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ABSTRACT
The mCRL2 language and supporting software provide a state-
of-the-art tool suite for the verification of distributed sys-
tems. In this paper, we present the general principles, ex-
trapolated from [7,8], which make us believe that mCRL2 can
also be used for behavioral variability analysis of product
families. The mCRL2 data language allows to smoothly deal
with feature sets and attributes, its process language is suf-
ficiently rich to model feature selection, as well as product
behavior based on an FTS-like semantics. Because of the
feature-orientation, our modeling strategy allows a natural
refactoring of the semantic model of a product family into
a parallel composition of components that reflects coherent
sets of features. This opens the way for dedicated abstrac-
tion and reduction techniques that strengthen the prospect
of a scalable verification approach to software product lines.
In this paper, we sketch how to model product families in
mCRL2 and how to apply a modular verification method,
preparing the ground to further assess the scalability of our
approach, in particular regarding model checking.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.4 [Software Engineering]: Software/Program
Verification—Formal methods, Model checking, Validation;
D.2.13 [Software Engineering]: Reusable Software—Do-
main engineering

General Terms
Design, Experimentation, Verification

Keywords
Product families, Variability, Behavioral analysis, Modular
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1. INTRODUCTION
Feature-oriented software development (FOSD) is a popu-
lar paradigm for software product line engineering (SPLE),
in which the distinguishing concept of a feature is perva-
sive throughout all phases of the software life cycle [2]. The
last decades have seen formal methods and accompanying
analysis tools gaining momentum in FOSD and SPLE alike.
While initially focusing on the analysis of structural proper-
ties of concepts like (attributed) feature models [12], recently
a lively community has broadened the scope to the analysis
of the behavior of variability-intensive software systems [15].

The correctness of software (components) intended for
systematic reuse as well as the correctness of the devel-
oped software families is of paramount importance. How-
ever, while formal methods and tools are successfully applied
in single system engineering (of a product) for decades now,
this is not the case for product line engineering (involving a
product family). One reason is that formal methods tradi-
tionally do not cater for variability as a first-class concept.

In recent years, several behavioral models have been tai-
lored to deal with the variability of software product lines.
These include variants of transition systems [4,19,30,40,42],
process algebras [10,32,37], Petri nets [48], Event-B [33] and
state machines [46]. As a result, behavioral analysis tech-
niques like model checking are now being applied to verify
temporal properties of software product lines [11,15,18,46].

Our contribution so far has been to show the feasibility of
using the formal modeling language mCRL2 and its industrial-
strength toolset for the specification and (modular) verifica-
tion of product families [7,8]. Since a product line’s variabil-
ity is exponential in the number of features, the challenge is
to make modeling and analysis techniques for single prod-
ucts scale to product families. mCRL2 is highly optimized
and comes with powerful behavioral abstraction techniques,
which is why we believe that scalable verification of software
product lines with mCRL2 is within reach. In this paper, we
focus on the general set-up and specific features of our ap-
proach. More detailed examples can be found in [7,8]. In the
future, larger case studies are needed to assess the scalability
of the approach.

In Sect. 2, we briefly present the main features of the
mCRL2 language and toolset, including a description of two
successful applications. Consequently, we show in Sect. 3
how mCRL2 can be applied to product families by providing
an overview of [7, 8], extrapolating the general principles.
We compare our approach with related work and tools in
Sect. 4, after which we draw some conclusions and sketch
some future work in Sect. 5.
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2. USING mCRL FOR SINGLE PRODUCT
ANALYSIS

mCRL2 is a formal specification language for the modeling
of distributed systems and their interactions, which comes
with a state-of-the-art toolset for the qualitative analysis
of behavior [24, 35]. The modeling language stems from
µCRL [14], is based on the process algebra ACP [6] and
embraces the concept of multi-actions. It supports standard
data types like Int and Real and constructors like enumer-
ation and lists, as well as user-defined higher-order abstract
equational data types that can be used as action parameters.
Since its release in 2003, the toolset is actively maintained
and used in both academic and practical contexts.
mCRL2 has an open workflow, granting the user maximal

