded taxonomy, it remains one of the
most comprehensive and widely used list of Maya glyphs.
It covers 892 signs extracted from both codices and monu-
ments. Thompson categorises signs into affixes, main signs
and portraits (note that this categorisation method is no
longer used in recent research of Maya writing). Affixes of-
ten co-occur with main signs, portraits as well as affixes to
form blocks. In his book, Thompson provides two glyph
co-occurrence tables, listing co-occurring signs discovered at
that time for each affix, distinguishing whether it is used as
prefix or postfix. However, no frequency information is given
in these tables, and co-occurrence between main signs and
portraits is not listed. We extract a co-occurrence matrix C
from these tables:

C(Si, Sj) =

{
1 sign Si appears before sign Sj ,
α otherwise.

(2)

where α is a smoothing factor that accounts for missing co-
occurring glyph pairs in the two co-occurrence tables. Here
we set α = 0.01. Note that C(Si, Sj) 6= C(Sj , Si).
Co-occurrence for glyph labelling. Denote by G1:n =
[G1, . . . , Gi, . . . , Gn] the observed glyph string, and by S1:n

the sequence of recognized states, where Si indicates the
Thompson number annotated with glyph Gi. Considering
the glyph string G1:n as a 1st-order Markov chain, the prob-
ability of labelling it to a sequence of states S1:n is:

P (S1:n|G1:n) ∝ P (G1|S1)
∏

2≤i≤n

(P (Gi|Si)P (Si|Si−1)), (3)

Figure 3: Example glyph blocks of the MC dataset.

where P (Si|Si−1) denotes the transition probability from
the previous state Si−1 to the current state Si. Here we
use C(Si−1, Si) to approximate this probability. P (Gi|Si)
refers to the likelihood of glyph Gi being labelled as sign Si.
To encode this term we use the visual similarity between
Gi and the glyph example of Si in the database, and define
P (Gi|Si) ∝ e−d(Gi,Si)/λ, where d(Gi, Si) is computed using
Eq.(1), λ is a scale factor set to the average distance of the
top 50 ranked results for all queries.

3.2 Retrieval system
We solve glyph recognition through retrieval, i.e. by rank-

ing the database glyphs D (signs in Thompson catalog [12])
based on their similarity with the query. When only shape
information is considered, the score of a query glyph Gi be-
ing labelled by signD, is computed by their shape likelihood:

Scoreshape(Si = D) ∝ P (Gi|Si = D). (4)

In our model, we propose to rank the glyphs according to

Scoreshape+context(Si = D) = max
S1:i−1;i+1:n

P (S1:n|G1:n) (5)

which means, given Si = D finding the sequence of Thomp-
son labels S1:n that provides the maximum probability to la-
bel G1:n, under the model in Eq.(3). This can be efficiently
computed using the Viterbi algorithm. In other words, the
score of the glyph Gi being recognized as Si = D now takes
into account all observed glyphs in the string, with the effect
that a glyph D that normally co-occurs with glyphs that are
visually likely at neighbouring positions will receive a higher
weights.

4. EXPERIMENTS
Two sets of experiments are conducted. In the first case,

we compare the two local shape descriptors GF-HOG and
HOOSC for shape based single-glyph retrieval. In the sec-
ond case, we incorporate context information within single
blocks to improve the glyph retrieval accuracy.

4.1 Datasets
Two glyph datasets are contributed, both requiring dedi-

cated expertise of expert epigraphers to collect and compile.
Maya Syllabic dataset (MS). MS is an adapted version
of the Syllabic Maya dataset used in [11], which contains
manually segmented glyphs from various resources by ex-
perts. With the support of experts in our team, we refined
the dataset by correcting a few glyph categories and remov-
ing uncertain glyphs. Note that the grouping of glyphs is
based on the Thompson catalog of Mayan glyph signs, not
on shape. The resulting dataset contains 1044 glyphs of 25
sign categories. We randomly selected 20% glyphs from each
category to form the query set, resulting in a total of 207
glyphs. All remaining glyphs formed the test set.
Maya Codex dataset (MC)[1]. MC is a new high-quality
Maya hieroglyph dataset developed by experts in our team.
Currently, it contains 174 glyphs from 72 blocks segmented
from two Maya codices (Dresden and Madrid), along with



Figure 4: Shape based retrieval results (MAP) with
varying vocabulary size on the MS dataset.

their segmented individual glyphs and corresponding an-
notations. See table 2 and Fig.3 for examples. Our work
has defined consistent conventions to generate high-quality
vectorial representations of the three existant Maya codices
(Dresden, Madrid, Paris) using Adobe Illustrator. Note that
these three codices are named after the places where they are
currently exhibited. Given that individual signs are struc-
tured within blocks, this dataset can also be used to study
the Maya language model. Currently, we only have a lim-
ited amount of examples available, since epigraphers require
about 30 minutes to render a high quality glyph-block de-
pending on complexity and preservation factors. We are
constantly enlarging and improving this dataset. To auto-
matically label glyphs from the MC dataset, we use them as
queries to match with the 892 signs of the Thompson catalog
[12], which we have scanned and manually segmented.

4.2 Results
Fig.4 shows the Mean Average Precision (MAP) of using

GF-HOG and HOOSC on the MS dataset. From the curves
we can see that HOOSC outperforms GF-HOG for around
8% on average with varying vocabulary sizes.

Glyph retrieval on the MC dataset is a more challenging
task. Indeed, in spite of the large visual variability of single
glyph categories, most signs of the catalog [12] are repre-
sented by only one instance. Furthermore, catalog signs of
different categories often share similar visual feature. Fi-
nally, query glyphs are often noisy due to degradations, and
partially missing due to occlusion by other glyphs from the
same block. We conduct two retrieval experiments (with-
out or with block context, see Eq.(4) and Eq.(5)) on this
dataset. For each experimental condition, Fig.5 displays the
results as the average over all queries of the ranking of the
correct match over 892 different sign categories. The results
confirms that HOOSC achieves slightly better results than
GF-HOG. It also demonstrate that incorporating context
through glyph co-occurrence improves the ranking signifi-
cantly (around 40 on average) for both descriptors. This
shows that our approach based on glyph co-occurrence is
highly beneficial even if the applied co-occurrence model is
rather approximate.

5. DISCUSSION AND FUTURE WORK
This paper presented a new Maya hieroglyph retrieval

method using shape and glyph context information, by means
of which two glyph datasets were also contributed.

We evaluated two local shape descriptors using the BoVW
approach. Experimental results showed that HOOSC achieves
higher retrieval accuracy than GF-HOG on both datasets.
Future work evaluating these two descriptors will take larger

Figure 5: Average ranking using two shape descrip-
tors and context information on the MC dataset.

shape datasets of more diverse resources into consideration.
Although the co-occurrence information we applied here

is at an incipient stage, the results suggest that the context
within Maya glyph blocks indeed encodes valuable informa-
tion. In the future, more complete glyph context informa-
tion will be extracted, which can be used in various Maya
hieroglyph analysis tasks, such as assisting the decipherment
of signs whose semantic meaning remain problematic, by
analysing their context from various resources.

Our ongoing work also includes automatic Maya text de-
tection, block segmentation, as well as glyph detection and
segmentation within blocks. This would help both epigra-
phers and public users for research and education purposes.
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