access to all intermediate models, states spaces and veri-
fication structures constructed during analysis, thus allow-
ing tailored manipulation. The general workflow involves
three to five tools; for more specific analysis over 60 tools
are available for dedicated transformations and optimization
techniques, behavioral reductions, visualization, formatted
export to other software tools, etc. Model checking can
be done via (multi-core) explicit state space exploration or
solving parametrized Boolean equation systems directly or
via parity games, with speeds up to 105 states per second
for state spaces of size 109, and experimental tools boosting
symbolic exploration to 106 states per second for state spaces
in the range of 1012 states. The supported logic is a variant
of the first-order modal µ-calculus augmented with data,
allowing arbitrary alternation of fixpoints. The logic sub-
sumes other common linear and branching logics like LTL
and (A)CTL [16, 25, 28]. The mCRL2 toolset strives to im-
plement highly-optimized and up-to-date algorithms for its
computations for a successful application of formal analysis
techniques of industrial strength.

To illustrate its merits, we mention the application of the
mCRL2 toolset in two settings outside of SPLE. The first con-
cerns the massive data collection system used for the high-
energy experiments conducted at the large hadron collider of
CERN [50]. System parts occasionally entered inconsistent
states, leading to a loss of e�ciency and potentially data.
Critical subsystems were modeled in mCRL2 and safety and
liveness requirements, stating e.g. that jobs are always pro-
cessed once submitted and jobs never enter an inconsistent
state, were verified via model checking. Violations of these
requirements revealed livelocks and race conditions, disclos-
ing and explaining phenomena from the actual system.

The second application of mCRL2 we mention here concerns
the FlexRay communication protocol and is taken from the
automotive field. The protocol aims to provide a reliable,
high-bandwidth communication channel between car com-
ponents. Moreover, the protocol is time-triggered, i.e. it
relies on components to have synchronized clocks, and oper-
ates by allocating bandwidth based on a global, cyclic sched-
ule. The FlexRay start-up procedure, which ensures that
activated components find each other and correctly initial-
ize their local view on the global schedule, was modeled and
checked for correctness using mCRL2 [23]. The expressivity
of the mCRL2 language allowed to specify the protocol faith-
fully. The robustness of FlexRay was analyzed by injecting
faults that may occur in the system. This was implemented
by making small, local changes to the fault-free model.

We argue that for product families the use of mCRL2 casts

the analysis within the framework of a full-fledged verifica-
tion toolset, while maintaining control of the design choices
to be made during modeling and of the properties to verify.

On the website www.mcrl2.org documentation and bina-
ries of the mCRL2 toolset can be found. The toolset is open
source; the associated boost license allows free use for any
academic and industrial purposes.

An mCRL2 model is expressed in an elementary process
language, where actions and datatypes are introduced, pro-
cesses are defined, and typically the initial process is given
in the following standard concurrent form [47]

hide( { hided actions },

allow( { synchronized and autonomous actions },

comm( { combinations a_1|..|a_n -> a },

process_1 || .. || process_n )))

i.e. a parallel composition of sequential processes with multi-
party synchronization specified (comm), encapsulated to for-
bid loose-ends of communications (allow) and with irrele-
vant actions abstracted away by a hiding operation (hide).
The function comm is used for the synchronization of actions
by explicitly stating which actions combine into another ac-
tion. Possible data parameters must be the same for all
actions involved. E.g. a_1. . . a_n may combine into a, sim-
ilar to a synchronization of actions a and ā yielding ⌧ in
CCS [47]. Moreover, to constrain the interaction of pro-
cesses and to prune the state space, we forbid unmatched
actions by explicitly listing (allow) which actions are al-
lowed to happen.

A toy example of an mCRL2 process is proc Soda(st:Int),
a snippet of which is depicted below, whose parameter st (an
integer) holds the state and whose actions are pay. . . close.
It models the labeled transition system (LTS) in Fig. 1
(which is a product of the FTS in Fig. 2 inspired by [20]).

proc Soda(st:Int) =

( st == 1 ) -> ( pay . Soda(2) ) +

...

( st == 7 ) -> ( close . Soda(1) ) ;

Figure 1: Behavior process Soda

The general workflow for checking a property expressed as
modal formula for an mCRL2 model consists of (i) translating
the model foo.mcrl2 into an intermediate format called a
linear process specification foo.lps, (ii) transforming the
linear process together with the modal formula bar.mf to
a so-called parametrized Boolean equation system foo.pbes

and then solving it, yielding true or false for the formula
bar.mf with respect to the specification foo.mcrl2.

Alternatively, one can generate the underlying state space
of the specification to visually inspect it. The hiding of well-
chosen actions and minimization with respect to one of the
process equivalences o↵ered by the toolset (like trace equiv-
alence, weak and branching bisimulation [47,54]) allows one
to transform the state space and to focus on specific behav-
ioral aspects of the specification. Using the latter technique,
a state space of potentially millions of states can be reduced
substantially, bringing it in scope for human examination
(see [8] for an SPL application).
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For our approach to variability analysis, so far we have
only used a smaller part of the mCRL2 toolset. In particu-
lar, because of the structure of the models, specific syntactic
transformations on intermediate representations and 3D vi-
sualizations appear less relevant for application. However, it
is likely that there will be occasions to add tools dedicated
to software product lines in the future. The architecture of
the toolset supports such extensions.

3. USING mCRL2 FOR PRODUCT FAMILY
ANALYSIS

In [8] we showed how the formal specification language mCRL2
and toolset can be exploited to model and analyze software
product lines (SPL). In particular, we presented a basic ex-
ample to illustrate the use of mCRL2’s data language to model
and select valid product configurations, in the presence of
feature attributes and quantitative constraints, and to model
and check the behavior of valid products. This is in line with
the analysis recommendations from [5] to “adopt and extend
state-of-the-art analysis tools” and to “examine[s] only valid
product variants”. In Sect. 3.1, we describe at a global level
how a product family can be encoded in mCRL2 by means of
a combination of a selection process and a (parametrized)
product behavior process. We stress the flexibility of the
approach and underline the advantage of keeping feature se-
lection and product execution together.

In [7], we introduced a modular verification technique to
analyze SPL behavior with the mCRL2 toolset. Exploiting
the same example from [8], we showed how its behavioral
model can be modularized (in a feature-oriented fashion)
into components, with interfaces that allow a driver process
to glue them back together on the fly. This is a power-
ful abstraction technique that allows mCRL2 to concentrate
on the relevant components (features) for a specific prop-
erty under scrutiny, and in accordance with the modeling
recommendation from [5] to “support (feature) modularity”
in order “to visualize and (manually or automatically) ana-
lyze feature combinations corresponding to products of the
product line”. In Sect. 3.2, we discuss how refactoring an
mCRL2 specification along the conceptual boundaries of the
feature model may help in reducing the SPL model, leading
to improved response times of the verification tools.

3.1 Combining Feature Models and Behavior
Our approach to SPL modeling and analysis using mCRL2 has
two main processes that together represent a product family:

1. the selection process Sel reflects the product family’s
underlying (attributed) feature model with the con-
straints regarding the presence or absence of features;

2. the behavior process Prod reflects the product family’s
underlying featured transition system (FTS) semantics
and thus concisely models individual product behavior.

Although selection and behaviour are modeled as separate
processes, for model checking purposes in particular it proves
useful to consider them as a whole.

The process Sel is responsible for the selection of a prod-
uct, i.e. for the configuration of features. More concretely,
the process performs a breadth-first traversal over the fea-
ture diagram, meanwhile resolving choices due to variability.
In the simple situation, cross-tree constraints and attribute
constraints can be dealt with after an initial selection has

been completed. Alternatively, the checking of these addi-
tional constraints can be intertwined with the selection of
features. When the selection process reaches a successful
final state, a product, as identified by a set of features, is se-
lected that is consistent with the requirements put forward
by the feature model. From such a final state of Sel, con-
trol is moved to an initial state of the process Prod, which
takes the set of features as collected by Sel as a parame-
ter. Unsuccessful final states may be the starting point of a
process that catches the error. Our focus, though, is on the
combination of variability and behavior.

To illustrate the selection, suppose the feature model con-
tains a node for feature f that has four children, a node for
a mandatory feature m, two nodes with optional features o1
and o2, of which at most one can be chosen, and a node for
an optional feature p which requires a feature r with a node
elsewhere in the tree. Moreover, node f is the 123rd node to
visit in the breadth-first traversal of the tree, while the node
for a feature g is the next node, i.e. the 124th node to visit,
and the decision to include or not include feature r is taken
before. (Thus the parent node of r has position 122 or earlier
in the traversal.) For the selection process declared with two
parameters as Sel(st:Int,fset:FeatureSet), using st for
its state and fset for the feature set under construction, we
would have an mCRL2 fragment of the form

.....

%% processing node 123 for feature f

( ( st == 123 ) && ( f in fset ) ) ->

select(m) . Sel( 123’, fset+{m} ) +

( st == 123’ ) -> (

skip . Sel( 123’’, fset ) +

select(o1) . Sel( 123’’, fset+{o1} ) +

select(o2) . Sel( 123’’, fset+{o2} ) ) +

( ( ( st == 123’’ ) && ( r in fset ) ) -> (

skip . Sel( 124, fset ) +

select(p) . Sel( 124, fset+{p} ) )

<>

skip . Sel( 124, fset ) ) +

%% processing node 124 for feature g

( ( st == 124 ) && ( g in fset ) ) -> (

.....

Here, 123’ and 123’’ are integers that do not clash with
the number of the nodes. Note that Int is a built-in type,
FeatureSet is a user-defined type, supposedly sets over the
user-defined enumeration type Feature which includes e.g.
the features r and f.

Thus, if Sel is in state 123 and the feature f has been se-
lected previously, the action select(m) is executed and Sel

continues in state 123’ with updated feature set fset, thus
now including the feature m. In state 123’, action o1 or o2

may be taken, but the action skip may be chosen instead
(at most one of o1 and o2 is allowed) and Sel continues in
state 123’’ with an updated feature set. Just to be explicit,
we could have included a test for f in fset here too, but
this is superfluous.

However, in state 123’’ we need to check whether the fea-
ture r that is required for the feature p we consider now, has
been selected previously and hence is in fset, the feature set
under construction. If this is the case, then we can either
select or not select feature p. But, if r was not selected pre-
viously, then we end up in the else-branch of the conditional,
denoted by <>, and thus do not include p now but continue
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directly to state 124. Of course, it is also possible to skip
the test for r in fset here and do this later, which is more
modular but at the expense of computation time.

The process Prod models the behavior of products which is
assumed to be given in terms of the semantics of an FTS. In
essence, Prod is a finite state automaton, i.e. with transitions
between states. A transition may be enabled or disabled, de-
pending on the current set of features and possibly on other
conditions that may be static or dynamic. Like the selection
process Sel, the product behavior Prod has parameters st of
type Int and fset of type FeatureSet. Additional param-
eters may be included as well, in particular to maintain the
cost functions or attribute values. The parameter st again
represents the current state, while fset is the set of features
for the product under consideration. However, now fset

is set once for Prod, initially, after which it remains fixed,
i.e. we assume it will not change during execution of Prod

(unless we aim at modeling dynamic features).
In a simple situation where an action a belongs to the

feature f and an action b belongs to the feature g, and there
are transitions from state 81 to state 82 on action a, and
from state 81 to state 13 on action b, this is captured in the
mCRL2 code for Prod by

.....

( ( st == 81 ) && ( f in fset ) ) ->

a . Prod( 82, fset ) +

( ( st == 81 ) && ( g in fset ) ) ->

b . Prod( 13, fset ) +

.....

If the guarding of transitions is more refined, e.g. when ac-
tions are coupled to propositional formulas and transitions
may depend on run-time cost functions, the mCRL2 condi-
tions are more elaborate as well. For example, if a transi-
tion from state 73 to state 69 on action a depends on the
presence of feature f or feature g, the cost incurred so far do
not exceed a threshold 10 and taking the transition increases
the costs by 1, and a transition from state 73 to state 54 on
action b does not depend on any feature, needs to have the
cost incurred so far to be more than threshold 5 and taking
the transition resets the costs, we would have

.....

( ( st == 73 ) &&

( ( f in fset ) || ( g in fset ) ) &&

( costs < 10 ) ) ->

a . Prod( 69, fset, costs+1 ) +

( ( st == 73 ) &&

( true ) &&

( costs > 5 ) ) ->

b . Prod( 13, fset, 0 ) +

.....

Here, || denotes disjunction. In fact, the mCRL2 process lan-
guage supports first-order formulas over user-defined equa-
tional datatypes, allowing to express a rich set of conditions.

Validation and verification of product families can be done
using the visualization and model checking facilities of the
mCRL2 toolset. See [7, 8, 24, 36]. However, the fact that the
selection process Sel and the product behavior process Prod
have been kept together, now turns out to be an advantage.
After all, the mCRL2 specification of the product family is a
text file and can be adapted and manipulated at will. Hence,
when focusing on a specific combination of features, concep-
tually the underlying feature model gets trimmed. Apart

from the features involved, all (reachable) mandatory op-
tions need to be taken, all optional features can be ignored.
This yields a selection process Sel’ which is typically much
smaller than the process Sel.

Also the product behavior process can be represented in
a more abstract way. Transitions (positively) depending on
non-relevant optional features can be left out. But on top of
this, transitions that do not depend on any of the relevant
features can be hidden, i.e. renamed into the silent action ⌧ .
This may yield a modest reduction in states only as many
transitions, although labeled with ⌧ now, still remain. How-
ever, subsequent transformation of the resulting LTS mod-
ulo branching bisimulation identifies many of the states and
removes many of the ⌧ -transitions while retaining an LTS
which satisfies the same set of formulas (in the fragment
of the µ-calculus respected by branching bisimulation [26]).
Care has to be taken though, when dealing with dynamic as-
pects, such as the costs in the code snippet above. But also
in such cases, an attribute-enhanced version of the branching
bisimulation minimization algorithm may lead to significant
reduction in the numbers of states and transitions. As one
can imagine, this is not standardly provided and would in-
deed require another tool in the toolset, an SPL-dedicated
C++-module that implements the algorithm.

We see that besides the possibility of doing behavior-
oriented variability analysis working with a model checker,
the use of mCRL2 for product family analysis comes with
a bonus, since its process-algebraic language allows user-
defined datatypes in addition to the built-in types of in-
tegers, natural numbers, Boolean, etc. and standard type
constructors as enumeration, lists and sets. We expect this
will support the analysis of SPL with dynamic attributes.
Moreover, the modal µ-calculus variant used in mCRL2 [34]
allows to quantify over data.

3.2 Modular Verification of Product Families
Existing compositional approaches to model checking ex-
ploit the native modular structure of a design to decompose
system properties into an equivalent combination of prop-
erties over system modules or components. Although an
appealing idea in order to cope with state space explosion,
it turns out that the idea is not easily applied, mainly due to
the di�culty to (de)compose properties, cf. [1,13,29,38,39].
However, Fisler and Krishnamurthi observed that in feature-
oriented system designs, components typically reflect behav-
ioral borders [31, 43, 44]. Because properties of interest of
such systems are feature geared, their decomposition aligns
well with the overall architecture. Therefore, variability
analysis that can exploit the alignment of system proper-
ties and system components, may contribute towards the
upscaling of behavior-oriented model checking to industrial-
size product lines. We argue that our approach to SPL mod-
eling fits this characteristic.

When focusing on a subsystem of components, the crux
is to introduce a ‘stub’ that mimics the environment in its
interaction with the subsystem. In programming, stubs are
used as placeholders for unknown implementations, whose
interfaces are known. Stubs contain just enough code to
be compiled and linked with the rest of the program. In
our approach, a stub provides an interface to the selected
components and simulates the relevant part of the transition
sequences from every possible exit from the subsystem to
each reachable entry or re-entry of the subsystem.
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Generally, the components involved and the stub together
are substantially smaller than the complete system. We thus
created an abstract system on which to do the actual anal-
ysis. If the abstract system and the original are branching
bisimilar [54], i.e. the two systems respect a notion of equiva-
lence that preserves their branching structure, then for many
properties (i.e. properties expressive in CTL* without the
next operator [26]) validity for the two systems is the same.
(In fact, the choice for branching bisimulation is relatively
arbitrary; any other behavioral equivalence that respects va-
lidity of the property under consideration will work as well.)

Figure 2: Behavior process Prod

The general workflow of the compositional mCRL2 approach
is as follows. Start with the combined attributed feature
model and LTS as described above, i.e. the ‘sequential’ com-
position of the selection process Sel and the parametrized
product behavior process Prod. The latter reflects the un-
derlying FTS semantics, see e.g. Fig. 2 inspired by [20] (of
which the LTS in Fig. 1 is a product). Next, the Prod pro-
cess is refactored into a driver process Driver in parallel
with a number of components depending on disjoint sets of
features, see Fig. 3. When verifying a specific property for
a single component Comp

0

(for simplicity), an abstraction of
the irrelevant components Comp

1

, . . . , Comp
n

is formulated,
called Stub. In case the specification of the abstract system

Sel; (Driver k Comp
0

k Stub)

is branching bisimilar to the specification

Sel; (Driver k Comp
0

k Comp
1

k . . . k Comp
n

)

of the original system, then the property holds for the latter
specification exactly when the property holds for the former.
However, as noted, the state space is reduced in general and
and so is thus the e↵ort to model check the property.

In the refactored mCRL2 encoding, a product as given by an
eligible feature set is not represented by a monolithic LTS,
but rather as the superposition of component processes, pre-
ceded by the selection process of the product line that con-
figures the product. Typically, there is a component process
for each coherent group of nontrivial features and a compo-
nent process for the root feature. After being woken up by
the selection process, the behavior process belonging to a
product is thus captured by a system of parallel processes,
each giving and gaining control when needed. In order to
enforce a proper flow of control, the component processes
are put in parallel with a driver process which coordinates
their interaction. The driver process is relatively simple. It
keeps track of the current state of the underlying FTS se-
mantics, allowing any component with an active transition
to perform an action. Next, it catches the new state num-
ber, raised by the component’s transition, and the driving
starts anew from that state, etc.

When we replace a number of components by a stub, we
need to combine the behavior of the components comprising

the stub such that the combined transitions tell where the
driver ends up when leaving the perimeter of the component
currently under focus. Consider, e.g., the refactoring of the
behavior process in Fig. 3, where we see four components. In
this simple case the components each belong to a single fea-
ture. Gluing the isolated components on equally numbered
states together yields the original behavior process of Fig. 2.
The driver process plays this role, allowing e.g. a transition
labeled soda from state 3 in the s-component after a tran-
sition labeled change to state 3 in the m-component.

More specifically, the driver is modeled by

proc Driver(st:Int) =

drv_start(st) . sum st’:Int . drv_end(st’) .

Drv(st’)

The driver thus announces the current state st and is will-
ing to accept any state as the next state. To this aim, comm
combines driver actions drv_start(st) and drv_end(st’)

with component actions cmp_start(st) and cmp_end(st’),
respectively. The sum construction is to be interpreted as
a non-deterministic choice over all states. The soda compo-
nent is refactored into the process

proc Soda(fset:FeatureSet) =

( s in fset ) -> (

cmp_start(3) . soda . cmp_end(5) +

cmp_start(5) . serve . cmp_end(6) )

If the driver announces that the current state is 3, the soda
component can make it 5 by performing a soda action. The
component can bring the system in state 6 by executing
the action serve if the current state is 5. The stub pro-
cess should capture the behavior of the other components
together. For the example the Stub will contain

.....

( ( c in fset ) && ( m in fset ) ) -> (

cmp_start(3) . tau . cmp_end(3) ) +

( m in fset ) -> (

cmp_start(6) -> tau . cmp_end(3) ) +

( ( m in fset ) && ( f in fset ) ) -> (

cmp start(6) -> tau . cmp_end(3) ) +

.....

Like the soda component the stub interacts with the driver.
Since the stub reflects the combined behavior of the remain-
ing components it provides a loop from state 3 to itself,
based on actions of both the c and m-component. However,
this involves the condition to be met that both the (root) fea-
ture m and the (optional) feature c are present in the feature
set of the product or group of products under consideration.
When the system is in state 6 the stub can bring control to
state 3 where the soda component can pick up again. This
can be done in two ways, either via the skip shortcut of the
f-component together with actions of the m-component or
by the m-component alone. In this case the stub can be sim-
plified, as the latter possibility subsumes the former. Like
the refactoring, such transformation can be done by acting
directly on the mCRL2 code of the model itself.

4. RELATED WORK AND TOOLS
There is a vast amount of work on the analysis of product
families. In this section we focus on model-checking tools
that were specifically developed for behavioral variability
analysis (in Sect. 4.1) and we discuss approaches to modu-
larize SPL analysis (in Sect. 4.2).
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Figure 3: Refactored behavior process

4.1 Model Checkers for Variability Analysis
SNIP [18] is a model checker for product families modeled
as FTSs specified in a feature-oriented variant of Promela,
which is the input language of the SPIN model checker (cf.
spinroot.com). A textual encoding of a feature diagram
can be consulted by SNIP’s explicit-state on-the-fly model-
checking algorithm to verify properties expressed in a feature-
oriented version of LTL interpreted over FTSs.

Symbolic FTS model checking was implemented as an
extension of the NuSMV model checker (cf. nusmv.fbk.eu)
by a fully symbolic algorithm for a feature-oriented version
of CTL. Special-purpose exhaustive model checking algo-
rithms enable SNIP to continue a search also after a violation
is found. As such, all products of a product family can be
verified at once, after which counterexamples are produced
for all products that violate a property. This di↵ers from
the NuSMV extension which only produces a counterexample
for the first violating product it finds.
SNIP has recently been re-engineered and the resulting

tool suite ProVeLines [21] can handle feature attributes [22].
VMC [11] (cf. fmt.isti.cnr.it/vmc) is a model checker for

behavioral variability analysis in product families modeled
as modal transition systems (MTSs) specified in a value-
passing modal process algebra [9]. Textual variability con-
straints on actions can be consulted by VMC’s explicit-state
on-the-fly model-checking algorithm to verify properties ex-
pressed in a variability-aware version of ACTL interpreted
over MTSs. VMC o↵ers automatic generation of one, some
or all valid products (modeled as LTSs) of a product family
(modeled as an MTS). The user can simulate, visualize or
model check either the entire product family or a set of valid
products. Moreover, VMC o↵ers the possibility to inspect the
(interactive) explanations of a verification result.

We close this comparison with a few words on SPL analy-
sis approaches that, like mCRL2, are based on process alge-
bras. Similar to mCRL2, the approach of [37] allows the veri-
fication of properties expressed in the multi-valued modal µ-
calculus, whereas that of [42] is based on CTL model check-
ing. The only approach that is actually implemented, viz.
in the Maude toolset (cf. maude.cs.uiuc.edu) which comes
with LTL model checking, is the one presented in [10].

None of the above tools support modular verification.

4.2 Modularization of Variability Analysis
Fisler and Krishnamurthi [31, 43, 44] were the first to note
that product families naturally decompose around features
so that the resulting components align well with properties
of interest. Partly improving this pioneering work, [45] con-
tains an incremental compositional model checking approach
to product families using so-called variation point obliga-
tions expressed in CTL to guarantee that the (sequential)

feature-based composition satisfies a property if and only if
the added features satisfy the relevant obligations. Verifica-
tion results are reused in an incremental fashion within the
product being composed, reducing the overall verification ef-
fort. The approach however does not aim to reuse properties
of behavioral feature models across di↵erent products.

In [51], an existing compositional verification technique for
safety properties of flow-graph behavior of general-purpose
programs is adapted to program families, organized accord-
ing to a hierarchical variability model defining interfaces and
variation points. This compositional approach scales well,
but it is not feature-based and limited to control-flow be-
havior, for which it can express properties in a fragment of
the modal µ-calculus.

In [48], feature Petri nets are defined as a modular (feature-
and interface-based) behavioral modeling formalism. Some
correctness criteria, based on bisimulation, for preserving
properties in composed models are given. Model checking is
not addressed and there is no reuse of verification results.

In [46], for each feature of a product family two finite
state machines with variability (implemented by guarded
variables on transitions) are built, one for the requirements
and one for the design level, after which their conformance
can be checked in a compositional, feature-based fashion.
The prototype SPLEnD uses SPIN to implement conformance
checking. Reuse of verification results is not considered.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented the general principles for
which we advocate the use of the mCRL2 toolset for the be-
havioral analysis of product families, as initiated in [7, 8].

The data language of mCRL2 allows to deal with feature sets
and attributes smoothly, the process language is su�ciently
rich to model feature selection and product behavior based
on an FTS semantics, and the variant of the µ-calculus that
acts as property language for the toolset supports the use of
data in formulas. We sketched how product families can be
modeled and presented a modular verification method that
takes advantage of the factorization of a software product
line based on its features. Still, larger case studies need to
be done to assess the scalability of our setup, in particular
regarding model checking.

Our approach di↵ers from modular or compositional veri-
fication in the classic sense of (re)composing smaller verifica-
tion results on modules or components to derive properties of
the composed system. It remains to investigate whether we
could apply compositional model checking under sequential
composition as defined in [41] to our feature-oriented mod-
ularization of behavioral SPL models. Likewise it remains
to study whether a notion like modular validity (a property
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holds over a module if it holds over any system that includes
that module [49]) can be e↵ectively used in our setting.

Another challenge for our feature-oriented modular verifi-
cation approach stems from the fact that, ideally, we want to
be able to handle dynamic feature-based composition. If a
feature is added, then on the one hand we want to prove that
properties of the system continue to hold, while on the other
hand we want to prove new properties that the new system
should now satisfy. This is complicated by the well-known
fact that features may interact [3, 17].

Most model-checking analyses described in this paper fall
in the category of product-based analyses, i.e. operating on
individually generated products (or at most a subset) [53].
This contrasts with family-based analyses, operating on an
entire product line at once using variability knowledge about
valid feature configurations to deduce results for products, of
which SNIP and ProVeLines are well-known and successful
representatives. VMC o↵ers a bit of both types of analysis,
but—contrary to the special-purpose FTS model-checking
algorithms of SNIP—when a formula is verified over an en-
tire product line, then a negative result does not actually
list the specific products in which the property fails to hold.
However, both in VMC and in mCRL2, the full list of violat-
ing products can be obtained by model checking the formula
against each individual product of the product line (inspec-
tion of a counterexample reveals one violating product only).

An alternative route for mCRL2 would be to consider groups
of products where it is left unspecified whether a feature is
included or not. For this to work, cross-tree constraints
would need to be treated cautiously. Such a solution would
only require textual transformation of the mCRL2 model and
might therefore be feasible. Future work should confirm this.

There might be a trade-o↵ between brute-force product-
based analysis with model checkers that have been highly
optimized for single system engineering, like SPIN and—
to a lesser degree—mCRL2, and highly innovative family-
based analysis with model checkers that have been developed
specifically for product lines, like SNIP and ProVeLines. In
fact, in [18] it is said that SPIN generally outperforms SNIP

due to SPIN’s many optimizations, among which partial or-
der reduction. In this respect, an evaluation of the mCRL2

toolset for SPL analysis may lead to the desire to imple-
ment, on top of facilities to transform mCRL2 models as de-
scribed above, some product line-specific features into its
model-checking algorithms. We are currently investigating
an FTS-specific notion of branching bisimulation and its as-
sociated minimization procedure.

The open mCRL2 workflow means that any output of the
toolset can be exported to other tools, like SAT/SMT-solvers.
Reversely, specific feature settings, e.g. resulting from other
means of analysis, can be used as a starting point by jump-
ing directly to the right state of the Sel or Prod process.

Finally, we intend to compare our modular verification
approach with [52], where behavioral models of the feature-
oriented requirements modeling language FORML are de-
composed into so-called feature modules, expressed as one
or more parallel UML-like state machines called feature ma-
chines, each of which specifies the behavioral requirements
for a single feature of the SPL.
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